
S/MIME Working Group Jongwook Park (KISA)
Internet Draft Sungjae Lee (KISA)
Document: draft-ietf-smime-cms-seed-02.txt Jeeyeon Kim (KISA)
Expires: Feburary 2005 Jaeil Lee (KISA)
Target category : Standard Track August 2004

Use of the SEED Encryption Algorithm
in Cryptographic Message Syntax (CMS)

 <draft-ietf-smime-cms-seed-02.txt>

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet Drafts are working documents of the Internet Engineering
 Task Force (IETF), its Areas, and its Working Groups. Note that other
 groups may also distribute working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress".

 The list of current Internet-Drafts can be accessed at
 http//www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http//www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This document specifies the conventions for using the SEED encryption
 algorithm for encryption with the Cryptographic Message Syntax (CMS).

 SEED is added to the set of optional symmetric encryption algorithms
 in CMS by providing two classes of unique object identifiers (OIDs).

Park, et. al. Expires Feburary 2005 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-seed-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-seed-02.txt
https://datatracker.ietf.org/doc/html/rfc3668

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 One OID class defines the content encryption algorithms and the other
 defines the key encryption algorithms.

1. Introduction

 This document specifies the conventions for using the SEED encryption
 algorithm [SEED][TTASSEED] for encryption with the Cryptographic
 Message Syntax (CMS)[CMS]. The relevant object identifiers (OIDs) and
 processing steps are provided so that SEED may be used in the CMS
 specification (RFC 3369, RFC 3370) for content and key encryption.

1.1 SEED

 SEED is a symmetric encryption algorithm that had been developed by
 KISA (Korea Information Security Agency) and a group of experts since
 1998. The input/output block size of SEED is 128-bit and the key
 length is also 128-bit. SEED has the 16-round Feistel structure. A
 128-bit input is divided into two 64-bit blocks and the right 64-bit
 block is an input to the round function with a 64-bit subkey
 generated from the key scheduling.

 SEED is easily implemented in various software and hardware because
 it takes less memory to implement that than other algorithms and
 generates keys without degrading the security of the algorithm. In
 particular, it can be effectively adopted to a computing environment
 with a restricted resources such as a mobile devices, smart cards and
 so on.

 SEED is robust against known attacks including DC (Differential
 cryptanalysis), LC (Linear cryptanalysis) and related key attacks,
 etc. SEED has gone through wide public scrutinizing procedures.
 Especially, it has been evaluated and also considered
 cryptographically secure by credible organizations such as ISO/IEC
 JTC 1/SC 27 and Japan CRYTEC (Cryptography Reasearch and Evaluation
 Comittees) [ISOSEED][CRYPTEC].

 SEED is a national industrial association standard [TTASSEED] and is
 widely used in South Korea for electronic commerce and financial
 services operated on wired & wireless communications.

1.2 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
 as shown) are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3370
https://datatracker.ietf.org/doc/html/rfc2119

Park, et. al. Expires Feburary 2005 [Page 2]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

2. Object Identifiers for Content and Key Encryption

 This section provides the OIDs and processing information necessary
 for SEED to be used for content and key encryption in CMS. SEED is
 added to the set of optional symmetric encryption algorithms in CMS
 by providing two classes of unique object identifiers (OIDs). One OID
 class defines the content encryption algorithms and the other defines
 the key encryption algorithms. Thus a CMS agent can apply SEED either
 for content or key encryption by selecting the corresponding object
 identifier, supplying the required parameter, and starting the
 program code.

2.1 OIDs for Content Encryption

 SEED is added to the set of symmetric content encryption algorithms
 defined in [CMSALG]. The SEED content-encryption algorithm in Cipher
 Block Chaining (CBC) mode has the following object identifier:

 id-seedCBC OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) korea(410) kisa(200004)
 algorithm(1) seedCBC(4) }

 The AlgorithmIdentifier parameters field MUST be present, and the
 parameters field MUST contain the value of Initialization Vector
 (IV):

 SeedCBCParameter ::= SeedIV -- Initialization Vector

 SeedIV ::= OCTET STRING (SIZE(16))

 The plain text is padded according to Section 6.3 of [CMS].

2.2 OIDs for Key Encryption

 The key-wrap/unwrap procedures used to encrypt/decrypt a SEED
 content-encryption key (CEK) with a SEED key-encryption key (KEK) are
 specified in Section 3. Generation and distribution of key-encryption
 keys are beyond the scope of this document.

 The SEED key-encryption algorithm has the following object
 identifier:

 id-npki-app-cmsSeed-wrap OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) korea(410) kisa(200004) npki-app(7)
 smime(1) alg(1) cmsSEED-wrap(1) }

 The parameter associated with this object identifier MUST be absent,
 because the key wrapping procedure itself defines how and when to use

Park, et. al. Expires Feburary 2005 [Page 3]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 an IV.

3. Key Wrap Algorithm

 SEED key wrapping and unwrapping is done in conformance with the AES
 key wrap algorithm [RFC3394].

3.1 Notation and Defintions

 The following notation is used in the description of the key wrapping
 algorithms:

 SEED(K, W) Encrypt W using the SEED codebook with key K
 SEED-1(K, W) Decrypt W using the SEED codebook with key K
 MSB(j, W) Return the most significant j bits of W
 LSB(j, W) Return the least significant j bits of W
 B1 ^ B2 The bitwise exclusive or (XOR) of B1 and B2
 B1 | B2 Concatenate B1 and B2
 K The key-encryption key K
 n The number of 64-bit key data blocks
 s The number of steps in the wrapping process,
 s = 6n
 P[i] The ith plaintext key data block
 C[i] The ith ciphertext data block
 A The 64-bit integrity check register
 R[i] An array of 64-bit registers where
 i = 0, 1, 2, ..., n
 A[t], R[t][i] The contents of registers A and R[i] after
 encryption step t.
 IV The 64-bit initial value used during the
 wrapping process.

 In the key wrap algorithm, the concatenation function will be used to
 concatenate 64-bit quantities to form the 128-bit input to the SEED
 codebook. The extraction functions will be used to split the 128-bit
 output from the SEED codebook into two 64-bit quantities.

3.2 SEED Key Wrap

 Key wrapping with SEED is identical to Section 2.2.1 of [RFC3394]
 with "AES" replaced by "SEED".

 The inputs to the key wrapping process are the KEK and the plaintext
 to be wrapped. The plaintext consists of n 64-bit blocks, containing
 the key data being wrapped. The key wrapping process is described
 below.

 Inputs: Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}, and

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.1

Park, et. al. Expires Feburary 2005 [Page 4]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 Key, K (the KEK).
 Outputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]}.

 1) Initialize variables.

 Set A[0] to an initial value (see Section 3.4)
 For i = 1 to n
 R[0][i] = P[i]

 2) Calculate intermediate values.

 For t = 1 to s, where s = 6n
 A[t] = MSB(64, SEED(K, A[t-1] | R[t-1][1])) ^ t
 For i = 1 to n-1
 R[t][i] = R[t-1][i+1]
 R[t][n] = LSB(64, SEED(K, A[t-1] | R[t-1][1]))

 3) Output the results.

 Set C[0] = A[s]
 For i = 1 to n
 C[i] = R[s][i]

 An alternative description of the key wrap algorithm involves
 indexing rather than shifting. This approach allows one to calculate
 the wrapped key in place, avoiding the rotation in the previous
 description. This produces identical results and is more easily
 implemented in software.

 Inputs: Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}, and
 Key, K (the KEK).
 Outputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]}.

 1) Initialize variables.

 Set A = IV, an initial value (see Section 3.4)
 For i = 1 to n
 R[i] = P[i]

 2) Calculate intermediate values.

 For j = 0 to 5
 For i=1 to n
 B = SEED(K, A | R[i])
 A = MSB(64, B) ^ t where t = (n*j)+i
 R[i] = LSB(64, B)

 3) Output the results.

Park, et. al. Expires Feburary 2005 [Page 5]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 Set C[0] = A
 For i = 1 to n
 C[i] = R[i]

3.3 SEED Key Unwrap

 Key unwrapping with SEED is identical to Section 2.2.2 of [RFC3394],
 with "AES" replaced by "SEED".

 The inputs to the unwrap process are the KEK and (n+1) 64-bit blocks
 of ciphertext consisting of previously wrapped key. It returns n
 blocks of plaintext consisting of the n 64-bit blocks of the
 decrypted key data.

 Inputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]},
 and Key, K (the KEK).
 Outputs: Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}.

 1) Initialize variables.

 Set A[s] = C[0] where s = 6n
 For i = 1 to n
 R[s][i] = C[i]

 2) Calculate the intermediate values.

 For t = s to 1
 A[t-1] = MSB(64, SEED-1(K, ((A[t] ^ t) | R[t][n]))
 R[t-1][1] = LSB(64, SEED-1(K, ((A[t]^t) | R[t][n]))
 For i = 2 to n
 R[t-1][i] = R[t][i-1]

 3) Output the results.

 If A[0] is an appropriate initial value (see Section 3.4),
 Then
 For i = 1 to n
 P[i] = R[0][i]
 Else
 Return an error

 The unwrap algorithm can also be specified as an index based
 operation, allowing the calculations to be carried out in place.
 Again, this produces the same results as the register shifting
 approach.

 Inputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]},
 and Key, K (the KEK).

https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.2

Park, et. al. Expires Feburary 2005 [Page 6]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 Outputs: Plaintext, n 64-bit values {P[0], P[1], ..., P[n]}.

 1) Initialize variables.

 Set A = C[0]
 For i = 1 to n
 R[i] = C[i]

 2) Compute intermediate values.

 For j = 5 to 0
 For i = n to 1
 B = SEED-1(K, (A ^ t) | R[i]) where t = n*j+i
 A = MSB(64, B)
 R[i] = LSB(64, B)

 3) Output results.

 If A is an appropriate initial value (see Section 3.4),
 Then
 For i = 1 to n
 P[i] = R[i]
 Else
 Return an error

3.4 Key Data Integrity -- the Initial Value

 The initial value (IV) refers to the value assigned to A[0] in the
 first step of the wrapping process. This value is used to obtain an
 integrity check on the key data. In the final step of the unwrapping
 process, the recovered value of A[0] is compared to the expected
 value of A[0]. If there is a match, the key is accepted as valid, and
 the unwrapping algorithm returns it. If there is not a match, then
 the key is rejected, and the unwrapping algorithm returns an error.

 The exact properties achieved by this integrity check depend on the
 definition of the initial value. Different applications may call for
 somewhat different properties; for example, whether there is need to
 determine the integrity of key data throughout its lifecycle or just
 when it is unwrapped. This specification defines a default initial
 value that supports integrity of the key data during the period it is
 wrapped (in Section 3.4.1). Provision is also made to support
 alternative initial values (in Section 3.4.2).

3.4.1 Default Initial Value

 The default initial value (IV) is defined to be the hexadecimal
 constant:

Park, et. al. Expires Feburary 2005 [Page 7]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 A[0] = IV = A6A6A6A6A6A6A6A6

 The use of a constant as the IV supports a strong integrity check on
 the key data during the period that it is wrapped. If unwrapping
 produces A[0] = A6A6A6A6A6A6A6A6, then the chance that the key data
 is corrupt is 2^-64. If unwrapping produces A[0] any other value,
 then the unwrap must return an error and not return any key data.

3.4.2 Alternative Initial Values

 When the key wrap is used as part of a larger key management protocol
 or system, the desired scope for data integrity may be more than just
 the key data or the desired duration for more than just the period
 that it is wrapped. Also, if the key data is not just an SEED key, it
 may not always be a multiple of 64 bits. Alternative definitions of
 the initial value can be used to address such problems. According to
 [RFC3394], NIST will define alternative initial values in future key
 management publications as needed. In order to accommodate a set of
 alternatives that may evolve over time, key wrap implementations that
 are not application-specific will require some flexibility in the way
 that the initial value is set and tested.

4. SMIMECapabilities Attribute

 An S/MIME client SHOULD announce the set of cryptographic functions
 it supports by using the S/MIME capabilities attribute. This
 attribute provides a partial list of OIDs of cryptographic functions
 and MUST be signed by the client. The functions' OIDs SHOULD be
 logically separated in functional categories and MUST be ordered with
 respect to their preference.

RFC 2633 [RFC2633], Section 2.5.2 defines the SMIMECapabilities
 signed attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs)
 to be used to specify a partial list of algorithms that the software
 announcing the SMIMECapabilities can support.

 If an S/MIME client is required to support symmetric encryption with
 SEED, the capabilities attribute MUST contain the SEED OID specified
 above in the category of symmetric algorithms. The parameter
 associated with this OID MUST be SeedSMimeCapability.

 SeedSMimeCapabilty ::= NULL

 The SMIMECapability SEQUENCE representing SEED MUST be DER-encoded as
 the following hexadecimal strings:

 30 0C 06 08 2A 83 1A 8C 9A 44 01 04 05 00

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc2633#section-2.5.2

Park, et. al. Expires Feburary 2005 [Page 8]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 When a sending agent creates an encrypted message, it has to decide
 which type of encryption algorithm to use. In general the decision
 process involves information obtained from the capabilities lists
 included in messages received from the recipient, as well as other
 information such as private agreements, user preferences, legal
 restrictions, and so on. If local policy requires the use of SEED for
 symmetric encryption, then the both the sending and receiving S/MIME
 clients must support it, and SEED must be configured as the preferred
 symmetric algorithm.

5. Security Considerations

 This document specifies the use of SEED for encrypting the content of
 a CMS message and for encrypting the symmetric key used to encrypt
 the content of a CMS message, and the other mechanisms are the same
 as the existing ones. Therefore, the security considerations
 described in the CMS specifications [CMS][CMSALG] and the AES key
 wrap algorithm [RFC3394] can be applied to this document. No security
 problem has been found on SEED [CRYPTREC].

6. References

6.1 Normative Reference

 [TTASSEED] Telecommunications Technology Association (TTA),
 South Korea, "128-bit Symmetric Block Cipher (SEED)",
 TTAS.KO-12.0004, September, 1998 (In Korean)

http://www.tta.or.kr/English/new/main/index.htm

 [CMS] R. Housley, "Cryptographic Message Syntax", RFC 3369,
 August 2002.

 [CMSALG] R. Housley, "Cryptographic Message Syntax (CMS)
 Algorithms", RFC 3370, August 2002.

 [RFC2633] Ramsdell, B., Editor. S/MIME Version 3 Message
 Specification. RFC 2633. June 1999.

 [RFC3394] J. Schaad and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc3394
http://www.tta.or.kr/English/new/main/index.htm
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3370
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Park, et. al. Expires Feburary 2005 [Page 9]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

6.2 Informative Reference

 [SEED] Jongwook Park, Sungjae Lee, Jeeyeon Kim, Jaeil Lee,
 "The SEED Encryption Algorithm", draft-park-seed-01.txt

 [ISOSEED] ISO/IEC, ISO/IEC JTC1/SC 27 N 256r1, "National Body
 contributions on NP 18033 Encryption algorithms in
 response to document SC 27 N 2563", October, 2000

 [CRYPTREC] Information-technology Promotion Agency (IPA), Japan,
 CRYPTREC. "SEED Evaluation Report", February, 2002

http://www.kisa.or.kr

7. Authors' Address

 Jongwook Park
 Korea Information Security Agency
 78, Garak-Dong, Songpa-Gu, Seoul, 138-803
 REPUBLIC OF KOREA
 Phone: +82-2-405-5432
 FAX : +82-2-405-5499
 Email: khopri@kisa.or.kr

 Sungjae Lee
 Korea Information Security Agency
 Phone: +82-2-405-5243
 FAX : +82-2-405-5499
 Email: sjlee@kisa.or.kr

 Jeeyeon Kim
 Korea Information Security Agency
 Phone: +82-2-405-5238
 FAX : +82-2-405-5499
 Email: jykim@kisa.or.kr

 Jaeil Lee
 Korea Information Security Agency
 Phone: +82-2-405-5300
 FAX : +82-2-405-5499
 Email: jilee@kisa.or.kr

8. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has

https://datatracker.ietf.org/doc/html/draft-park-seed-01.txt
http://www.kisa.or.kr

Park, et. al. Expires Feburary 2005 [Page 10]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

9. Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix. ASN.1 Module

 SeedEncryptionAlgorithmInCMS
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs9(9) smime(16) modules(0) id-mod-cms-seed(24) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 id-seedCBC OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) korea(410) kisa(200004)
 algorithm(1) seedCBC(4) }

 -- Initialization Vector (IV)

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Park, et. al. Expires Feburary 2005 [Page 11]

INTERNET-DRAFT Use of the SEED Encryption Algorithm in CMS August 2004

 SeedCBCParameter ::= SeedIV
 SeedIV ::= OCTET STRING (SIZE(16))

 -- SEED Key Wrap Algorithm identifiers - Parameter is absent.

 id-npki-app-cmsSeed-wrap OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) korea(410) kisa(200004) npki-app(7)
 smime(1) alg(1) cmsSEED-wrap(1) }

 -- SEED S/MIME Capabilty parameter

 SeedSMimeCapability ::= NULL

 END

Park, et. al. Expires Feburary 2005 [Page 12]

