
S/MIME Working Group J Schaad
Internet Draft Soaring Hawk Consulting
 August 2004
Category: Standards Track

Enhanced Security Services for S/MIME
draft-ietf-smime-rfc2634-update-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 or will be disclosed, and any of which I become aware will be
 disclosed, in accordance with RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 This document describes the structures and procedures necessary to
 provide a number of additional security services for S/MIME. These
 services are:

 - signed receipts
 - security labels
 - secure mailing lists
 - signing certificate validation

 These services can be used by any CMS (Cryptographic Message Syntax)
 based protocol.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

 **

Schaad 1
 RFC2634Update August 2004

 This document currently only contains the sections of RFC 2634 that
 are being updated. The two documents will be folded together at a
 later date.

 **

1.3.4 Placement of Attributes

 Certain attributes should be placed in the inner or outer SignedData
 message; some attributes can be in either. Further, some attributes
 must be signed, while signing is optional for others, and some
 attributes must not be signed. ESS defines several types of
 attributes. ContentHints and ContentIdentifier MAY appear in any
 list of attributes. contentReference, equivalentLabel,
 eSSSecurityLabel and mlExpansionHistory MUST be carried in a
 SignedAttributes or AuthAttributes type, and MUST NOT be carried in a
 UnsignedAttributes, UnauthAttributes or UnprotectedAttributes type.
 msgSigDigest, receiptRequest and signingCertificate MUST be carried
 in a SignedAttributes, and MUST NOT be carried in a AuthAttributes,
 UnsignedAttributes, UnauthAttributes or UnprotectedAttributes type.

 The following table summarizes the recommendation of this profile. In
 the OID column, [ESS] indicates that the attribute is defined in this
 document.

 | |Inner or |
Attribute	OID	outer	Signed
 contentHints |id-aa-contentHint [ESS] |either |MAY
 contentIdentifier |id-aa-contentIdentifier [ESS] |either |MAY
 contentReference |id-aa-contentReference [ESS] |either |MUST
 contentType |id-contentType [CMS] |either |MUST
 counterSignature |id-countersignature [CMS] |either |MUST NOT
 equivalentLabel |id-aa-equivalentLabels [ESS] |either |MUST
 eSSSecurityLabel |id-aa-securityLabel [ESS] |either |MUST
 messageDigest |id-messageDigest [CMS] |either |MUST
 msgSigDigest |id-aa-msgSigDigest [ESS] |inner only|MUST
 mlExpansionHistory|id-aa-mlExpandHistory [ESS] |outer only|MUST
 receiptRequest |id-aa-receiptRequest [ESS] |inner only|MUST
 signingCertificate|id-aa-signingCertificate [ESS]|either |MUST
 signingTime |id-signingTime [CMS] |either |MUST
 smimeCapabilities |sMIMECapabilities [MSG] |either |MUST
 sMIMEEncryption-

https://datatracker.ietf.org/doc/html/rfc2634

 KeyPreference |id-aa-encrypKeyPref [MSG] |either |MUST
 mlaExpandHistory |id-aa-mlaExpandHistory [ESS] |outer only|MUST
 receiptModify |id-aa-receiptModify [ESS] |either |MUST

 CMS defines signedAttrs as a SET OF Attribute and defines
 unsignedAttrs as a SET OF Attribute. ESS defines the contentHints,
 contentIdentifier, eSSecurityLabel, msgSigDigest, mlExpansionHistory,
 receiptRequest, contentReference, equivalentLabels and

Schaad 2
 RFC2634Update August 2004

 signingCertificate attribute types. A signerInfo MUST NOT include
 multiple instances of any of the attribute types defined in ESS.
 Later sections of ESS specify further restrictions that apply to the
 receiptRequest, mlExpansionHistory and eSSecurityLabel attribute
 types.

 CMS defines the syntax for the signed and unsigned attributes as
 "attrValues SET OF AttributeValue". For all of the attribute types
 defined in ESS, if the attribute type is present in a signerInfo,
 then it MUST only include a single instance of AttributeValue. In
 other words, there MUST NOT be zero, or multiple, instances of
 AttributeValue present in the attrValues SET OF AttributeValue.

 If a counterSignature attribute is present, then it MUST be included
 in the unsigned attributes. It MUST NOT be included in the signed
 attributes. The only attributes that are allowed in a
 counterSignature attribute are counterSignature, messageDigest,
 signingTime, and signingCertificate.

 Note that the inner and outer signatures are usually those of
 different senders. Because of this, the same attribute in the two
 signatures could lead to very different consequences.

 ContentIdentifier is an attribute (OCTET STRING) used to carry a
 unique identifier assigned to the message.

2. Signed Receipts

 Returning a signed receipt provides to the originator proof of
 delivery of a message, and allows the originator to demonstrate to a
 third party that the recipient was able to verify the signature of
 the original message. This receipt is bound to the original message
 through the signature; consequently, this service may be requested
 only if a message is signed. The receipt sender may optionally also
 encrypt a receipt to provide confidentiality between the receipt
 sender and the receipt recipient.

2.1 Signed Receipt Concepts

 The originator of a message can request a signed receipt from the
 message's recipients. The request is indicated by adding a
 receiptRequest attribute to the signedAttrs field of the SignerInfo
 object for which the receipt is requested. The receiving user agent
 software SHOULD automatically create a signed receipt when requested
 to do so, and return the receipt in accordance with mailing list
 expansion options, local security policies, and configuration
 options.

 Because receipts involve the interaction of two parties, the
 terminology can sometimes be confusing. In this section, the "sender"
 is the agent that sent the original message that included a request
 for a receipt. The "receiver" is the party that received that message
 and generated the receipt.

Schaad 3
 RFC2634Update August 2004

 The steps in a typical transaction are:

 1. Sender creates a signed message including a receipt request
 attribute (Section 2.2).

 2. Sender transmits the resulting message to the recipient or
 recipients.

 3. Recipient receives message and determines if there is a valid
 signature and receipt request in the message (Section 2.3).

 4. Recipient creates a signed receipt (Section 2.4).

 5. Recipient transmits the resulting signed receipt message to the
 sender (Section 2.5).

 6. Sender receives the message and validates that it contains a
 signed receipt for the original message (Section 2.6). This
 validation relies on the sender having retained either a copy of
 the original message or information extracted from the original
 message.

 The ASN.1 syntax for the receipt request is given in Section 2.7; the
 ASN.1 syntax for the receipt is given in Section 2.9.

 Note that a Recipient Agent SHOULD remember when it has sent a
 receipt so that it can avoid re-sending a receipt each time it
 processes the message.

 A receipt request can indicate that receipts be sent to many places,
 not just to the sender (in fact, the receipt request might indicate
 that the receipts should not even go to the sender). In order to

 verify a receipt, the recipient of the receipt needs to be the
 originator or a recipient of the original message. Thus, the sender
 SHOULD NOT request that receipts be sent to anyone who does not have
 an exact copy of the message.

2.2 Receipt Request Creation

 Multi-layer S/MIME messages can contain multiple SignedData layers.
 However, only one layer can contain a receipt request. This will
 generally be the innermost layer, but in some workflow applications
 it can be a middle or outer layer. Receipt processing MUST NOT start
 before all layers of CMS content are unwound so that only the
 innermost receipt request is processed. Only one receiptRequest
 attribute can be included in the signedAttrs of a SignerInfo.

 A ReceiptRequest attribute MUST NOT be included in the attributes of
 a SignerInfo in a SignedData object that encapsulates a content type
 of Receipt (id-ct-receipt). In other words, the receiving agents
 MUST NOT request a signed receipt for a signed receipt.

Schaad 4
 RFC2634Update August 2004

 A sender requests receipts by placing a receiptRequest attribute in
 the signed attributes of a signerInfo as follows:

 1. A receiptRequest data structure is created.

 2. A signed content identifier for the message is created and
 assigned to the signedContentIdentifier field. The
 signedContentIdentifier is used to associate the signed receipt
 with the message requesting the signed receipt.

 3. The entities requested to return a signed receipt are noted in the
 receiptsFrom field.

 4. The message originator MUST populate the receiptsTo field with a
 GeneralNames for each entity to whom the recipient should send the
 signed receipt. If the message originator wants the recipient to
 send the signed receipt to the originator, then the originator
 MUST include a GeneralNames for itself in the receiptsTo field.
 GeneralNames is a SEQUENCE OF GeneralName. receiptsTo is a
 SEQUENCE OF GeneralNames in which each GeneralNames represents an
 entity. There can be multiple GeneralName instances in each
 GeneralNames. At a minimum, the message originator MUST populate
 each entity's GeneralNames with the address to which the signed
 receipt is suppose to be sent. Optionally, the message originator
 MAY also populate each entity's GeneralNames with other
 GeneralName instances (such as directoryName).

 5. The completed receiptRequest attribute is placed in the
 signedAttrs field of the SignerInfo object.

2.2.1 Multiple Receipt Requests

 There can be multiple SignerInfos within a SignedData object, and
 each SignerInfo can include signedAttrs. Therefore, a single
 SignedData object can include multiple SignerInfos, each SignerInfo
 having a receiptRequest attribute. For example, an originator can
 send a signed message with two SignerInfos, one containing a DSS
 signature, the other containing an RSA signature.

 Each recipient SHOULD return only one signed receipt.

 Not all of the SignerInfos within a SignedData object need to include
 receipt requests, but in all of the SignerInfos that do contain
 receipt requests, the receipt requests MUST be identical.

2.2.2 Information Needed to Validate Signed Receipts

 The sending agent MUST retain one or both of the following items to
 support the validation of signed receipts returned by the recipients.

 - the original SignedData object requesting the signed receipt

Schaad 5
 RFC2634Update August 2004

 - the content identifier in the receipt request, the message
 signature digest value and the content type and signature value
 included in the original SignedData object. If signed receipts are
 requested from multiple recipients, then retaining these values is
 a performance enhancement because the sending agent can reuse the
 saved values when verifying each returned signed receipt.

2.3 Receipt Request Processing

 A receiptRequest is associated only with the SignerInfo object that
 the receipt request is an authenticated attribute of. The behavior
 for processing of a receiptRequest is modified by the presence of a
 either a receiptPolicy or an mlaExpandHistory attribute either in the
 same SignerData or in a outer SignerData object.

 Before processing a receiptRequest signedAttribute, the receiving
 agent MUST verify the following conditions:

 1. The signature of the SignerInfo that covers the receiptRequest
 attribute MUST validate.

 2. All receiptRequests for SignerInfo objects in the current
 SignedData object MUST be the same. (Since the attributes are DER
 encoded, this check can be done by a binary compare of the
 attributes.)

 3. The encapsulated content of the message MUST NOT contain a
 SignedData for which a receiptRequest exists.

 4. The inner-most encapsulated content of the message MUST NOT be
 id-ct-receipt.

 A receipt MUST NOT be created of any of these conditions are not met.

 If a receiptRequest attribute is absent from the signed attributes,
 then a signed receipt has not been requested from any of the message
 recipients and MUST NOT be created. If a receiptRequest attribute is
 present in the signed attributes, then a signed receipt has been
 requested from some or all of the message recipients. Note that in
 some cases, a receiving agent might receive two almost-identical
 messages, one with a receipt request and the other without one. In
 this case, the receiving agent SHOULD send a signed receipt for the
 message that requests a signed receipt.

 If a receiptRequest attribute is present in the signed attributes,
 the following process SHOULD be used to determine if a message
 recipient has been requested to return a signed receipt.

 1. If a receiptPolicy attribute is present in the SignedData block,
 do one of the following two steps value of ReceiptPolicy:

Schaad 6
 RFC2634Update August 2004

 1.1. If the ReceiptPolicy value is none, then the receipt policy
 supersedes the originator's request for a signed receipt and
 a signed receipt MUST NOT be created.

 1.2. If the ReceiptPolicy value is insteadOf or inAdditionTo, the
 processing software SHOULD examine the receiptsFrom value
 from the receiptRequest attribute to determine if a receipt
 should be created and returned. If a receipt is created, the
 insteadOf and inAdditionTo fields identify entities that
 SHOULD be sent the receipt instead of or in addition to the
 originator.

 2. If the receiptsFrom value of the receiptRequest attribute
 allOrFirstTier, do one of the following two steps based on the
 value of allOrFirstTier.

 2.1. If the value of allOrFirstTier is allReceipts, then a signed
 receipt SHOULD be created.

 2.2. If the value of allOrFirstTier is firstTierRecipients, do
 one of the following two steps based on the presence of an
 mlaExpandHistory attribute in an outer SignedData block:

 2.2.1. If an mlaExpandHistory attribute is present, then this
 recipient is not a first tier recipient and a signed
 receipt MUST NOT be created.

 2.2.2. If an mlaExpandHistory attribute is not present, then
 a signed receipt SHOULD be created.

 3. If the receiptsFrom value of the receiptRequest attribute is a
 receiptList:

 3.1. If receiptList contains one of the GeneralNames of the
 recipient, then a signed receipt SHOULD be created.

 3.2. If receiptList does not contain one of the GeneralNames of
 the recipient, then a signed receipt MUST NOT be created.

 A flow chart for the above steps to be executed for each signerInfo
 for which the receiving agent verifies the signature would be:

 0. Receipt Request attribute present?
 YES -> 1.
 NO -> STOP
 1. Does an outer SignedData layer exist?
 YES -> 1.1.
 NO -> 4.
 1.1. Make next SignedData layer out the current layer.
 2. Current layer has a receiptPolicy attribute?
 YES -> 2.1.
 NO -> 3.
 2.1. Modify receiptsTo based on ReceiptPolicy

Schaad 7
 RFC2634Update August 2004

 2.2. Go to 3.
 3. Current layer has an mlaExpandHistory attribute?
 YES -> 3.1
 NO -> 1.
 3.1. Is value of receiptsFrom allOrFirstTier?
 YES -> Pick based on value of allOrFirstTier.
 allReceipts -> 1.
 firstTierReceipts -> 3.2.
 NO -> 1.

 3.2. Set receiptsFrom to none.
 3.3. Go to 1.
 4. Is receiptsFrom value a receiptList?
 YES -> 4.1.
 NO -> 4.2.
 4.1. Does receipList contain the recipient?
 YES -> 4.2.
 NO -> STOP.
 4.2. Create a receipt.
 4.3. STOP.

2.4 Signed Receipt Creation

 A signed receipt is a SignedData object encapsulating a Receipt
 content (also called a "SignedData/Receipt"). Signed receipts are
 created as follows:

 1. The signature of the original SignedData signerInfo that includes
 the receiptRequest signed attribute MUST be successfully verified
 before creating the SignedData/Receipt.

 1.1. The content of the original SignedData object is digested as
 described in [CMS]. The resulting digest value is then
 compared with the value of the messageDigest attribute
 included in the signedAttrs of the original SignedData
 signerInfo. If these digest values are different, then the
 signature verification process fails and the
 SignedData/Receipt MUST NOT be created.

 1.2. The ASN.1 DER encoded signedAttrs (including messageDigest,
 receiptRequest and, possibly, other signed attributes) in the
 original SignedData signerInfo are digested as described in
 [CMS]. The resulting digest value, called msgSigDigest, is
 then used to verify the signature of the original SignedData
 signerInfo. If the signature verification fails, then the
 SignedData/Receipt MUST NOT be created.

 2. A Receipt structure is created.

 2.1. The value of the Receipt version field is set to 1.

 2.2. The object identifier from the contentType attribute included
 in the original SignedData SignerInfo that includes the

Schaad 8
 RFC2634Update August 2004

 receiptRequest attribute is copied into the Receipt
 contentType.

 2.3. The original SignedData signerInfo receiptRequest
 signedContentIdentifier is copied into the Receipt
 signedContentIdentifier.

 2.4. The signature value from the original SignedData signerInfo
 that includes the receiptRequest attribute is copied into the
 Receipt originatorSignatureValue.

 3. The Receipt structure is ASN.1 DER encoded to produce a data
 stream, D1.

 4. D1 is digested. The resulting digest value is included as the
 messageDigest attribute in the signedAttrs of the SignerInfo which
 will eventually contain the SignedData/Receipt signature value.

 5. The digest value (msgSigDigest) calculated in Step 1 to verify the
 signature of the original SignedData SignerInfo is included as the
 msgSigDigest attribute in the signedAttrs of a SignerInfo which
 will eventually contain the SignedData/Receipt signature value.

 6. A contentType attribute including the id-ct-receipt object
 identifier MUST be created and added to the signed attributes of
 the signerInfo which will eventually contain the
 SignedData/Receipt signature value.

 7. A signingTime attribute indicating the time that the
 SignedData/Receipt is signed SHOULD be created and added to the
 signed attributes of the SignerInfo which will eventually contain
 the SignedData/Receipt signature value. Other attributes (except
 receiptRequest) can be added to the signedAttrs of the SignerInfo.

 8. The signedAttrs (messageDigest, msgSigDigest, contentType, and
 possibly others) of the SignerInfo are ASN.1 DER encoded and
 digested as described in [CMS]. The resulting digest value is used
 to calculate the signature value which is then included in the
 SignedData/Receipt signerInfo.

 9. The ASN.1 DER encoded Receipt content MUST be directly encoded
 within the SignedData EncapContentInfo.eContent OCTET STRING
 defined in [CMS]. The id-ct-receipt object identifier MUST be
 included in the SignedData EncapContentInfo.eContentType. This
 results in a single ASN.1 encoded object composed of a SignedData
 including the Receipt content. The Data content type MUST NOT be
 used. The Receipt content MUST NOT be encapsulated in a MIME
 header or any other header prior to being encoded as part of the
 SignedData object.

 10. The SignedData/Receipt is then put in an application/pkcs7-mime
 MIME wrapper with the smime-type parameter set to "signed-
 receipt". This will allow for identification of signed receipts

Schaad 9

 RFC2634Update August 2004

 without having to crack the ASN.1 body. The smime-type parameter
 would still be set as normal in any layer wrapped around this
 message.

 11. If the SignedData/Receipt is to be encrypted within an
 EnvelopedData object, then an outer SignedData object MUST be
 created that encapsulates the EnvelopedData object, and a
 contentHints attribute with contentType set to the id-ct-receipt
 object identifier MUST be included in the outer SignedData
 SignerInfo signedAttrs. When a receiving agent processes the
 outer SignedData object, the presence of the id-ct-receipt OID in
 the contentHints contentType indicates that a SignedData/Receipt
 is encrypted within the EnvelopedData object encapsulated by the
 outer SignedData.

 All sending agents that support the generation of ESS signed receipts
 MUST provide the ability to send encrypted signed receipts (that is,
 a SignedData/Receipt encapsulated within an EnvelopedData). The
 sending agent MAY send an encrypted signed receipt in response to an
 EnvelopedData-encapsulated SignedData requesting a signed receipt. It
 is a matter of local policy regarding whether or not the signed
 receipt should be encrypted. The ESS signed receipt includes the
 message digest value calculated for the original SignedData object
 that requested the signed receipt. If the original SignedData object
 was sent encrypted within an EnvelopedData object and the ESS signed
 receipt is sent unencrypted, then the message digest value calculated
 for the original encrypted SignedData object is sent unencrypted. The
 responder should consider this when deciding whether or not to
 encrypt the ESS signed receipt.

2.4.1 MLExpansionHistory Attributes and Receipts

 An MLExpansionHistory attribute MUST NOT be included in the
 attributes of a SignerInfo in a SignedData object that encapsulates a
 Receipt content. This is true because when a SignedData/Receipt is
 sent to an MLA for distribution, then the MLA MUST always encapsulate
 the received SignedData/Receipt in an outer SignedData in which the
 MLA will include the MLExpansionHistory attribute. The MLA cannot
 change the signedAttrs of the received SignedData/Receipt object, so
 it can't add the MLExpansionHistory to the SignedData/Receipt.

2.5 Determining the Recipients of the Signed Receipt

 If a signed receipt was created by the process described in the
 sections above, then the software MUST use the following process to
 determine to whom the signed receipt should be sent.

 1. The receiptsTo field must be present in the receiptRequest

 attribute. The software initiates the sequence of recipients with
 the value(s) of receiptsTo.

 2. If the receiptPolicy attribute is present in the outer SignedData
 block and contains a value of insteadOf, then the software

Schaad 10
 RFC2634Update August 2004

 replaces the sequence of recipients with the value(s) of
 insteadOf.

 3. If the receiptPolicy attribute is present in the outer SignedData
 block and contains a value of inAdditionTo, then the software adds
 the value(s) of inAdditionTo to the sequence of recipients.

2.6. Signed Receipt Validation

 A signed receipt is communicated as a single ASN.1 encoded object
 composed of a SignedData object directly including a Receipt content.
 It is identified by the presence of the id-ct-receipt object
 identifier in the encapContentInfo eContentType value of the
 SignedData object including the Receipt content.

 Although recipients are not supposed to send more than one signed
 receipt, receiving agents SHOULD be able to accept multiple signed
 receipts from a recipient.

 A SignedData/Receipt is validated as follows:

 1. ASN.1 decode the SignedData object including the Receipt content.

 2. Extract the contentType, signedContentIdentifier, and
 originatorSignatureValue from the decoded Receipt structure to
 identify the original SignedData signerInfo that requested the
 SignedData/Receipt.

 3. Acquire the message signature digest value calculated by the
 sender to generate the signature value included in the original
 SignedData signerInfo that requested the SignedData/Receipt.

 1.1. If the sender-calculated message signature digest value has
 been saved locally by the sender, it needs be located and
 retrieved.

 2.2. If it has not been saved, then it needs be re-calculated
 based on the original SignedData content and signedAttrs as
 described in [CMS].

 4. The message signature digest value calculated by the sender is
 then compared with the value of the msgSigDigest signedAttribute

 included in the SignedData/Receipt signerInfo. If these digest
 values are identical, then that proves that the message signature
 digest value calculated by the recipient based on the received
 original SignedData object is the same as that calculated by the
 sender. This proves that the recipient received exactly the same
 original SignedData content and signedAttrs as sent by the sender
 because that is the only way that the recipient could have
 calculated the same message signature digest value as calculated
 by the sender. If the digest values are different, then the
 SignedData/Receipt signature verification process fails.

Schaad 11
 RFC2634Update August 2004

 7. Acquire the digest value calculated by the sender for the Receipt
 content constructed by the sender (including the contentType,
 signedContentIdentifier, and signature value that were included in
 the original SignedData signerInfo that requested the
 SignedData/Receipt).

 5.1. If the sender-calculated Receipt content digest value has
 been saved locally by the sender, it needs be located and
 retrieved.

 5.2. If it has not been saved, then it needs be re-calculated. As
 described in section above, step 2, create a Receipt
 structure including the contentType, signedContentIdentifier
 and signature value that were included in the original
 SignedData signerInfo that requested the signed receipt. The
 Receipt structure is then ASN.1 DER encoded to produce a
 data stream which is then digested to produce the Receipt
 content digest value.

 6. The Receipt content digest value calculated by the sender is then
 compared with the value of the messageDigest signedAttribute
 included in the SignedData/Receipt signerInfo. If these digest
 values are identical, then that proves that the values included in
 the Receipt content by the recipient are identical to those that
 were included in the original SignedData signerInfo that requested
 the SignedData/Receipt. This proves that the recipient received
 the original SignedData signed by the sender, because that is the
 only way that the recipient could have obtained the original
 SignedData signerInfo signature value for inclusion in the Receipt
 content. If the digest values are different, then the
 SignedData/Receipt signature verification process fails.

 7. The ASN.1 DER encoded signedAttrs of the SignedData/Receipt
 signerInfo are digested as described in [CMS].

 8. The resulting digest value is then used to verify the signature
 value included in the SignedData/Receipt signerInfo. If the
 signature verification is successful, then that proves the
 integrity of the SignedData/receipt signerInfo signedAttrs and
 authenticates the identity of the signer of the SignedData/Receipt
 signerInfo. Note that the signedAttrs include the recipient-
 calculated Receipt content digest value (messageDigest attribute)
 and recipient-calculated message signature digest value
 (msgSigDigest attribute). Therefore, the aforementioned comparison
 of the sender-generated and recipient-generated digest values
 combined with the successful SignedData/Receipt signature
 verification proves that the recipient received the exact original
 SignedData content and signedAttrs (proven by msgSigDigest
 attribute) that were signed by the sender of the original
 SignedData object (proven by messageDigest attribute). If the
 signature verification fails, then the SignedData/Receipt
 signature verification process fails.

Schaad 12
 RFC2634Update August 2004

 The signature verification process for each signature algorithm that
 is used in conjunction with the CMS protocol is specific to the
 algorithm. These processes are described in documents specific to
 the algorithms.

2.7 Receipt Request Syntax

 A receiptRequest attribute value has ASN.1 type ReceiptRequest. Use
 the receiptRequest attribute only within the signed attributes
 associated with a signed message.

 ReceiptRequest ::= SEQUENCE {
 signedContentIdentifier ContentIdentifier,
 receiptsFrom ReceiptsFrom,
 receiptsTo SEQUENCE SIZE (1..ub-receiptsTo)) OF GeneralNames }

 ub-receiptsTo INTEGER ::= 16

 id-aa-receiptRequest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 1}

 ContentIdentifier ::= OCTET STRING

 id-aa-contentIdentifier OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 7}

 A signedContentIdentifier MUST be created by the message originator
 when creating a receipt request. To ensure global uniqueness, the
 minimal signedContentIdentifier SHOULD contain a concatenation of

 user-specific identification information (such as a user name or
 public keying material identification information), a GeneralizedTime
 string, and a random number.

 The receiptsFrom field is used by the originator to specify the
 recipients requested to return a signed receipt. A CHOICE is provided
 to allow specification of:

 - receipts from all recipients are requested
 - receipts from first tier (recipients that did not receive
 themessage as members of a mailing list) recipients are requested
 - receipts from a specific list of recipients are requested

 ReceiptsFrom ::= CHOICE {
 allOrFirstTier [0] AllOrFirstTier,
 -- formerly "allOrNone [0]AllOrNone"
 receiptList [1] SEQUENCE OF GeneralNames }

 AllOrFirstTier ::= INTEGER { -- Formerly AllOrNone
 allReceipts (0),
 firstTierRecipients (1) }

 The receiptsTo field is used by the originator to identify the
 user(s) to whom the identified recipient needs to send signed

Schaad 13
 RFC2634Update August 2004

 receipts. The message originator MUST populate the receiptsTo field
 with a GeneralNames for each entity to whom the recipient is suppose
 to send the signed receipt. If the message originator wants the
 recipient to send the signed receipt to the originator, then the
 originator MUST include a GeneralNames for itself in the receiptsTo
 field.

2.8 Receipt Policy Syntax

 Various entities can modify how receipt processing is done; this is
 accomplished by adding a receiptPolicy attribute to a signature
 layer. A receiptPolicy attribute has an ASN.1 type of ReceiptPolicy.
 Use the receiptPolicy attribute only within the signed attributes
 associated with a signed message.

 ReceiptPolicy ::= CHOICE {
 none [0] NULL,
 insteadOf [1] SEQUENCE SIZE (1..MAX) OF GeneralNames,
 inAdditionTo [2] SEQUENCE SIZE (1..MAX) OF GeneralNames }

 id-aa-receiptPolicy OBJECT IDENTIFIER ::= {id-aa XX}

2.8.1 Receipt Policy Combining

 There are circumstances where multiple receiptPolicy attributes need
 to be combined together. (One example is during MLA processing where
 multiple signature layers are removed.) This section gives the rules
 for combining two attributes. Attribute A is the inner of the two
 receiptPolicy attributes. The final result of combining two policies
 together should be the same as if the two policies were processed in
 sequence.

 The following table describes the outcome of the union of
 ReceiptPolicy A (the rows in the table) and ReceiptPolicy B (the
 columns in the table).

 | B's policy
 A's policy | none insteadOf inAdditionTo
 --
 none | none none none
 insteadOf | none insteadOf(B) *1
 inAdditionTo | none insteadOf(B) *2

 *1 = insteadOf(insteadOf(A) + inAdditionTo(B))
 *2 = inAdditionTo(inAdditionTo(A) + inAdditionTo(B))

2.8 Receipt Syntax

 Receipts are represented using a new content type, Receipt. The
 Receipt content type SHALL have ASN.1 type Receipt. Receipts MUST be
 encapsulated within a SignedData message.

Schaad 14
 RFC2634Update August 2004

 Receipt ::= SEQUENCE {
 version ESSVersion,
 contentType ContentType,
 signedContentIdentifier ContentIdentifier,
 originatorSignatureValue OCTET STRING }

 id-ct-receipt OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-ct(1) 1}

 ESSVersion ::= INTEGER { v1(1) }

 The version field defines the syntax version number, which is 1 for
 this version of the standard.

2.9 Content Hints

 Many applications find it useful to have information that describes
 the innermost signed content of a multi-layer message available on
 the outermost signature layer. The contentHints attribute provides
 such information.

 Content-hints attribute values have ASN.1 type contentHints.

 ContentHints ::= SEQUENCE {
 contentDescription UTF8String (SIZE (1..MAX)) OPTIONAL,
 contentType ContentType }

 id-aa-contentHint OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 4}

 The contentDescription field is used to provide information that the
 recipient can use to select protected messages for processing, such
 as a message subject. If this field is set, then the attribute is
 expected to appear on the SignedData object enclosing an
 EnvelopedData object and not on the inner SignedData object. The
 (SIZE (1..MAX)) construct constrains the sequence to have at least
 one entry. MAX indicates the upper bound is unspecified.
 Implementations are free to choose an upper bound that suits their
 environment.

 Messages that contain a SignedData object wrapped around an
 EnvelopedData object, thus masking the inner content type of the
 message, SHOULD include a contentHints attribute, except for the case
 of the data content type. Specific message content types can either
 force or preclude the inclusion of the contentHints attribute. For
 example, when a SignedData/Receipt is encrypted within an
 EnvelopedData object, an outer SignedData object MUST be created that
 encapsulates the EnvelopedData object and a contentHints attribute
 with contentType set to the id-ct-receipt object identifier MUST be
 included in the outer SignedData SignerInfo signedAttrs.

2.10 Message Signature Digest Attribute

Schaad 15
 RFC2634Update August 2004

 The msgSigDigest attribute can only be used in the signed attributes
 of a signed receipt. It contains the digest of the ASN.1 DER encoded
 signedAttrs included in the original SignedData that requested the
 signed receipt. Only one msgSigDigest attribute can appear in a
 signed attributes set. It is defined as follows:

 msgSigDigest ::= OCTET STRING

 id-aa-msgSigDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 5}

2.11 Signed Content Reference Attribute

 The contentReference attribute is a link from one SignedData to
 another. It is used to link a reply to the original message to which
 it refers, or to incorporate by reference one SignedData into
 another. The first SignedData MUST include a contentIdentifier signed
 attribute, which SHOULD be constructed as specified in section 2.7.
 The second SignedData links to the first by including a
 ContentReference signed attribute containing the content type,
 content identifier, and signature value from the first SignedData.

 ContentReference ::= SEQUENCE {
 contentType ContentType,
 signedContentIdentifier ContentIdentifier,
 originatorSignatureValue OCTET STRING }

 id-aa-contentReference OBJECT IDENTIFIER ::= { iso(1) member-
 body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2)
 10 }

4. Mail List Management

 Sending agents need to create recipient-specific data structures for
 each recipient of an encrypted message. This process can impair
 performance for messages sent to a large number of recipients. Thus,
 Mail List Agents (MLAs) that can take a single message and perform
 the recipient-specific encryption for every recipient are often
 desired.

 An MLA appears to the message originator as a normal message
 recipient, but the MLA acts as a message expansion point for a Mail
 List (ML). The sender of a message directs the message to the MLA,
 which then redistributes the message to the members of the ML. This
 process offloads the per-recipient processing from individual user
 agents and allows for more efficient management of large MLs. MLs are
 true message recipients served by MLAs that provide cryptographic and
 expansion services for the mailing list.

 In addition to cryptographic handling of messages, secure mailing
 lists also have to prevent mail loops. A mail loop is where one

Schaad 16
 RFC2634Update August 2004

 mailing list is a member of a second mailing list, and the second
 mailing list is a member of the first. A message will go from one
 list to the other in a rapidly-cascading succession of mail that will
 be distributed to all other members of both lists.

 To prevent mail loops, MLAs use the mlaExpandHistory attribute of the
 outer signature of a triple wrapped message. The mlaExpandHistory
 attribute is essentially a list of every MLA that has processed the
 message. If an MLA sees its own unique entity identifier in the list,
 it knows that a loop has been formed, and does not send the message
 to the list again.

4.1 Mail List Expansion

 Mail list expansion processing is noted in the value of the
 mlaExpandHistory attribute, located in the signed attributes of the
 MLA's SignerInfo block. The MLA creates or updates the signed
 mlaExpandHistory attribute value each time the MLA expands and signs
 a message for members of a mail list.

 The MLA MUST add an MLAData record containing the MLA's
 identification information, date and time of expansion to the end of
 the mail list expansion history sequence. If the mlaExpandHistory
 attribute is absent, then the MLA MUST add the attribute and the
 current expansion becomes the first element of the sequence. If the
 mlaExpandHistory attribute is present, then the MLA MUST add the
 current expansion information to the end of the existing
 MLAExpandHistory sequence. Only one mlaExpandHistory attribute can be
 included in the signedAttrs of a SignerInfo.

 Note that if the mlaExpandHistory attribute is absent, then the
 recipient is a first tier message recipient.

 There can be multiple SignerInfos within a SignedData object, and
 each SignerInfo can include signedAttrs. Therefore, a single
 SignedData object can include multiple SignerInfos, each SignerInfo
 having an mlaExpandHistory attribute. For example, an MLA can send a
 signed message with two SignerInfos, one containing a DSS signature,
 the other containing an RSA signature.

 If an MLA creates a SignerInfo that includes an mlaExpandHistory
 attribute, then all of the SignerInfos created by the MLA for that
 SignedData object MUST include an mlaExpandHistory attribute, and the
 value of each MUST be identical. Note that other agents might later
 add SignerInfo attributes to the SignedData block, and those
 additional SignerInfos might not include mlaExpandHistory attributes.

 A recipient MUST verify the signature of the SignerInfo that covers
 the mlaExpandHistory attribute before processing the
 mlaExpandHistory, and MUST NOT process the mlaExpandHistory attribute
 unless the signature over it has been verified. If a SignedData
 object has more than one SignerInfo that has an mlaExpandHistory
 attribute, the recipient MUST compare the mlaExpandHistory attributes

Schaad 17
 RFC2634Update August 2004

 in all the SignerInfos that it has verified, and MUST NOT process the
 mlaExpandHistory attribute unless every verified mlaExpandHistory
 attribute in the SignedData block is identical. If the
 mlaExpandHistory attributes in the verified signerInfos are not all
 identical, then the receiving agent MUST stop processing the message
 and SHOULD notify the user or MLA administrator of this error
 condition. In the mlaExpandHistory processing, SignerInfos that do
 not have an mlaExpandHistory attribute are ignored.

4.1.1 Detecting Mail List Expansion Loops

 Prior to expanding a message, the MLA examines the value of any
 existing mlaExpandHistory attribute to detect an expansion loop. An
 expansion loop exists when a message expanded by a specific MLA for a
 specific mail list is redelivered to the same MLA for the same mail
 list.

 Expansion loops are detected by examining the mailListIdentifier
 field of each MLAData entry found in the mlaExpandHistory. If an MLA
 finds its own identification information, then the MLA must
 discontinue expansion processing and should provide warning of an
 expansion loop to a human mail list administrator. The mail list
 administrator is responsible for correcting the loop condition.

4.2 Mail List Agent Processing

 The first few paragraphs of this section provide a high-level
 description of MLA processing. The rest of the section provides a
 detailed description of MLA processing.

 MLA message processing depends on the structure of the S/MIME layers
 in the message sent to the MLA for expansion. In addition to sending
 triple wrapped messages to an MLA, an entity can send other types of
 messages to an MLA, such as:

 - a single wrapped SignedData or EnvelopedData message
 - a double wrapped message (such as signed and enveloped,
 envelopedand signed, or signed and signed, and so on)
 - a quadruple-wrapped message (such as if a well-formed triple
 wrapped message was sent through a gateway that added an outer
 SignedData layer)

 In all cases, the MLA MUST parse all layers of the received message
 to determine if there are any SignedData layers that include an
 eSSSecurityLabel signedAttribute. This can include decrypting an
 EnvelopedData layer to determine if an encapsulated SignedData layer
 includes an eSSSecurityLabel attribute. The MLA MUST fully process
 each eSSSecurityLabel attribute found in the various SignedData
 layers, including performing access control checks, before
 distributing the message to the ML members. The details of the access

 control checks are beyond the scope of this document. The MLA MUST
 verify the signature of the signerInfo including the eSSSecurityLabel
 attribute before using it.

Schaad 18
 RFC2634Update August 2004

 In all cases, the MLA MUST sign the message to be sent to the ML
 members in a new "outer" SignedData layer. The MLA MUST add or update
 an mlaExpandHistory attribute in the "outer" SignedData that it
 creates to document MLA processing. If there was an "outer"
 SignedData layer included in the original message received by the
 MLA, then the MLA-created "outer" SignedData layer MUST include each
 signed attribute present in the original "outer" SignedData layer,
 unless the MLA explicitly replaces an attribute (such as signingTime
 or mlaExpandHistory) with a new value.

 When an S/MIME message is received by the MLA, the MLA MUST first
 determine which received SignedData layer, if any, is the "outer"
 SignedData layer. To identify the received "outer" SignedData layer,
 the MLA MUST verify the signature and fully process the signedAttrs
 in each of the outer SignedData layers (working from the outside in)
 to determine if any of them either include an mlaExpandHistory
 attribute or encapsulate an EnvelopedData object.

 The MLA's search for the "outer" SignedData layer is completed when
 it finds one of the following:

 - the "outer" SignedData layer that includes an mlaExpandHistory
 attribute or encapsulates an EnvelopedData object
 - an EnvelopedData layer
 - the original content (that is, a layer that is neither
 EnvelopedData nor SignedData).

 If the MLA finds an "outer" SignedData layer, then the MLA MUST
 perform the following steps:

 1. Strip off all of the SignedData layers that encapsulated the
 "outer" SignedData layer

 2. Strip off the "outer" SignedData layer itself (after remembering
 the included signedAttrs)

 3. Expand the EnvelopedData (if present)

 4. Sign the message to be sent to the ML members in a new "outer"
 SignedData layer that includes the signedAttrs (unless explicitly
 replaced) from the original, received "outer" SignedData layer.

 If the MLA finds an "outer" SignedData layer that includes an

 mlaExpandHistory attribute AND the MLA subsequently finds an
 EnvelopedData layer buried deeper with the layers of the received
 message, then the MLA MUST strip off all of the SignedData layers
 down to the EnvelopedData layer (including stripping off the original
 "outer" SignedData layer) and MUST sign the expanded EnvelopedData in
 a new "outer" SignedData layer that includes the signedAttrs (unless
 explicitly replaced) from the original, received "outer" SignedData
 layer.

Schaad 19
 RFC2634Update August 2004

 If the MLA does not find an "outer" SignedData layer and does not
 find an EnvelopedData layer, then the MLA MUST sign the original,
 received message in a new "outer" SignedData layer. If the MLA does
 not find an "outer" SignedData and does find an EnvelopedData layer
 then it MUST expand the EnvelopedData layer, if present, and sign it
 in a new "outer" SignedData layer.

4.2.1 Examples of Rule Processing

 The following examples help explain the rules above:

 1) A message (S1(Original Content)) (where S = SignedData) is sent to
 the MLA in which the SignedData layer does not include an
 mlaExpandHistory attribute. The MLA verifies and fully processes
 the signedAttrs in S1. The MLA decides that there is not an
 original, received "outer" SignedData layer since it finds the
 original content, but never finds an EnvelopedData and never finds
 an mlaExpandHistory attribute. The MLA calculates a new SignedData
 layer, S2, resulting in the following message sent to the ML
 recipients: (S2(S1(Original Content))). The MLA includes an
 mlaExpandHistory attribute in S2.

 2) A message (S3(S2(S1(Original Content)))) is sent to the MLA in
 which none of the SignedData layers includes an mlaExpandHistory
 attribute. The MLA verifies and fully processes the signedAttrs in
 S3, S2 and S1. The MLA decides that there is not an original,
 received "outer" SignedData layer since it finds the original
 content, but never finds an EnvelopedData and never finds an
 mlaExpandHistory attribute. The MLA calculates a new SignedData
 layer, S4, resulting in the following message sent to the ML
 recipients: (S4(S3(S2(S1(Original Content))))). The MLA includes
 an mlaExpandHistory attribute in S4.

 3) A message (E1(S1(Original Content))) (where E = EnvelopedData) is
 sent to the MLA in which S1 does not include an MLAExpandHistory
 attribute. The MLA decides that there is not an original, received
 "outer" SignedData layer since it finds the E1 as the outer layer.

 The MLA expands the recipientInformation in E1. The MLA calculates
 a new SignedData layer, S2, resulting in the following message
 sent to the ML recipients: (S2(E1(S1(Original Content)))). The MLA
 includes an mlaExpandHistory attribute in S2.

 4) A message (S2(E1(S1(Original Content)))) is sent to the MLA in
 which S2 includes an mlaExpandHistory attribute. The MLA verifies
 the signature and fully processes the signedAttrs in S2. The MLA
 finds the mlaExpandHistory attribute in S2, so it decides that S2
 is the "outer" SignedData. The MLA remembers the signedAttrs
 included in S2 for later inclusion in the new outer SignedData
 that it applies to the message. The MLA strips off S2. The MLA
 then expands the recipientInformation in E1 (this invalidates the
 signature in S2 which is why it was stripped). The MLA calculates
 a new SignedData layer, S3, resulting in the following message
 sent to the ML recipients: (S3(E1(S1(Original Content)))). The MLA

Schaad 20
 RFC2634Update August 2004

 includes in S3 the attributes from S2 (unless it specifically
 replaces an attribute value) including an updated mlaExpandHistory
 attribute.

 5) A message (S3(S2(E1(S1(Original Content))))) is sent to the MLA in
 which none of the SignedData layers include an mlaExpandHistory
 attribute. The MLA verifies the signature and fully processes the
 signedAttrs in S3 and S2. When the MLA encounters E1, then it
 decides that S2 is the "outer" SignedData since S2 encapsulates
 E1. The MLA remembers the signedAttrs included in S2 for later
 inclusion in the new outer SignedData that it applies to the
 message. The MLA strips off S3 and S2. The MLA then expands the
 recipientInformation in E1 (this invalidates the signatures in S3
 and S2 which is why they were stripped). The MLA calculates a new
 SignedData layer, S4, resulting in the following message sent to
 the ML recipients: (S4(E1(S1(Original Content)))). The MLA
 includes in S4 the attributes from S2 (unless it specifically
 replaces an attribute value) and includes a new mlaExpandHistory
 attribute.

 6) A message (S3(S2(E1(S1(Original Content))))) is sent to the MLA in
 which S3 includes an mlaExpandHistory attribute. In this case, the
 MLA verifies the signature and fully processes the signedAttrs in
 S3. The MLA finds the mlaExpandHistory in S3, so it decides that
 S3 is the "outer" SignedData. The MLA remembers the signedAttrs
 included in S3 for later inclusion in the new outer SignedData
 that it applies to the message. The MLA keeps on parsing
 encapsulated layers because it must determine if there are any
 eSSSecurityLabel attributes contained within. The MLA verifies the
 signature and fully processes the signedAttrs in S2. When the MLA

 encounters E1, then it strips off S3 and S2. The MLA then expands
 the recipientInformation in E1 (this invalidates the signatures in
 S3 and S2 which is why they were stripped). The MLA calculates a
 new SignedData layer, S4, resulting in the following message sent
 to the ML recipients: (S4(E1(S1(Original Content)))). The MLA
 includes in S4 the attributes from S3 (unless it specifically
 replaces an attribute value) including an updated mlaExpandHistory
 attribute.

4.2.3 Processing Choices

 The processing used depends on the type of the outermost layer of the
 message. There are three cases for the type of the outermost data:

 - EnvelopedData
 - SignedData
 - data

4.2.3.1 Processing for EnvelopedData

 1. The MLA locates its own RecipientInfo and uses the information it
 contains to obtain the message key.

Schaad 21
 RFC2634Update August 2004

 2. The MLA removes the existing recipientInfos field and replaces it
 with a new recipientInfos value built from RecipientInfo
 structures created for each member of the mailing list. The MLA
 also removes the existing originatorInfo field and replaces it
 with a new originatorInfo value built from information describing
 the MLA.

 3. The MLA encapsulates the expanded encrypted message in a
 SignedData block, adding an mlExpandHistory attribute as described
 in the "Mail List Expansion" section to document the expansion.

 4. The MLA signs the new message and delivers the updated message to
 mail list members to complete MLA processing.

4.2.3.2 Processing for SignedData

 MLA processing of multi-layer messages depends on the type of data in
 each of the layers. Step 3 below specifies that different processing
 will take place depending on the type of CMS message that has been
 signed. That is, it needs to know the type of data at the next inner
 layer, which may or may not be the innermost layer.

 1. The MLA verifies the signature value found in the outermost
 SignedData layer associated with the signed data. MLA processing of

 the message terminates if the message signature is invalid.

 2. If the outermost SignedData layer includes a signed
 mlaExpandHistory attribute, the MLA checks for an expansion loop as
 described in the "Detecting Mail List Expansion Loops" section,
 then go to step 3. If the outermost SignedData layer does not
 include a signed mlaExpandHistory attribute, the MLA signs the
 whole message (including this outermost SignedData layer that
 doesn't have an mlaExpandHistory attribute), and delivers the
 updated message to mail list members to complete MLA processing.

 3. Determine the type of the data that has been signed. That is, look
 at the type of data on the layer just below the SignedData, which
 may or may not be the "innermost" layer. Based on the type of data,
 perform either step 3.1 (EnvelopedData), step 3.2 (SignedData), or
 step 3.3 (all other types).

 3.1. If the signed data is EnvelopedData, the MLA performs
 expansion processing of the encrypted message as described
 previously. Note that this process invalidates the signature
 value in the outermost SignedData layer associated with the
 original encrypted message. Proceed to section 3.2 with the
 result of the expansion.

 3.2. If the signed data is SignedData, or is the result of
 expanding an EnvelopedData block in step 3.1:

Schaad 22
 RFC2634Update August 2004

 3.2.1. The MLA strips the existing outermost SignedData layer
 after remembering the value of the mlaExpandHistory and all
 other signed attributes in that layer, if present.

 3.2.2. If the signed data is EnvelopedData (from step 3.1), the
 MLA encapsulates the expanded encrypted message in a new
 outermost SignedData layer. On the other hand, if the signed
 data is SignedData (from step 3.2), the MLA encapsulates the
 signed data in a new outermost SignedData layer.

 3.2.3. The outermost SignedData layer created by the MLA
 replaces the original outermost SignedData layer. The MLA
 MUST create a signed attribute list for the new outermost
 SignedData layer which MUST include each signed attribute
 present in the original outermost SignedData layer, unless
 the MLA explicitly replaces one or more particular attributes
 with new value. A special case is the mlaExpandHistory
 attribute. The MLA MUST add an mlaExpandHistory signed

 attribute to the outer SignedData layer as follows:

 3.2.3.1. If the original outermost SignedData layer included
 an mlaExpandHistory attribute, the attribute's value is
 copied and updated with the current ML expansion
 information as described in the "Mail List Expansion"
 section.

 3.2.3.2. If the original outermost SignedData layer did not
 include an mlaExpandHistory attribute, a new attribute
 value is created with the current ML expansion
 information.

 3.3. If the signed data is not EnvelopedData or SignedData:

 3.3.1. The MLA encapsulates the received SignedData object in an
 outer SignedData object, and adds an mlaExpandHistory
 attribute to the outer SignedData object containing the
 current ML expansion information as described in the "Mail
 List Expansion" section.

 4. The MLA signs the new message and delivers the updated message to
 mail list members to complete MLA processing.

 A flow chart for the above steps would be:

 1. Has a valid signature?
 YES -> 2.
 NO -> STOP.
 2. Does outermost SignedData layer contain mlaExpandHistory?
 YES -> Check it, then -> 3.
 NO -> Sign message (including outermost SignedData that
 doesn't have mlaExpandHistory), deliver it, STOP.
 3. Check type of data just below outermost SignedData.

Schaad 23
 RFC2634Update August 2004

 EnvelopedData -> 3.1.
 SignedData -> 3.2.
 all others -> 3.3.
 3.1. Expand the encrypted message, then -> 3.2.
 3.2. -> 3.2.1.
 3.2.1. Strip outermost SignedData layer, note value of
 mlaExpandHistory and other signed attributes, then -> 3.2.2.
 3.2.2. Encapsulate in new signature, then -> 3.2.3.
 3.2.3. Create new SignedData layer.
 Was there an old mlaExpandHistory?
 YES -> copy the old mlaExpandHistory values, then -> 4.
 NO -> create new mlaExpandHistory value, then -> 4.

 3.3. Encapsulate in a SignedData layer and add an mlaExpandHistory
 attribute, then -> 4.
 4. Sign message, deliver it, STOP.

4.2.3.3 Processing for data

 1. The MLA encapsulates the message in a SignedData layer, and adds
 an mlaExpandHistory attribute containing the current ML expansion
 information as described in the "Mail List Expansion" section.

 2. The MLA signs the new message and delivers the updated message to
 mail list members to complete MLA processing.

4.3 Mail List Agent Signed Receipt Policy Processing

 If a mailing list (B) is a member of another mailing list (A), list B
 often needs to propagate forward the mailing list receipt policy of
 A. As a general rule, a mailing list should be conservative in
 propagating forward the mailing list receipt policy because the
 ultimate recipient need only process the last item in the ML
 expansion history. The MLA builds the expansion history to meet this
 requirement.

 The following table describes the outcome of the union of mailing
 list A's policy (the rows in the table) and mailing list B's policy
 (the columns in the table).

 | B's policy
 A's policy | none insteadOf inAdditionTo missing

 none | none none none none
 insteadOf | none insteadOf(B) *1 insteadOf(A)
 inAdditionTo | none insteadOf(B) *2 inAdditionTo(A)
 missing | none insteadOf(B) inAdditionTo(B) missing

 *1 = insteadOf(insteadOf(A) + inAdditionTo(B))
 *2 = inAdditionTo(inAdditionTo(A) + inAdditionTo(B))

4.4 Mail List Expansion History Syntax

Schaad 24
 RFC2634Update August 2004

 An mlaExpandHistory attribute value has ASN.1 type MLAExpandHistory.
 If there are more than ub-ml-expansion-history mailing lists in the
 sequence, the receiving agent should provide notification of the
 error to a human mail list administrator. The mail list administrator
 is responsible for correcting the overflow condition.

 MLAExpandHistory ::= SEQUENCE
 SIZE (1..ub-ml-expansion-history) OF MLAData

 id-aa-mlExpandHistory OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) XX}

 ub-ml-expansion-history INTEGER ::= 64

 MLAData contains the expansion history describing each MLA that has
 processed a message. As an MLA distributes a message to members of an
 ML, the MLA records its unique identifier, date and time of
 expansion, and receipt policy in an MLAData structure.

 MLAData ::= SEQUENCE {
 mailListIdentifier EntityIdentifier,
 expansionTime GeneralizedTime }

 EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier SubjectKeyIdentifier }

 The receipt policy of the ML can withdraw the originator's request
 for the return of a signed receipt. However, if the originator of the
 message has not requested a signed receipt, the MLA cannot request a
 signed receipt. In the event that a ML's signed receipt policy
 supersedes the originator's request for signed receipts, such that
 the originator will not receive any signed receipts, then the MLA MAY
 inform the originator of that fact.

A. ASN.1 Module

ExtendedSecurityServices2003
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) ess2003(XX) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS

-- Cryptographic Message Syntax (CMS)
 ContentType, IssuerAndSerialNumber, SubjectKeyIdentifier
 FROM CryptographicMessageSyntax { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) cms(1)}

-- PKIX Certificate and CRL Profile, Sec A.2 Implicitly Tagged Module,

Schaad 25
 RFC2634Update August 2004

-- 1988 Syntax
 PolicyInformation, CertificateSerialNumber, GeneralNames
 FROM PKIX1Implicit88 {iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7)id-mod(0) id-pkix1-implicit(19)};

-- Extended Security Services

-- The construct "SEQUENCE SIZE (1..MAX) OF" appears in several ASN.1
-- constructs in this module. A valid ASN.1 SEQUENCE can have zero or
-- more entries. The SIZE (1..MAX) construct constrains the SEQUENCE to
-- have at least one entry. MAX indicates the upper bound is
unspecified.
-- Implementations are free to choose an upper bound that suits their
-- environment.

UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING
 -- The contents are formatted as described in [UTF8]

-- Section 2.7

ReceiptRequest ::= SEQUENCE {
 signedContentIdentifier ContentIdentifier,
 receiptsFrom ReceiptsFrom,
 receiptsTo SEQUENCE SIZE (1..ub-receiptsTo) OF GeneralNames }

ub-receiptsTo INTEGER ::= 16

id-aa-receiptRequest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 1}

ContentIdentifier ::= OCTET STRING

id-aa-contentIdentifier OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 7}

ReceiptsFrom ::= CHOICE {
 allOrFirstTier [0] AllOrFirstTier,
 -- formerly "allOrNone [0]AllOrNone"
 receiptList [1] SEQUENCE OF GeneralNames }

AllOrFirstTier ::= INTEGER { -- Formerly AllOrNone
 allReceipts (0),
 firstTierRecipients (1) }

-- Section 2.X

id-aa-receiptPolicy ::= {id-at XX}

ReceiptPolicy ::= CHOICE {
 none [0] NULL,
 insteadOf [1] SEQUENCE SIZE (1..MAX) OF GeneralNames,

 inAdditionTo [2] SEQUENCE SIZE (1..MAX) OF GeneralNames }

Schaad 26
 RFC2634Update August 2004

-- Section 2.8

Receipt ::= SEQUENCE {
 version ESSVersion,
 contentType ContentType,
 signedContentIdentifier ContentIdentifier,
 originatorSignatureValue OCTET STRING }

id-ct-receipt OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-ct(1) 1}

ESSVersion ::= INTEGER { v1(1) }

-- Section 2.9

ContentHints ::= SEQUENCE {
 contentDescription UTF8String (SIZE (1..MAX)) OPTIONAL,
 contentType ContentType }

id-aa-contentHint OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 4}

-- Section 2.10

MsgSigDigest ::= OCTET STRING

id-aa-msgSigDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 5}

-- Section 2.11

ContentReference ::= SEQUENCE {
 contentType ContentType,
 signedContentIdentifier ContentIdentifier,
 originatorSignatureValue OCTET STRING }

id-aa-contentReference OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 10 }

-- Section 3.2

ESSSecurityLabel ::= SET {
 security-policy-identifier SecurityPolicyIdentifier,

 security-classification SecurityClassification OPTIONAL,
 privacy-mark ESSPrivacyMark OPTIONAL,
 security-categories SecurityCategories OPTIONAL }

id-aa-securityLabel OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 2}

Schaad 27
 RFC2634Update August 2004

SecurityPolicyIdentifier ::= OBJECT IDENTIFIER

SecurityClassification ::= INTEGER {
 unmarked (0),
 unclassified (1),
 restricted (2),
 confidential (3),
 secret (4),
 top-secret (5) } (0..ub-integer-options)

ub-integer-options INTEGER ::= 256

ESSPrivacyMark ::= CHOICE {
 pString PrintableString (SIZE (1..ub-privacy-mark-length)),
 utf8String UTF8String (SIZE (1..MAX))
}

ub-privacy-mark-length INTEGER ::= 128

SecurityCategories ::= SET SIZE (1..ub-security-categories) OF
 SecurityCategory

ub-security-categories INTEGER ::= 64

SecurityCategory ::= SEQUENCE {
 type [0] OBJECT IDENTIFIER,
 value [1] ANY DEFINED BY type -- defined by type
}

--Note: The aforementioned SecurityCategory syntax produces identical
--hex encodings as the following SecurityCategory syntax that is
--documented in the X.411 specification:
--
--SecurityCategory ::= SEQUENCE {
-- type [0] SECURITY-CATEGORY,
-- value [1] ANY DEFINED BY type }
--
--SECURITY-CATEGORY MACRO ::=
--BEGIN
--TYPE NOTATION ::= type | empty

--VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)
--END

-- Section 3.4

EquivalentLabels ::= SEQUENCE OF ESSSecurityLabel

id-aa-equivalentLabels OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 9}

-- Section 4.4

id-aa-mlaExpandHistory OBJECT IDENTIFIER ::= {id-aa X }

Schaad 28
 RFC2634Update August 2004

MLAExpandHistory ::= SEQUENCE
 SIZE (1..ub-ml-expansion-history) of MLAData

MLAData ::= SEQUENCE {
 mailListIdentifier EntryIdentifier,
 expansionTime GeneralizedTime
}

-- The use of id-aa-mlExpandHistory is obsoleted and replaced by
-- id-aa-mlaExpandHistory and id-aa-receiptBehavior

MLAExpandHistory ::= SEQUENCE
 SIZE (1..ub-ml-expansion-history) OF MLAData

id-aa-mlExpandHistory OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) XX}

ub-ml-expansion-history INTEGER ::= 64

MLAData ::= SEQUENCE {
 mailListIdentifier EntityIdentifier,
 expansionTime GeneralizedTime }

EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier SubjectKeyIdentifier }

MLReceiptPolicy ::= CHOICE {
 none [0] NULL,
 insteadOf [1] SEQUENCE SIZE (1..MAX) OF GeneralNames,
 inAdditionTo [2] SEQUENCE SIZE (1..MAX) OF GeneralNames }

-- Section 5.4

SigningCertificate ::= SEQUENCE {
 certs SEQUENCE OF ESSCertID,
 policies SEQUENCE OF PolicyInformation OPTIONAL
}

id-aa-signingCertificate OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) id-aa(2) 12 }

ESSCertID ::= SEQUENCE {
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
}

Hash ::= OCTET STRING -- SHA1 hash of entire certificate

IssuerSerial ::= SEQUENCE {

Schaad 29
 RFC2634Update August 2004

 issuer GeneralNames,
 serialNumber CertificateSerialNumber
 }
--
-- The following items are included for historical reasons.
-- See Appendix C of this document for processing.
--

MLExpansionHistory ::= SEQUENCE
 SIZE (1..ub-ml-expansion-history) OF MLData

id-aa-mlExpandHistory OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 3}

ub-ml-expansion-history INTEGER ::= 64

MLData ::= SEQUENCE {
 mailListIdentifier EntityIdentifier,
 expansionTime GeneralizedTime,
 mlReceiptPolicy MLReceiptPolicy OPTIONAL }

MLReceiptPolicy ::= CHOICE {
 none [0] NULL,
 insteadOf [1] SEQUENCE SIZE (1..MAX) OF GeneralNames,
 inAdditionTo [2] SEQUENCE SIZE (1..MAX) OF GeneralNames }

END -- of ExtendedSecurityServices

C. Processing for Obsolete Mail List Expansion Signed Attribute

 One of the main changes between this document and it's predecessor is
 the decomposistion of the MLExpansionHistory attribute into the
 MLAExpandHistory and ReceiptPolicy attributes. The author does not
 currently know of any systems that generate the MLExpansionHistory
 attribute, however this section is provided for completeness.

 When an implementation finds the old MLExpansionHistory attribute the
 following is suggested as the correct handling:

 1. If there exists a MLAExpandHistory or ReceiptPolicy attribute,
 ignore the MLExpansionHistory attribute for processing, but place
 it into the new signature created.

 2. Decompose the MLExpansionHistory attribute into a MLAExpandHistory
 attribute and ReceiptPolicy attribute as necessary. Place the
 current MLExpansionHistory attribute in all new signatures
 created.

D. Acknowledgments

Schaad 30
 RFC2634Update August 2004

 The first draft of this work was prepared by David Solo. John Pawling
 did a huge amount of very detailed revision work during the many
 phases of the document.

 The first RFC version of this work was edited by Paul Hoffman who did
 remarkably well in keeping up with the arguments between John, myself
 and the others who contributed to this document.

 Many other people have contributed hard work to this memo, including:

 Andrew Farrell
 Bancroft Scott
 Bengt Ackzell
 Bill Flanigan
 Blake Ramsdell
 Carlisle Adams
 Darren Harter
 David Kemp
 Denis Pinkas
 Francois Rousseau
 Russ Housley

 Scott Hollenbeck
 Steve Dusse

Author's Addresses

 Jim Schaad
 Soaring Hawk Consulting
 PO Box 675
 Gold Bar, 98251

 Email: jimsch@exmsft.com

Copyright Statement

 Copyright (C) The Internet Society (year). This document is
 Subject to the rights, licenses and restrictions contained in BCP 78,
 and except as set forth therein, the authors retain all their
 rights."

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Schaad 31

https://datatracker.ietf.org/doc/html/bcp78

