
SMIME Working Group Michael Myers (VeriSign)
Internet Draft Xiaoyi Liu (Cisco)
 Barbara Fox (Microsoft)
 Hemma Prafullchandra (Sun)
 Jeff Weinstein (Netscape)

expires in six months November 1997

Certificate Request Syntax
<draft-ietf-smime-crs-00.txt>

1. Status of this Memo
This document is an Internet-Draft. Internet-Drafts are working docu-
ments of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups MAY also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and MAY be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Di-
rectories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munari.oz.au
Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West
Coast).

2. Abstract

This document defines an Internet PKI Certificate Request Syntax (CRS).
It addresses a growing need within the Internet PKI community for an
interface to public key certification products and services based on
PKCS7 [PKCS7] and PKCS10 [PKCS10]. A small number of additional services
are defined to supplement the core certificate request service. Current
industry practice regarding the use of PKCS7 and PKCS10 is also
documented for the benefit of the Internet community.

In general, the use of PKCS7 in this document is aligned to the
Cryptographic Message Syntax [CMS] which provides a superset of the
PKCS7 syntax. Throughout this document, the term CMS should be taken to
include the PKCS #7 document as defined in [PKCS7]. The term CRS refers
to this specification.

The chief differences between CRS and PKIXMGMT are:

- Use of PKCS7 for security encapsulation and transaction framework
- Use of PKCS10 as the certification request message content
- Certification of Diffie-Hellman Public Keys based on PKCS10 requests
- No assumption of reliable connectivity or persistent on-line operation
- Single request/response transaction model

https://datatracker.ietf.org/doc/html/draft-ietf-smime-crs-00.txt

The key words "MUST", "REQUIRED", "SHOULD", "RECOMMENDED", and "MAY" in
this document are to be interpreted as described in RFC 2119.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119

INTERNET DRAFT November, 1997

3. Protocol Overview
This document identifies use of some CMS protocol elements. In the
interests of brevity and syntactic alignment, readers interested in the
full syntactic context should refer to that document.

A transaction in this specification is composed of the exchange of
request-response message pairs between a server and a client. Three
transactions are defined:

1. Certification of a public key;
2. Certificate and CRL retrieval; and
3. Certificate revocation.

A public key certification request is formed as a PKCS10 object. The
corresponding response is CMS encapsulation of the requested certificate
and its associated non-Root CA certificate(s). Within this draft, the
latter construction is referred to as a certificate response, or
CertRep. A CertRep is a CMS signedData object that only contains
certificates. Both the PKCS10 content and the resulting CertRep SHOULD
be encapsulated within a full CMS security envelope. Encapsulating the
CertRep in a full CMS envelope enables Registration Authorities to
assert a signature across a certificate request. Some existing
implementations of these mechanisms utilize a simplified form of this
exchange. In these implementations, an unencapsulated PKCS10 object is
provided to the Certification Authority, which responds with an
unencapsulated CertRep syntax.

The certificate and CRL retrieval request mechanism is used to assist
state recovery within resource-constrained PKI clients. This MAY be the
case, for example, within low-end IP routers implementing IPSEC which by
reasons of design do not retain such data in non-volatile memory.

Transactions MAY be identified and tracked using a transaction
identifier. If used, clients generate transaction identifiers and
retain their value until the server responds with a message that
completes the transaction. Servers correspondingly include received
transaction identifiers in the response.

Replay protection MAY be supported through the use of sender and
recipient nonces. If used, clients generate a nonce value and include
it in the request as a sender nonce. Servers return this value as
recipient nonce along their own value for sender nonce.

This specification makes no assumptions about the underlying transport
mechanism. The use of CMS is not meant to imply an email-based
transport.

Requests and responses are composed of a message body and one or more
Service Indicators. Service Indicators are encoded as a set of
authenticated attributes of a CMS SignedData construction.

Message bodies MAY be encrypted. Whether encrypted or cleartext, either
are in turn included as the content of SignedData. The message digest of

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 2]

INTERNET DRAFT November, 1997

message body is then signed together with the Service Indicators using
the originator's private signing key, producing the message signature.

The following figure illustrates the essential characteristics of fully-
encapsulated transaction message structure. Many interior details and
fields have been omitted for clarity. Not all of the indicated fields
are present in every message type. The ORIGINATOR S CERTIFICATES element
may actually be composed of one or more non-root CA certificate together
with the end-entity certificate needed to validate the message
signature.

|---------------------------------------|
SIGNED DATA
content
DATA
cleartext message body
or
ENCRYPTED DATA
Message Encryption Key (MEK)
encrypted message body

ORIGINATOR'S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce
recipient nonce

Message Signature

4. Protocol Elements

4.1 PKCS7 Interoperability

CMS differs from PKCS7 in the following ways:

- adds to EnvelopedData an OPTIONAL originatorInfo field preceding
 recipientInfo;
- replaces the issuerAndSerial field of recipientInfos with a CHOICE
 of alternative recipient key identification mechanisms.

Clients MAY include the optional OriginatorInfo field of the CMS
EnvelopedData syntax when submitting PKI transaction requests. If the

intended recipient is unable to receive this optional syntax, an error
response message SHALL be generated per Section 4.3.1.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 3]

INTERNET DRAFT November, 1997

Clients SHALL be capable of receiving and servers SHALL be capable of
processing the issuerAndSerialNumber CHOICE of the rid (recipient
identifer) syntax for RecipientInfos. The corresponding
RecipientKeyIdentifier and MailListKeyIdentifier are optional within
this specification.

As noted in CMS, if either RecipientKeyIdentifier or
MailListKeyIdentifier are used, the value for version in EnvelopedData
SHALL be 2; if issuerAndSerialNumber CHOICE is used, the value for
version SHALL be 0.

The specification of CMS ensures that EnvelopedData productions with a
version of 0 will successfully interoperate with systems implemented in
accordance with PKCS7.

4.2 Mandatory and Optional Algorithms

CRS clients and servers SHALL be capable of producing and processing
message signatures using the Digital Signature Algorithm [DSA]. DSA
signatures SHALL be indicated by the DSA AlgorithmIdentifier value
specified in section 7.2.2 of PKIXCERT. PKI clients and servers SHOULD
also be capable of producing and processing RSA signatures as specified
in section 7.2.1 of PKIXCERT.

CRS clients and servers SHALL be capable of protecting and accessing
message encryption keys using the Diffie-Hellman (D-H) key exchange
algorithm. D-H protection SHALL be indicated by the D-H
AlgorithmIdentifier value specified in CMS. PKI clients and servers
SHOULD also be capable of producing and processing RSA key transport.
When used for PKI messages, RSA key transport SHALL be indicated as
specified in section 7.2.1 of PKIXCERT.

Two options exist with respect to the use of encryption. One usage
produces an encrypted message body encapsulated by a signed, cleartext
envelope. Organizations that wish to protect against the leakage of
sensitive data via cleartext channels may chose instead to produce a
cleartext message body which is placed with a signed envelope which is
in turn encapsulated by an encrypted envelope. The following figure
illustrates the options:

Option 1 Option 2
-------- --------
SignedData EnvelopedData
 EnvelopedData SignedData
 Data <message body>
 <message body>

Message bodies MAY be encrypted or transmitted in the clear. Support
SHALL be provided for encryption option 1 and SHOULD be provided for

both.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 4]

INTERNET DRAFT November, 1997

4.3 Message Construction

A fully-encapsulated CRS message SHALL be constructed as follows. The
contentInfo field of a signedData type is populated with the
envelopedData content type if the content is encrypted or Data content
type if the data is sent in cleartext form (see the Open Issues section
at the end of this document regarding MIME agent interoperability). The
content MAY contain one of the following message bodies:

- PKCSReq -- Request for a certificate
- CertRep -- Response to a certificate request
- GetCert -- A means to query for others' certificates
- GetCRL -- A means to query for a CA's CRL(s)
- DualReq -- Separate signature and encryption certificates
- DualRep -- Responses to a DualReq
- RevReq -- Request to revoke a certificate
- RevResp -- Response to a revocation request

The presence of a particular message body type in either the encrypted-
Content of an envelopedData content type or the content of a Data con-
tent type SHALL be indicated by value of the messageType Service Indica-
tor (see section 4.4) of the outermost SignedData. Successful responses
are indicated by a value of SUCCESS for pkiStatus. All other responses
are indicated by a value of FAILURE.

A PKCSReq message consists of a PKCS10 certificate signing request. The
request SHALL contain subject name and subject public key. The subject
name MAY be NULL, but must be present. The request MAY contain a
ChallengePassword attribute. It MAY contain an optional ExtensionReq
attribute used to indicate to the server one or more PKIXCERT
certificate extensions. It MAY contain additional attributes as
specified by PKCS9.

The ExtensionReq attribute is composed as a SEQUENCE OF X.509
extensions. When present in a PKCS10 certification request, this
attribute SHALL be identified by the OID {pkcs-9 14} (This OID should be
assiged off an SMIME WG arc?).

A CertRep message is the CA's response to a PKCSReq, GetCert or GetCRL.
It MAY contain a certificate but always contains one or more Service
Indicators.

The DualReq and DualRep message pair enables production and processing
of separate signature and encryption certification request in a single
message.

The RevReq and RevRep message pair enables production and processing of
certificate revocation requests.

4.3.1 Service Indicators

The SignerInfos portion of SignedData carries one or more Service
Indicators as authenticatedAttributes. As defined in CMS, the value of
authenticatedAttributes is hashed using the algorithm specified by

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 5]

INTERNET DRAFT November, 1997

digestAlgorithm, signed using the originator's private key corresponding
to digestEncryptionAlgorithm, the result encoded as an OCTET STRING and
assigned to the encryptedDigest field of SignedData.

The following Service Indicators are defined:

- version
- messageType
- pkiStatus
- failinfo
- transactionId
- senderNonce
- recipientNonce

Each is uniquely identified by an Object Identifier (OID) that signals
the syntax following the OID. Processing systems would first detect the
OID and process the corresponding service indicator value prior to
processing the message body.

As noted, service indicators are encoded as AuthenticatedAttributes
within SignedData. In accordance with CMS, when included in a CMS mes-
sage, AuthenticatedAttributes must consist of at a minimum:

- A PKCS #9 content-type attribute having as its value the content type
of the ContentInfo value being signed.

- A PKCS #9 message-digest attribute, having as its value the message
digest of the content.

CRS clients and servers SHALL include values for AuthenticatedAttributes
in accordance. In addition to the required Attributes of content-type
and message-digest, one or more of the following six authenticated
attributes MUST be included as needed.

Service Indicator OID Syntax
----------------- ------------- ---------------
version smime-crs 1 INTEGER
TransactionId smime-crs 2 INTEGER
messageType smime-crs 3 INTEGER
pkiStatus smime-crs 4 INTEGER
failInfo smime-crs 5 INTEGER
senderNonce smime-crs 6 OCTET STRING
recipientNonce smime-crs 7 OCTET STRING
DualStatus smime-crs 8 {as specified below}

DualStatus ::= SEQUENCE OF {
 request_id INTEGER,
 status pkiStatus,
 failure failInfo OPTIONAL }

The DualStatus syntax supports certificate request messages that con-
tain request for more than one certificate. That is, an end-entity sub-

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 6]

INTERNET DRAFT November, 1997

mits a DualReq request and receives a DualRep response containing a
DualStatus service indicator.

The version service indicator indicate CRS protocol version. If absent,
a value of 0 SHALL be assumed. This draft specifies CRS version 1.

The messageType service indicator identifies the syntax carried in the
message body. Every CRS message SHALL include a value for messageType
appropriate to the message.

The messageType service indicator specifies the type of operation
performed by the transaction. This attribute is required in all
messages. The following values for messageType are defined:

Message MessageType Value
------- ----------
PKCSReq (19) -- PKCS#10 certificate request
CertRep (3) -- Response to certificate request
GetCert (21) -- Retrieve a certificate
GetCRL (22) -- Retrieve a CRL
DualReq (23) -- Dual certificate requests in a single msg
DualRep (24) -- Response to a DualReq

The value given for messageType value is set in the messageType service
indicator for messages of the indicated type. This service indicator
SHALL be included in every message.

The pkiStatus service indicator is used to convey information relevant
to a requested operation. This service indicator SHALL be included in
every message.

Response messages SHALL include transaction status information which is
defined as pkiStatus service indicator:

Status pkiStatus value
------- ---------------
SUCCESS (0) -- request successful
FAILURE (2) -- request rejected

This pKIStatus service indicator is required for all PKI messages. The
value given for pkiStatus value is set in the pkiStatus service indica-
tor for status of the indicated type.

The failInfo service indicator conveys information relevant to the in-
terpretation of a failure condition. This service indicator is mandatory
in every message.

If the status in the response is FAILURE, then the failinfo service in-
dicator SHALL contain one of the following failure reasons:

BADALG (0) -- Unrecognized or unsupported algorithm
BADMESSAGECHECK (1) -- integrity check failed
BADREQUEST (2) -- transaction not permitted or supported

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 7]

INTERNET DRAFT November, 1997

BADTIME (3) -- Message time field was not sufficiently close
 -- to the system time
BADCERTID (4) -- No certificate could be identified matching
 -- the provided criteria
UNSUPPORTEDEXT (5) -- A requested X.509 extension is not supported
 -- by the recipient CA.

Additional failure reasons MAY be defined for environments with a need.

The messageType, pkiStatus, and failInfo service indicators are
mandatory for all messages. If additional transaction management or
replay protection is desired, transactionID, senderNonce and
recipientNonce MAY be implemented.

The transactionId service indicator identifies a given transaction. It
is used between client and server to manage the state of an operation.
It MAY be included in service request messages. If included, responses
SHALL included the transmitted value.

The senderNonce and recipientNonce service indicator can be used to
provide application-level replay prevention. They MAY be included in
service request messages. Originating messages include only a value
for senderNonce. If included, responses SHALL include the transmitted
value of the previously received senderNonce as recipientNonce and
include a value for senderNonce.

If nonces are used, in the first message of a transaction, no recipient-
Nonce is transmitted; a senderNonce is instantiated by the message
originator and retained for later reference. The recipient of a sender
nonce reflects this value back to the originator as a recipientNonce and
includes it's own senderNonce. Upon receipt by the transaction origina-
tor of this message, the originator compares the value of recipientNonce
to its retained value. If the values match, the message can be accepted
for further security processing. The received value for senderNonce is
also retained for inclusion in the next message associated with the same
transaction.

If a transaction originator includes a value for the senderNonce service
indicator, responses SHALL include this value as a value for recipient-
Nonce AND include a value for the SenderNonce service indicator.

If a transaction originator includes a value for the transaction-id
service indicator in a service request, responses SHALL include this
value as a value for transaction-id service indicator.

4.3.2 Messages Bodies

The following message bodies SHALL be constructed in the method indi-
cated. Some current implementations transmit a PKCS10 request and its
corresponding response directly. These quantities SHOULD be CMS-

encapsulated prior to transmission as described above.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 8]

INTERNET DRAFT November, 1997

4.3.3 PKCSReq Message Body

A PKCSReq message body is composed of two elements. The first consists
of the PKCS10 structure itself. The second consists of optional
supplementary registration information. Syntactically, this message
body is constructed as:

PKCSReq ::= SEQUENCE {
 csr CertificationRequest,
 regInfo OCTET STRING OPTIONAL }

CertificationRequest ::= SEQUENCE {
 certificationRequestInfo SEQUENCE {
 version INTEGER,
 subject Name,
 subjectPublicKeyInfo SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }
 attributes [0] IMPLICIT SET OF Attribute }
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

Clients SHALL produce a PKCS10 message body containing a subject name
and public key. Some certification products are operated in a fashion
that assigns subject names from a central repository of information upon
receipt of a public key for certification. To accommodate this mode of
operation, the subject name in a PKCSReq MAY be NULL, but MUST be
present. CAs that receive a request a PKCSReq with a NULL subject name
MAY reject such requests. If rejected, the CA SHALL respond with a
CertRep message with pkiStatus of FAILURE and failInfo value of
BADREQUEST.

The client MAY incorporate one or more standard X.509 v3 extensions in
the request as an ExtensionReq attribute. An ExtensionReq attribute is
defined as

ExtensionReq ::= SEQUENCE OF Extension

where Extension is imported from PKIX Part 1 and ExtensionReq is
identified by {pkcs-9 14} (OID should be off the SMIME WG arc?).

Servers are not required to be able to process every v3 X.509 extension
transmitted using this protocol, nor are they required to be able to
process other, private extensions. However, in the circumstance when a
certification request is denied due to the inability to handle a
requested extension, the server SHALL respond with an UNSUPPORTEDEXT
error as defined in section 4.3.1.

CMS requires that the signerInfo contain a issuerNameSerialNumber value;

however for this transaction, the certificate has yet to be issued and
therefore the serialNumber has not yet been assigned. Thus the
issuerName and SerialNumber value in the signerInfo SHALL be set to NULL
and zero, respectively.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 9]

INTERNET DRAFT November, 1997

Schematically, the relationship among the elements of a PKCSReq message
are as follows:

|---------------------------------------|
SIGNED DATA
DATA
PKCSReq
or ENVELOPED DATA
MEK
encrypted content:
PKCSReq

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce

Message Signature

4.3.4 Production of Diffie-Hellman Public Key Certification Requests

When a PKCSReq or DualReq message is used to produce a certified Diffie-
Hellman public key, the means to establish proof of possession of the
corresponding private key SHALL be performed using the methods described
in Appendix A of this document.

CAs that support this mechanism SHALL have produced and make available a
D-H public key certificate. This certificate SHALL contain the
parameters associated with the public key.

Clients that support this mechanism SHALL generate a D-H key pair using
the parameters contained in the CA s certificate they wish to have
certify their D-H public key.

4.3.5 CertRep

A CertRep message is the response to a prior PKCSReq message. It is in-
dicated by a value of CERTREP in the messageType service indicator.
Successful responses are indicated by a value of SUCCESS for pkiStatus.
All other responses are indicated by a value of FAILURE. Section 4.2 de-
fines specific values for these constants.

4.3.5.1 FAILURE

Servers transmit a CertRep messages with a pkiStatus of FAILURE if the
certification request or its subsequent processing fails to meet the
certification practices requirements of the entity operating the server.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 10]

INTERNET DRAFT November, 1997

The message is a SignedData content type with no ContentInfo block. The
SignerInfo block contains the following Authenticated Attributes as in-
dicated:

|---------------------------------------|
SIGNED DATA

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
failInfo
transaction identifier
sender nonce
recipient nonce

Message Signature

Failure reason codes are specified in Section 4.2.

4.3.5.2 SUCCESS response

The Client's certificate(s) SHALL be conveyed to the Client as a
certs-only CMS SignedData message. To construct such a message, the

certificates are made available to the CMS generating process which
creates a CMS object of type signedData. The contentInfo and signerInfos
fields must be empty. The message body SHALL include all non-root
certificates needed to validate the signature on the end-entity's
certificate(s).

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 11]

INTERNET DRAFT November, 1997

Schematically, the general relationship among these elements is as
follows:

|---------------------------------------|
SIGNED DATA
DATA
CA certificate(s)
ee certificate
ee certificate
or ENVELOPED DATA
MEK
encrypted content:
CA certificate(s)
ee certificate
ee certificate

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce
recipient nonce

Message Signature

This schematic depicts the situation where an end-entity has requested
separate signature and encryption certificates in a single message.
Section 4.3.6 which follows specifies the means by which an end-entity
can perform a single request that yields this result.

4.3.6 DualReq and DualRep

This construct is used by a single end-entity to request signature and
encryption certificates in a single message. For each certification, a
request identifier is included.

This identifier is needed to differentiate among the multiple CertRep
data that will be returned in the resulting DualRep response. The
optional transaction identifier and sender nonce, if included, apply to
the message as a whole.

Syntactically,

DualReq ::= SEQUENCE OF {
 request PKCSReq,
 req_id INTEGER }

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 12]

INTERNET DRAFT November, 1997

The values for req_id SHALL be relatively unique within a single DualReq
content.

A PKCSReq for key-usage differentiated certificates SHALL contain a
value for KeyUsage extension identified and structured in accordance
with PKIXCERT. This extension SHALL be conveyed as an ExtensionReq
Attribute within the PKCS10 syntax.

For end-entities requesting the production of a signature-only
certificate, the keyUsage extension SHALL contain either a setting of
DigitalSignature, NonRepudiation or both.

For end-entities requesting the production of an encryption-only
certificate, the keyUsage extension SHALL contain a setting of
keyEncipherment, dataEncipherment, or keyAgreement.

Schematically, the resulting message would appear as follows:

|---------------------------------------|
SIGNED DATA
DATA
PKCSReq, 1
PKCSReq, 2
or ENVELOPED DATA
MEK
encrypted content:
PKCSReq, 1
PKCSReq, 2

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce

Message Signature

The corresponding response to a DualReq message is composed of a
similarly iterated construction:

DualRep ::= SEQUENCE OF {
 req_id INTEGER,
 ee_certs SEQUENCE OF CertRep }

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 13]

INTERNET DRAFT November, 1997

4.3.7 GetCRL

This operation is used to retrieve CRLs from a CA's repository. It as-
sumes the target CA maintains one and only one CRL relative to a given
private signing key. In order to provide clients a convenient means of
determining the network address needed to acquire a CA's CRL, servers
and clients SHOULD be capable of producing and processing the CRLDistri-
butionPoints certificate extension. Alternatively, the Client MAY be
pre-configured with the CRL's location.

|---------------------------------------|
SIGNED DATA
DATA
GetCRL message body

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce

Message Signature

The GetCRL message body SHALL consist of the following syntax:

GetCRL ::= SEQUENCE {
 issuerName Name,
 time GeneralizedTime }

The Name component is the value of the Issuer DN in the subject certifi-
cate. The time component is used by the client to specify from among
several issues of CRL that one whose thisUpdate value is less than but
nearest to the specified time.

4.3.8 GetCert

A certificate retrieval request MAY be used by resource-constrained
clients to recover their public key in the event of a device reset.
This MAY be the case, for example, within low-end IP routers which may
not be capable of retaining their certificates in non-volatile memory.

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 14]

INTERNET DRAFT November, 1997

|---------------------------------------|
SIGNED DATA
DATA
GetCert message body

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce

Message Signature

The GetCert message body SHALL consist of the following syntax:

GetCert ::= SEQUENCE {
 issuerName Name,
 serialNumber INTEGER }

4.3.9 Revocation Request and Response

A revocation request is structured as follows.

RevReq ::= SEQUENCE {
 issuerName Name,
 serialNumber INTEGER,
 reason ReasonFlags, -- from PKIXCERT
 passphrase OCTET STRING OPTIONAL,
 comment PrintableString OPTIONAL }

For a revocation request to become a reliable object in the event of a
dispute, a strong proof of originator authenticity is required. A
Registration Authority s digital signature on the request can provide
this proof for certificates within the scope of the RA s revocation
authority. The means by which an RA is delegated this authority is a
matter of operational policy.

However, in the instance when an end-entity has lost use of their
signature private key, it is impossible to produce a reliable digital
signature. The PKCSReq message provides for the optional transmission
from the CA to the end-entity of a passphrase which may be used as an
alternative authenticator in the instance of loss of use. The
acceptability of this practice is a matter of local security policy.

CRS clients SHALL provide the capability to produce a digitally signed
RevReq message. CRS clients SHOULD provide the capability produce an
unsigned revocation request containing the end-entity s passphrase. If

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 15]

INTERNET DRAFT November, 1997

a CRS client provides passphrase-based self-revocation, the client SHALL
be capable of producing a PKCSReq containing a passphrase.

A cleartext signed revocation request has the following basic structure:

|---------------------------------------|
SIGNED DATA
DATA
RevReq message body

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
transaction identifier
sender nonce

Message Signature

The structure of an unsigned, passphrase-based RevReq is a matter of
local implementation. Since such a message has no relationship to the
use of cryptography, the use of CMS to convey this message is not
required.

The response to a revocation request, REVRESP, is a CRS message with no
message body. The services indicators will convey the status of the
processing of the message by the recipient CA service or server. Its
basic structure is as follows:

|---------------------------------------|
SIGNED DATA

ORIGINATOR S CERTIFICATES

AUTHENTICATED ATTRIBUTES
Hash of Content
version
message type
transaction status
failure
transaction identifier
sender nonce

Message Signature

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 16]

INTERNET DRAFT November, 1997

6. Security Considerations

Initiation of a secure communications channel between an end-entity and
a CA necessarily requires an out-of-band trust initiation mechanism. For
example, a secure channel may be constructed between the end-entity and
the CA via IPSEC or TLS. Many such schemes exist and the choice of any
particular scheme for trust initiation is outside the scope of this
document. Implementors of this protocol are strongly encouraged to
consider generally accepted principles of secure key management when
integrating this capability within an overall security architecture.

Mechanisms for thwarting replay attacks may be required in particular
implementations of this protocol depending on the operational
environment. In cases where CAs maintain significant state information
themselves, replay attacks may be detectable without the inclusion of
the optional nonce mechanisms. Implementors of this protocol need to
carefully consider environmental conditions before choosing whether or
not to implement the senderNonce and recipientNonce service indicators
described in section 4.3.1. Developers of state-constrained PKI clients
are strongly encouraged to incorporate the use of these service
indicators.

7. Open Issues

This draft specifies the essential characteristics of a protocol based
on the CMS and PKCS7 security encapsulation syntaxes. Integration of
this protocol to MIME needs to be performed to align it with generally
accepted practices of MIME interoperability. In particular it is noted
that current SMIME draft specifications integrate CMS syntax with MIME
encapsulation to achieve SMIME interoperability.

This draft also presents a number of optional constructions. Consensus
needs to be established on a minimum interoperable profile.

8. References

[CMS] R. Housley, "Cryptographic Message Syntax",
draft-ietf-smime-cms-01.txt, October 1997

[DH] B. Kaliski, "PKCS 3: Diffie-Hellman Key Agreement v1.4"

[PKCS7] B. Kaliski, "PKCS #7: Cryptographic Message Syntax v1.5",
draft-hoffman-pkcs-crypt-msg-03.txt, October 1997

[PKCS10] B. Kaliski, "PKCS #10: Certification Request Syntax v1.5",
draft-hoffman-pkcs-certif-req-03.txt, October 1997

[PKIXCERT] R. Housley, W. Ford, W. Polk, D. Solo "Internet Public
 Key Infrastructure X.509 Certificate and CRL Profile",

draft-ietf-pkix-ipki-part1-06.txt, October, 1997

https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-01.txt
https://datatracker.ietf.org/doc/html/draft-hoffman-pkcs-crypt-msg-03.txt
https://datatracker.ietf.org/doc/html/draft-hoffman-pkcs-certif-req-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-06.txt

[PKIXMGMT] C. Adams, S. Farrell, "Internet Public Key Infrastructure
 Certificate Management Protocols",

draft-ietf-pkix-ipki3cmp-04.txt, September 1997

Myers, Liu, Fox, Prafullchandra, Weinstein [Page 17]

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki3cmp-04.txt

INTERNET DRAFT November, 1997

9. Author's Addresses

Michael Myers
VeriSign, Inc.
1390 Shorebird Way
Mountain View, CA, 94019
(650) 429-3402
mmyers@verisign.com

Xiaoyi Liu
Cisco Systems
170 West Tasman Drive
San Jose, CA 95134
(480) 526-7430
xliu@cisco.com

Barbara Fox
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
(425) 936-9542
bfox@microsoft.com

Hemma Prafullchandra
Sun Microsystems Inc
2550 Garcia Ave
CUP01-102
Mountain View, CA 94043
(408) 343-1798
hemma@sun.com

Appendix A

A PROPOSAL FOR CERTIFICATION REQUEST OF DIFFIE-HELLMAN PUBLIC VALUES
==
Version 1.2
September 26, 1996

1.0 INTRODUCTION

PKCS #10 [PKCS10]from RSA Labs defines a syntax for certification
requests. In there it is assumed that the public key being requested
for certification corresponds to an algorithm which is capable of
signing/encrypting. Diffie-Hellman (DH) is a key agreement algorithm
and thus cannot be used for signing/encrypting. Hence, the following
enhancement to PKCS #10 is proposed for requesting certification for
Diffie-Hellman public values.

2.0 SCOPE

This proposal is primarily concerned with "signatureAlgorithm" and
"signature". I believe there has been some discussions on extending/
revising PKCS #10 to allow for such things as validity period and
optional fields supported in X.509 v3 certificates, none of these are
addressed in this proposal.

Also this proposal does not provide for identity authentication. However
this can be achieved if the enrollee already possesses a valid signature
key certificate and the corresponding private key to this is used to
sign the certification request (as opposed the private corresponding to
the public key in the certification request itself).

3.0 DEFINITIONS

For the purposes of this proposal, the following definitions apply.

DH certificate = a certificate whose SubjectPublicKey is a DH public
 value and is signed with any signature algorithm
 (e.g. rsa or dsa).

4.0 SPECIFICATION FOR DH CERTIFICATION

>From PKCS #10, section 6.2 CertificationRequest, the following ASN.1
syntax is defined.

CertificationRequest ::= SEQUENCE {
 certificationRequestInfo CertificationRequestInfo,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature Signature
}

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

Signature ::= BIT STRING

4.1 DH CERTIFICATION PROCESS

The steps then for requesting certification of DH public values are:

 1. An entity chooses a Certification Authority. It obtains the CAs' DH
 certificate. Other than trust, the selection has to take into
 account with which community/group of entities this entity wishes to
 use the certified DH public value (for interoperability a common set
 of DH parameters have to be used).

 [Note: a CA MAY have more than one signature key, and thus is
 likely to have more than one certificate. This proposal
 requires that a CA which wishes to provide certification
 service for public key agreement algorithms makes available
 a certificate with a public key (and common parameters) for
 that algorithm.]

 If the enrollee already possess a valid signature key certificate,
 then, the enrollee can select the group parameters g and P, and
 compute a DH public value, all this would be encoded as the
 SubjectPublicKeyInfo and the request signed by the signature key.
 The CA can then verify the request (it would need the enrollees
 signature key certificate to obtain the public key) and issue a
 certificate.

2. The entity generates a DH public/private key-pair.

 The DH parameters used to calculate the public should be those
 specified in the CAs' DH certificate.

 From CAs' DH certificate:
 CApub = g^x mod p (where g and p are the established DH
 parameters and x is the CAs' private
 DH component)
 For entity E:
 DH private value = y
 Epub = DH public value = g^y mod p

3. The entity selects a SignatureAlgorithmIdentifier. A number of
 these may be defined, the following is recommended.

 craWithHMACandSHA1 ::= { an oid needs to be assigned }

 [certification request algorithm with HMAC-SHA1 as the message
 digest algorithm as specified in [HMAC-MD5].]

4. The signature process will then consist of:

a) The value of the certificationRequestInfo field is DER encoded,
 yielding an octet string (as per PKCS #10). This will be the `text'
 referred to in [HMAC-MD5], the data to which HMAC-SHA1 is applied.

b) A shared DH secret is computed, as follows,
 shared secret = Kec = g^xy mod p

 [This is done by the entity E as g^(y.CApub) and by the CA as
 g^(x.Epub), where CApub is retrieved from the CA's DH certificate
 and Epub is retrieved from the actual certification request.]

c) A key K is derived from the shared secret Kec as follows:
 K = SHA1(DER-encoded-subjectName | Kec | DER-encoded-issuerName)

where "|" means concatenation.

d) Compute HMAC-SHA1 over the data `text' as per [HMAC-MD5] as:
 SHA1(K XOR opad, SHA1(K XOR ipad, text))

where,
 opad (outer pad) = the byte 0x36 repeated 64 times
and
 ipad (inner pad) = the byte 0x5C repeated 64 times.

Namely,
 (1) Append zeros to the end of K to create a 64 byte string
 (e.g., if K is of length 16 bytes it will be appended with 48
 zero bytes 0x00).
 (2) XOR (bitwise exclusive-OR) the 64 byte string computed in step
 (1) with ipad.
 (3) Append the data stream `text' to the 64 byte string resulting
 from step (2).
 (4) Apply SHA1 to the stream generated in step (3).
 (5) XOR (bitwise exclusive-OR) the 64 byte string computed in
 step (1) with opad.
 (6) Append the SHA1 result from step (4) to the 64 byte string
 resulting from step (5).
 (7) Apply SHA1 to the stream generated in step (6) and output
 the result.

 Sample code is also provided in [HMAC-MD5].

 e) The output of (d) is encoded as a BIT STRING (the Signature).

 5. The signature verification process requires the CA to carry out
 steps (a) through (d) and then simply compare the result of step (d)
 with what it received as the signature component. If they match then
 the following can be concluded:

 1) The Entity possesses the private key corresponding to the public
 key in the certification request because it needed the private
 key to calculate the shared secret; and
 2) That only the CA, the entity sent the request to could actually
 verify the request because the CA would require its own private
 key to compute the same shared secret. This protects from
 rogue CAs.

5.0 ACKNOWLEDGEMENTS

I would like to thank Peter Williams and Dave Solo for providing
comments which resulted in making this proposal clear, succinct
and complete. Also, Hugo Krawczyk, John Kennedy, Bob Jueneman and
Carlisle Adams provided extremely important improvements.

6.0 AUTHOR INFORMATION

Hemma Prafullchandra
Sun Microsystems Inc
2550 Garcia Ave
CUP01-102
Mountain View
CA 94043

(408) 343-1798
hemma@sun.com

7.0 REFERENCES

[PCKS10] RSA Data Security, Inc.,
 Public-Key Cryptography Standards (PKCS) #10:
 Certification Request Syntax Standard,
 November 1, 1993

[RFC1423] D. Balenson,
 Privacy Enhancement for Internet Electronic Mail:
 Part III: Algorithms, Modes, and Identifiers,
 February, 1993

[HMAC-MD5] H. Krawczyk, M. Bellare, R. Canetti,
 HMAC-MD5: Keyed-MD5 for Message Authentication,
 <draft-ietf-ipsec-hmac-md5-00.txt>,
 March, 1996

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-hmac-md5-00.txt

