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1. Introduction

        This document provides a set of specifications for implementing
        identity-based encryption (IBE) systems based on bilinear pairings.
        Two cryptosystems are described: the IBE system proposed by Boneh and
        Franklin (BF) [3], and the first IBE system proposed by Boneh and
        Boyen (BB1) [2]. Fully secure and practical implementations are
        described for each system, comprising the core IBE algorithms as well
        as ancillary hybrid components used to achieve security against
        active attacks. These specifications are restricted to a family of
        supersingular elliptic curves over finite fields of large prime
        characteristic, referred to as type-1  curves (see Section 2.3).
        Implementations based on other types of curves currently fall outside
        the scope of this document.
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2. Notation and definitions

2.1. Notation

        This section summarizes the essential notions and definitions
        regarding identity-based cryptosystems on elliptic curves. The reader
        is referred to [1] for the mathematical background and to [2, 3]
        regarding all notions pertaining to identity-based encryption.

        Let F_p be a finite field of large prime characteristic p, and let
        F_p^k denote its extension field of degree k. Denote by F*_p the
        multiplicative group of F_p^k, for any k >= 1.

        Let E/F_p : y^2 = x^3 + a * x + b be an elliptic curve over F_p. For
        any extension degree k >= 1, the curve E/F_p defines a group
        (E(F_p^k), +), which is the additive group of points of affine
        coordinates (x, y) in (F_p^k)^2 satisfying the curve equation over
        F_p^k, with null element, or point at infinity, denoted 0. Let
        #E(F_p^k) be the size of E(F_p^k).

        Let q be a prime such that E(F_p) has a cyclic subgroup G1  of order
        q. Let k be the embedding degree or security multiplier of G1  in
        E(F_p), or the smallest integer greater than or equal to 1 such that
        q divides p^k . 1. Then E(F_p^k) contains a cyclic subgroup of order
        q, denoted G1 , and F*_p^k contains a cyclic subgroup of order p,
        denoted G2.

        Under these conditions, two mathematical constructions known as the
        Weil pairing and the Tate pairing, each provide an efficiently
        computable map e : G1  x G1  -> G2 that is linear in both arguments
        and believed hard to invert. If an efficiently computable isomorphism
        phi : G1  -> G1  is available for the selected elliptic curve on
        which the Tate pairing is computed, then one can construct a function
        e  : G1  x G1  -> G2, defined as e (A, B) = e(A, phi(B)), called the
        modified Tate pairing. We generically call a pairing either the Tate
        pairing e or the modified Tate pairing e , depending on the chosen
        elliptic curve used in a particular implementation.

        The following additional notation is used throughout this document.

        P - a 512-bit to 1536-bit prime, being the order of the finite field
        F_p.

        F_p - the base finite field of size p over which the elliptic curve
        of interest E/F_p is defined.

        #G - the size of G, where G is a finite group.
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        G* - the multiplicative group of the invertible elements in G; e.g.,
        (F_p)* is the multiplicative group of the finite field F_p.

        E/F_p - the equation of an elliptic curve over the field F_p, which,
        when p is neither 2 nor 3, is of the form E/F_p : y^2 = x^3 + a * x +
        b, for specified a, b in F_p.

        0 - the conventional null element of any additive group of points on
        an elliptic curve, also called the point at infinity.

        E(F_p) - the additive group of points of affine coordinates (x, y),
        with x, y in F_p, that satisfy the curve equation E/F_p, including
        the point at infinity 0.

        q - a 160 bit to 256-bit prime, being the order of the cyclic
        subgroup of interest in E(F_p).

        k - the embedding degree, or security multiplier, of the cyclic
        subgroup of order q in E(F_p).

        F_p^k - the extension field of the base field F_p of degree equal to
        the security multiplier k.

        E(F_p^k ) - the group of points of affine coordinates in F_p^k
        satisfying the curve equation E/F_p, including the  point at infinity
        0.

        The following conventions are assumed for curve operations.

        Point addition  If A and B are two points on a curve E, their sum is
        denoted A + B.

        Point multiplication  If A is a point on a curve, and n an integer,
        the result of adding A to itself a total of n times is denoted [n]A.

        The following class of elliptic curves is exclusively considered for
        pairing operations in the present version of the IBCS#1 standard,
        referred to as type-1.

        Type-1 curves  The class of curves of type 1 is defined as the class
        of all elliptic curves of equation E/F_p : y^2 = x^3 + 1 for all
        primes p congruent to 11 modulo 12. This class forms a subclass of
        the class of supersingular curves. These curves satisfy #E(F_p) = p +
        1, so that the p pairs of (x, y) coordinates corresponding to the p
        non-zero points E(F_p) \ {0} satisfy a useful bijective relation x <-
        > y, with x = (y^2 . 1)^(1/3) (mod p) and y = (x^3 + 1)^(1/2) (mod
        p). Type-1 curves always lead to a security multiplier k = 2, where
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        f(x) = (x^2 + 1) is always irreducible, allowing the uniform
        representation of F_p^2 = F[x] / (x^2 + 1). Type-1 curves are
        plentiful and easy to construct by random selection of a prime p of
        the appropriate form. Therefore, rather than to standardize upon a
        small set of common values of p, it is henceforth assumed that all
        type-1 curves are freshly generated at random for the given
        cryptographic application (an example of such generation will be
        given in Algorithm 5.1.2 (BFsetup1) or Algorithm 8.1.2 (BBsetup1)).
        Implementations based on different classes of curves are currently
        unsupported.

        We assume that the following concrete representations of mathematical
        objects are used.

        Base field elements - The p elements of the base field F_p are
        represented directly using the integers from 0 to p . 1.

        Extension field elements  The p^k elements of the extension field
        F_p^k are represented as k-tuples of elements of F_p. A k-tuple (a_0,
        ..., a_(k.1) is interpreted as the polynomial a_(k . 1) * x^(k . 1) +
        ... +a_1 * x + a_0 in F_p[x] / f(x), where f(x) is an irreducible
        monic polynomial of order k. The actual polynomial f(x) chosen
        depends on p and k.

        Type-1 curves  For type-1 curves, which are supersingular curves of
        equation E/F_p : y^2 = x^3 + 1 with p congruent to 11 modulo 12, the
        extension degree k is always 2 and elements of F_p^2 are represented
        as polynomials a_1 * x + a_0 in F_p[x] / (x^2 + 1).

        Elliptic curve points  Points in E(F_p^k) for k >= 1 with the point
        P = (x, y) in F_p^k x F_p^k satisfying the curve equation E/F_p.
        Points not equal to 0 are internally represented using the affine
        coordinates (x, y), where x and y are elements of F_p^k.

2.2. Definitions

        The following terminology is used to describe an IBE system.

        Public parameters  The public parameters are set of common
        systemwide parameters generated and published by the private key
        server (PKG).

        Master secret  The master secret is the master key generated and
        privately kept by the key server, and used to generate the private
        keys of the users.
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        Identity  An identity an arbitrary string, usually a human-readable
        unambiguous designator of a system user, possibly augmented with a
        time stamp and other attributes.

        Public key  A public key is a string that is algorithmically derived
        from an identity. The derivation may be performed by anyone,
        autonomously.

        Private key  A private key is issued by the key server to correspond
        to a given identity (and the public key that derives from it), under
        the published set of public parameters.

        Plaintext  A plaintext is an unencrypted representation, or in the
        clear, of any block of data to be transmitted securely. For the
        present purposes, plaintexts are typically session keys, or sets of
        session keys, for further symmetric encryption and authentication
        purposes.

        Ciphertext  A ciphertext is an encrypted representation of any block
        of data, including a plaintext, to be transmitted securely.

3. Basic elliptic curve algorithms

        This section describes algorithms for performing all needed basic
        arithmetic operations on elliptic curves. The presentation is
        specialized to the type of curves under consideration for simplicity
        of implementation. General algorithms may be found in [1].

3.1.  The group action in affine coordinates

3.1.1. Implementation for type-1 curves

        Algorithm 3.1.1 (PointDouble1): adds a point to itself on a type-1
        elliptic curve.

        Input:

         a point A in E(F_p^k), with A = (x, y) or 0.

         an elliptic curve E/F_p : y^2 = x^3 + 1.

        Output:

         the point [2]A = A + A.

        Method:
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        1. If A = 0 or y = 0, then return 0.

        2. lambda = (3 * x^2) / (2 * y).

        3. x  =  lambda^2  2 * x.

        4. y  = (x  x ) * lambda  y.

        5. Return (x , y ).

        Algorithm 3.1.2 (PointAdd1): adds two points on a type-1 elliptic
        curve.

        Input:

         a point A in E(F_p^k), with A = (x_A, y_A) or 0,

         a point B in E(F_p^k), with B = (x_B, y_B) or 0,

         an elliptic curve E/F_p : y^2 = x^3 + 1.

        Output:

         the point A + B.

        Method:

        1. If A = 0, return B.

        2. If B = 0, return A.

        3. If x_A = x_B:

           (a) If y_A = .y_B, return 0.

           (b) Else return [2]A computed using Algorithm 2.1.1
        (PointDouble1).

        4. Otherwise:

           (a) lambda = (y_B . y_A) / (x_B . x_A).

           (b) x  = lambda^2  . x_A . x_B.

           (c) y  = (x_A . x ) * lambda -  y_A.

           (d) Return (x , y ).
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3.2. Point multiplication

        Algorithm 3.2.1 (SignedWindowDecomposition): computes the signed m-
        ary window representation of a positive integer.

        Input:

         an integer l > 0,

         an integer window bit-size r > 0.

        Output:

         The unique d-element sequence {(b_i, e_i)} for i = 0 to d - 1 such
        that l = {Sum(b_i * 2^(e_i) for i = 0 to d  1} and b_i = +/- 2^j for
        some 0 <= j <= r - 1.

        Method:

        1. d = 0.

        2. j = 0.

        3. While j <= l, do:

           (a) If l_k = 0 then:

              i. j = j + 1.

           (b) Else:

              i. t  = min{j + r . 1, l}.

              ii. h_d = (l_t, l_(t  1), ..., l_j)(base 2).

              iii. If h_d > 2^(r . 1) then:

                 A. b_d = h_d . 2^r.

                 B. l  = l  + 2^(t + 1).

              iv. Else:

                 A. b_d = h_d.

              v. e_d = j.
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              vi. d  = d + 1.

              vii. j  = t + 1.

        4. Return d and the sequence {(b_0, e_0), ..., (b_(d . 1), e_(d .
        1))}.

        Algorithm 3.2.2 (PointMultiply): scalar multiplication on an elliptic
        curve using the signed m-ary window method.

        Input:

         a point A in E(F_p^k),

         an integer l > 0,

         an elliptic curve E/F_p : y^2 = x^3 + a * x + b.

        Output:

         the point [l]A.

        Method:

        1. (Window decomposition)

           (a) Let r > 0 be an integer (fixed) bit-wise window size, e.g., r
        = 5.

           (b) Let l  = l where l = {Sum(l_j * 2^j), for j = 0 to l} is the
        binary expansion of l.

           (c) Compute (d, {(b_i, e_i) for i = 0 to d  1} =
        SignedWindowDecomposition(l, r), the signed 2^r-ary window
        representation of l using Algorithm 3.2.1
        (SignedWindowDecomposition).

        2. (Precomputation)

           (a) A_1 = A.

           (b) A_2 = [2]A, using Algorithm 3.1.1 (PointDouble1).

           (c) For i = 1 to 2^(r . 2) . 1, do:

              i. A_(2 * i + 1) = A_(2 * i . 1) + A_2 using Algorithm 3.1.2
        (PointAdd1).
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           (d) Q = A_(b_(d . 1)).

        3. Main loop

           (a) For i = d . 2 to 0 by .1, do:

              i. Q = [2^(e_(i + 1) . e_i)]Q, using repeated applications of
        Algorithm 3.1.1 (PointDouble1) e_(i + 1) . e_i times.

              ii. If b_i > 0 then:

                 A. Q = Q + A_(b_i) using Algorithm 3.1.2 (PointAdd1).

              iii. Else:

                 A. Q = Q . A_(.b_i) using Algorithm 3.1.2 (PointAdd1).

           (b) Calculate Q = [2^(e_0)]Q using repeated applications of
        Algorithm 3.1.1 (PointDouble1) e_0 times.

        4. Return Q.

3.3. Special operations in projective coordinates

3.3.1. Implementation for type-1 curves

        Algorithm 3.3.1 (ProjectivePointDouble1): adds a point to itself in
        projective coordinates for type-1 curves.

        Input:

         a point (x, y, z) = A in E(F_p^k ) in projective coordinates,

         an elliptic curve E/F_p : y^2 = x^3 + 1.

        Output:

         the point [2]A in projective coordinates.

        Method:

        1. If z = 0 or y = 0, return (0, 1, 0) = 0. Otherwise:

        2. lambda_1 = 3 * x^2.

        3. z  = 2 * y * z.
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        4. lambda_2 = y^2.

        5. lambda_3 = 4 * lambda_2 * x.

        6. x  = lambda_1^2  2 * lambda_3.

        7. lambda_4 = 8 * lambda_2^2.

        8. y  = lambda_1 * (lambda_3  x)  lambda_4.

        9. Return (x , y , z ).

        Algorithm 3.3.2 (ProjectivePointAccumulate1): adds a point in affine
        coordinates to an accumulator in projective coordinates, for type-1
        curves.

        Input:

         a point (x_A, y_A, z_A) = A in E(F_p^k ) in projective coordinates,

         a point (x_B, y_B) = B in E(F_p^k ) \ {0} in affine coordinates,

         an elliptic curve E/F_p : y^2 = x^3 + 1.

        Output:

         the point A + B in projective coordinates.

        Method:

        1. If z_A = 0 return (x_B, y_B, 1) = B. Otherwise:

        2. lambda_1 = z_A^2

        3. lambda_2 = lambda_1 * x_B.

        4. lambda_3 = x_A  lambda_2.

        5. If lambda_3 = 0 then return (0, 1, 0) = 0. Otherwise:

        6. lambda_4 = lambda_3^2.

        7. lambda_5 = lambda_1 * y_B * z_A.

        8. lambda_6 = lambda_4  lambda_5.

        9. lambda_7 = x_A + lambda_2.
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        10. lambda_8 = y_A + lambda_5.

        11. x  = lambda_6^2  lambda_7 * lambda_4.

        12. lambda_9 = lambda_7 * lambda_4  2 * x .

        13. y  = (lambda_9 * lambda_6  lambda_8 * lambda_3 * lambda_4) / 2.

        14. z  = lambda_3 * z_A.

        15. Return (x , y , z ).

3.4. Divisors on elliptic curves

3.4.1. Implementation in F_p^2 for type-1 curves

        Algorithm 3.4.1 (EvalVertical1): evaluates the divisor of a vertical
        line on a type-1 elliptic curve.

        Input:

         a point B in E(F_p^2) with B != 0.

         a point A in E(F_p).

         a description of a type-1 elliptic curve E/F_p.

        Output:

         an element of F_p^2  that is the divisor of the vertical line going
        through A evaluated at B.

        Method:

        1. r = x_B . x_A.

        2. Return r.

        Algorithm 2.4.2 (EvalTangent1): evaluates the divisor of a tangent on
        a type-1 elliptic curve.

        Input:

         a point B in E(F_p^2 ) with B != 0.

         a point A in E(F_p).
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         a description of a type-1 elliptic curve E/F_p.

        Output:

         an element of F_p^2 that is the divisor of the line tangent to A
        evaluated at B.

        Method:

        1. (Special cases)

           (a) If A = 0 return 1 = 1 + 0 * i.

           (b) If y_A = 0 return EvalVertical1(B, A) using Algorithm 3.4.1
        (EvalVertical1).

        2. (Line computation)

           (a) a = .3 * (x_A)^2.

           (b) b = 2 * y_A.

           (c) c = .b * y_A . a * x_A.

        3. (Evaluation at B)

        (a) r = a * x_B + b * y_B) + c.

        4. Return r.

        Algorithm 3.4.3 (EvalLine1): evaluates the divisor of a line on a
        type-1 elliptic curve.

        Input:

         a point B in E(F_p^2 ) with B != 0.

         two points A , A  in E(F_p).

         a description of a type-1 elliptic curve E/F_p.

        Output:

         an element of F_p^2 that is the divisor of the line going through
        A  and A  evaluated at B.

        Method:
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        1. (Special cases)

           (a) If A  = 0 return EvalVertical1(B, A ) using Algorithm 3.4.1
        (EvalVertical1).

           (b) If A  = 0 return EvalVertical1(B, A ) using Algorithm 3.4.1
        (EvalVertical1).

           (c) If A  = .A  return EvalVertical1(B, A ) using Algorithm 3.4.1
        (EvalVertical1).

        (   d) If A  = A  return EvalTangent1(B, A ) using Algorithm 3.4.2
        (EvalTangent1).

        2. (Line computation)

           (a) a = y_A  . y_A .

           (b) b = x_A  . x_A .

           (c) c = .b * y_A  . a * x_A .

        3. (Evaluation at B)

           (a) r = a * x_B + b * y_B + c.

        4. Return r.

3.5. The Tate pairing

        Algorithm 3.5.1 (Tate): computes the Tate pairing on an elliptic
        curve.

        Input:

         a point A of order q in E(F_p),

         a point B of order q in E(F_p^k),

         a description of an elliptic curve E/F_p such that E(F_p) and
        E(F_p^k) have a subgroup of order q.

        Output:

         the value e(A, B) in F_p^k , computed using the Miller algorithm.

        Method:
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        1. For type-1 curve E, proceed with Algorithm 3.5.2
        (TateMillerSolinas).

3.5.1. The Miller algorithm for type-1 curves

        Algorithm 3.5.2 (TateMillerSolinas): computes the Tate pairing on a
        type-1 elliptic curve.

        Input:

         a point A of order q in E(F_p),

         a point B of order q in E(F_p^2),

         a description of a type-1 supersingular elliptic curve E/F_p such
        that E(F_p) and E(F_p^2) have a subgroup of prime order q, where q =
        2^a + s * 2^b + c with c and s equal to either 1 or -1.

        Output:

         the value e(A, B) in F_p^2 , computed using the Miller algorithm.

        The following description assumes that F_p^2 = F_p[i], where i^2 = -
        1.

        Elements x in F_p^2 may be explicitly represented as a + i * b, with
        a, b in F_p.

        Points in E(F_p) may also be represented as coordinate pairs (x, y)
        with x, y in F_p.

        Points in E(F_p^2) may be represented either as (x, y), with x, y in
        F_p^2 or as (a + i * b, c + i * d), with a, b, c, d in F_p.

        Method:

        1. (Initialization)

           (a) v_num = 1 in F_p^2.

           (b) v_den = 1 in F_p^2.

           (c) V = (x_V , y_V , z_V ) = (x_A, y_A, 1) in (F_p)^3, being the
        representation of (x_A, y_A) = A using projective coordinates.

           (d) t_num = 1 in F_p^2.
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           (e) t_den = 1 in F_p^2.

        2. (Calculation of the (s * 2^b) contribution)

           (a) (Repeated doublings) For n = 0 to b . 1:

              i. t_num = t_num^2.

              ii. t_den = t_den^2.

              iii. t_num = t_num * EvalTangent1(B, V ) using Algorithm 3.4.2
        (EvalTangent1).

              iv. V = (x_V , y_V , z_V ) = [2]V  using Algorithm 3.3.1
        (ProjectivePointDouble1).

              v. t_den = t_den * EvalVertical1(B, V ) using Algorithm 3.4.1
        (EvalVertical1).

           (b) (Normalization)

              i. V_b = (x_(V_b) , y_(V_b)) = (x_V / z_V^2, s * y_V / z_V^3)
        in (F_p)^2, resulting in a point V_b in E(F_p).

           (c) (Accumulation) Selecting on s:

              i. If s = .1:

                 A. v_num = v_num * t_den.

                 B. v_den = v_den * t_num * EvalVertical1(B, V) using
        Algorithm 3.4.1 (EvalVertical1).

              ii. If s = 1:

                 A. v_num = v_num * t_num.

                 B. v_den = v_den * t_den.

        3. (Calculation of the 2^a contribution)

           (a) (Repeated doublings) For n = b to a . 1:

              i. t_num = t_num^2.

              ii. t_den = t_den^2.
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              iii. t_num = t_num * EvalTangent1(B, V) using Algorithm 3.4.2
        (EvalTangent1).

              iv. V = (x_V , y_V , z_V) = [2]V  using Algorithm 3.3.1
        (ProjectivePointDouble1).

              v. t_den = t_den * EvalVertical1(B, V) using Algorithm 3.4.1
        (EvalVertical1).

           (b) (Normalization)

              i. V_a = (x_(V_a) , y_(V_a)) = (x_V /z_V^2, s * x_V / z_V^3) in
        (F_p)2, resulting in a point V_a in E(F_p).

           (c) (Accumulation)

              i. v_num = v_num * t_num.

              ii. v_den = v_den * t_den.

        4. (Correction for the (s * 2^b) and (c) contributions)

           (a) v_num = v_num * EvalLine1(B, V_a, V_b) using Algorithm 3.4.3
        (EvalLine1).

           (b) v_den = v_den * EvalVertical1(B, V_a + V_b) using Algorithm
        3.4.1 (EvalVertical1).

           (c) If c = .1 then:

              i. v_den = v_den * EvalVertical1(B,A) using Algorithm 3.4.1
        (EvalVertical1).

        5. (Correcting exponent)

           (a) Let eta = (p^2 . 1) / q  (an integer).

        6. (Final result)

           (a) Return (v_num / v_den)^eta in F_p^2 .

4. Supporting algorithms

        This section describes a number of supporting algorithms for encoding
        and hashing.
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4.1. Integer range hashing

        HashToRangen(s, n) takes a string s and an integer n as input, and
        returns an integer in the range 0 to n . 1 by cryptographic hashing.
        The function performs a number l of SHA1 applications, with l chosen
        in function of n so that, for random input, the output has an almost
        uniform distribution in the entire range 0 to n . 1 with a
        statistical relative non-uniformity no greater than 1/sqrt(n). I.e.,
        for arbitrarily large n, for all v in 0 to n . 1, the probability
        that HashToRangen(s, n) = v lies in the interval [(1 . n^(.1/2)) / n,
        (1 + n^(.1/2)) / n].

        Algorithm 4.1.1 (HashToRange): cryptographically hashes strings to
        integers in a range.

        Input:

         a string s of length |s| bytes,

         a positive integer n represented as Ceiling(8 * lg(n)) bytes.

        Output:

         a positive integer v in the range 0 to n . 1.

        Method:

        1. v_0 = 0.

        2. h_0 = 0x0000000000000000000000000000000000000000, a string of 20
        null bytes.

        3. l = Ceiling((3 / 5) * lg(n)).

        4. for each i in 1 to l, do:

           (a) t_i = h_(i . 1) || s, which is the (|s| + 20)-byte string
        concatenation of the strings h_(i . 1) and s.

           (b) h_i = SHA1(t_i), which is a 20-byte string resulting from the
        SHA1 algorithm on input t_i.

           (c) Let a_i = Value(h_i) be the integer in the range 0 to 256^20 .
        1 denoted by the raw byte string h_i interpreted in the unsigned big
        endian convention.

           (d) v_i = 256^20 * v_(i . 1) + a_i.
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        5. v = v_l (mod n).

4.2. Pseudo-random generation by hashing

        HashStream(b, p) takes an integer b and a string p as input, and
        returns a b-byte pseudo-random string r as output. This function
        relies on the SHA1 cryptographic hashing algorithm, and has a 160-bit
        internal effective key space equal to the range of SHA1.

        Algorithm 4.2.1 (HashStream): keyed cryptographic pseudo-random
        stream generator.

        Input:

         an integer b,

         a string p.

        Output:

         a string r of size b bytes.

        Method:

        1. K = SHA1(p).

        2. h_0 = 0x0000000000000000000000000000000000000000 , a string of 20
        null bytes.

        3. l = Ceiling(b / 20).

        4. for each i in 1 to l do:

           (a) h_i = SHA1(h_(i . 1)).

           (b) r_i = SHA1(h_i || K), where h_i || K is the 40-byte
        concatenation of h_i and K.

        5. r = LeftmostBytes(b, r_1 || ... || r_l), i.e., r is formed as the
        concatenation of the r_i, truncated to the desired number of bytes.

4.3. Canonical encodings of extension field elements

        Canonical(p, k, o, v) takes an element v in F_p^k, and returns a
        canonical byte-string of fixed length representing v. The parameter o
        must be either 0 or 1, and specifies the ordering of the encoding.
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        Algorithm 4.3.1 (Canonical): encodes elements of an extension field
        F_p^k as strings.

        Input:

         an element v in F_p^k,

         a description of F_p^k ,

         a ordering parameter o, either 0 or 1.

        Output:

         a fixed-length string s representing v.

        Method:

        1. For a type-1 curve, execute Algorithm 4.3.2 (Canonical1).

4.3.1. Type-1 curve implementation

        Canonical1(p, o, v) takes an element v in F_p^2 and returns a
        canonical representation of v as a byte-string s of fixed size. The
        parameter o must be either 0 or 1, and specifies the ordering of the
        encoding.

        Algorithm 4.3.2 (Canonical1): canonically represents elements of an
        extension field F_p^2.

        Input:

         an element v in F_p^2,

         a description of p, where p is congruent to 3 modulo 4,

         a ordering parameter o, either 0 or 1.

        Output:

         a string s of size Ceiling(16 * lg(p)) bytes.

        Method:

        1. l = 8 * Ceiling(lg(p)), the number of bytes needed to represent
        integers in Zp.
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        2. (a, b) = v, where (a, b) in (Z_p)^2 is the canonical
        representation of v in F_p^2 = F_p / (x^2 + 1) as a polynomial a +i *
        b with i^2 = .1.

        3. Let a_(256^l) be the big-endian zero-padded fixed-length byte-
        string representation of a in Zp.

        4. Let b_(256^l) be the big-endian zero-padded fixed-length byte-
        string representation of b in Zp.

        5. Depending on the choice of ordering o:

           (a) If o = 0, then let s = a_(256^l) || b_(256^l), which is the
        concatenation of a_(256^l) followed by b_(256^l).

           (b) If o = 1, then let s = b_(256^l) || a_(256^l), which is the
        concatenation of b_(256^l) followed by a_(256^l).

        6. The fixed-length encoding of v is output as the string s.

4.4. Hashing onto a subgroup of an elliptic curve

        HashToPoint(E, p, q, id) takes an identity string id and the
        description of a subgroup of prime order q in E(F_p) or E(F_p^k) and
        returns a point Q_id of order q in E(F_p) or E(F_p^k).

        Algorithm 4.4.1 (HashToPoint): cryptographically hashes strings to
        points on elliptic curves.

        Input:

         a string id,

         a description of a subgroup of prime order q on a curve E/F_p.

        Output:

         a point Q_id = (x, y) of order q on E.

        Method:

        1. For a type-1 curve E, execute Algorithm 4.4.2 (HashToPoint1).

4.4.1. Type-1 curve implementation

        HashToPoint1(E, p, q, id) takes an identity string id and the
        description of a subgroup of order q in E(F_p) where E : y^2 = x^3 +
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        1 with p congruent to 11 modulo 12, and returns a point Q_id of order
        q in E/F_p. This algorithm exploits the bijective mapping between the
        x and y coordinates of non-zero points on such supersingular curves.

        Algorithm 4.4.2 (HashToPoint1). Cryptographically hashes strings to
        points on type-1 curves.

        Input:

         a string id,

         a description of a subgroup of prime order q on a curve E/F_p : y^2
        = x^3 + 1 where p is congruent to 11 modulo 12.

        Output:

         a point Q_id of order q on E(F_p).

        Method:

        1. n = q (compatibility mode) or p (preferred mode)

        2. y = HashToRangen(n, id), using Algorithm 4.1.1 (HashToRange).

        3. x = (y^2 . 1)^(1/3) = (y^2 . 1)^((2 * p . 1) / 3).

        4. Let Q  = (x, y), a non-zero point in E(F_p).

        5. Q = [(p + 1) / q ]Q , a point of order q in E(F_p).

4.5. Bilinear pairing

        Pairing(E, p, q, A, B) takes two points A and B, both of order q,
        and, in the type-1 case, returns the modified pairing e (A, phi(B))
        in F_p^2 where A and B are both in E(F_p).

        Algorithm 4.5.1 (Pairing): computes the regular or modified Tate
        pairing depending on the curve type.

        Input:

         a description of an elliptic curve E/F_p such that E(F_p) and
        E(F_p^k) have a subgroup of order q,

         two points A and B of order q in E(F_p) or E(F_p^k).

        Output:
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         on supersingular curves, the value of e (A, B) in F_p^k where A and
        B are both in E(F_p);

        Method:

        1. If E is a type-1 curve, execute Algorithm 4.5.2 (Pairing1).

4.5.1. Type-1 curve implementation

        Algorithm 4.5.2 (Pairing1): computes the modified Tate pairing on
        type-1 curves.

        Input:

         a curve E/F_p : y^2 = x^3 + 1 where p is congruent to 11 modulo 12
        and E(F_p) has a subgroup of order q,

         two points A and B of order q in E(F_p),

        Output:

         the value of e (A, B) = e(A, phi(B)) in F_p^k = F_p^2 .

        Method:

        1. Compute B  = phi(B), as follows:

           (a) Let (x, y) in F_p x F_p be the coordinates of B in E(F_p).

           (b) Let zeta = 1^(1/3) in F_p^2 , with zeta != 1. Specifically, as
        p is congruent to 3 modulo 4, and representing the elements of F_p^2
        = F_p[x] / (x^2 + 1) as polynomials a + bx with x = (.1)^(1/2), the
        representation of zeta = (a_zeta , b_zeta) is obtained as:

              i. a_zeta = (p . 1) / 2.

              ii. b_zeta = 3^((p + 1) / 4) (mod p).

           (c) x  =  x * x_zeta in F_p^2 ,

           (d) B  = (x , y) in F_p^2 x F_p.

        2. Compute the Tate pairing e(A,B ) = e(A, phi(B)) in F_p^2 using the
        Miller method, as in Algorithm 4.5.1 (Tate) described in Section 4.5.
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4.6. Ratio of bilinear pairings

        PairingRatio(E, p, q, A, B, C, D) takes four points as input, and
        computes the ratio of the two bilinear pairings, Pairing(E, p, q, A,
        B) / Pairing(E, p, q, C, D), or, equivalently, the product,
        Pairing(E, p, q, A, B) * Pairing(E, p, q, C, .D).

        On type-1 curves, all four points are of order q in E(F_p), and the
        result is an element of order q in the extension field F_p^2 .

        The motivation for this algorithm is that the ratio of two pairings
        can be calculated more efficiently than by computing each pairing
        separately and dividing one into the other, since certain
        calculations that would normally appear in each of the two pairings
        can be combined and carried out at once. Such calculations include
        the repeated doublings in steps 2(a)i, 2(a)ii, 3(a)i, and 3(a)ii of
        Algorithm 4.5.2 (TateMillerSolinas), as well as the final
        exponentiation in step 6(a) of Algorithm 4.5.2 (TateMillerSolinas).

        Algorithm 4.6.1 (PairingRatio): computes the ratio of two regular or
        modified Tate pairings depending on the curve type.

        Input:

         a description of an elliptic curve E/F_p such that E(F_p) and
        E(F_p^k) have a subgroup of order q,

         four points A, B, C, and D, of order q in E(F_p) or E(F_p^k).

        Output:

         on supersingular curves, the value of e (A, B) / e (C, D) in F_p^k
        where A, B, C, D are all in E(F_p);

        Method:

        1. If E is a type-1 curve, execute Algorithm 4.6.2 (PairingRatio1).

4.6.1. Type-1 curve implementation

        Algorithm 4.6.2 (PairingRatio1). Computes the ratio of two modified
        Tate pairings on type-1 curves.

        Input:

         a curve E/F_p : y^2 = x^3 + 1, where p is congruent to 11 modulo 12
        and E(F_p) has a subgroup of order q,
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         four points A, B, C, and D, of order q in E(F_p),

        Output:

         the value of e (A, B) / e (C, D) = e(A, phi(B)) / e(C, phi(D)) =
        e(A, phi(B)) * e(.C, phi(D)), in F_p^k = F_p^2 .

        Method:

        1. The step-by-step description of the optimized algorithm is omitted
        in this normative specification.

        The correct result can always be obtained, albeit more slowly, by
        computing the product of pairings Pairing1(E, p, q, A, B) *
        Pairing1(E, p, q, .C, D) by using two invocations of Algorithm 4.5.2
        (Pairing1).

5. The Boneh-Franklin BF cryptosystem

        This chapter describes the algorithms constituting the Boneh-Franklin
        identity-based cryptosystem as described in [3].

5.1. Setup

        Algorithm 5.1.1 (BFsetup): randomly selects a master secret and the
        associated public parameters.

        Input:

         a curve type t (currently required to be fixed to t = 1),

         a security parameter n (currently required to take values n >=
        1024).

        Output:

         a set of common public parameters,

         a corresponding master secret.

        Method:

        1. Depending on the selected type t:

           (a) If t = 1, then Algorithm 5.1.2 (BFsetup1) is executed.
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        2. The resulting master secret and public parameters are separately
        encoded as per the application protocol requirements.

5.1.1. Type-1 curve implementation

        BFsetup1 takes a security parameter n as input. For type-1 curves,
        the scale of n corresponds to the modulus bit-size believed of
        comparable security in the classical Diffie-Hellman or RSA public-key
        cryptosystems. For this implementation, the allowed value of n is
        limited to 1024, which corresponds to 80 bits of symmetric key
        security.

        Algorithm 5.1.2 (BFsetup1): randomly establishes a master secret and
        public parameters for type-1 curves.

        Input:

         a security parameter n, assumed to be equal to 1024.

        Output:

         a set of common public parameters (t, p, q, P, Ppub),

         a corresponding master secret s.

        Method:

        1. Determine the subordinate security parameters n_p and n_q as
        follows:

           (a) n_p = 512, which will determine the size of the field F_p.

           (b) n_q = 160, which will determine the size of the subgroup order
        q.

        2. Construct the elliptic curve and its subgroup of interest, as
        follows:

           (a) Select an arbitrary n_q-bit prime q, i.e., such that
        Ceiling(lg(q)) = n_q. For better performance, q is chosen as a
        Solinas prime, i.e., a prime of the form q = 2^a +/- 2^b +/- 1 where
        0 < b < a.

           (b) Select a random integer r such that p = 12 * r * q . 1 is an
        n_p-bit prime, i.e., such that Floor(lg(p)) = n_p.

        3. Select a point P of order q in E(F_p), as follows:
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           (a) Select a random point P  of coordinates (x , y ) on the curve
        E/F_p : y^2 = x^3 + 1 (mod p).

           (b) Let P = [12 * r]P .

           (c) If P = 0, then start over in step 3a.

        4. Determine the master secret and the public parameters as follows:

           (a) Select a random integer s in the range 2 to q . 1.

           (b) Let P_pub = [s]P.

        5. (t, E, p, q, P, P_pub) are the common public parameters, where E:
        y^2 = x^3 + 1.

        6. s is the master secret.

5.2. Public key derivation

        BFderivePubl takes an identity string id and a set of public
        parameters, and returns a point Q_id.

        Algorithm 5.2.1 (BFderivePubl): derives the public key corresponding
        to an identity string.

        Input:

         an identity string id,

         a set of common public parameters (t, E, p, q, P, P_pub).

        Output:

         a point Q_id of order q in E(F_p) or E(F_p^k).

        Method:

        1. Q_id = HashToPoint(E, p, q, id), using Algorithm 4.4.1
        (HashToPoint).

5.3. Private key extraction

        BFextractPriv takes an identity string id, and a set of public
        parameters and corresponding master secret, and returns a point S_id.
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        Algorithm 4.3.1 (BFextractPriv): extracts the private key
        corresponding to an identity string.

        Input:

         an identity string id,

         a set of common public parameters (t, E, p, q, P, P_pub).

        Output:

         a point S_id or order q in E(F_p).

        Method:

        1. Q_id   HashToPoint(E, p, q, id) using Algorithm 4.4.1
        (HashToPoint).

        2. S_id = [s]Q_id.

5.4. Encryption

        BFencrypt takes three inputs: a public parameter block, an identity
        id, and a plaintext m. The plaintext is intended to be a symmetric
        session key, although variable-sized short messages are allowed.

        Algorithm 5.4.1 (BFencrypt): encrypts a short message or session key
        for an identity string.

        Input:

         a plaintext string m of size |m| bytes,

         a recipient identity string id,

         a set of public parameters.

        Output:

         a ciphertext tuple (U, V, W) in E(F_p) x {0, ... , 255}^20 x {0,
        ... , 255}^|m|.

        Method:

        1. Let the public parameter set be comprised of a prime p, a curve
        E/F_p, the order q of a large prime subgroup of E(F_p), and two
        points P and P_pub of order q in E(F_p).
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        2. Q_id = HashToPoint(E, p, q, id), using Algorithm 4.4.1
        (HashToPoint), which results in a point of order q in E(F_p) or
        E(F_p^k).

        3. Select s random 160-bit vector rho, represented as 20-byte string
        in big-endian convention.

        4. t = SHA1(m), a 20-byte string resulting from the SHA1 algorithm.

        5. l = HashToRangeq(rho || t), an integer in the range 0 to q . 1
        resulting from applying Algorithm 4.1.1 (HashToRange) to the 40-byte
        concatenation of rho and t.

        6. U = [l]P, which is a point of order q in E(F_p).

        7. Theta = Pairing(E, p, q, P_pub, Q_id), which is an element of the
        extension field F_p^k obtained using the modified Tate pairing of
        Algorithm 4.5.1 (Pairing).

        8. Let theta  = theta^l, which is theta raised to the power of l in
        F_p^k .

        9. Let z = Canonical(p, k, 0, theta ), using Algorithm 4.3.1
        (Canonical), the result of which is a canonical string representation
        of theta .

        10. Let w = SHA1(z) using the SHA1 hashing algorithm, the result of
        which is a 20-byte string.

        11. Let V = w XOR rho, which is the 20-byte long bit-wise exclusive-
        OR of w and rho.

        12. Let W = HashStream(|m|, rho XOR m), which is the bit-wise
        exclusive-OR of m with the first |m| bytes of the pseudo-random
        stream produced by Algorithm 4.2.1 (HashStream) with seed rho.

        13. The ciphertext is the triple (U, V, W).

5.5. Decryption

        BFdecrypt takes three inputs: a public parameter block, a private key
        block key, and a ciphertext parsed as (U  , V  , W ).

        Algorithm 5.5.1 (BFdecrypt): decrypts a short message or session key
        using a private key.

        Input:
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         a private key point S_id of order q in E(F_p),

         a ciphertext triple (U , V , W ) in E(F_p) x {0, . . . , 255}^20 x
        {0, . . . , 255}*.

         a set of public parameters.

        Output:

         a decrypted plaintext m , or an invalid ciphertext flag.

        Method:

        1. Let the public parameter set be comprised of a prime p, a curve
        E/F_p, the order q of a large prime subgroup of E(F_p), and two
        points P and P_pub of order q in E(F_p).

        2. Let theta  = Pairing(E, p ,q, U , S_id) by applying the modified
        Tate pairing of Algorithm 4.5.1 (Pairing).

        3. Let z = Canonical(p, k, 0, theta ) using Algorithm 4.3.1
        (Canonical), the result of which is a canonical string representation
        of theta .

        4. Let w  = SHA1(z), using the SHA1 hashing algorithm, the result of
        which is a 20-byte string.

        5. Let rho = w XOR V, the bit-wise XOR of w and V.

        6. Let m = HashStream(|W|, rho) XOR W, which is the bit-wise
        exclusive-OR of m with the first |W| bytes of the pseudo-random
        stream produced by Algorithm 4.2.1 (HashStream) with seed rho.

        7. Let t = SHA1(m) using the SHA1 algorithm.

        8. Let l = HashToRange(q, rho || t) using Algorithm 4.1.1
        (HashToRange) on the 40-byte concatenation of rho and t.

        9. Verify that U  = [l]P:

           (a) If this is the case, then the decrypted plaintext m is
        returned.

           (b) Otherwise, the ciphertext is rejected and no plaintext is
        returned.
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6. Wrapper methods for the BF system

        This chapter describes a number of wrapper methods providing the
        identity-based cryptosystem functionalities using concrete encodings.
        The following functions are presently given based on the Boneh-
        Franklin algorithms.

6.1. Private key generator (PKG) setup

        Algorithm 6.1.1 (BFwrapperPKGSetup): randomly selects a PKG master
        secret and a set of public parameters.

        Input:

         a curve type t,

         a security parameter n.

        Output:

         a common public parameter block pi,

         a corresponding master secret block sigma.

        Method:

        1. Perform Algorithm 5.1.1 (BFsetup) on parameters t and n, producing
        a public parameter set and a master secret.

        2. Apply Algorithm 7.2.1 (BFencodeParams) on the public parameter set
        obtained in step 1 to get the public parameter block pi.

        3. Apply Algorithm 7.3.1 (BFencodeMaster) on the master secret
        obtained in step 1 to get the master secret block sigma.

6.2. Private key extraction by the PKG

        Algorithm 5.2.1 (BFwrapperPrivateKeyExtract): extraction by the PKG
        of a private key corresponding to an identity.

        Input:

         a master secret block sigma,

         a corresponding public parameter block pi,

         an identity string id.
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        Output:

         a private key block kappa_id

        Method:

        1. Apply Algorithm 7.2.2 (BFdecodeParams) to the public parameter
        block pi to obtain the public parameters, comprising a prime p, a
        curve E/F_p, the order q of a large prime subgroup of E(F_p), and two
        points P and P_pub of order q in E(F_p).

        2. Apply Algorithm 7.3.2 (BFdecodeMaster) on the master secret block
        sigma to obtain the master secret s.

        3. Perform Algorithm 5.3.1 (BFextractPriv) on the identity id, using
        the decoded parameters and secret, to produce a private key point
        S_id.

        4. Apply Algorithm 7.4.1 (BFencodePrivate) to S_id to produce a
        private key block kid.

6.3. Session key encryption

        Algorithm 5.3.1 (BFwrapperSessionKeyEncrypt): encrypts a short
        message or session key for an identity.

        Input:

         a public parameter block pi,

         a recipient identity string id,

         a plaintext string m (possibly comprising the concatenation of a
        pair of random session keys for symmetric encryption and message
        authentication purposes on a larger plaintext).

        Output:

         a ciphertext block

        Method:

        1. Apply Algorithm 7.2.2 (BFdecodeParams) on the public parameter
        block pi to obtain a set of public parameters, comprising a prime p,
        a curve E/F_p, the order q of a large prime subgroup of E(F_p), and
        two points P and P_pub of order q in E(F_p).
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        2. Perform Algorithm 5.4.1 (BFencrypt) on the plaintext m for
        identity id using the decoded set of parameters, to obtain a
        ciphertext tuple (U, V, W).

        3. Apply Algorithm 7.5.1 (BFencodeCiphertext) on (U, V, W) to obtain
        a serialized ciphertext string

        Algorithm 6.3.2 (BFwrapperSessionKeyDecrypt): decrypts a short
        message or session key using a private key.

        Input:

         a public parameter block pi,

         a private key block kappa,

         a ciphertext block gamma.

        Output:

         a decrypted plaintext string m, or an error flag signaling an
        invalid ciphertext.

        Method:

        1. Apply Algorithm 7.2.2 (BFdecodeParams) on the public parameter
        block pi to obtain the public parameters, comprising a prime p, a
        curve E/F_p, the order q of a large prime subgroup of E(F_p), and two
        points P and P_pub of order q in E(F_p).

        2. Apply Algorithm 7.4.2 (BFdecodePrivate) to kappa to obtain a
        private key point S_id.

        3. Apply Algorithm 7.5.2 (BFdecodeCiphertext) to gamma to obtain a
        ciphertext triple (U , V , W ).

        4. Perform Algorithm 5.5.1 (BFdecrypt) on (U , V , W ) using the
        private key S_id and the decoded set of public parameters, to obtain
        decrypted plaintext m, or an invalid ciphertext flag.

           (a) If the decryption was successful, return the plaintext m.

           (b) Otherwise, raise an error condition.
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7. Concrete encoding guidelines for BF

        This section specifies a set of concrete encoding schemes for the
        inputs and outputs of the previously described algorithms. ASN.1
        encodings are specified in Section 11 of this document.

7.1. Encoding of points on a curve

        Algorithm 7.1.1 (EncodePoint): encodes a point in E(F_p) in an
        exportable format.

        Input:

         a non-zero point Q in E(F_p).

        Output:

         a fixed-length (for given p) byte-string encoding of Q.

        Method:

        1. Let (x, y) in F_p x F_p be the coordinates of P, where (x, y)
        satisfy the equation of E.

        2. The point P is then encoded as a FpPoint using the ASN.1 rules
        given in the ASN.1 module given in Section 11 of this document.

        Algorithm 6.1.2 (DecodePoint): decodes a point in E(F_p) from an
        exportable format.

        Input:

         a byte-string encoding of a non-zero point Q in E(F_p).

        Output:

         Q = (x, y).

        Method:

        1. The string is parsed and decoded as a pair (x, y), where x and y
        are integers in Z_p.

        2. Q is reconstructed as (x, y).
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7.2. Public parameters blocks

        Algorithm 7.2.1 (BFencodeParams): encodes a BF public parameter set
        in an exportable format.

        Input:

         a set of public parameters (t, E, p, q, P, P_pub).

        Output:

         a public parameter block pi, represented as a byte string.

        Method:

        1. Separate encodings for E, p, q, P, P_pub are obtained as follows:

           (a) If t = 1, execute Algorithm 7.2.3 (BFencodeParams1).

        2. The separate encodings as well as a type indicator flag for t are
        then serialized in any suitable manner as dictated by the
        application.

        Algorithm 7.2.2 (BFdecodeParams): imports a BF public parameter block
        from a serialized format.

        Input:

         a public parameter block pi, represented as a byte string.

        Output:

         a set of public parameters (t, E, p, q, P, P_pub).

        Method:

        1. Identify from the appropriate flag the type t of curve upon which
        the parameter block is based.

        2. Then:

           (a) If t = 1, execute Algorithm 7.2.4 (BFdecodeParams1).

7.2.1. Type-1 implementation

        Algorithm 7.2.3 (BFencodeParams1): encodes a BF type-1 public
        parameter set in an exportable format.
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        Input:

         a set of public parameters (t, E, p, q, P, P_pub) with t = 1.

        Output:

         separate encodings for each of the E, p, q, P, P_pub components.

        Method:

        1. E : y^2 = x^3 + a * x + b is represented as a constant string,
        such as the empty string, since a and b are invariant for type-1
        curves.

        2. p = 12 * r * q . 1 is represented as the smaller integer r,
        encoded, e.g., using a big-endian byte-string representation.

        3. q = 2^a + s * 2^b + c, where a, b are small and c and s are either
        1 or -1, is compactly represented as the 4-tuple (a, b, c, s).

        4. P = (x_P , y_P ) in F_p x F_p is represented using the point
        compression technique of Algorithm 7.1.1 (EncodePoint).

        5. P_pub is similarly encoded using Algorithm 7.1.1 (EncodePoint).

        Algorithm 7.2.4 (BFdecodeParams1): decodes the components of a BF
        type-1 public parameter block.

        Input:

         separate encodings for each one of E, p, q, P, P_pub.

        Output:

         a set of public parameters (t, E, p, q, P, P_pub) with t = 1.

        Method:

        1. The equation of E is set to E = E : y^2 = x^3 + 1, as is always
        the case for type-1 curves. The actual encoding of E is ignored.

        2. The encoding of q is parsed as (a, b, c, s), and its value set to
        q = 2^a + s * 2^b + c.

        3. The encoding of p is parsed as the integer r, from which p is
        given by p = 12 * r * q . 1.
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        4. P is reconstructed from its encoding (x, y ) using the point
        decompression technique of Algorithm 7.1.2 (DecodePoint).

        5. P_pub is similarly reconstructed from its encoding using Algorithm
        7.1.2 (DecodePoint).

7.3. Master secret blocks

        Algorithm 6.3.1 (BFencodeMaster): encodes a BF master secret in an
        exportable format.

        Input:

         a master secret integer s between 2 and q - 1.

        Output:

         a master secret block sigma, represented as a byte string.

        Method:

        1. Sigma is constructed as the unsigned big-endian byte-string
        encoding of s of length 8 * Ceiling(lg(p)).

        Algorithm 7.3.2 (BFdecodeMaster): decodes a BF master secret from a
        block in exportable format.

        Input:

         a master secret block sigma, represented as a byte string.

        Output:

         a master secret integer s in between 2 and q - 1 .

        Method:

        1. s = Value(sigma), where sigma is interpreted in the unsigned big
        endian convention.

7.4. Private key blocks

        Algorithm 6.4.1 (BFencodePrivate): encodes a BF private key point in
        an exportable format.

        Input:
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         a private key point S_id in E(F_p).

        Output:

         a private key block kappa, represented as a byte string.

        Method:

        1. kappa is obtained by applying Algorithm 7.1.1 (EncodePoint) to
        S_id.

        Algorithm 7.4.2 (BFdecodePrivate): decodes a BF private key point
        from an exportable format.

        Input:

         a private key block kappa, represented as a byte string.

        Output:

         a private key point S_id in E(F_p).

        Method:

        1. Kappa is parsed and decoded into a point S_id in E(F_p) using
        Algorithm 7.1.2 (DecodePoint).

7.5. Ciphertext blocks

        Algorithm 7.5.1 (BFencodeCiphertext): encodes a BF ciphertext tuple
        in an exportable format.

        Input:

         a ciphertext tuple (U, V, W) in E(F_p) x {0, . . . , 255}^20 x {0,
        . . . , 255}*.

        Output:

         a ciphertext block gamma, represented as a byte string.

        Method:

        1. U = (x, y) is first encoded as a fixed-length string using
        Algorithm 7.1.1 (EncodePoint).
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        2.  Gamma is obtained as the encoding of U, concatenated with the
        fixed-length string V, and the variable length string W, both already
        in byte-string format.

        Algorithm 7.5.2 (BFdecodeCiphertext): decodes a BF ciphertext tuple
        from an exportable format.

        Input:

         a ciphertext block gamma, represented as a byte string.

        Output:

         a ciphertext tuple (U, V, W) in E(F_p) x {0, . . . , 255}^20 x {0,
        . . . , 255}*.

        Method:

        1.  Gamma is parsed as a 3-tuple comprising a fixed-length encoding
        of U, followed by a 20-byte string V, followed by an arbitrary-length
        string W.

        2. U in E(F_p) is then recovered by applying Algorithm 7.1.2
        (DecodePoint) on its encoding.

8. The Boneh-Boyen BB1 cryptosystem

        This chapter describes the algorithms constituting the first of the
        two Boneh-Boyen identity-based cryptosystems proposed in [2]. The
        description follows the practical implementation given in [2].

8.1. Setup

        Algorithm 8.1.1 (BBsetup). Randomly selects a set of master secrets
        and the associated public parameters.

        Input:

         a curve type t (currently required to be fixed to t = 1),

         a security parameter n (currently required to take values n >=
        1024).

        Output:

         a set of common public parameters,
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         a corresponding master secret.

        Method:

        1. Depending on the selected type t:

        (a) If t = 1, then Algorithm 8.1.2 (BBsetup1) is executed.

        2. The resulting master secret and public parameters are separately
        encoded as per the application protocol requirements.

8.1.1. Type-1 curve implementation

        BBsetup1 takes a security parameter n as input. For type-1 curves,
        the scale of n corresponds to the modulus bit-size believed of
        comparable security in the classical Diffie-Hellman or RSA public-key
        cryptosystems. For this implementation, allowed values of n are
        limited to 1024, 2048, and 3072, which correspond to the equivalent
        security level ranging from 80-, 112- and 128-bit symmetric keys
        respectively.

        Algorithm 7.1.2 (BBsetup1): randomly establishes a master secret and
        public parameters for type-1 curves.

        Input:

         a security parameter n, either 1024, 2048 or 3072.

        Output:

         a set of common public parameters (t, k, E, p, q, P, P_1, P_2, P_3,
        v),

         a corresponding triple of master secrets (alpha, beta, gamma).

        Method:

        1. Determine the subordinate security parameters n_p and n_q as
        follows:

           (a) n_p = n / 2, which will determine the size of the field F_p.

           (b) if n = 1024, n_q = 160; if n = 2048, n_q = 224; if n = 3072,
        n_q = 256, which will determine the size of the subgroup order q.

        2. Construct the elliptic curve and its subgroup of interest, as
        follows:
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           (a) Select an arbitrary n_q-bit prime q, i.e., such that
        Ceiling(lg(p)) = n_q. For better performance, q is chosen as a
        Solinas prime, i.e., a prime of the form q = 2^a +/- 2^b +/- 1 where
        0 < b < a.

           (b) Select a random integer r such that p = 12 * r * q . 1 is an
        n_p-bit prime, i.e., such that Ceiling(lg(p)) = n_p.

        3. Select a point P of order q in E(F_p), as follows:

           (a) Select a random point P  of coordinates (x , y ) on the curve
        E/F_p : y2 = x3 + 1 (mod p).

           (b) Let P = [12 * r]P .

           (c) If P = 1, then start over in step 3a.

        4. Determine the master secret and the public parameters as follows:

           (a) Select three random integers alpha, beta, gamma, each of them
        in the range 1 to q . 1.

           (b) Let P_1 = [alpha]P.

           (c) Let P_2 = [beta]P.

           (d) Let P_3 = [gamma]P.

           (e) Let v = Pairing(E, p, q, P_1, P_2), which is an element of the
        extension field F_p2 obtained using the modified Tate pairing of
        Algorithm 3.5.1 (Pairing).

        5. (t, k, E, p, q, P, P_1, P_2, P_3, v) are the common public
        parameters, where t = 1, k = 2, and E : y^2 = x^3 + 1.

        6. (alpha, beta, gamma) constitute the master secret.

8.2. Public key derivation

        BBderivePubl takes an identity string id and a set of public
        parameters, and returns an integer h_id.

        Algorithm 7.2.1 (BBderivePubl): derives the public key corresponding
        to an identity string.

        Input:
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         an identity string id,

         a set of common public parameters (t, k, E, p, q, P, P_1, P_2, P_3,
        v).

        Output:

         an integer h_id modulo q.

        Method:

        1. Let h_id   HashToRangeq(id), using Algorithm 3.1.1 (HashToRange).

8.3. Private key extraction

        BBextractPriv takes an identity string id, and a set of public
        parameters and corresponding master secrets, and returns a private
        key consisting of two points D_0 and D_1.

        Algorithm 8.3.1 (BBextractPriv): extracts the private key
        corresponding to an identity string.

        Input:

         an identity string id,

         a set of common public parameters (t, k, E, p, q, P, P_1, P_2, P_3,
        v).

        Output:

         a pair of points (D_0, D_1), each of which has order q in E(F_p).

        Method:

        1. Select a random integer r in the range 1 to q . 1.

        2. Calculate the point D_0 as follows:

           (a) Let hid = HashToRange(q, id), using Algorithm 3.1.1
        (HashToRange).

           (b) Let y = alpha * beta + r * (alpha * h_id * gamma) in F_q.

           (c) Let D_0 = [y]P.

        3. Calculate the point D_1 as follows:
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           (a) Let D_1 = [r]P.

        4. The pair of points (D_0,D_1) constitutes the private key for id.

8.4. Encryption

        BBencrypt takes three inputs: a set of public parameters, an identity
        id, and a plaintext m. The plaintext is intended to be a short random
        session key, although messages of arbitrary size are in principle
        allowed.

        Algorithm 7.4.1 (BBencrypt): encrypts a short message or session key
        for an identity string.

        Input:

         a plaintext string m of size |m| bytes,

         a recipient identity string id,

         a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v).

        Output:

         a ciphertext tuple (u, C_0, C_1, y) in F_q x E(F_p) x E(F_p) x {0,
        . . . , 255}^|m|.

        Method:

        1. Let the public parameter set be comprised of a prime p, a curve
        E/F_p, the order q of a large prime subgroup of E(F_p), four points
        P, P_1, P_2, P_3, of order q in E(F_p), and an extension field
        element v of order q in F_p2 .

        2. Select a random integer s in the range 1 to q . 1.

        3. Let w = v^s, which is v raised to the power of s in F_p^2 , the
        result is an element of order q in F_p^2 .

        4. Calculate the point C_0 as follows:

           (a) Let C_0 = [s]P.

        5. Calculate the point C_1 as follows:

           (a) Let _hid = HashToRangeq(id), using Algorithm 3.1.1
        (HashToRange).
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        (b) Let y = s * h_id in F_q.

        (c) Let C_1 = [y]P_1 + [s]P_3.

        6. Obtain canonical string representations of certain elements:

           (a) psi = Canonical(p, k, 1, w) using Algorithm 3.3.1 (Canonical),
        the result of which is a canonical byte-string representation of w.

           (b) Let l = Ceiling(8 * lg(p)), the number of bytes needed to
        represent integers in F_p, and represent each of these F_p elements
        as a big-endian zero-padded byte-string of fixed length l:

            (x_0)_(256^l) to represent the x coordinate of C_0.

            (y_0)_(256^l) to represent the y coordinate of C_0.

            (x_1)_(256^l) to represent the x coordinate of C_1.

            (y_1)_(256^l) to represent the y coordinate of C_1.

        7. Encrypt the message m into the string y as follows:

           (a) Compute an encryption key h_0 as a dual-pass hash of w via its
        representation psi:

              i. Let zeta = SHA1(psi), using the SHA1 hashing algorithm; the
        result is a 20-byte string.

              ii. Let xi = SHA1(zeta || psi), using the SHA1 hashing
        algorithm; the result is a 20-byte string.

              iii. Let h  = xi || zeta, the 40-byte concatenation of the
        previous two SHA1 outputs.

           (b) Let y = HashStream(|m|, h ) XOR m, which is the bit-wise
        exclusive-OR of m with the first |m| bytes of the pseudo-random
        stream produced by Algorithm 3.2.1 (HashStream) with seed h .

        8. Create the integrity check tag u as follows:

           (a) Compute a one-time pad h  as a dual-pass hash of the
        representation of (w, C_0, C_1, y):

              i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) || (y_0)_(256^l)
        || (x_0)_(256^l) || y || psi be the concatenation of y and the five
        indicated strings in the specified order.
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              ii. Let eta = SHA1(sigma), using the SHA1 hashing algorithm to
        get a 20-byte string.

              iii. Let mu = SHA1(eta || sigma), using the SHA1 hashing
        algorithm to get a 20-byte string.

              iv. Let h  = mu || eta, the 40-byte concatenation of the
        previous two SHA1 outputs.

           (b) Build the tag u as the encryption of the integer s with the
        one-time pad h :

              i. Let rho = HashToRangeq(h ) to get an integer in Z_q.

              ii. Let u = s + rho (mod q).

        9. The complete ciphertext is given by the quadruple (u, C_0, C_1,
        y).

8.5. Decryption

        BBdecrypt takes three inputs: a set of public parameters, a private
        key (D_0, D_1), and a ciphertext parsed as (u, C_0, C_1, y). It
        outputs a message m, or signals an error if the ciphertext is invalid
        for the given key.

        Algorithm 7.5.1 (BBdecrypt): decrypts a short message or session key
        using a private key.

        Input:

         a private key given as a pair of points (D_0, D_1) of order q in
        E(F_p),

         a ciphertext quadruple (u, C_0, C_1, y) in Z_q x E(F_p) x E(F_p) x
        {0, . . . , 255}*.

         a set of public parameters.

        Output:

         a decrypted plaintext m, or an invalid ciphertext flag.

        Method:

        1. Let the public parameter set be comprised of a prime p, a curve
        E/F_p, the order q of a large prime subgroup of E(F_p), four points
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        P, P_1, P_2, P_3, of order q in E(F_p), and an extension field
        element v of order q in F_p^2 .

        2. Let w = PairingRatio(E, p, q, C_0, D_0, C_1, D_1), which computes
        the ratio of two Tate pairings (modified, for type-1 curves) as
        specified in Algorithm 4.6.1 (PairingRatio).

        3. Obtain canonical string representations of certain elements:

           (a) psi = Canonical(p, k, 1, w), using Algorithm 4.3.1
        (Canonical); the result is a canonical byte-string representation of
        w.

           (b) Let l = Ceiling(8 * lg(p)), the number of bytes needed to
        represent integers in F_p, and represent each of these F_p elements
        as a big-endian zero-padded byte-string of fixed length l:

            (x_0)_(256^l) to represent the x coordinate of C_0.

            (y_0)_(256^l) to represent the y coordinate of C_0.

            (x_1)_(256^l) to represent the x coordinate of C_1.

            (y_1)_(256^l) to represent the y coordinate of C_1.

        4. Decrypt the message m from the string y as follows:

           (a) Compute the decryption key h  as a dual-pass hash of w via its
        representation psi:

              i. Let zeta = SHA1(psi), using the SHA1 hashing algorithm to
        get a 20-byte string.

              ii. Let xi = SHA1(zeta || psi), using the SHA1 hashing
        algorithm to get a 20-byte string.

              iii. Let h  = xi || zeta, the 40-byte concatenation of the
        previous two SHA1 outputs.

           (b) Let m = HashStream(|y|, h )_XOR y, which is the bit-wise
        exclusive-OR of y with the first |y| bytes of the pseudo-random
        stream produced by Algorithm 3.2.1 (HashStream) with seed h .

        5. Obtain the integrity check tag u as follows:

           (a) Recover the one-time pad h  as a dual-pass hash of the
        representation of (w, C_0, C_1, y):
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              i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) || (y_0)_(256^l)
        || (x_0)_(256^l) || y || psi be the concatenation of y and the five
        indicated strings in the specified order.

              ii. Let eta = SHA1(sigma) using the SHA1 hashing algorithm to
        get a 20-byte string.

              iii. Let mu = SHA1(eta || sigma), using the SHA1 hashing
        algorithm to get a 20-byte string.

              iv. Let h  = mu || eta, the 40-byte concatenation of the
        previous two SHA1 outputs.

           (b) Unblind the encryption randomization integer s from the tag u
        using h :

              i. Let rho = HashToRangeq(h ) to get an integer in Z_q.

              ii. Let s = u - rho (mod q).

        6. Verify the ciphertext consistency according to the decrypted
        values:

           (a) Test whether the equality w = v^s holds in F_p2 .

           (b) Test whether the equality C_0 = [s]P holds in E(F_p).

        7. Adjudication and final output:

           (a) If either of the tests performed in step 6 fails, the
        ciphertext is rejected, and no decryption is output.

           (b) Otherwise, i.e., when both tests performed in step 6 succeed,
        the decrypted message is output.

9. Wrapper methods for the BB1 system

        This section describes a number of wrapper methods providing the
        identity-based cryptosystem functionalities using concrete encodings.
        The following functions are presently given based on the Boneh-
        Franklin algorithms.

9.1. Private key generator (PKG) setup

        Algorithm 9.1.1 (BBwrapperPKGSetup): randomly selects a PKG master
        secret and a set of public parameters.

Boyen & Martin          Expires December 2006                 [Page 48]



Internet Draft   IBCS #1: Identity-based Cryptography         June 2006

        Input:

         a curve type t,

         a security parameter n.

        Output:

         a common public parameter block pi,

         a corresponding master secret block sigma.

        Method:

        1. Perform Algorithm 8.1.1 (BBsetup) on parameters t and n, producing
        a set of public parameters and master secret.

        2. Apply Algorithm 10.2.1 (BBencodeParams) on the public parameters
        obtained in step 1 to get the public parameter block pi.

        3. Apply Algorithm 10.3.1 (BBencodeMaster) on the master secrets
        obtained in step 1 to get the master secret block sigma.

9.2. Private key extraction by the PKG

        Algorithm 9.2.1 (BBwrapperPrivateKeyExtract): extraction by the PKG
        of a private key corresponding to an identity.

        Input:

         a master secret block sigma,

         a corresponding public parameter block pi,

         an identity string id.

        Output:

         a private key block kappa_id.

        Method:

        1. Apply Algorithm 10.2.2 (BBdecodeParams) on the public parameter
        block pi to obtain the public parameters, comprising a prime p, the
        parameters of a curve E/F_p with some embedding degree k, the order q
        of a large prime subgroup of E(F_p), four points P, P_1, P_2, P_3, of
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        order q in E(F_p), and an element v of order q in the extension field
        F_p^k of degree k.

        2. Apply Algorithm 10.3.2 (BBdecodeMaster) on the master secret block
        sigma to obtain the master secret (alpha, beta, gamma).

        3. Perform Algorithm 8.3.1 (BBextractPriv) on the identity id, using
        the decoded public parameters and master secret, to produce a private
        key (D_0, D_1).

        4. Apply Algorithm 10.4.1 (BBencodePrivate) on the private key to
        produce a private key block kappa_id.

9.3. Session key encryption

        Algorithm 9.3.1 (BBwrapperSessionKeyEncrypt): encrypts a short
        message or session key for an identity.

        Input:

         a public parameter block pi,

         a recipient identity string id,

         a plaintext string m (possibly comprising the concatenation of a
        pair of random session keys for symmetric encryption and message
        authentication purposes on a larger plaintext).

        Output:

         a ciphertext block omega.

        Method:

        1. Apply Algorithm 10.2.2 (BBdecodeParams) on the public parameter
        block pi to obtain the public parameters, comprising a prime p, the
        parameters of a curve E/F_p with some embedding degree k, the order q
        of a large prime subgroup of E(F_p), four points P, P_1, P_2, P_3, of
        order q in E(F_p), and an element v of order q in the extension field
        F_p^k .

        2. Perform Algorithm 8.4.1 (BBencrypt) on the plaintext m for
        identity id using the decoded set of parameters, to obtain a
        ciphertext quadruple (u, C_0, C_1, y).

        3. Apply Algorithm 10.5.1 (BBencodeCiphertext) on the ciphertext (u,
        C_0, C_1, y) to obtain a string representation of omega.
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        Algorithm 9.3.2 (BBwrapperSessionKeyDecrypt): decrypts a short
        message or session key using a private key.

        Input:

         a public parameter block pi,

         a private key block kappa,

         a ciphertext block omega.

        Output:

         a decrypted plaintext string m, or an error flag signaling an
        invalid ciphertext.

        Method:

        1. Apply Algorithm 10.2.2 (BBdecodeParams) on the public parameter
        block pi to obtain the public parameters, comprising a prime p, the
        parameters of a curve E/F_p with some embedding degree k, the order q
        of a large prime subgroup of E(F_p), four points P, P_1, P_2, P_3, of
        order q in E(F_p), and an element v of order q in the extension field
        F_p^k.

        2. Apply Algorithm 10.4.2 (BBdecodePrivate) on kappa to obtain the
        private key points (D_0, D_1).

        3. Apply Algorithm 10.5.2 (BBdecodeCiphertext) on omega to obtain a
        ciphertext quadruple (u, C_0, C_1, y).

        4. Perform Algorithm 8.5.1 (BBdecrypt) on (u, C_0, C_1, y) using the
        private key (D_0, D_1) and the decoded set of public parameters, to
        obtain decrypted plaintext m, or an invalid ciphertext flag.

           (a) If the decryption was successful, return the plaintext string
        m.

           (b) Otherwise, raise an error condition.

10. Concrete encoding guidelines for BB1

        This section specifies a set of concrete encoding schemes for the
        inputs and outputs of the previously described algorithms. ASN.1
        encodings are specified in Section 11 of this document.
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10.1. Encoding of points on a curve

        We refer to the description of Algorithm 7.1.1 (EncodePoint) and
        Algorithm 7.1.2 (DecodePoint).

10.2. Public parameters blocks

        Algorithm 10.2.1 (BBencodeParams): encodes a BB1 public parameter set
        in an exportable format.

        Input:

         a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v).

        Output:

         a public parameter block pi, represented as a byte string.

        Method:

        1. Separate encodings for k, E, p, q, P, P_1, P_2, P_3 are obtained
        as follows:

           (a) If t = 1, execute Algorithm 10.2.3 (BBencodeParams1).

        2. The separate encodings as well as a type indicator flag for t are
        then serialized in any suitable manner as dictated by the
        application.

        Algorithm 10.2.2 (BBdecodeParams): imports a BB1 public parameter
        block from a serialized format.

        Input:

         a public parameter block pi, represented as a byte string.

        Output:

         a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v).

        Method:

        1. Identify from the appropriate flag the type t of curve upon which
        the parameter block is based.

        2. Then:
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           (a) If t = 1, execute Algorithm 10.2.4 (BBdecodeParams1).

10.2.1. Type-1 implementation

        Algorithm 10.2.3 (BBencodeParams1): encodes a BB1 type-1 public
        parameter set in an exportable format.

        Input:

         a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v)
        with t = 1.

        Output:

         separate encodings for each of the k, E, p, q, P, P_1, P_2, P_3
        components (v is redundant and omitted).

        Method:

        1. E : y^2 = x^3 + a * x + b and k = 2 are represented as a constant
        string, such as the empty string, since the coefficients a and b and
        the embedding degree k are invariant for type-1 curves.

        2. p = 12 * r * q . 1 is represented as the smaller integer r,
        encoded, e.g., using a big-endian byte-string representation.

        3. q = 2^a + s* 2^b + c, where a, b are small and both c and s are
        either 1 or -1 is compactly represented as the 4-tuple (a, b, c, s).

        4. P = (x_P , y_P ) in F_p x F_p is represented using the point
        compression technique of Algorithm 7.1.1 (EncodePoint).

        5. Each of P_1, P_2, and P_3 is similarly encoded using Algorithm
        7.1.1 (EncodePoint).

        Algorithm 10.2.4 (BBdecodeParams1): decodes the components of a BB1
        type-1 public parameter block.

        Input:

         separate encodings for each one of k, E, p, q, P, P_1, P_2, P_3.

        Output:

         a set of public parameters (t, k, E, p, q, P, P_1, P_2, P_3, v)
        with t = 1.
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        Method:

        1. The equation of E is set to E   E : y^2 = x^3 + 1, as is always
        the case for type-1 curves.

        2. The embedding degree is set to k = 2 for type-1 curves.

        3. The encoding of q is parsed as (a, b, c, s), and its value set to
        q = 2^a + s * 2^b + c.

        4. The encoding of p is parsed as the integer r, from which p is
        given by p = 12 * r * q . 1.

        5. P is reconstructed from its encoding (x, y ) using the point
        decompression technique of Algorithm 7.1.2 (DecodePoint).

        6. Each of P_1, P_2, and P_3 is reconstructed in a similar manner
        from its encoding using Algorithm 7.1.2 (DecodePoint).

        7. The extension field element v is reconstructed as v = Pairing(E,
        p, q, P_1, P_2) using Algorithm 4.5.1 (Pairing).

10.3. Master secret blocks

        Algorithm 10.3.1 (BBencodeMaster): encodes a BB1 master secret in an
        exportable format.

        Input:

         a master secret triple of integers (alpha, beta, gamma) in (Z+_q
        )^3.

        Output:

         a master secret block sigma, represented as a byte string.

        Method:

        1. Encode each integer as an unsigned big-endian byte-string of fixed
        length Ceiling(8 * lg(q)), or, when q is a Solinas prime q = 2^a +/-
        2^b +/- 1, of length Ceiling((a + 1) / 8):

           (a) sigma_alpha to represent alpha.

           (b) sigma_beta to represent beta.

           (c) sigma_gamma to represent gamma.
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        2. Sigma = sigma_alpha || sigma_beta || sigma_gamma is the
        concatenation of these strings.

        Algorithm 10.3.2 (BBdecodeMaster): decodes a BB1 master secret from a
        block in exportable format.

        Input:

         a master secret block sigma, represented as a byte string.

        Output:

         a master secret triple of integers (alpha, beta, gamma) in (Z+_q
        )^3.

        Method:

        1. Parse sigma as sigma_alpha || sigma_beta || sigma_gamma, where
        each substring is a byte string of fixed length Ceiling(8 * lg(q)),
        or, when q is a Solinas prime q = 2^a +/- 2^b +/- 1, of length
        Ceiling((a + 1) / 8)).

        2. Decode each substring as an integer in unsigned big-endian byte-
        string representation:

        (a) alpha = Value(sigma_alpha).

        (b) beta = Value(sigma_beta).

        (c) gamma = Value(sigma_gamma).

10.4. Private key blocks

        Algorithm 10.4.1 (BBencodePrivate): encodes a BB1 private key in an
        exportable format.

        Input:

         a private key pair of points (D_0, D_1) in E(F_p) x E(F_p).

        Output:

         a private key block kappa, represented as a byte string.

        Method:

        1. Encode each point separately:
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           (a) kappa_0 is obtained by applying Algorithm 7.1.1 (EncodePoint)
        to D_0.

           (b) kappa_1 is obtained by applying Algorithm 7.1.1 (EncodePoint)
        to D_0.

        2. Kappa = kappa_0 || kappa_1.

        Algorithm 10.4.2 (BBdecodePrivate): decodes a BB1 private key from an
        exportable format.

        Input:

         a private key block kappa, represented as a byte string.

        Output:

         a private key pair of point (D_0, D_1) in E(F_p) x E(F_p).

        Method:

        1. Decode each point separately:

           (a) The first prefix of kappa is parsed and decoded into a point
        D_0 in E(F_p) using Algorithm 7.1.2 (DecodePoint).

           (b) The remainder of kappa is parsed and decoded into a point D_1
        in E(F_p) using Algorithm 7.1.2 (DecodePoint).

10.5. Ciphertext blocks

        Algorithm 10.5.1 (BBencodeCiphertext). Encodes a BB1 ciphertext tuple
        in an exportable format.

        Input:

         a ciphertext tuple (u, C_0, C_1, y) in Z_q x E(F_p) x E(F_p) x {0,
        . . . , 255}*.

        Output:

         a ciphertext block omega, represented as a byte string.

        Method:

        1. Let chi_0 be the fixed-length encoding of C_0 = (x_0, y_0) using
        Algorithm 7.1.1 (EncodePoint).
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        2. Let chi_1 be the fixed-length encoding of C_1 = (x_1, y_1) using
        Algorithm 7.1.1 (EncodePoint).

        3. Let nu be the encoding of u as an unsigned big-endian byte-string
        of fixed length Ceiling(8 * lg(q)), or, when q is a Solinas prime q =
        2^a +/- 2^b +/- 1, of length Ceiling((a + 1)/8).

        4. Omega =  chi_0 || chi_1 || nu || y is the concatenation of these
        three strings and y.

        Algorithm 10.5.2 (BBdecodeCiphertext): decodes a BB1 ciphertext tuple
        from an exportable format.

        Input:

         a ciphertext block omega, represented as a byte string.

        Output:

         a ciphertext tuple (u, C_0 ,C_1, y) in Z_q x E(F_p) x E(F_p) x {0,
        . . . , 255}*.

        Method:

        1. Omega is parsed as a quadruple comprising a fixed-length encoding
        of C_0, a fixed-length encoding of C_1, a fixed-length encoding of u,
        and the arbitrary-length string y:

        (a) C_0 in E(F_p) is first recovered by applying Algorithm 7.1.2
        (DecodePoint) on the first parsed component of omega.

        (b) C_1 in E(F_p) is next recovered by applying Algorithm 7.1.2
        (DecodePoint) on the second parsed component of omega.

        (c) u in Z_q is then recovered from its unsigned big-endian byte-
        string representation in the third parsed component of omega, of
        length Ceiling(8 * lg(q)), or, when q is a Solinas prime q = 2^a +/-
        2b +/- 1, of length Ceiling((a + 1)/8).

        (d) y is finally taken as the remainder of omega.

11. ASN.1 module

        This section defines the ASN.1 module for the encodings discussed in
        sections 7 and 10.

        IBCS { joint-iso-itu(2) country(16) us(840) organization(1)
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           identicrypt(114334) ibcs(1) module(5) version(1) }

        DEFINITIONS IMPLICIT TAGS ::= BEGIN

        --
        -- Identity-based cryptography standards (IBCS): supersingular curve
        -- implementations of the BF and BB1 cryptosystems.
        --
        -- This version of the IBCS standard only supports IBE over
        -- type-1 curves. In the current version, the Curve type is
        -- always set to NULL, although future versions will use it.
        --

        IMPORTS Curve
           FROM X9-62-module
              { iso(1) member-body(2) us(840) ansi-x9-62(10045) module(5) 1
        };

        ibcs OBJECT IDENTIFIER ::= {
           joint-iso-itu(2) country(16) us(840) organization(1)
              identicrypt(114334) ibcs(1)
        }

        --
        -- IBCS1
        --
        -- IBCS1 defines the algorithms used to implement IBE
        --

        ibcs1 OBJECT IDENTIFIER ::= {
           ibcs ibcs1(1)
        }
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        --
        -- Supporting types
        --

        --
        -- Encoding of a point on an elliptic curve E/Fp.
        --

        FpPoint ::= SEQUENCE {
           x  INTEGER,
           y  INTEGER
        }

        --
        -- Encoding of a Solinas prime.
        --
        -- Encodes a Solinas prime of the form
        -- q = 2^a + s * 2^b +c with the integers a, b, c, and s.
        --

        SolinasPrime ::= SEQUENCE {
           a  INTEGER,
           b  INTEGER,
           c  INTEGER { positive(1), negative(-1) },
           s  INTEGER { positive(1), negative(-1) }
        }

        --
        -- Algorithms
        --

        ibe-algorithms OBJECT IDENTIFIER ::= {
           ibcs1 ibe-algorithms(2)
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        }

        ---
        --- Boneh-Franklin IBE
        ---

        bf OBJECT IDENTIFIER ::= { ibe-algorithms bf(1) }

        --
        -- Encoding of a BF public parameters block.
        -- The only version currently supported is version 1.
        -- For type-1 curves, the curve is fixed, so Curve is set to NULL
        -- For the BF prime p and subprime q, we have q * r = p + 1,
        -- and we encode the values of r and q in the public parameters.
        -- The points P and P_pub are encoded as pointP and pointPpub
        respectively.
        --

        BFPublicParamaters ::= SEQUENCE {
           version     INTEGER { v1(1) },
           curve       Curve { NULL },
           r           INTEGER,
           q           SolinasPrime,
           pointP      FpPoint,
           pointPpub   FpPoint
        }

        --
        -- A BF private key is a point on an elliptic curve,
        -- which is an FpPoint.
        --

        BFPrivateKeyBlock ::= FpPoint
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        --
        -- A BF master secret is an integer.
        --

        BFMasterSecret ::= INTEGER

        --
        -- BF ciphertext block
        --

        BFCiphertextBlock ::= SEQUENCE {
           U  FpPoint,
           v  OCTET STRING,
           w  OCTET STRING
        }

        --
        -- Boneh-Boyen (BB1) IBE
        --

        bb1 OBJECT IDENTIFIER ::= {ibe-algorithms bb1(2) }

        --
        -- Encoding of a BB1 public parameters block.
        -- The version is currently fixed to 1.
        -- The embedding degree is currently fixed to 2.
        -- For type-1 curves, curve is set to NULL.
        -- For the BB1 prime p and subprime q, we have q * r = p + 1,
        -- and we encode the values of r and q in the public parameters.
        --

        BB1PublicParameters ::= SEQUENCE {
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           Version              INTEGER { v1(1) },
           embedding-degree     INTEGER { degree-2(2) },
           curve                Curve { NULL },
           r                    INTEGER,
           q                    SolinasPrime,
           pointP               FpPoint,
           pointP1              FpPoint,
           pointP2              FpPoint,
           pointP3              FpPoint
        }

        --
        -- BB1 master secret block
        --

        BB1MasterSecret ::= SEQUENCE {
           alpha INTEGER,
           beta  INTEGER,
           gamma INTEGER
        }

        --
        -- BB1 private Key block
        --

        BB1PrivateKeyBlock ::= SEQUENCE {
           pointD0  FpPoint,
           pointD1  FpPoint
        }

        --
        -- BB1 ciphertext block
        --
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        BB1CiphertextBlock ::= SEQUENCE {
           pointChi0   FpPoint,
           pointChi1   FpPoint,
           nu          INTEGER,
           y           OCTET STRING
        }
        END

12. Security considerations

        This entire document discusses security considerations.

13. IANA considerations

        All of the OIDs used in this document were assigned by the National
        Institute of Standards and Technology (NIST), so no further action by
        the IANA is necessary for this document.
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