
 X. Boyen
 S/MIME Working Group L. Martin
 Internet Draft Voltage Security
 Expires: December 2006 June 2006

Identity-Based Cryptography Standard (IBCS) #1: Supersingular Curve
Implementations of the BF and BB1 Cryptosystems

 <draft-ietf-smime-ibcs-00.txt>

 Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware have
been
 or will be disclosed, and any of which he or she becomes aware will be
 disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Abstract

 This document describes the algorithms that implement Boneh-Franklin
 and Boneh-Boyen Identity-based Encryption. This document is in part
 based on IBCS #1 v2 of Voltage Security s Identity-based Cryptography
 Standards (IBCS) documents.

https://datatracker.ietf.org/doc/html/draft-ietf-smime-ibcs-00.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Boyen & Martin Expires December 2006 [Page 1]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Table of Contents

1. Introduction...3
2. Notation and definitions.......................................4

2.1. Notation..4
2.2. Definitions...6

3. Basic elliptic curve algorithms................................7
3.1. The group action in affine coordinates....................7

3.1.1. Implementation for type-1 curves.....................7
3.2. Point multiplication......................................9
3.3. Special operations in projective coordinates.............11

3.3.1. Implementation for type-1 curves....................11
3.4. Divisors on elliptic curves..............................13

3.4.1. Implementation in F_p^2 for type-1 curves...........13
3.5. The Tate pairing...15

3.5.1. The Miller algorithm for type-1 curves..............16
4. Supporting algorithms...18

4.1. Integer range hashing....................................19
4.2. Pseudo-random generation by hashing......................20
4.3. Canonical encodings of extension field elements..........20

4.3.1. Type-1 curve implementation.........................21
4.4. Hashing onto a subgroup of an elliptic curve.............22

4.4.1. Type-1 curve implementation.........................22
4.5. Bilinear pairing...23

4.5.1. Type-1 curve implementation.........................24
4.6. Ratio of bilinear pairings...............................25

4.6.1. Type-1 curve implementation.........................25
5. The Boneh-Franklin BF cryptosystem............................26

5.1. Setup..26
5.1.1. Type-1 curve implementation.........................27

5.2. Public key derivation....................................28
5.3. Private key extraction...................................28
5.4. Encryption...29
5.5. Decryption...30

6. Wrapper methods for the BF system.............................32
6.1. Private key generator (PKG) setup........................32
6.2. Private key extraction by the PKG........................32
6.3. Session key encryption...................................33

7. Concrete encoding guidelines for BF...........................35
7.1. Encoding of points on a curve............................35
7.2. Public parameters blocks.................................36

7.2.1. Type-1 implementation...............................36
7.3. Master secret blocks.....................................38
7.4. Private key blocks.......................................38

Boyen & Martin Expires December 2006 [Page 2]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

7.5. Ciphertext blocks..39
8. The Boneh-Boyen BB1 cryptosystem..............................40

8.1. Setup..40
8.1.1. Type-1 curve implementation.........................41

8.2. Public key derivation....................................42
8.3. Private key extraction...................................43
8.4. Encryption...44
8.5. Decryption...46

9. Wrapper methods for the BB1 system............................48
9.1. Private key generator (PKG) setup........................48
9.2. Private key extraction by the PKG........................49
9.3. Session key encryption...................................50

10. Concrete encoding guidelines for BB1.........................51
10.1. Encoding of points on a curve...........................51
10.2. Public parameters blocks................................52

10.2.1. Type-1 implementation..............................53
10.3. Master secret blocks....................................54
10.4. Private key blocks......................................55
10.5. Ciphertext blocks.......................................56

11. ASN.1 syntax...57
12. Security considerations......................................63
13. IANA considerations..63
14. Acknowledgments..63
15. References...64

15.1. Informative references..................................64
 Authors Addresses...64
 Intellectual Property Statement..................................64
 Disclaimer of Validity...65
 Copyright Statement..65
 Acknowledgment...65

1. Introduction

 This document provides a set of specifications for implementing
 identity-based encryption (IBE) systems based on bilinear pairings.
 Two cryptosystems are described: the IBE system proposed by Boneh and
 Franklin (BF) [3], and the first IBE system proposed by Boneh and
 Boyen (BB1) [2]. Fully secure and practical implementations are
 described for each system, comprising the core IBE algorithms as well
 as ancillary hybrid components used to achieve security against
 active attacks. These specifications are restricted to a family of
 supersingular elliptic curves over finite fields of large prime
 characteristic, referred to as type-1 curves (see Section 2.3).
 Implementations based on other types of curves currently fall outside
 the scope of this document.

Boyen & Martin Expires December 2006 [Page 3]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

2. Notation and definitions

2.1. Notation

 This section summarizes the essential notions and definitions
 regarding identity-based cryptosystems on elliptic curves. The reader
 is referred to [1] for the mathematical background and to [2, 3]
 regarding all notions pertaining to identity-based encryption.

 Let F_p be a finite field of large prime characteristic p, and let
 F_p^k denote its extension field of degree k. Denote by F*_p the
 multiplicative group of F_p^k, for any k >= 1.

 Let E/F_p : y^2 = x^3 + a * x + b be an elliptic curve over F_p. For
 any extension degree k >= 1, the curve E/F_p defines a group
 (E(F_p^k), +), which is the additive group of points of affine
 coordinates (x, y) in (F_p^k)^2 satisfying the curve equation over
 F_p^k, with null element, or point at infinity, denoted 0. Let
 #E(F_p^k) be the size of E(F_p^k).

 Let q be a prime such that E(F_p) has a cyclic subgroup G1 of order
 q. Let k be the embedding degree or security multiplier of G1 in
 E(F_p), or the smallest integer greater than or equal to 1 such that
 q divides p^k . 1. Then E(F_p^k) contains a cyclic subgroup of order
 q, denoted G1 , and F*_p^k contains a cyclic subgroup of order p,
 denoted G2.

 Under these conditions, two mathematical constructions known as the
 Weil pairing and the Tate pairing, each provide an efficiently
 computable map e : G1 x G1 -> G2 that is linear in both arguments
 and believed hard to invert. If an efficiently computable isomorphism
 phi : G1 -> G1 is available for the selected elliptic curve on
 which the Tate pairing is computed, then one can construct a function
 e : G1 x G1 -> G2, defined as e (A, B) = e(A, phi(B)), called the
 modified Tate pairing. We generically call a pairing either the Tate
 pairing e or the modified Tate pairing e , depending on the chosen
 elliptic curve used in a particular implementation.

 The following additional notation is used throughout this document.

 P - a 512-bit to 1536-bit prime, being the order of the finite field
 F_p.

 F_p - the base finite field of size p over which the elliptic curve
 of interest E/F_p is defined.

 #G - the size of G, where G is a finite group.

Boyen & Martin Expires December 2006 [Page 4]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 G* - the multiplicative group of the invertible elements in G; e.g.,
 (F_p)* is the multiplicative group of the finite field F_p.

 E/F_p - the equation of an elliptic curve over the field F_p, which,
 when p is neither 2 nor 3, is of the form E/F_p : y^2 = x^3 + a * x +
 b, for specified a, b in F_p.

 0 - the conventional null element of any additive group of points on
 an elliptic curve, also called the point at infinity.

 E(F_p) - the additive group of points of affine coordinates (x, y),
 with x, y in F_p, that satisfy the curve equation E/F_p, including
 the point at infinity 0.

 q - a 160 bit to 256-bit prime, being the order of the cyclic
 subgroup of interest in E(F_p).

 k - the embedding degree, or security multiplier, of the cyclic
 subgroup of order q in E(F_p).

 F_p^k - the extension field of the base field F_p of degree equal to
 the security multiplier k.

 E(F_p^k) - the group of points of affine coordinates in F_p^k
 satisfying the curve equation E/F_p, including the point at infinity
 0.

 The following conventions are assumed for curve operations.

 Point addition If A and B are two points on a curve E, their sum is
 denoted A + B.

 Point multiplication If A is a point on a curve, and n an integer,
 the result of adding A to itself a total of n times is denoted [n]A.

 The following class of elliptic curves is exclusively considered for
 pairing operations in the present version of the IBCS#1 standard,
 referred to as type-1.

 Type-1 curves The class of curves of type 1 is defined as the class
 of all elliptic curves of equation E/F_p : y^2 = x^3 + 1 for all
 primes p congruent to 11 modulo 12. This class forms a subclass of
 the class of supersingular curves. These curves satisfy #E(F_p) = p +
 1, so that the p pairs of (x, y) coordinates corresponding to the p
 non-zero points E(F_p) \ {0} satisfy a useful bijective relation x <-
 > y, with x = (y^2 . 1)^(1/3) (mod p) and y = (x^3 + 1)^(1/2) (mod
 p). Type-1 curves always lead to a security multiplier k = 2, where

Boyen & Martin Expires December 2006 [Page 5]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 f(x) = (x^2 + 1) is always irreducible, allowing the uniform
 representation of F_p^2 = F[x] / (x^2 + 1). Type-1 curves are
 plentiful and easy to construct by random selection of a prime p of
 the appropriate form. Therefore, rather than to standardize upon a
 small set of common values of p, it is henceforth assumed that all
 type-1 curves are freshly generated at random for the given
 cryptographic application (an example of such generation will be
 given in Algorithm 5.1.2 (BFsetup1) or Algorithm 8.1.2 (BBsetup1)).
 Implementations based on different classes of curves are currently
 unsupported.

 We assume that the following concrete representations of mathematical
 objects are used.

 Base field elements - The p elements of the base field F_p are
 represented directly using the integers from 0 to p . 1.

 Extension field elements The p^k elements of the extension field
 F_p^k are represented as k-tuples of elements of F_p. A k-tuple (a_0,
 ..., a_(k.1) is interpreted as the polynomial a_(k . 1) * x^(k . 1) +
 ... +a_1 * x + a_0 in F_p[x] / f(x), where f(x) is an irreducible
 monic polynomial of order k. The actual polynomial f(x) chosen
 depends on p and k.

 Type-1 curves For type-1 curves, which are supersingular curves of
 equation E/F_p : y^2 = x^3 + 1 with p congruent to 11 modulo 12, the
 extension degree k is always 2 and elements of F_p^2 are represented
 as polynomials a_1 * x + a_0 in F_p[x] / (x^2 + 1).

 Elliptic curve points Points in E(F_p^k) for k >= 1 with the point
 P = (x, y) in F_p^k x F_p^k satisfying the curve equation E/F_p.
 Points not equal to 0 are internally represented using the affine
 coordinates (x, y), where x and y are elements of F_p^k.

2.2. Definitions

 The following terminology is used to describe an IBE system.

 Public parameters The public parameters are set of common
 systemwide parameters generated and published by the private key
 server (PKG).

 Master secret The master secret is the master key generated and
 privately kept by the key server, and used to generate the private
 keys of the users.

Boyen & Martin Expires December 2006 [Page 6]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Identity An identity an arbitrary string, usually a human-readable
 unambiguous designator of a system user, possibly augmented with a
 time stamp and other attributes.

 Public key A public key is a string that is algorithmically derived
 from an identity. The derivation may be performed by anyone,
 autonomously.

 Private key A private key is issued by the key server to correspond
 to a given identity (and the public key that derives from it), under
 the published set of public parameters.

 Plaintext A plaintext is an unencrypted representation, or in the
 clear, of any block of data to be transmitted securely. For the
 present purposes, plaintexts are typically session keys, or sets of
 session keys, for further symmetric encryption and authentication
 purposes.

 Ciphertext A ciphertext is an encrypted representation of any block
 of data, including a plaintext, to be transmitted securely.

3. Basic elliptic curve algorithms

 This section describes algorithms for performing all needed basic
 arithmetic operations on elliptic curves. The presentation is
 specialized to the type of curves under consideration for simplicity
 of implementation. General algorithms may be found in [1].

3.1. The group action in affine coordinates

3.1.1. Implementation for type-1 curves

 Algorithm 3.1.1 (PointDouble1): adds a point to itself on a type-1
 elliptic curve.

 Input:

 a point A in E(F_p^k), with A = (x, y) or 0.

 an elliptic curve E/F_p : y^2 = x^3 + 1.

 Output:

 the point [2]A = A + A.

 Method:

Boyen & Martin Expires December 2006 [Page 7]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 1. If A = 0 or y = 0, then return 0.

 2. lambda = (3 * x^2) / (2 * y).

 3. x = lambda^2 2 * x.

 4. y = (x x) * lambda y.

 5. Return (x , y).

 Algorithm 3.1.2 (PointAdd1): adds two points on a type-1 elliptic
 curve.

 Input:

 a point A in E(F_p^k), with A = (x_A, y_A) or 0,

 a point B in E(F_p^k), with B = (x_B, y_B) or 0,

 an elliptic curve E/F_p : y^2 = x^3 + 1.

 Output:

 the point A + B.

 Method:

 1. If A = 0, return B.

 2. If B = 0, return A.

 3. If x_A = x_B:

 (a) If y_A = .y_B, return 0.

 (b) Else return [2]A computed using Algorithm 2.1.1
 (PointDouble1).

 4. Otherwise:

 (a) lambda = (y_B . y_A) / (x_B . x_A).

 (b) x = lambda^2 . x_A . x_B.

 (c) y = (x_A . x) * lambda - y_A.

 (d) Return (x , y).

Boyen & Martin Expires December 2006 [Page 8]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

3.2. Point multiplication

 Algorithm 3.2.1 (SignedWindowDecomposition): computes the signed m-
 ary window representation of a positive integer.

 Input:

 an integer l > 0,

 an integer window bit-size r > 0.

 Output:

 The unique d-element sequence {(b_i, e_i)} for i = 0 to d - 1 such
 that l = {Sum(b_i * 2^(e_i) for i = 0 to d 1} and b_i = +/- 2^j for
 some 0 <= j <= r - 1.

 Method:

 1. d = 0.

 2. j = 0.

 3. While j <= l, do:

 (a) If l_k = 0 then:

 i. j = j + 1.

 (b) Else:

 i. t = min{j + r . 1, l}.

 ii. h_d = (l_t, l_(t 1), ..., l_j)(base 2).

 iii. If h_d > 2^(r . 1) then:

 A. b_d = h_d . 2^r.

 B. l = l + 2^(t + 1).

 iv. Else:

 A. b_d = h_d.

 v. e_d = j.

Boyen & Martin Expires December 2006 [Page 9]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 vi. d = d + 1.

 vii. j = t + 1.

 4. Return d and the sequence {(b_0, e_0), ..., (b_(d . 1), e_(d .
 1))}.

 Algorithm 3.2.2 (PointMultiply): scalar multiplication on an elliptic
 curve using the signed m-ary window method.

 Input:

 a point A in E(F_p^k),

 an integer l > 0,

 an elliptic curve E/F_p : y^2 = x^3 + a * x + b.

 Output:

 the point [l]A.

 Method:

 1. (Window decomposition)

 (a) Let r > 0 be an integer (fixed) bit-wise window size, e.g., r
 = 5.

 (b) Let l = l where l = {Sum(l_j * 2^j), for j = 0 to l} is the
 binary expansion of l.

 (c) Compute (d, {(b_i, e_i) for i = 0 to d 1} =
 SignedWindowDecomposition(l, r), the signed 2^r-ary window
 representation of l using Algorithm 3.2.1
 (SignedWindowDecomposition).

 2. (Precomputation)

 (a) A_1 = A.

 (b) A_2 = [2]A, using Algorithm 3.1.1 (PointDouble1).

 (c) For i = 1 to 2^(r . 2) . 1, do:

 i. A_(2 * i + 1) = A_(2 * i . 1) + A_2 using Algorithm 3.1.2
 (PointAdd1).

Boyen & Martin Expires December 2006 [Page 10]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (d) Q = A_(b_(d . 1)).

 3. Main loop

 (a) For i = d . 2 to 0 by .1, do:

 i. Q = [2^(e_(i + 1) . e_i)]Q, using repeated applications of
 Algorithm 3.1.1 (PointDouble1) e_(i + 1) . e_i times.

 ii. If b_i > 0 then:

 A. Q = Q + A_(b_i) using Algorithm 3.1.2 (PointAdd1).

 iii. Else:

 A. Q = Q . A_(.b_i) using Algorithm 3.1.2 (PointAdd1).

 (b) Calculate Q = [2^(e_0)]Q using repeated applications of
 Algorithm 3.1.1 (PointDouble1) e_0 times.

 4. Return Q.

3.3. Special operations in projective coordinates

3.3.1. Implementation for type-1 curves

 Algorithm 3.3.1 (ProjectivePointDouble1): adds a point to itself in
 projective coordinates for type-1 curves.

 Input:

 a point (x, y, z) = A in E(F_p^k) in projective coordinates,

 an elliptic curve E/F_p : y^2 = x^3 + 1.

 Output:

 the point [2]A in projective coordinates.

 Method:

 1. If z = 0 or y = 0, return (0, 1, 0) = 0. Otherwise:

 2. lambda_1 = 3 * x^2.

 3. z = 2 * y * z.

Boyen & Martin Expires December 2006 [Page 11]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 4. lambda_2 = y^2.

 5. lambda_3 = 4 * lambda_2 * x.

 6. x = lambda_1^2 2 * lambda_3.

 7. lambda_4 = 8 * lambda_2^2.

 8. y = lambda_1 * (lambda_3 x) lambda_4.

 9. Return (x , y , z).

 Algorithm 3.3.2 (ProjectivePointAccumulate1): adds a point in affine
 coordinates to an accumulator in projective coordinates, for type-1
 curves.

 Input:

 a point (x_A, y_A, z_A) = A in E(F_p^k) in projective coordinates,

 a point (x_B, y_B) = B in E(F_p^k) \ {0} in affine coordinates,

 an elliptic curve E/F_p : y^2 = x^3 + 1.

 Output:

 the point A + B in projective coordinates.

 Method:

 1. If z_A = 0 return (x_B, y_B, 1) = B. Otherwise:

 2. lambda_1 = z_A^2

 3. lambda_2 = lambda_1 * x_B.

 4. lambda_3 = x_A lambda_2.

 5. If lambda_3 = 0 then return (0, 1, 0) = 0. Otherwise:

 6. lambda_4 = lambda_3^2.

 7. lambda_5 = lambda_1 * y_B * z_A.

 8. lambda_6 = lambda_4 lambda_5.

 9. lambda_7 = x_A + lambda_2.

Boyen & Martin Expires December 2006 [Page 12]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 10. lambda_8 = y_A + lambda_5.

 11. x = lambda_6^2 lambda_7 * lambda_4.

 12. lambda_9 = lambda_7 * lambda_4 2 * x .

 13. y = (lambda_9 * lambda_6 lambda_8 * lambda_3 * lambda_4) / 2.

 14. z = lambda_3 * z_A.

 15. Return (x , y , z).

3.4. Divisors on elliptic curves

3.4.1. Implementation in F_p^2 for type-1 curves

 Algorithm 3.4.1 (EvalVertical1): evaluates the divisor of a vertical
 line on a type-1 elliptic curve.

 Input:

 a point B in E(F_p^2) with B != 0.

 a point A in E(F_p).

 a description of a type-1 elliptic curve E/F_p.

 Output:

 an element of F_p^2 that is the divisor of the vertical line going
 through A evaluated at B.

 Method:

 1. r = x_B . x_A.

 2. Return r.

 Algorithm 2.4.2 (EvalTangent1): evaluates the divisor of a tangent on
 a type-1 elliptic curve.

 Input:

 a point B in E(F_p^2) with B != 0.

 a point A in E(F_p).

Boyen & Martin Expires December 2006 [Page 13]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 a description of a type-1 elliptic curve E/F_p.

 Output:

 an element of F_p^2 that is the divisor of the line tangent to A
 evaluated at B.

 Method:

 1. (Special cases)

 (a) If A = 0 return 1 = 1 + 0 * i.

 (b) If y_A = 0 return EvalVertical1(B, A) using Algorithm 3.4.1
 (EvalVertical1).

 2. (Line computation)

 (a) a = .3 * (x_A)^2.

 (b) b = 2 * y_A.

 (c) c = .b * y_A . a * x_A.

 3. (Evaluation at B)

 (a) r = a * x_B + b * y_B) + c.

 4. Return r.

 Algorithm 3.4.3 (EvalLine1): evaluates the divisor of a line on a
 type-1 elliptic curve.

 Input:

 a point B in E(F_p^2) with B != 0.

 two points A , A in E(F_p).

 a description of a type-1 elliptic curve E/F_p.

 Output:

 an element of F_p^2 that is the divisor of the line going through
 A and A evaluated at B.

 Method:

Boyen & Martin Expires December 2006 [Page 14]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 1. (Special cases)

 (a) If A = 0 return EvalVertical1(B, A) using Algorithm 3.4.1
 (EvalVertical1).

 (b) If A = 0 return EvalVertical1(B, A) using Algorithm 3.4.1
 (EvalVertical1).

 (c) If A = .A return EvalVertical1(B, A) using Algorithm 3.4.1
 (EvalVertical1).

 (d) If A = A return EvalTangent1(B, A) using Algorithm 3.4.2
 (EvalTangent1).

 2. (Line computation)

 (a) a = y_A . y_A .

 (b) b = x_A . x_A .

 (c) c = .b * y_A . a * x_A .

 3. (Evaluation at B)

 (a) r = a * x_B + b * y_B + c.

 4. Return r.

3.5. The Tate pairing

 Algorithm 3.5.1 (Tate): computes the Tate pairing on an elliptic
 curve.

 Input:

 a point A of order q in E(F_p),

 a point B of order q in E(F_p^k),

 a description of an elliptic curve E/F_p such that E(F_p) and
 E(F_p^k) have a subgroup of order q.

 Output:

 the value e(A, B) in F_p^k , computed using the Miller algorithm.

 Method:

Boyen & Martin Expires December 2006 [Page 15]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 1. For type-1 curve E, proceed with Algorithm 3.5.2
 (TateMillerSolinas).

3.5.1. The Miller algorithm for type-1 curves

 Algorithm 3.5.2 (TateMillerSolinas): computes the Tate pairing on a
 type-1 elliptic curve.

 Input:

 a point A of order q in E(F_p),

 a point B of order q in E(F_p^2),

 a description of a type-1 supersingular elliptic curve E/F_p such
 that E(F_p) and E(F_p^2) have a subgroup of prime order q, where q =
 2^a + s * 2^b + c with c and s equal to either 1 or -1.

 Output:

 the value e(A, B) in F_p^2 , computed using the Miller algorithm.

 The following description assumes that F_p^2 = F_p[i], where i^2 = -
 1.

 Elements x in F_p^2 may be explicitly represented as a + i * b, with
 a, b in F_p.

 Points in E(F_p) may also be represented as coordinate pairs (x, y)
 with x, y in F_p.

 Points in E(F_p^2) may be represented either as (x, y), with x, y in
 F_p^2 or as (a + i * b, c + i * d), with a, b, c, d in F_p.

 Method:

 1. (Initialization)

 (a) v_num = 1 in F_p^2.

 (b) v_den = 1 in F_p^2.

 (c) V = (x_V , y_V , z_V) = (x_A, y_A, 1) in (F_p)^3, being the
 representation of (x_A, y_A) = A using projective coordinates.

 (d) t_num = 1 in F_p^2.

Boyen & Martin Expires December 2006 [Page 16]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (e) t_den = 1 in F_p^2.

 2. (Calculation of the (s * 2^b) contribution)

 (a) (Repeated doublings) For n = 0 to b . 1:

 i. t_num = t_num^2.

 ii. t_den = t_den^2.

 iii. t_num = t_num * EvalTangent1(B, V) using Algorithm 3.4.2
 (EvalTangent1).

 iv. V = (x_V , y_V , z_V) = [2]V using Algorithm 3.3.1
 (ProjectivePointDouble1).

 v. t_den = t_den * EvalVertical1(B, V) using Algorithm 3.4.1
 (EvalVertical1).

 (b) (Normalization)

 i. V_b = (x_(V_b) , y_(V_b)) = (x_V / z_V^2, s * y_V / z_V^3)
 in (F_p)^2, resulting in a point V_b in E(F_p).

 (c) (Accumulation) Selecting on s:

 i. If s = .1:

 A. v_num = v_num * t_den.

 B. v_den = v_den * t_num * EvalVertical1(B, V) using
 Algorithm 3.4.1 (EvalVertical1).

 ii. If s = 1:

 A. v_num = v_num * t_num.

 B. v_den = v_den * t_den.

 3. (Calculation of the 2^a contribution)

 (a) (Repeated doublings) For n = b to a . 1:

 i. t_num = t_num^2.

 ii. t_den = t_den^2.

Boyen & Martin Expires December 2006 [Page 17]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 iii. t_num = t_num * EvalTangent1(B, V) using Algorithm 3.4.2
 (EvalTangent1).

 iv. V = (x_V , y_V , z_V) = [2]V using Algorithm 3.3.1
 (ProjectivePointDouble1).

 v. t_den = t_den * EvalVertical1(B, V) using Algorithm 3.4.1
 (EvalVertical1).

 (b) (Normalization)

 i. V_a = (x_(V_a) , y_(V_a)) = (x_V /z_V^2, s * x_V / z_V^3) in
 (F_p)2, resulting in a point V_a in E(F_p).

 (c) (Accumulation)

 i. v_num = v_num * t_num.

 ii. v_den = v_den * t_den.

 4. (Correction for the (s * 2^b) and (c) contributions)

 (a) v_num = v_num * EvalLine1(B, V_a, V_b) using Algorithm 3.4.3
 (EvalLine1).

 (b) v_den = v_den * EvalVertical1(B, V_a + V_b) using Algorithm
 3.4.1 (EvalVertical1).

 (c) If c = .1 then:

 i. v_den = v_den * EvalVertical1(B,A) using Algorithm 3.4.1
 (EvalVertical1).

 5. (Correcting exponent)

 (a) Let eta = (p^2 . 1) / q (an integer).

 6. (Final result)

 (a) Return (v_num / v_den)^eta in F_p^2 .

4. Supporting algorithms

 This section describes a number of supporting algorithms for encoding
 and hashing.

Boyen & Martin Expires December 2006 [Page 18]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

4.1. Integer range hashing

 HashToRangen(s, n) takes a string s and an integer n as input, and
 returns an integer in the range 0 to n . 1 by cryptographic hashing.
 The function performs a number l of SHA1 applications, with l chosen
 in function of n so that, for random input, the output has an almost
 uniform distribution in the entire range 0 to n . 1 with a
 statistical relative non-uniformity no greater than 1/sqrt(n). I.e.,
 for arbitrarily large n, for all v in 0 to n . 1, the probability
 that HashToRangen(s, n) = v lies in the interval [(1 . n^(.1/2)) / n,
 (1 + n^(.1/2)) / n].

 Algorithm 4.1.1 (HashToRange): cryptographically hashes strings to
 integers in a range.

 Input:

 a string s of length |s| bytes,

 a positive integer n represented as Ceiling(8 * lg(n)) bytes.

 Output:

 a positive integer v in the range 0 to n . 1.

 Method:

 1. v_0 = 0.

 2. h_0 = 0x00, a string of 20
 null bytes.

 3. l = Ceiling((3 / 5) * lg(n)).

 4. for each i in 1 to l, do:

 (a) t_i = h_(i . 1) || s, which is the (|s| + 20)-byte string
 concatenation of the strings h_(i . 1) and s.

 (b) h_i = SHA1(t_i), which is a 20-byte string resulting from the
 SHA1 algorithm on input t_i.

 (c) Let a_i = Value(h_i) be the integer in the range 0 to 256^20 .
 1 denoted by the raw byte string h_i interpreted in the unsigned big
 endian convention.

 (d) v_i = 256^20 * v_(i . 1) + a_i.

Boyen & Martin Expires December 2006 [Page 19]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 5. v = v_l (mod n).

4.2. Pseudo-random generation by hashing

 HashStream(b, p) takes an integer b and a string p as input, and
 returns a b-byte pseudo-random string r as output. This function
 relies on the SHA1 cryptographic hashing algorithm, and has a 160-bit
 internal effective key space equal to the range of SHA1.

 Algorithm 4.2.1 (HashStream): keyed cryptographic pseudo-random
 stream generator.

 Input:

 an integer b,

 a string p.

 Output:

 a string r of size b bytes.

 Method:

 1. K = SHA1(p).

 2. h_0 = 0x00 , a string of 20
 null bytes.

 3. l = Ceiling(b / 20).

 4. for each i in 1 to l do:

 (a) h_i = SHA1(h_(i . 1)).

 (b) r_i = SHA1(h_i || K), where h_i || K is the 40-byte
 concatenation of h_i and K.

 5. r = LeftmostBytes(b, r_1 || ... || r_l), i.e., r is formed as the
 concatenation of the r_i, truncated to the desired number of bytes.

4.3. Canonical encodings of extension field elements

 Canonical(p, k, o, v) takes an element v in F_p^k, and returns a
 canonical byte-string of fixed length representing v. The parameter o
 must be either 0 or 1, and specifies the ordering of the encoding.

Boyen & Martin Expires December 2006 [Page 20]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Algorithm 4.3.1 (Canonical): encodes elements of an extension field
 F_p^k as strings.

 Input:

 an element v in F_p^k,

 a description of F_p^k ,

 a ordering parameter o, either 0 or 1.

 Output:

 a fixed-length string s representing v.

 Method:

 1. For a type-1 curve, execute Algorithm 4.3.2 (Canonical1).

4.3.1. Type-1 curve implementation

 Canonical1(p, o, v) takes an element v in F_p^2 and returns a
 canonical representation of v as a byte-string s of fixed size. The
 parameter o must be either 0 or 1, and specifies the ordering of the
 encoding.

 Algorithm 4.3.2 (Canonical1): canonically represents elements of an
 extension field F_p^2.

 Input:

 an element v in F_p^2,

 a description of p, where p is congruent to 3 modulo 4,

 a ordering parameter o, either 0 or 1.

 Output:

 a string s of size Ceiling(16 * lg(p)) bytes.

 Method:

 1. l = 8 * Ceiling(lg(p)), the number of bytes needed to represent
 integers in Zp.

Boyen & Martin Expires December 2006 [Page 21]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. (a, b) = v, where (a, b) in (Z_p)^2 is the canonical
 representation of v in F_p^2 = F_p / (x^2 + 1) as a polynomial a +i *
 b with i^2 = .1.

 3. Let a_(256^l) be the big-endian zero-padded fixed-length byte-
 string representation of a in Zp.

 4. Let b_(256^l) be the big-endian zero-padded fixed-length byte-
 string representation of b in Zp.

 5. Depending on the choice of ordering o:

 (a) If o = 0, then let s = a_(256^l) || b_(256^l), which is the
 concatenation of a_(256^l) followed by b_(256^l).

 (b) If o = 1, then let s = b_(256^l) || a_(256^l), which is the
 concatenation of b_(256^l) followed by a_(256^l).

 6. The fixed-length encoding of v is output as the string s.

4.4. Hashing onto a subgroup of an elliptic curve

 HashToPoint(E, p, q, id) takes an identity string id and the
 description of a subgroup of prime order q in E(F_p) or E(F_p^k) and
 returns a point Q_id of order q in E(F_p) or E(F_p^k).

 Algorithm 4.4.1 (HashToPoint): cryptographically hashes strings to
 points on elliptic curves.

 Input:

 a string id,

 a description of a subgroup of prime order q on a curve E/F_p.

 Output:

 a point Q_id = (x, y) of order q on E.

 Method:

 1. For a type-1 curve E, execute Algorithm 4.4.2 (HashToPoint1).

4.4.1. Type-1 curve implementation

 HashToPoint1(E, p, q, id) takes an identity string id and the
 description of a subgroup of order q in E(F_p) where E : y^2 = x^3 +

Boyen & Martin Expires December 2006 [Page 22]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 1 with p congruent to 11 modulo 12, and returns a point Q_id of order
 q in E/F_p. This algorithm exploits the bijective mapping between the
 x and y coordinates of non-zero points on such supersingular curves.

 Algorithm 4.4.2 (HashToPoint1). Cryptographically hashes strings to
 points on type-1 curves.

 Input:

 a string id,

 a description of a subgroup of prime order q on a curve E/F_p : y^2
 = x^3 + 1 where p is congruent to 11 modulo 12.

 Output:

 a point Q_id of order q on E(F_p).

 Method:

 1. n = q (compatibility mode) or p (preferred mode)

 2. y = HashToRangen(n, id), using Algorithm 4.1.1 (HashToRange).

 3. x = (y^2 . 1)^(1/3) = (y^2 . 1)^((2 * p . 1) / 3).

 4. Let Q = (x, y), a non-zero point in E(F_p).

 5. Q = [(p + 1) / q]Q , a point of order q in E(F_p).

4.5. Bilinear pairing

 Pairing(E, p, q, A, B) takes two points A and B, both of order q,
 and, in the type-1 case, returns the modified pairing e (A, phi(B))
 in F_p^2 where A and B are both in E(F_p).

 Algorithm 4.5.1 (Pairing): computes the regular or modified Tate
 pairing depending on the curve type.

 Input:

 a description of an elliptic curve E/F_p such that E(F_p) and
 E(F_p^k) have a subgroup of order q,

 two points A and B of order q in E(F_p) or E(F_p^k).

 Output:

Boyen & Martin Expires December 2006 [Page 23]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 on supersingular curves, the value of e (A, B) in F_p^k where A and
 B are both in E(F_p);

 Method:

 1. If E is a type-1 curve, execute Algorithm 4.5.2 (Pairing1).

4.5.1. Type-1 curve implementation

 Algorithm 4.5.2 (Pairing1): computes the modified Tate pairing on
 type-1 curves.

 Input:

 a curve E/F_p : y^2 = x^3 + 1 where p is congruent to 11 modulo 12
 and E(F_p) has a subgroup of order q,

 two points A and B of order q in E(F_p),

 Output:

 the value of e (A, B) = e(A, phi(B)) in F_p^k = F_p^2 .

 Method:

 1. Compute B = phi(B), as follows:

 (a) Let (x, y) in F_p x F_p be the coordinates of B in E(F_p).

 (b) Let zeta = 1^(1/3) in F_p^2 , with zeta != 1. Specifically, as
 p is congruent to 3 modulo 4, and representing the elements of F_p^2
 = F_p[x] / (x^2 + 1) as polynomials a + bx with x = (.1)^(1/2), the
 representation of zeta = (a_zeta , b_zeta) is obtained as:

 i. a_zeta = (p . 1) / 2.

 ii. b_zeta = 3^((p + 1) / 4) (mod p).

 (c) x = x * x_zeta in F_p^2 ,

 (d) B = (x , y) in F_p^2 x F_p.

 2. Compute the Tate pairing e(A,B) = e(A, phi(B)) in F_p^2 using the
 Miller method, as in Algorithm 4.5.1 (Tate) described in Section 4.5.

Boyen & Martin Expires December 2006 [Page 24]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

4.6. Ratio of bilinear pairings

 PairingRatio(E, p, q, A, B, C, D) takes four points as input, and
 computes the ratio of the two bilinear pairings, Pairing(E, p, q, A,
 B) / Pairing(E, p, q, C, D), or, equivalently, the product,
 Pairing(E, p, q, A, B) * Pairing(E, p, q, C, .D).

 On type-1 curves, all four points are of order q in E(F_p), and the
 result is an element of order q in the extension field F_p^2 .

 The motivation for this algorithm is that the ratio of two pairings
 can be calculated more efficiently than by computing each pairing
 separately and dividing one into the other, since certain
 calculations that would normally appear in each of the two pairings
 can be combined and carried out at once. Such calculations include
 the repeated doublings in steps 2(a)i, 2(a)ii, 3(a)i, and 3(a)ii of
 Algorithm 4.5.2 (TateMillerSolinas), as well as the final
 exponentiation in step 6(a) of Algorithm 4.5.2 (TateMillerSolinas).

 Algorithm 4.6.1 (PairingRatio): computes the ratio of two regular or
 modified Tate pairings depending on the curve type.

 Input:

 a description of an elliptic curve E/F_p such that E(F_p) and
 E(F_p^k) have a subgroup of order q,

 four points A, B, C, and D, of order q in E(F_p) or E(F_p^k).

 Output:

 on supersingular curves, the value of e (A, B) / e (C, D) in F_p^k
 where A, B, C, D are all in E(F_p);

 Method:

 1. If E is a type-1 curve, execute Algorithm 4.6.2 (PairingRatio1).

4.6.1. Type-1 curve implementation

 Algorithm 4.6.2 (PairingRatio1). Computes the ratio of two modified
 Tate pairings on type-1 curves.

 Input:

 a curve E/F_p : y^2 = x^3 + 1, where p is congruent to 11 modulo 12
 and E(F_p) has a subgroup of order q,

Boyen & Martin Expires December 2006 [Page 25]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 four points A, B, C, and D, of order q in E(F_p),

 Output:

 the value of e (A, B) / e (C, D) = e(A, phi(B)) / e(C, phi(D)) =
 e(A, phi(B)) * e(.C, phi(D)), in F_p^k = F_p^2 .

 Method:

 1. The step-by-step description of the optimized algorithm is omitted
 in this normative specification.

 The correct result can always be obtained, albeit more slowly, by
 computing the product of pairings Pairing1(E, p, q, A, B) *
 Pairing1(E, p, q, .C, D) by using two invocations of Algorithm 4.5.2
 (Pairing1).

5. The Boneh-Franklin BF cryptosystem

 This chapter describes the algorithms constituting the Boneh-Franklin
 identity-based cryptosystem as described in [3].

5.1. Setup

 Algorithm 5.1.1 (BFsetup): randomly selects a master secret and the
 associated public parameters.

 Input:

 a curve type t (currently required to be fixed to t = 1),

 a security parameter n (currently required to take values n >=
 1024).

 Output:

 a set of common public parameters,

 a corresponding master secret.

 Method:

 1. Depending on the selected type t:

 (a) If t = 1, then Algorithm 5.1.2 (BFsetup1) is executed.

Boyen & Martin Expires December 2006 [Page 26]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. The resulting master secret and public parameters are separately
 encoded as per the application protocol requirements.

5.1.1. Type-1 curve implementation

 BFsetup1 takes a security parameter n as input. For type-1 curves,
 the scale of n corresponds to the modulus bit-size believed of
 comparable security in the classical Diffie-Hellman or RSA public-key
 cryptosystems. For this implementation, the allowed value of n is
 limited to 1024, which corresponds to 80 bits of symmetric key
 security.

 Algorithm 5.1.2 (BFsetup1): randomly establishes a master secret and
 public parameters for type-1 curves.

 Input:

 a security parameter n, assumed to be equal to 1024.

 Output:

 a set of common public parameters (t, p, q, P, Ppub),

 a corresponding master secret s.

 Method:

 1. Determine the subordinate security parameters n_p and n_q as
 follows:

 (a) n_p = 512, which will determine the size of the field F_p.

 (b) n_q = 160, which will determine the size of the subgroup order
 q.

 2. Construct the elliptic curve and its subgroup of interest, as
 follows:

 (a) Select an arbitrary n_q-bit prime q, i.e., such that
 Ceiling(lg(q)) = n_q. For better performance, q is chosen as a
 Solinas prime, i.e., a prime of the form q = 2^a +/- 2^b +/- 1 where
 0 < b < a.

 (b) Select a random integer r such that p = 12 * r * q . 1 is an
 n_p-bit prime, i.e., such that Floor(lg(p)) = n_p.

 3. Select a point P of order q in E(F_p), as follows:

Boyen & Martin Expires December 2006 [Page 27]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (a) Select a random point P of coordinates (x , y) on the curve
 E/F_p : y^2 = x^3 + 1 (mod p).

 (b) Let P = [12 * r]P .

 (c) If P = 0, then start over in step 3a.

 4. Determine the master secret and the public parameters as follows:

 (a) Select a random integer s in the range 2 to q . 1.

 (b) Let P_pub = [s]P.

 5. (t, E, p, q, P, P_pub) are the common public parameters, where E:
 y^2 = x^3 + 1.

 6. s is the master secret.

5.2. Public key derivation

 BFderivePubl takes an identity string id and a set of public
 parameters, and returns a point Q_id.

 Algorithm 5.2.1 (BFderivePubl): derives the public key corresponding
 to an identity string.

 Input:

 an identity string id,

 a set of common public parameters (t, E, p, q, P, P_pub).

 Output:

 a point Q_id of order q in E(F_p) or E(F_p^k).

 Method:

 1. Q_id = HashToPoint(E, p, q, id), using Algorithm 4.4.1
 (HashToPoint).

5.3. Private key extraction

 BFextractPriv takes an identity string id, and a set of public
 parameters and corresponding master secret, and returns a point S_id.

Boyen & Martin Expires December 2006 [Page 28]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Algorithm 4.3.1 (BFextractPriv): extracts the private key
 corresponding to an identity string.

 Input:

 an identity string id,

 a set of common public parameters (t, E, p, q, P, P_pub).

 Output:

 a point S_id or order q in E(F_p).

 Method:

 1. Q_id HashToPoint(E, p, q, id) using Algorithm 4.4.1
 (HashToPoint).

 2. S_id = [s]Q_id.

5.4. Encryption

 BFencrypt takes three inputs: a public parameter block, an identity
 id, and a plaintext m. The plaintext is intended to be a symmetric
 session key, although variable-sized short messages are allowed.

 Algorithm 5.4.1 (BFencrypt): encrypts a short message or session key
 for an identity string.

 Input:

 a plaintext string m of size |m| bytes,

 a recipient identity string id,

 a set of public parameters.

 Output:

 a ciphertext tuple (U, V, W) in E(F_p) x {0, ... , 255}^20 x {0,
 ... , 255}^|m|.

 Method:

 1. Let the public parameter set be comprised of a prime p, a curve
 E/F_p, the order q of a large prime subgroup of E(F_p), and two
 points P and P_pub of order q in E(F_p).

Boyen & Martin Expires December 2006 [Page 29]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. Q_id = HashToPoint(E, p, q, id), using Algorithm 4.4.1
 (HashToPoint), which results in a point of order q in E(F_p) or
 E(F_p^k).

 3. Select s random 160-bit vector rho, represented as 20-byte string
 in big-endian convention.

 4. t = SHA1(m), a 20-byte string resulting from the SHA1 algorithm.

 5. l = HashToRangeq(rho || t), an integer in the range 0 to q . 1
 resulting from applying Algorithm 4.1.1 (HashToRange) to the 40-byte
 concatenation of rho and t.

 6. U = [l]P, which is a point of order q in E(F_p).

 7. Theta = Pairing(E, p, q, P_pub, Q_id), which is an element of the
 extension field F_p^k obtained using the modified Tate pairing of
 Algorithm 4.5.1 (Pairing).

 8. Let theta = theta^l, which is theta raised to the power of l in
 F_p^k .

 9. Let z = Canonical(p, k, 0, theta), using Algorithm 4.3.1
 (Canonical), the result of which is a canonical string representation
 of theta .

 10. Let w = SHA1(z) using the SHA1 hashing algorithm, the result of
 which is a 20-byte string.

 11. Let V = w XOR rho, which is the 20-byte long bit-wise exclusive-
 OR of w and rho.

 12. Let W = HashStream(|m|, rho XOR m), which is the bit-wise
 exclusive-OR of m with the first |m| bytes of the pseudo-random
 stream produced by Algorithm 4.2.1 (HashStream) with seed rho.

 13. The ciphertext is the triple (U, V, W).

5.5. Decryption

 BFdecrypt takes three inputs: a public parameter block, a private key
 block key, and a ciphertext parsed as (U , V , W).

 Algorithm 5.5.1 (BFdecrypt): decrypts a short message or session key
 using a private key.

 Input:

Boyen & Martin Expires December 2006 [Page 30]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 a private key point S_id of order q in E(F_p),

 a ciphertext triple (U , V , W) in E(F_p) x {0, . . . , 255}^20 x
 {0, . . . , 255}*.

 a set of public parameters.

 Output:

 a decrypted plaintext m , or an invalid ciphertext flag.

 Method:

 1. Let the public parameter set be comprised of a prime p, a curve
 E/F_p, the order q of a large prime subgroup of E(F_p), and two
 points P and P_pub of order q in E(F_p).

 2. Let theta = Pairing(E, p ,q, U , S_id) by applying the modified
 Tate pairing of Algorithm 4.5.1 (Pairing).

 3. Let z = Canonical(p, k, 0, theta) using Algorithm 4.3.1
 (Canonical), the result of which is a canonical string representation
 of theta .

 4. Let w = SHA1(z), using the SHA1 hashing algorithm, the result of
 which is a 20-byte string.

 5. Let rho = w XOR V, the bit-wise XOR of w and V.

 6. Let m = HashStream(|W|, rho) XOR W, which is the bit-wise
 exclusive-OR of m with the first |W| bytes of the pseudo-random
 stream produced by Algorithm 4.2.1 (HashStream) with seed rho.

 7. Let t = SHA1(m) using the SHA1 algorithm.

 8. Let l = HashToRange(q, rho || t) using Algorithm 4.1.1
 (HashToRange) on the 40-byte concatenation of rho and t.

 9. Verify that U = [l]P:

 (a) If this is the case, then the decrypted plaintext m is
 returned.

 (b) Otherwise, the ciphertext is rejected and no plaintext is
 returned.

Boyen & Martin Expires December 2006 [Page 31]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

6. Wrapper methods for the BF system

 This chapter describes a number of wrapper methods providing the
 identity-based cryptosystem functionalities using concrete encodings.
 The following functions are presently given based on the Boneh-
 Franklin algorithms.

6.1. Private key generator (PKG) setup

 Algorithm 6.1.1 (BFwrapperPKGSetup): randomly selects a PKG master
 secret and a set of public parameters.

 Input:

 a curve type t,

 a security parameter n.

 Output:

 a common public parameter block pi,

 a corresponding master secret block sigma.

 Method:

 1. Perform Algorithm 5.1.1 (BFsetup) on parameters t and n, producing
 a public parameter set and a master secret.

 2. Apply Algorithm 7.2.1 (BFencodeParams) on the public parameter set
 obtained in step 1 to get the public parameter block pi.

 3. Apply Algorithm 7.3.1 (BFencodeMaster) on the master secret
 obtained in step 1 to get the master secret block sigma.

6.2. Private key extraction by the PKG

 Algorithm 5.2.1 (BFwrapperPrivateKeyExtract): extraction by the PKG
 of a private key corresponding to an identity.

 Input:

 a master secret block sigma,

 a corresponding public parameter block pi,

 an identity string id.

Boyen & Martin Expires December 2006 [Page 32]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Output:

 a private key block kappa_id

 Method:

 1. Apply Algorithm 7.2.2 (BFdecodeParams) to the public parameter
 block pi to obtain the public parameters, comprising a prime p, a
 curve E/F_p, the order q of a large prime subgroup of E(F_p), and two
 points P and P_pub of order q in E(F_p).

 2. Apply Algorithm 7.3.2 (BFdecodeMaster) on the master secret block
 sigma to obtain the master secret s.

 3. Perform Algorithm 5.3.1 (BFextractPriv) on the identity id, using
 the decoded parameters and secret, to produce a private key point
 S_id.

 4. Apply Algorithm 7.4.1 (BFencodePrivate) to S_id to produce a
 private key block kid.

6.3. Session key encryption

 Algorithm 5.3.1 (BFwrapperSessionKeyEncrypt): encrypts a short
 message or session key for an identity.

 Input:

 a public parameter block pi,

 a recipient identity string id,

 a plaintext string m (possibly comprising the concatenation of a
 pair of random session keys for symmetric encryption and message
 authentication purposes on a larger plaintext).

 Output:

 a ciphertext block

 Method:

 1. Apply Algorithm 7.2.2 (BFdecodeParams) on the public parameter
 block pi to obtain a set of public parameters, comprising a prime p,
 a curve E/F_p, the order q of a large prime subgroup of E(F_p), and
 two points P and P_pub of order q in E(F_p).

Boyen & Martin Expires December 2006 [Page 33]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. Perform Algorithm 5.4.1 (BFencrypt) on the plaintext m for
 identity id using the decoded set of parameters, to obtain a
 ciphertext tuple (U, V, W).

 3. Apply Algorithm 7.5.1 (BFencodeCiphertext) on (U, V, W) to obtain
 a serialized ciphertext string

 Algorithm 6.3.2 (BFwrapperSessionKeyDecrypt): decrypts a short
 message or session key using a private key.

 Input:

 a public parameter block pi,

 a private key block kappa,

 a ciphertext block gamma.

 Output:

 a decrypted plaintext string m, or an error flag signaling an
 invalid ciphertext.

 Method:

 1. Apply Algorithm 7.2.2 (BFdecodeParams) on the public parameter
 block pi to obtain the public parameters, comprising a prime p, a
 curve E/F_p, the order q of a large prime subgroup of E(F_p), and two
 points P and P_pub of order q in E(F_p).

 2. Apply Algorithm 7.4.2 (BFdecodePrivate) to kappa to obtain a
 private key point S_id.

 3. Apply Algorithm 7.5.2 (BFdecodeCiphertext) to gamma to obtain a
 ciphertext triple (U , V , W).

 4. Perform Algorithm 5.5.1 (BFdecrypt) on (U , V , W) using the
 private key S_id and the decoded set of public parameters, to obtain
 decrypted plaintext m, or an invalid ciphertext flag.

 (a) If the decryption was successful, return the plaintext m.

 (b) Otherwise, raise an error condition.

Boyen & Martin Expires December 2006 [Page 34]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

7. Concrete encoding guidelines for BF

 This section specifies a set of concrete encoding schemes for the
 inputs and outputs of the previously described algorithms. ASN.1
 encodings are specified in Section 11 of this document.

7.1. Encoding of points on a curve

 Algorithm 7.1.1 (EncodePoint): encodes a point in E(F_p) in an
 exportable format.

 Input:

 a non-zero point Q in E(F_p).

 Output:

 a fixed-length (for given p) byte-string encoding of Q.

 Method:

 1. Let (x, y) in F_p x F_p be the coordinates of P, where (x, y)
 satisfy the equation of E.

 2. The point P is then encoded as a FpPoint using the ASN.1 rules
 given in the ASN.1 module given in Section 11 of this document.

 Algorithm 6.1.2 (DecodePoint): decodes a point in E(F_p) from an
 exportable format.

 Input:

 a byte-string encoding of a non-zero point Q in E(F_p).

 Output:

 Q = (x, y).

 Method:

 1. The string is parsed and decoded as a pair (x, y), where x and y
 are integers in Z_p.

 2. Q is reconstructed as (x, y).

Boyen & Martin Expires December 2006 [Page 35]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

7.2. Public parameters blocks

 Algorithm 7.2.1 (BFencodeParams): encodes a BF public parameter set
 in an exportable format.

 Input:

 a set of public parameters (t, E, p, q, P, P_pub).

 Output:

 a public parameter block pi, represented as a byte string.

 Method:

 1. Separate encodings for E, p, q, P, P_pub are obtained as follows:

 (a) If t = 1, execute Algorithm 7.2.3 (BFencodeParams1).

 2. The separate encodings as well as a type indicator flag for t are
 then serialized in any suitable manner as dictated by the
 application.

 Algorithm 7.2.2 (BFdecodeParams): imports a BF public parameter block
 from a serialized format.

 Input:

 a public parameter block pi, represented as a byte string.

 Output:

 a set of public parameters (t, E, p, q, P, P_pub).

 Method:

 1. Identify from the appropriate flag the type t of curve upon which
 the parameter block is based.

 2. Then:

 (a) If t = 1, execute Algorithm 7.2.4 (BFdecodeParams1).

7.2.1. Type-1 implementation

 Algorithm 7.2.3 (BFencodeParams1): encodes a BF type-1 public
 parameter set in an exportable format.

Boyen & Martin Expires December 2006 [Page 36]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Input:

 a set of public parameters (t, E, p, q, P, P_pub) with t = 1.

 Output:

 separate encodings for each of the E, p, q, P, P_pub components.

 Method:

 1. E : y^2 = x^3 + a * x + b is represented as a constant string,
 such as the empty string, since a and b are invariant for type-1
 curves.

 2. p = 12 * r * q . 1 is represented as the smaller integer r,
 encoded, e.g., using a big-endian byte-string representation.

 3. q = 2^a + s * 2^b + c, where a, b are small and c and s are either
 1 or -1, is compactly represented as the 4-tuple (a, b, c, s).

 4. P = (x_P , y_P) in F_p x F_p is represented using the point
 compression technique of Algorithm 7.1.1 (EncodePoint).

 5. P_pub is similarly encoded using Algorithm 7.1.1 (EncodePoint).

 Algorithm 7.2.4 (BFdecodeParams1): decodes the components of a BF
 type-1 public parameter block.

 Input:

 separate encodings for each one of E, p, q, P, P_pub.

 Output:

 a set of public parameters (t, E, p, q, P, P_pub) with t = 1.

 Method:

 1. The equation of E is set to E = E : y^2 = x^3 + 1, as is always
 the case for type-1 curves. The actual encoding of E is ignored.

 2. The encoding of q is parsed as (a, b, c, s), and its value set to
 q = 2^a + s * 2^b + c.

 3. The encoding of p is parsed as the integer r, from which p is
 given by p = 12 * r * q . 1.

Boyen & Martin Expires December 2006 [Page 37]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 4. P is reconstructed from its encoding (x, y) using the point
 decompression technique of Algorithm 7.1.2 (DecodePoint).

 5. P_pub is similarly reconstructed from its encoding using Algorithm
 7.1.2 (DecodePoint).

7.3. Master secret blocks

 Algorithm 6.3.1 (BFencodeMaster): encodes a BF master secret in an
 exportable format.

 Input:

 a master secret integer s between 2 and q - 1.

 Output:

 a master secret block sigma, represented as a byte string.

 Method:

 1. Sigma is constructed as the unsigned big-endian byte-string
 encoding of s of length 8 * Ceiling(lg(p)).

 Algorithm 7.3.2 (BFdecodeMaster): decodes a BF master secret from a
 block in exportable format.

 Input:

 a master secret block sigma, represented as a byte string.

 Output:

 a master secret integer s in between 2 and q - 1 .

 Method:

 1. s = Value(sigma), where sigma is interpreted in the unsigned big
 endian convention.

7.4. Private key blocks

 Algorithm 6.4.1 (BFencodePrivate): encodes a BF private key point in
 an exportable format.

 Input:

Boyen & Martin Expires December 2006 [Page 38]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 a private key point S_id in E(F_p).

 Output:

 a private key block kappa, represented as a byte string.

 Method:

 1. kappa is obtained by applying Algorithm 7.1.1 (EncodePoint) to
 S_id.

 Algorithm 7.4.2 (BFdecodePrivate): decodes a BF private key point
 from an exportable format.

 Input:

 a private key block kappa, represented as a byte string.

 Output:

 a private key point S_id in E(F_p).

 Method:

 1. Kappa is parsed and decoded into a point S_id in E(F_p) using
 Algorithm 7.1.2 (DecodePoint).

7.5. Ciphertext blocks

 Algorithm 7.5.1 (BFencodeCiphertext): encodes a BF ciphertext tuple
 in an exportable format.

 Input:

 a ciphertext tuple (U, V, W) in E(F_p) x {0, . . . , 255}^20 x {0,
 . . . , 255}*.

 Output:

 a ciphertext block gamma, represented as a byte string.

 Method:

 1. U = (x, y) is first encoded as a fixed-length string using
 Algorithm 7.1.1 (EncodePoint).

Boyen & Martin Expires December 2006 [Page 39]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. Gamma is obtained as the encoding of U, concatenated with the
 fixed-length string V, and the variable length string W, both already
 in byte-string format.

 Algorithm 7.5.2 (BFdecodeCiphertext): decodes a BF ciphertext tuple
 from an exportable format.

 Input:

 a ciphertext block gamma, represented as a byte string.

 Output:

 a ciphertext tuple (U, V, W) in E(F_p) x {0, . . . , 255}^20 x {0,
 . . . , 255}*.

 Method:

 1. Gamma is parsed as a 3-tuple comprising a fixed-length encoding
 of U, followed by a 20-byte string V, followed by an arbitrary-length
 string W.

 2. U in E(F_p) is then recovered by applying Algorithm 7.1.2
 (DecodePoint) on its encoding.

8. The Boneh-Boyen BB1 cryptosystem

 This chapter describes the algorithms constituting the first of the
 two Boneh-Boyen identity-based cryptosystems proposed in [2]. The
 description follows the practical implementation given in [2].

8.1. Setup

 Algorithm 8.1.1 (BBsetup). Randomly selects a set of master secrets
 and the associated public parameters.

 Input:

 a curve type t (currently required to be fixed to t = 1),

 a security parameter n (currently required to take values n >=
 1024).

 Output:

 a set of common public parameters,

Boyen & Martin Expires December 2006 [Page 40]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 a corresponding master secret.

 Method:

 1. Depending on the selected type t:

 (a) If t = 1, then Algorithm 8.1.2 (BBsetup1) is executed.

 2. The resulting master secret and public parameters are separately
 encoded as per the application protocol requirements.

8.1.1. Type-1 curve implementation

 BBsetup1 takes a security parameter n as input. For type-1 curves,
 the scale of n corresponds to the modulus bit-size believed of
 comparable security in the classical Diffie-Hellman or RSA public-key
 cryptosystems. For this implementation, allowed values of n are
 limited to 1024, 2048, and 3072, which correspond to the equivalent
 security level ranging from 80-, 112- and 128-bit symmetric keys
 respectively.

 Algorithm 7.1.2 (BBsetup1): randomly establishes a master secret and
 public parameters for type-1 curves.

 Input:

 a security parameter n, either 1024, 2048 or 3072.

 Output:

 a set of common public parameters (t, k, E, p, q, P, P_1, P_2, P_3,
 v),

 a corresponding triple of master secrets (alpha, beta, gamma).

 Method:

 1. Determine the subordinate security parameters n_p and n_q as
 follows:

 (a) n_p = n / 2, which will determine the size of the field F_p.

 (b) if n = 1024, n_q = 160; if n = 2048, n_q = 224; if n = 3072,
 n_q = 256, which will determine the size of the subgroup order q.

 2. Construct the elliptic curve and its subgroup of interest, as
 follows:

Boyen & Martin Expires December 2006 [Page 41]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (a) Select an arbitrary n_q-bit prime q, i.e., such that
 Ceiling(lg(p)) = n_q. For better performance, q is chosen as a
 Solinas prime, i.e., a prime of the form q = 2^a +/- 2^b +/- 1 where
 0 < b < a.

 (b) Select a random integer r such that p = 12 * r * q . 1 is an
 n_p-bit prime, i.e., such that Ceiling(lg(p)) = n_p.

 3. Select a point P of order q in E(F_p), as follows:

 (a) Select a random point P of coordinates (x , y) on the curve
 E/F_p : y2 = x3 + 1 (mod p).

 (b) Let P = [12 * r]P .

 (c) If P = 1, then start over in step 3a.

 4. Determine the master secret and the public parameters as follows:

 (a) Select three random integers alpha, beta, gamma, each of them
 in the range 1 to q . 1.

 (b) Let P_1 = [alpha]P.

 (c) Let P_2 = [beta]P.

 (d) Let P_3 = [gamma]P.

 (e) Let v = Pairing(E, p, q, P_1, P_2), which is an element of the
 extension field F_p2 obtained using the modified Tate pairing of
 Algorithm 3.5.1 (Pairing).

 5. (t, k, E, p, q, P, P_1, P_2, P_3, v) are the common public
 parameters, where t = 1, k = 2, and E : y^2 = x^3 + 1.

 6. (alpha, beta, gamma) constitute the master secret.

8.2. Public key derivation

 BBderivePubl takes an identity string id and a set of public
 parameters, and returns an integer h_id.

 Algorithm 7.2.1 (BBderivePubl): derives the public key corresponding
 to an identity string.

 Input:

Boyen & Martin Expires December 2006 [Page 42]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 an identity string id,

 a set of common public parameters (t, k, E, p, q, P, P_1, P_2, P_3,
 v).

 Output:

 an integer h_id modulo q.

 Method:

 1. Let h_id HashToRangeq(id), using Algorithm 3.1.1 (HashToRange).

8.3. Private key extraction

 BBextractPriv takes an identity string id, and a set of public
 parameters and corresponding master secrets, and returns a private
 key consisting of two points D_0 and D_1.

 Algorithm 8.3.1 (BBextractPriv): extracts the private key
 corresponding to an identity string.

 Input:

 an identity string id,

 a set of common public parameters (t, k, E, p, q, P, P_1, P_2, P_3,
 v).

 Output:

 a pair of points (D_0, D_1), each of which has order q in E(F_p).

 Method:

 1. Select a random integer r in the range 1 to q . 1.

 2. Calculate the point D_0 as follows:

 (a) Let hid = HashToRange(q, id), using Algorithm 3.1.1
 (HashToRange).

 (b) Let y = alpha * beta + r * (alpha * h_id * gamma) in F_q.

 (c) Let D_0 = [y]P.

 3. Calculate the point D_1 as follows:

Boyen & Martin Expires December 2006 [Page 43]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (a) Let D_1 = [r]P.

 4. The pair of points (D_0,D_1) constitutes the private key for id.

8.4. Encryption

 BBencrypt takes three inputs: a set of public parameters, an identity
 id, and a plaintext m. The plaintext is intended to be a short random
 session key, although messages of arbitrary size are in principle
 allowed.

 Algorithm 7.4.1 (BBencrypt): encrypts a short message or session key
 for an identity string.

 Input:

 a plaintext string m of size |m| bytes,

 a recipient identity string id,

 a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v).

 Output:

 a ciphertext tuple (u, C_0, C_1, y) in F_q x E(F_p) x E(F_p) x {0,
 . . . , 255}^|m|.

 Method:

 1. Let the public parameter set be comprised of a prime p, a curve
 E/F_p, the order q of a large prime subgroup of E(F_p), four points
 P, P_1, P_2, P_3, of order q in E(F_p), and an extension field
 element v of order q in F_p2 .

 2. Select a random integer s in the range 1 to q . 1.

 3. Let w = v^s, which is v raised to the power of s in F_p^2 , the
 result is an element of order q in F_p^2 .

 4. Calculate the point C_0 as follows:

 (a) Let C_0 = [s]P.

 5. Calculate the point C_1 as follows:

 (a) Let _hid = HashToRangeq(id), using Algorithm 3.1.1
 (HashToRange).

Boyen & Martin Expires December 2006 [Page 44]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (b) Let y = s * h_id in F_q.

 (c) Let C_1 = [y]P_1 + [s]P_3.

 6. Obtain canonical string representations of certain elements:

 (a) psi = Canonical(p, k, 1, w) using Algorithm 3.3.1 (Canonical),
 the result of which is a canonical byte-string representation of w.

 (b) Let l = Ceiling(8 * lg(p)), the number of bytes needed to
 represent integers in F_p, and represent each of these F_p elements
 as a big-endian zero-padded byte-string of fixed length l:

 (x_0)_(256^l) to represent the x coordinate of C_0.

 (y_0)_(256^l) to represent the y coordinate of C_0.

 (x_1)_(256^l) to represent the x coordinate of C_1.

 (y_1)_(256^l) to represent the y coordinate of C_1.

 7. Encrypt the message m into the string y as follows:

 (a) Compute an encryption key h_0 as a dual-pass hash of w via its
 representation psi:

 i. Let zeta = SHA1(psi), using the SHA1 hashing algorithm; the
 result is a 20-byte string.

 ii. Let xi = SHA1(zeta || psi), using the SHA1 hashing
 algorithm; the result is a 20-byte string.

 iii. Let h = xi || zeta, the 40-byte concatenation of the
 previous two SHA1 outputs.

 (b) Let y = HashStream(|m|, h) XOR m, which is the bit-wise
 exclusive-OR of m with the first |m| bytes of the pseudo-random
 stream produced by Algorithm 3.2.1 (HashStream) with seed h .

 8. Create the integrity check tag u as follows:

 (a) Compute a one-time pad h as a dual-pass hash of the
 representation of (w, C_0, C_1, y):

 i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) || (y_0)_(256^l)
 || (x_0)_(256^l) || y || psi be the concatenation of y and the five
 indicated strings in the specified order.

Boyen & Martin Expires December 2006 [Page 45]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 ii. Let eta = SHA1(sigma), using the SHA1 hashing algorithm to
 get a 20-byte string.

 iii. Let mu = SHA1(eta || sigma), using the SHA1 hashing
 algorithm to get a 20-byte string.

 iv. Let h = mu || eta, the 40-byte concatenation of the
 previous two SHA1 outputs.

 (b) Build the tag u as the encryption of the integer s with the
 one-time pad h :

 i. Let rho = HashToRangeq(h) to get an integer in Z_q.

 ii. Let u = s + rho (mod q).

 9. The complete ciphertext is given by the quadruple (u, C_0, C_1,
 y).

8.5. Decryption

 BBdecrypt takes three inputs: a set of public parameters, a private
 key (D_0, D_1), and a ciphertext parsed as (u, C_0, C_1, y). It
 outputs a message m, or signals an error if the ciphertext is invalid
 for the given key.

 Algorithm 7.5.1 (BBdecrypt): decrypts a short message or session key
 using a private key.

 Input:

 a private key given as a pair of points (D_0, D_1) of order q in
 E(F_p),

 a ciphertext quadruple (u, C_0, C_1, y) in Z_q x E(F_p) x E(F_p) x
 {0, . . . , 255}*.

 a set of public parameters.

 Output:

 a decrypted plaintext m, or an invalid ciphertext flag.

 Method:

 1. Let the public parameter set be comprised of a prime p, a curve
 E/F_p, the order q of a large prime subgroup of E(F_p), four points

Boyen & Martin Expires December 2006 [Page 46]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 P, P_1, P_2, P_3, of order q in E(F_p), and an extension field
 element v of order q in F_p^2 .

 2. Let w = PairingRatio(E, p, q, C_0, D_0, C_1, D_1), which computes
 the ratio of two Tate pairings (modified, for type-1 curves) as
 specified in Algorithm 4.6.1 (PairingRatio).

 3. Obtain canonical string representations of certain elements:

 (a) psi = Canonical(p, k, 1, w), using Algorithm 4.3.1
 (Canonical); the result is a canonical byte-string representation of
 w.

 (b) Let l = Ceiling(8 * lg(p)), the number of bytes needed to
 represent integers in F_p, and represent each of these F_p elements
 as a big-endian zero-padded byte-string of fixed length l:

 (x_0)_(256^l) to represent the x coordinate of C_0.

 (y_0)_(256^l) to represent the y coordinate of C_0.

 (x_1)_(256^l) to represent the x coordinate of C_1.

 (y_1)_(256^l) to represent the y coordinate of C_1.

 4. Decrypt the message m from the string y as follows:

 (a) Compute the decryption key h as a dual-pass hash of w via its
 representation psi:

 i. Let zeta = SHA1(psi), using the SHA1 hashing algorithm to
 get a 20-byte string.

 ii. Let xi = SHA1(zeta || psi), using the SHA1 hashing
 algorithm to get a 20-byte string.

 iii. Let h = xi || zeta, the 40-byte concatenation of the
 previous two SHA1 outputs.

 (b) Let m = HashStream(|y|, h)_XOR y, which is the bit-wise
 exclusive-OR of y with the first |y| bytes of the pseudo-random
 stream produced by Algorithm 3.2.1 (HashStream) with seed h .

 5. Obtain the integrity check tag u as follows:

 (a) Recover the one-time pad h as a dual-pass hash of the
 representation of (w, C_0, C_1, y):

Boyen & Martin Expires December 2006 [Page 47]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) || (y_0)_(256^l)
 || (x_0)_(256^l) || y || psi be the concatenation of y and the five
 indicated strings in the specified order.

 ii. Let eta = SHA1(sigma) using the SHA1 hashing algorithm to
 get a 20-byte string.

 iii. Let mu = SHA1(eta || sigma), using the SHA1 hashing
 algorithm to get a 20-byte string.

 iv. Let h = mu || eta, the 40-byte concatenation of the
 previous two SHA1 outputs.

 (b) Unblind the encryption randomization integer s from the tag u
 using h :

 i. Let rho = HashToRangeq(h) to get an integer in Z_q.

 ii. Let s = u - rho (mod q).

 6. Verify the ciphertext consistency according to the decrypted
 values:

 (a) Test whether the equality w = v^s holds in F_p2 .

 (b) Test whether the equality C_0 = [s]P holds in E(F_p).

 7. Adjudication and final output:

 (a) If either of the tests performed in step 6 fails, the
 ciphertext is rejected, and no decryption is output.

 (b) Otherwise, i.e., when both tests performed in step 6 succeed,
 the decrypted message is output.

9. Wrapper methods for the BB1 system

 This section describes a number of wrapper methods providing the
 identity-based cryptosystem functionalities using concrete encodings.
 The following functions are presently given based on the Boneh-
 Franklin algorithms.

9.1. Private key generator (PKG) setup

 Algorithm 9.1.1 (BBwrapperPKGSetup): randomly selects a PKG master
 secret and a set of public parameters.

Boyen & Martin Expires December 2006 [Page 48]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Input:

 a curve type t,

 a security parameter n.

 Output:

 a common public parameter block pi,

 a corresponding master secret block sigma.

 Method:

 1. Perform Algorithm 8.1.1 (BBsetup) on parameters t and n, producing
 a set of public parameters and master secret.

 2. Apply Algorithm 10.2.1 (BBencodeParams) on the public parameters
 obtained in step 1 to get the public parameter block pi.

 3. Apply Algorithm 10.3.1 (BBencodeMaster) on the master secrets
 obtained in step 1 to get the master secret block sigma.

9.2. Private key extraction by the PKG

 Algorithm 9.2.1 (BBwrapperPrivateKeyExtract): extraction by the PKG
 of a private key corresponding to an identity.

 Input:

 a master secret block sigma,

 a corresponding public parameter block pi,

 an identity string id.

 Output:

 a private key block kappa_id.

 Method:

 1. Apply Algorithm 10.2.2 (BBdecodeParams) on the public parameter
 block pi to obtain the public parameters, comprising a prime p, the
 parameters of a curve E/F_p with some embedding degree k, the order q
 of a large prime subgroup of E(F_p), four points P, P_1, P_2, P_3, of

Boyen & Martin Expires December 2006 [Page 49]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 order q in E(F_p), and an element v of order q in the extension field
 F_p^k of degree k.

 2. Apply Algorithm 10.3.2 (BBdecodeMaster) on the master secret block
 sigma to obtain the master secret (alpha, beta, gamma).

 3. Perform Algorithm 8.3.1 (BBextractPriv) on the identity id, using
 the decoded public parameters and master secret, to produce a private
 key (D_0, D_1).

 4. Apply Algorithm 10.4.1 (BBencodePrivate) on the private key to
 produce a private key block kappa_id.

9.3. Session key encryption

 Algorithm 9.3.1 (BBwrapperSessionKeyEncrypt): encrypts a short
 message or session key for an identity.

 Input:

 a public parameter block pi,

 a recipient identity string id,

 a plaintext string m (possibly comprising the concatenation of a
 pair of random session keys for symmetric encryption and message
 authentication purposes on a larger plaintext).

 Output:

 a ciphertext block omega.

 Method:

 1. Apply Algorithm 10.2.2 (BBdecodeParams) on the public parameter
 block pi to obtain the public parameters, comprising a prime p, the
 parameters of a curve E/F_p with some embedding degree k, the order q
 of a large prime subgroup of E(F_p), four points P, P_1, P_2, P_3, of
 order q in E(F_p), and an element v of order q in the extension field
 F_p^k .

 2. Perform Algorithm 8.4.1 (BBencrypt) on the plaintext m for
 identity id using the decoded set of parameters, to obtain a
 ciphertext quadruple (u, C_0, C_1, y).

 3. Apply Algorithm 10.5.1 (BBencodeCiphertext) on the ciphertext (u,
 C_0, C_1, y) to obtain a string representation of omega.

Boyen & Martin Expires December 2006 [Page 50]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Algorithm 9.3.2 (BBwrapperSessionKeyDecrypt): decrypts a short
 message or session key using a private key.

 Input:

 a public parameter block pi,

 a private key block kappa,

 a ciphertext block omega.

 Output:

 a decrypted plaintext string m, or an error flag signaling an
 invalid ciphertext.

 Method:

 1. Apply Algorithm 10.2.2 (BBdecodeParams) on the public parameter
 block pi to obtain the public parameters, comprising a prime p, the
 parameters of a curve E/F_p with some embedding degree k, the order q
 of a large prime subgroup of E(F_p), four points P, P_1, P_2, P_3, of
 order q in E(F_p), and an element v of order q in the extension field
 F_p^k.

 2. Apply Algorithm 10.4.2 (BBdecodePrivate) on kappa to obtain the
 private key points (D_0, D_1).

 3. Apply Algorithm 10.5.2 (BBdecodeCiphertext) on omega to obtain a
 ciphertext quadruple (u, C_0, C_1, y).

 4. Perform Algorithm 8.5.1 (BBdecrypt) on (u, C_0, C_1, y) using the
 private key (D_0, D_1) and the decoded set of public parameters, to
 obtain decrypted plaintext m, or an invalid ciphertext flag.

 (a) If the decryption was successful, return the plaintext string
 m.

 (b) Otherwise, raise an error condition.

10. Concrete encoding guidelines for BB1

 This section specifies a set of concrete encoding schemes for the
 inputs and outputs of the previously described algorithms. ASN.1
 encodings are specified in Section 11 of this document.

Boyen & Martin Expires December 2006 [Page 51]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

10.1. Encoding of points on a curve

 We refer to the description of Algorithm 7.1.1 (EncodePoint) and
 Algorithm 7.1.2 (DecodePoint).

10.2. Public parameters blocks

 Algorithm 10.2.1 (BBencodeParams): encodes a BB1 public parameter set
 in an exportable format.

 Input:

 a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v).

 Output:

 a public parameter block pi, represented as a byte string.

 Method:

 1. Separate encodings for k, E, p, q, P, P_1, P_2, P_3 are obtained
 as follows:

 (a) If t = 1, execute Algorithm 10.2.3 (BBencodeParams1).

 2. The separate encodings as well as a type indicator flag for t are
 then serialized in any suitable manner as dictated by the
 application.

 Algorithm 10.2.2 (BBdecodeParams): imports a BB1 public parameter
 block from a serialized format.

 Input:

 a public parameter block pi, represented as a byte string.

 Output:

 a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v).

 Method:

 1. Identify from the appropriate flag the type t of curve upon which
 the parameter block is based.

 2. Then:

Boyen & Martin Expires December 2006 [Page 52]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (a) If t = 1, execute Algorithm 10.2.4 (BBdecodeParams1).

10.2.1. Type-1 implementation

 Algorithm 10.2.3 (BBencodeParams1): encodes a BB1 type-1 public
 parameter set in an exportable format.

 Input:

 a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v)
 with t = 1.

 Output:

 separate encodings for each of the k, E, p, q, P, P_1, P_2, P_3
 components (v is redundant and omitted).

 Method:

 1. E : y^2 = x^3 + a * x + b and k = 2 are represented as a constant
 string, such as the empty string, since the coefficients a and b and
 the embedding degree k are invariant for type-1 curves.

 2. p = 12 * r * q . 1 is represented as the smaller integer r,
 encoded, e.g., using a big-endian byte-string representation.

 3. q = 2^a + s* 2^b + c, where a, b are small and both c and s are
 either 1 or -1 is compactly represented as the 4-tuple (a, b, c, s).

 4. P = (x_P , y_P) in F_p x F_p is represented using the point
 compression technique of Algorithm 7.1.1 (EncodePoint).

 5. Each of P_1, P_2, and P_3 is similarly encoded using Algorithm
 7.1.1 (EncodePoint).

 Algorithm 10.2.4 (BBdecodeParams1): decodes the components of a BB1
 type-1 public parameter block.

 Input:

 separate encodings for each one of k, E, p, q, P, P_1, P_2, P_3.

 Output:

 a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v)
 with t = 1.

Boyen & Martin Expires December 2006 [Page 53]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Method:

 1. The equation of E is set to E E : y^2 = x^3 + 1, as is always
 the case for type-1 curves.

 2. The embedding degree is set to k = 2 for type-1 curves.

 3. The encoding of q is parsed as (a, b, c, s), and its value set to
 q = 2^a + s * 2^b + c.

 4. The encoding of p is parsed as the integer r, from which p is
 given by p = 12 * r * q . 1.

 5. P is reconstructed from its encoding (x, y) using the point
 decompression technique of Algorithm 7.1.2 (DecodePoint).

 6. Each of P_1, P_2, and P_3 is reconstructed in a similar manner
 from its encoding using Algorithm 7.1.2 (DecodePoint).

 7. The extension field element v is reconstructed as v = Pairing(E,
 p, q, P_1, P_2) using Algorithm 4.5.1 (Pairing).

10.3. Master secret blocks

 Algorithm 10.3.1 (BBencodeMaster): encodes a BB1 master secret in an
 exportable format.

 Input:

 a master secret triple of integers (alpha, beta, gamma) in (Z+_q
)^3.

 Output:

 a master secret block sigma, represented as a byte string.

 Method:

 1. Encode each integer as an unsigned big-endian byte-string of fixed
 length Ceiling(8 * lg(q)), or, when q is a Solinas prime q = 2^a +/-
 2^b +/- 1, of length Ceiling((a + 1) / 8):

 (a) sigma_alpha to represent alpha.

 (b) sigma_beta to represent beta.

 (c) sigma_gamma to represent gamma.

Boyen & Martin Expires December 2006 [Page 54]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. Sigma = sigma_alpha || sigma_beta || sigma_gamma is the
 concatenation of these strings.

 Algorithm 10.3.2 (BBdecodeMaster): decodes a BB1 master secret from a
 block in exportable format.

 Input:

 a master secret block sigma, represented as a byte string.

 Output:

 a master secret triple of integers (alpha, beta, gamma) in (Z+_q
)^3.

 Method:

 1. Parse sigma as sigma_alpha || sigma_beta || sigma_gamma, where
 each substring is a byte string of fixed length Ceiling(8 * lg(q)),
 or, when q is a Solinas prime q = 2^a +/- 2^b +/- 1, of length
 Ceiling((a + 1) / 8)).

 2. Decode each substring as an integer in unsigned big-endian byte-
 string representation:

 (a) alpha = Value(sigma_alpha).

 (b) beta = Value(sigma_beta).

 (c) gamma = Value(sigma_gamma).

10.4. Private key blocks

 Algorithm 10.4.1 (BBencodePrivate): encodes a BB1 private key in an
 exportable format.

 Input:

 a private key pair of points (D_0, D_1) in E(F_p) x E(F_p).

 Output:

 a private key block kappa, represented as a byte string.

 Method:

 1. Encode each point separately:

Boyen & Martin Expires December 2006 [Page 55]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 (a) kappa_0 is obtained by applying Algorithm 7.1.1 (EncodePoint)
 to D_0.

 (b) kappa_1 is obtained by applying Algorithm 7.1.1 (EncodePoint)
 to D_0.

 2. Kappa = kappa_0 || kappa_1.

 Algorithm 10.4.2 (BBdecodePrivate): decodes a BB1 private key from an
 exportable format.

 Input:

 a private key block kappa, represented as a byte string.

 Output:

 a private key pair of point (D_0, D_1) in E(F_p) x E(F_p).

 Method:

 1. Decode each point separately:

 (a) The first prefix of kappa is parsed and decoded into a point
 D_0 in E(F_p) using Algorithm 7.1.2 (DecodePoint).

 (b) The remainder of kappa is parsed and decoded into a point D_1
 in E(F_p) using Algorithm 7.1.2 (DecodePoint).

10.5. Ciphertext blocks

 Algorithm 10.5.1 (BBencodeCiphertext). Encodes a BB1 ciphertext tuple
 in an exportable format.

 Input:

 a ciphertext tuple (u, C_0, C_1, y) in Z_q x E(F_p) x E(F_p) x {0,
 . . . , 255}*.

 Output:

 a ciphertext block omega, represented as a byte string.

 Method:

 1. Let chi_0 be the fixed-length encoding of C_0 = (x_0, y_0) using
 Algorithm 7.1.1 (EncodePoint).

Boyen & Martin Expires December 2006 [Page 56]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 2. Let chi_1 be the fixed-length encoding of C_1 = (x_1, y_1) using
 Algorithm 7.1.1 (EncodePoint).

 3. Let nu be the encoding of u as an unsigned big-endian byte-string
 of fixed length Ceiling(8 * lg(q)), or, when q is a Solinas prime q =
 2^a +/- 2^b +/- 1, of length Ceiling((a + 1)/8).

 4. Omega = chi_0 || chi_1 || nu || y is the concatenation of these
 three strings and y.

 Algorithm 10.5.2 (BBdecodeCiphertext): decodes a BB1 ciphertext tuple
 from an exportable format.

 Input:

 a ciphertext block omega, represented as a byte string.

 Output:

 a ciphertext tuple (u, C_0 ,C_1, y) in Z_q x E(F_p) x E(F_p) x {0,
 . . . , 255}*.

 Method:

 1. Omega is parsed as a quadruple comprising a fixed-length encoding
 of C_0, a fixed-length encoding of C_1, a fixed-length encoding of u,
 and the arbitrary-length string y:

 (a) C_0 in E(F_p) is first recovered by applying Algorithm 7.1.2
 (DecodePoint) on the first parsed component of omega.

 (b) C_1 in E(F_p) is next recovered by applying Algorithm 7.1.2
 (DecodePoint) on the second parsed component of omega.

 (c) u in Z_q is then recovered from its unsigned big-endian byte-
 string representation in the third parsed component of omega, of
 length Ceiling(8 * lg(q)), or, when q is a Solinas prime q = 2^a +/-
 2b +/- 1, of length Ceiling((a + 1)/8).

 (d) y is finally taken as the remainder of omega.

11. ASN.1 module

 This section defines the ASN.1 module for the encodings discussed in
 sections 7 and 10.

 IBCS { joint-iso-itu(2) country(16) us(840) organization(1)

Boyen & Martin Expires December 2006 [Page 57]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 identicrypt(114334) ibcs(1) module(5) version(1) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 --
 -- Identity-based cryptography standards (IBCS): supersingular curve
 -- implementations of the BF and BB1 cryptosystems.
 --
 -- This version of the IBCS standard only supports IBE over
 -- type-1 curves. In the current version, the Curve type is
 -- always set to NULL, although future versions will use it.
 --

 IMPORTS Curve
 FROM X9-62-module
 { iso(1) member-body(2) us(840) ansi-x9-62(10045) module(5) 1
 };

 ibcs OBJECT IDENTIFIER ::= {
 joint-iso-itu(2) country(16) us(840) organization(1)
 identicrypt(114334) ibcs(1)
 }

 --
 -- IBCS1
 --
 -- IBCS1 defines the algorithms used to implement IBE
 --

 ibcs1 OBJECT IDENTIFIER ::= {
 ibcs ibcs1(1)
 }

Boyen & Martin Expires December 2006 [Page 58]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 --
 -- Supporting types
 --

 --
 -- Encoding of a point on an elliptic curve E/Fp.
 --

 FpPoint ::= SEQUENCE {
 x INTEGER,
 y INTEGER
 }

 --
 -- Encoding of a Solinas prime.
 --
 -- Encodes a Solinas prime of the form
 -- q = 2^a + s * 2^b +c with the integers a, b, c, and s.
 --

 SolinasPrime ::= SEQUENCE {
 a INTEGER,
 b INTEGER,
 c INTEGER { positive(1), negative(-1) },
 s INTEGER { positive(1), negative(-1) }
 }

 --
 -- Algorithms
 --

 ibe-algorithms OBJECT IDENTIFIER ::= {
 ibcs1 ibe-algorithms(2)

Boyen & Martin Expires December 2006 [Page 59]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 }

 --- Boneh-Franklin IBE

 bf OBJECT IDENTIFIER ::= { ibe-algorithms bf(1) }

 --
 -- Encoding of a BF public parameters block.
 -- The only version currently supported is version 1.
 -- For type-1 curves, the curve is fixed, so Curve is set to NULL
 -- For the BF prime p and subprime q, we have q * r = p + 1,
 -- and we encode the values of r and q in the public parameters.
 -- The points P and P_pub are encoded as pointP and pointPpub
 respectively.
 --

 BFPublicParamaters ::= SEQUENCE {
 version INTEGER { v1(1) },
 curve Curve { NULL },
 r INTEGER,
 q SolinasPrime,
 pointP FpPoint,
 pointPpub FpPoint
 }

 --
 -- A BF private key is a point on an elliptic curve,
 -- which is an FpPoint.
 --

 BFPrivateKeyBlock ::= FpPoint

Boyen & Martin Expires December 2006 [Page 60]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 --
 -- A BF master secret is an integer.
 --

 BFMasterSecret ::= INTEGER

 --
 -- BF ciphertext block
 --

 BFCiphertextBlock ::= SEQUENCE {
 U FpPoint,
 v OCTET STRING,
 w OCTET STRING
 }

 --
 -- Boneh-Boyen (BB1) IBE
 --

 bb1 OBJECT IDENTIFIER ::= {ibe-algorithms bb1(2) }

 --
 -- Encoding of a BB1 public parameters block.
 -- The version is currently fixed to 1.
 -- The embedding degree is currently fixed to 2.
 -- For type-1 curves, curve is set to NULL.
 -- For the BB1 prime p and subprime q, we have q * r = p + 1,
 -- and we encode the values of r and q in the public parameters.
 --

 BB1PublicParameters ::= SEQUENCE {

Boyen & Martin Expires December 2006 [Page 61]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 Version INTEGER { v1(1) },
 embedding-degree INTEGER { degree-2(2) },
 curve Curve { NULL },
 r INTEGER,
 q SolinasPrime,
 pointP FpPoint,
 pointP1 FpPoint,
 pointP2 FpPoint,
 pointP3 FpPoint
 }

 --
 -- BB1 master secret block
 --

 BB1MasterSecret ::= SEQUENCE {
 alpha INTEGER,
 beta INTEGER,
 gamma INTEGER
 }

 --
 -- BB1 private Key block
 --

 BB1PrivateKeyBlock ::= SEQUENCE {
 pointD0 FpPoint,
 pointD1 FpPoint
 }

 --
 -- BB1 ciphertext block
 --

Boyen & Martin Expires December 2006 [Page 62]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 BB1CiphertextBlock ::= SEQUENCE {
 pointChi0 FpPoint,
 pointChi1 FpPoint,
 nu INTEGER,
 y OCTET STRING
 }
 END

12. Security considerations

 This entire document discusses security considerations.

13. IANA considerations

 All of the OIDs used in this document were assigned by the National
 Institute of Standards and Technology (NIST), so no further action by
 the IANA is necessary for this document.

14. Acknowledgments

 This document is based on the IBCS #1 v2 document of Voltage
 Security, Inc. Any substantial use of material from this document
 should acknowledge Voltage Security, Inc. as the source of the
 information.

Boyen & Martin Expires December 2006 [Page 63]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

15. References

15.1. Informative references

 [1] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in
 Cryptography, Cambridge University Press, 1999.

 [2] D. Boneh, X. Boyen, Efficient selective-ID secure identity
 based encryption without random oracles, In Proc. of EUROCRYPT
 04, LNCS 3027, pp. 223 238, 2004.

 [3] D. Boneh, M. Franklin, Identity-based encryption from the Weil
 pairing, In Proc. of CRYPTO 01, LNCS 2139, pp. 213 229, 2001.

 Authors Addresses

 Xavier Boyen
 Voltage Security
 1070 Arastradero Rd Suite 100
 Palo Alto, CA 94304

 Email: xavier@voltage.com

 Luther Martin
 Voltage Security
 1070 Arastradero Rd Suite 100
 Palo Alto, CA 94304

 Email: martin@voltage.com

 Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Boyen & Martin Expires December 2006 [Page 64]

Internet Draft IBCS #1: Identity-based Cryptography June 2006

 specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

 Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

 Boyen & Martin Expires December 2006 [Page 65]

