
SMIME Working Group S. Turner, IECA
Internet Draft January 28, 2008
Intended Status: Standard Track
Expires: July 28, 2008

CMS Symmetric Key Management and Distribution
draft-ietf-smime-symkeydist-10.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on July 28, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This document describes a mechanism to manage (i.e., setup,
 distribute, and rekey) keys used with symmetric cryptographic
 algorithms. Also defined herein is a mechanism to organize users into
 groups to support distribution of encrypted content using symmetric
 cryptographic algorithms. The mechanism uses the Cryptographic
 Message Syntax (CMS) protocol [CMS] and Certificate Management
 Message over CMS (CMC) protocol [CMC] to manage the symmetric keys.
 Any member of the group can then later use this distributed shared
 key to decrypt other CMS encrypted objects with the symmetric key.

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Turner Expires July 28, 2008 [Page 1]

Internet-Draft CMS SymKeyDist January 2008

 This mechanism has been developed to support S/MIME Mail List Agents
 (MLAs).

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Table of Contents

1. Introduction...3
1.1. Applicability to E-mail...................................4
1.2. Applicability to Repositories.............................5
1.3. Using the Group Key.......................................5

2. Architecture...5
3. Protocol Interactions..7

3.1. Control Attributes..8
3.1.1. GL USE KEK..10
3.1.2. Delete GL...13
3.1.3. Add GL Member.......................................14
3.1.4. Delete GL Member....................................15
3.1.5. Rekey GL..15
3.1.6. Add GL Owner..16
3.1.7. Remove GL Owner.....................................17
3.1.8. GL Key Compromise...................................17
3.1.9. GL Key Refresh......................................17
3.1.10. GLA Query Request and Response.....................18

3.1.10.1. GLA Query Request.............................18
3.1.10.2. GLA Query Response............................18
3.1.10.3. Request and Response Types....................19

3.1.11. Provide Cert.......................................19
3.1.12. Update Cert..20
3.1.13. GL Key...21

3.2. Use of CMC, CMS, and PKIX................................23
3.2.1. Protection Layers...................................23

3.2.1.1. Minimum Protection.............................23
3.2.1.2. Additional Protection..........................24

3.2.2. Combining Requests and Responses....................25
3.2.3. GLA Generated Messages..............................26
3.2.4. CMC Control Attributes and CMS Signed Attributes....27

3.2.4.1. Using cMCStatusInfoExt.........................27
3.2.4.2. Using transactionId............................30
3.2.4.3. Using nonces and signingTime...................30
3.2.4.4. CMC and CMS Attribute Support Requirements.....31

3.2.5. Resubmitted GL Member Messages......................31
3.2.6. PKIX Certificate and CRL Profile....................32

https://datatracker.ietf.org/doc/html/rfc2119

Turner Expires July 28, 2008 [Page 2]

Internet-Draft CMS SymKeyDist January 2008

4. Administrative Messages.......................................32
4.1. Assign KEK To GL...32
4.2. Delete GL From GLA.......................................36
4.3. Add Members To GL..38

4.3.1. GLO Initiated Additions.............................40
4.3.2. Prospective Member Initiated Additions..............46

4.4. Delete Members From GL...................................49
4.4.1. GLO Initiated Deletions.............................50
4.4.2. Member Initiated Deletions..........................55

4.5. Request Rekey Of GL......................................57
4.5.1. GLO Initiated Rekey Requests........................58
4.5.2. GLA Initiated Rekey Requests........................61

4.6. Change GLO...62
4.7. Indicate KEK Compromise..................................64

4.7.1. GL Member Initiated KEK Compromise Message..........65
4.7.2. GLO Initiated KEK Compromise Message................66

4.8. Request KEK Refresh......................................67
4.9. GLA Query Request and Response...........................69
4.10. Update Member Certificate...............................71

4.10.1. GLO and GLA Initiated Update Member Certificate....72
4.10.2. GL Member Initiated Update Member Certificate......74

5. Distribution Message..75
5.1. Distribution Process.....................................76

6. Algorithms..78
6.1. KEK Generation Algorithm.................................78
6.2. Shared KEK Wrap Algorithm................................78
6.3. Shared KEK Algorithm.....................................78

7. Message Transport...78
8. Security Considerations.......................................78
9. IANA Considerations...80
10. Acknowledgements...80
11. References...80

11.1. Normative References....................................80
11.2. Informative References..................................81

12. ASN.1 Module...81

1. Introduction

 With the ever-expanding use of secure electronic communications
 (e.g., S/MIME [MSG]), users require a mechanism to distribute
 encrypted data to multiple recipients (i.e., a group of users). There
 are essentially two ways to encrypt the data for recipients: using
 asymmetric algorithms with public key certificates (PKCs) or
 symmetric algorithms with symmetric keys.

 With asymmetric algorithms, the originator forms an originator-
 determined content-encryption key (CEK) and encrypts the content,

Turner Expires July 28, 2008 [Page 3]

Internet-Draft CMS SymKeyDist January 2008

 using a symmetric algorithm. Then, using an asymmetric algorithm and
 the recipient's PKCs, the originator generates per-recipient
 information that either (a) encrypts the CEK for a particular
 recipient (ktri RecipientInfo CHOICE), or (b) transfers sufficient
 parameters to enable a particular recipient to independently generate
 the same KEK (kari RecipientInfo CHOICE). If the group is large,
 processing of the per-recipient information may take quite some time,
 not to mention the time required to collect and validate the PKCs for
 each of the recipients. Each recipient identifies its per-recipient
 information and uses the private key associated with the public key
 of its PKC to decrypt the CEK and hence gain access to the encrypted
 content.

 With symmetric algorithms, the origination process is slightly
 different. Instead of using PKCs, the originator uses a previously
 distributed secret key-encryption key (KEK) to encrypt the CEK (kekri
 RecipientInfo CHOICE). Only one copy of the encrypted CEK is required
 because all the recipients already have the shared KEK needed to
 decrypt the CEK and hence gain access to the encrypted content.

 The techniques to protect the shared KEK are beyond the scope of this
 document. Only the members of the list and the key manager should
 have the KEK in order to maintain confidentiality. Access control to
 the information protected by the KEK is determined by the entity that
 encrypts the information, as all members of the group have access. If
 the entity that is performing the encryption wants to ensure some
 subset of the group does not gain access to the information either a
 different KEK should be used (shared only with this smaller group) or
 asymmetric algorithms should be used.

1.1. Applicability to E-mail

 One primary audience for this distribution mechanism is e-mail.
 Distribution lists, sometimes referred to as mail lists, support the
 distribution of messages to recipients subscribed to the mail list.
 There are two models for how the mail list can be used. If the
 originator is a member of the mail list, the originator sends
 messages encrypted with the shared KEK to the mail list (e.g.,
 listserv or majordomo) and the message is distributed to the mail
 list members. If the originator is not a member of the mail list
 (does not have the shared KEK), the originator sends the message
 (encrypted for the MLA) to the mail list agent (MLA), and then the
 MLA uses the shared KEK to encrypt the message for the members. In
 either case the recipients of the mail list use the previously
 distributed-shared KEK to decrypt the message.

Turner Expires July 28, 2008 [Page 4]

Internet-Draft CMS SymKeyDist January 2008

1.2. Applicability to Repositories

 Objects can also be distributed via a repository (e.g., Lightweight
 Directory Protocol (LDAP) servers, X.500 Directory System Agents
 (DSAs), Web-based servers). If an object is stored in a repository
 encrypted with a symmetric key algorithm, anyone with the shared KEK
 and access to that object can then decrypt that object. The encrypted
 object and the encrypted, shared KEK can be stored in the repository.

1.3. Using the Group Key

 This document was written with three specific scenarios in mind: two
 supporting mail list agents and one for general message distribution.
 Scenario 1 depicts the originator sending a public key (PK) protected
 message to a MLA who then uses the shared KEK(s) to redistribute the
 message to the members of the list. Scenario 2 depicts the originator
 sending a shared KEK protected message to a MLA who then
 redistributes the message to the members of the list (the MLA only
 adds additional recipients). The key used by the originator could
 either be a key shared amongst all recipients or just between the
 member and the MLA. Note that if the originator use a key shared only
 with the MLA, then the MLA will need to decrypt the message and
 rencrypt the message for the list recipients. Scenario 3 shows an
 originator sending a shared KEK protected message to a group of
 recipients without an intermediate MLA.

 +----> +----> +---->
 PK +-----+ S | S +-----+ S | S |
 ----> | MLA | --+----> ----> | MLA | --+----> ----+---->
 +-----+ | +-----+ | |
 +----> +----> +---->
 Scenario 1 Scenario 2 Scenario 3

2. Architecture

 Figure 1 depicts the architecture to support symmetric key
 distribution. The Group List Agent (GLA) supports two distinct
 functions with two different agents:

 - The Key Management Agent (KMA) which is responsible for generating
 the shared KEKs.

 - The Group Management Agent (GMA) which is responsible for managing
 the Group List (GL) to which the shared KEKs are distributed.

Turner Expires July 28, 2008 [Page 5]

Internet-Draft CMS SymKeyDist January 2008

 +--+
 | Group List Agent | +-------+
 | +------------+ + -----------------------+ | | Group | | | | |
 | | Key | | Group Management Agent | |<-->| List |
 | | Management |<-->| +------------+ | | | Owner |
 | | Agent | | | Group List | | | +-------+
 | +------------+ | +------------+ | |
 | | / | \ | |
 | +------------------------+ |
 +--+
 / | \
 / | \
 +----------+ +---------+ +----------+
 | Member 1 | | ... | | Member n |
 +----------+ +---------+ +----------+

 Figure 1 - Key Distribution Architecture

 A GLA may support multiple KMAs. A GLA in general supports only one
 GMA, but the GMA may support multiple GLs. Multiple KMAs may support
 a GMA in the same fashion as GLAs support multiple KMAs. Assigning a
 particular KMA to a GL is beyond the scope of this document.

 Modeling real world GL implementations shows that there are very
 restrictive GLs, where a human determines GL membership, and very
 open GLs, where there are no restrictions on GL membership. To
 support this spectrum, the mechanism described herein supports both
 managed (i.e., where access control is applied) and unmanaged (i.e.,
 where no access control is applied) GLs. The access control mechanism
 for managed lists is beyond the scope of this document.

 Note: If the distribution for the list is performed by an entity
 other than the originator (e.g., an MLA distributing a mail message),
 this entity can also enforce access control rules.

 In either case, the GL must initially be constructed by an entity
 hereafter called the Group List Owner (GLO). There may be multiple
 entities who 'own' the GL and who are allowed to make changes to the
 GL's properties or membership. The GLO determines if the GL will be
 managed or unmanaged and is the only entity that may delete the GL.
 GLO(s) may or may not be GL members. GLO(s) may also set up lists
 that are closed, where the GLO solely determines GL membership.

 Though Figure 1 depicts the GLA as encompassing both the KMA and GMA
 functions, the two functions could be supported by the same entity or
 they could be supported by two different entities. If two entities
 are used, they could be located on one or two platforms. There is

Turner Expires July 28, 2008 [Page 6]

Internet-Draft CMS SymKeyDist January 2008

 however a close relationship between the KMA and GMA functions. If
 the GMA stores all information pertaining to the GLs and the KMA
 merely generates keys, a corrupted GMA could cause havoc. To protect
 against a corrupted GMA, the KMA would be forced to double check the
 requests it receives to ensure the GMA did not tamper with them.
 These duplicative checks blur the functionality of the two components
 together. For this reason, the interactions between the KMA and GMA
 are beyond the scope of this document.

 Proprietary mechanisms may be used to separate the functions by
 strengthening the trust relationship between the two entities.
 Henceforth, the distinction between the two agents is not discussed
 further; the term GLA will be used to address both functions. It
 should be noted that corrupt GLA can always cause havoc.

3. Protocol Interactions

 There are existing mechanisms (e.g., listserv and majordomo) to
 manage GLs; however, this document does not address securing these
 mechanisms, as they are not standardized. Instead, it defines
 protocol interactions, as depicted in Figure 2, used by the GL
 members, GLA, and GLO(s) to manage GLs and distribute shared KEKs.
 The interactions have been divided into administration messages and
 distribution messages. The administrative messages are the request
 and response messages needed to setup the GL, delete the GL, add
 members to the GL, delete members of the GL, request a group rekey,
 add owners to the GL, remove owners of the GL, indicate a group key
 compromise, refresh a group key, interrogate the GLA, and update
 member's and owner's public key certificates. The distribution
 messages are the messages that distribute the shared KEKs. The
 following sections describe the ASN.1 for both the administration and
 distribution messages. Section 4 describes how to use the
 administration messages, and section 5 describes how to use the
 distribution messages.

Turner Expires July 28, 2008 [Page 7]

Internet-Draft CMS SymKeyDist January 2008

 +-----+ +----------+
 | GLO | <---+ +----> | Member 1 |
 +-----+ | | +----------+
 | |
 +-----+ <------+ | +----------+
 | GLA | <-------------+----> | ... |
 +-----+ | +----------+
 |
 | +----------+
 +----> | Member n |
 +----------+

 Figure 2 - Protocol Interactions

3.1. Control Attributes

 To avoid creating an entirely new protocol, the Certificate
 Management Messages over CMS (CMC) protocol was chosen as the
 foundation of this protocol. The main reason for the choice was the
 layering aspect provided by CMC where one or more control attributes
 are included in message, protected with CMS, to request or respond to
 a desired action. The CMC PKIData structure is used for requests, and
 the CMC PKIResponse structure is used for responses. The content-
 types PKIData and PKIResponse are then encapsulated in CMS's
 SignedData or EnvelopedData, or a combination of the two (see section

3.2). The following are the control attributes defined in this
 document:

 Control
 Attribute OID Syntax
 ------------------- ----------- -----------------
 glUseKEK id-skd 1 GLUseKEK
 glDelete id-skd 2 GeneralName
 glAddMember id-skd 3 GLAddMember
 glDeleteMember id-skd 4 GLDeleteMember
 glRekey id-skd 5 GLRekey
 glAddOwner id-skd 6 GLOwnerAdministration
 glRemoveOwner id-skd 7 GLOwnerAdministration
 glkCompromise id-skd 8 GeneralName
 glkRefresh id-skd 9 GLKRefresh
 glaQueryRequest id-skd 11 GLAQueryRequest
 glaQueryResponse id-skd 12 GLAQueryResponse
 glProvideCert id-skd 13 GLManageCert
 glUpdateCert id-skd 14 GLManageCert
 glKey id-skd 15 GLKey

Turner Expires July 28, 2008 [Page 8]

Internet-Draft CMS SymKeyDist January 2008

 In the following conformance tables, the column headings have the
 following meanings: O for originate, R for receive, and F for
 forward. There are three types of implementations: GLOs, GLAs, and GL
 members. The GLO is an optional component hence all GLO O and GLO R
 messages are optional, and GLA F messages are optional. The first
 table includes messages that conformant implementions MUST support.
 The second table includes messages that MAY be implemented. The
 second table should be interpreted as follows: if the control
 attribute is implemented by a component then it must be implemented
 as indicated. For example, if a GLA is implemented that supports the
 glAddMember control attribute, then it MUST support receiving the
 glAddMember message. Note that "-" means not applicable.

 Required
 Implementation Requirement | Control
 GLO | GLA | GL Member | Attribute
 O R | O R F | O R |
 ------- | ----------------- | --------- | ----------
 MAY - | MUST - MAY | - MUST | glProvideCert
 MAY MAY | - MUST MAY | MUST - | glUpdateCert
 - - | MUST - - | - MUST | glKey

 Optional
 Implementation Requirement | Control
 GLO | GLA | GL Member | Attribute
 O R | O R F | O R |
 ------- | ----------------- | --------- | ----------
 MAY - | - MAY - | - - | glUseKEK
 MAY - | - MAY - | - - | glDelete
 MAY MAY | - MUST MAY | MUST - | glAddMember
 MAY MAY | - MUST MAY | MUST - | glDeleteMember
 MAY - | - MAY - | - - | glRekey
 MAY - | - MAY - | - - | glAddOwner
 MAY - | - MAY - | - - | glRemoveOwner
 MAY MAY | - MUST MAY | MUST - | glkCompromise
 MAY - | - MUST - | MUST - | glkRefresh
 MAY - | - SHOULD - | MAY - | glaQueryRequest
 - MAY | SHOULD - - | - MAY | glaQueryResponse

 glaQueryResponse and gloResponse are carried in the CMC PKIResponse
 content-type, all other control attributes are carried in the CMC
 PKIData content-type. The exception is glUpdateCert which can be
 carried in either PKIData or PKIResponse.

 Success and failure messages use CMC (see section 3.2.4).

Turner Expires July 28, 2008 [Page 9]

Internet-Draft CMS SymKeyDist January 2008

3.1.1. GL USE KEK

 The GLO uses glUseKEK to request that a shared KEK be assigned to a
 GL. glUseKEK messages MUST be signed by the GLO. The glUseKEK control
 attribute has the syntax GLUseKEK:

 GLUseKEK ::= SEQUENCE {
 glInfo GLInfo,
 glOwnerInfo SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
 glAdministration GLAdministration DEFAULT 1,
 glKeyAttributes GLKeyAttributes OPTIONAL }

 GLInfo ::= SEQUENCE {
 glName GeneralName,
 glAddress GeneralName }

 GLOwnerInfo ::= SEQUENCE {
 glOwnerName GeneralName,
 glOwnerAddress GeneralName,
 certificate Certificates OPTIONAL }

 Certificates ::= SEQUENCE {
 pKC [0] Certificate OPTIONAL,
 -- See [PROFILE]
 aC [1] SEQUENCE SIZE (1.. MAX) OF
 AttributeCertificate OPTIONAL,
 -- See [ACPROF]
 certPath [2] CertificateSet OPTIONAL }
 -- From [CMS]

 -- CertificateSet and CertificateChoices are included only
 -- for illustrative purposes as they are imported from [CMS].

 CertificateSet ::= SET SIZE (1..MAX) OF CertificateChoices

 -- CertificateChoices supports X.509 public key certificates in
 -- certificates and v2 attribute certificates in v2AttrCert.

 GLAdministration ::= INTEGER {
 unmanaged (0),
 managed (1),
 closed (2) }

Turner Expires July 28, 2008 [Page 10]

Internet-Draft CMS SymKeyDist January 2008

 GLKeyAttributes ::= SEQUENCE {
 rekeyControlledByGLO [0] BOOLEAN DEFAULT FALSE,
 recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
 duration [2] INTEGER DEFAULT 0,
 generationCounter [3] INTEGER DEFAULT 2,
 requestedAlgorithm [4] AlgorithmIdentifier
 DEFAULT { id-aes128-wrap } }

 The fields in GLUseKEK have the following meaning:

 - glInfo indicates the name of the GL in glName and the address of
 the GL in glAddress. The glName and glAddress can be the same,
 but this is not always the case. Both the name and address MUST
 be unique for a given GLA.

 - glOwnerInfo indicates:

 -- glOwnerName indicates the name of the owner of the GL. One of
 the names in glOwnerName MUST match one of the names in the
 certificate (either the subject distinguished name or one of
 the subject alternative names) used to sign this
 SignedData.PKIData creating the GL (i.e., the immediate
 signer).

 -- glOwnerAddress indicates the address of the owner of the GL.

 -- certificates MAY be included. It contains the following three
 fields:

 --- certificates.pKC includes the encryption certificate for
 the GLO. It will be used to encrypt responses for the
 GLO.

 --- certificates.aC MAY be included to convey any attribute
 certificate (see [ACPROF]) associated with the
 encryption certificate of the GLO included in
 certificates.pKC.

 --- certificates.certPath MAY also be included to convey
 certificates that might aid the recipient in
 constructing valid certification paths for the
 certificate provided in certificates.pKC and the
 attribute certificates provided in certificates.aC.
 Theses certificates are optional because they might
 already be included elsewhere in the message (e.g., in
 the outer CMS layer).

Turner Expires July 28, 2008 [Page 11]

Internet-Draft CMS SymKeyDist January 2008

 -- glAdministration indicates how the GL ought to be
 administered. The default is for the list to be managed.
 Three values are supported for glAdministration:

 --- Unmanaged - When the GLO sets glAdministration to
 unmanaged, it is allowing prospective members to
 request addition and deletion from the GL without GLO
 intervention.

 --- Managed - When the GLO sets glAdministration to managed,
 it is allowing prospective members to request addition
 and deletion from the GL, but the request is redirected
 by the GLA to GLO for review. The GLO makes the
 determination as to whether to honor the request.

 --- Closed - When the GLO sets glAdministration to closed,
 it is not allowing prospective members to request
 addition or deletion from the GL. The GLA will only
 accept glAddMember and glDeleteMember requests from the
 GLO.

 -- glKeyAttributes indicates the attributes the GLO wants the
 GLA to assign to the shared KEK. If this field is omitted,
 GL rekeys will be controlled by the GLA, the recipients are
 allowed to know about one another, the algorithm will be
 Triple-DES (see paragrpah 7), the shared KEK will be valid
 for a calendar month (i.e., first of the month until the
 last day of the month), and two shared KEKs will be
 distributed initially. The fields in glKeyAttributes have
 the following meaning:

 --- rekeyControlledByGLO indicates whether the GL rekey
 messages will be generated by the GLO or by the GLA.
 The default is for the GLA to control rekeys. If GL
 rekey is controlled by the GLA, the GL will continue to
 be rekeyed until the GLO deletes the GL or changes the
 GL rekey to be GLO controlled.

 --- recipientsNotMutuallyAware indicates that the GLO wants
 the GLA to distribute the shared KEK individually for
 each of the GL members (i.e., a separate glKey message
 is sent to each recipient). The default is for separate
 glKey message not to be required.

 NOTE: This supports lists where one member does not
 know the identities of the other members. For example,
 a list is configured granting submit permissions to

Turner Expires July 28, 2008 [Page 12]

Internet-Draft CMS SymKeyDist January 2008

 only one member. All other members are 'listening.' The
 security policy of the list does not allow the members
 to know who else is on the list. If a glKey is
 constructed for all of the GL members, information
 about each of the members may be derived from the
 information in RecipientInfos. To make sure the glkey
 message does not divulge information about the other
 recipients, a separate glKey message would be sent to
 each GL member.

 --- duration indicates the length of time (in days) during
 which the shared KEK is considered valid. The value
 zero (0) indicates that the shared KEK is valid for a
 calendar month in the UTC Zulu time zone. For example
 if the duration is zero (0), if the GL shared KEK is
 requested on July 24, the first key will be valid until
 the end of July and the next key will be valid for the
 entire month of August. If the value is not zero (0),
 the shared KEK will be valid for the number of days
 indicated by the value. For example, if the value of
 duration is seven (7) and the shared KEK is requested
 on Monday but not generated until Tuesday (2359); the
 shared KEKs will be valid from Tuesday (2359) to
 Tuesday (2359). The exact time of the day is determined
 when the key is generated.

 --- generationCounter indicates the number of keys the GLO
 wants the GLA to distribute. To ensure uninterrupted
 function of the GL two (2) shared KEKs at a minimum
 MUST be initially distributed. The second shared KEK is
 distributed with the first shared KEK, so that when the
 first shared KEK is no longer valid the second key can
 be used. If the GLA controls rekey then it also
 indicates the number of shared KEKs the GLO wants
 outstanding at any one time. See sections 4.5 and 5 for
 more on rekey.

 --- requestedAlgorithm indicates the algorithm and any
 parameters the GLO wants the GLA to use with the shared
 KEK. The parameters are conveyed via the
 SMIMECapabilities attribute (see [MSG]). See section 6
 for more on algorithms.

3.1.2. Delete GL

 GLOs use glDelete to request that a GL be deleted from the GLA. The
 glDelete control attribute has the syntax GeneralName. The glDelete

Turner Expires July 28, 2008 [Page 13]

Internet-Draft CMS SymKeyDist January 2008

 message MUST be signed by the GLO. The name of the GL to be deleted
 is included in GeneralName:

 DeleteGL ::= GeneralName

3.1.3. Add GL Member

 GLOs use the glAddMember to request addition of new members, and
 prospective GL members use the glAddMember to request their own
 addition to the GL. The glAddMember message MUST be signed by either
 the GLO or the prospective GL member. The glAddMember control
 attribute has the syntax GLAddMember:

 GLAddMember ::= SEQUENCE {
 glName GeneralName,
 glMember GLMember }

 GLMember ::= SEQUENCE {
 glMemberName GeneralName,
 glMemberAddress GeneralName OPTIONAL,
 certificates Certificates OPTIONAL }

 The fields in GLAddMembers have the following meaning:

 - glName indicates the name of the GL to which the member should be
 added.

 - glMember indicates the particulars for the GL member. Both of the
 following fields must be unique for a given GL:

 -- glMemberName indicates the name of the GL member.

 -- glMemberAddress indicates the GL member's address. It MUST be
 included.

 Note: In some instances the glMemberName and glMemberAddress
 may be the same, but this is not always the case.

 -- certificates MUST be included. It contains the following three
 fields:

 --- certificates.pKC includes the member's encryption
 certificate. It will be used, at least initially, to
 encrypt the shared KEK for that member. If the message is
 generated by a prospective GL member, the pKC MUST be
 included. If the message is generated by a GLO, the pKC
 SHOULD be included.

Turner Expires July 28, 2008 [Page 14]

Internet-Draft CMS SymKeyDist January 2008

 --- certificates.aC MAY be included to convey any attribute
 certificate (see [ACPROF]) associated with the member's
 encryption certificate.

 --- certificates.certPath MAY also be included to convey
 certificates that might aid the recipient in constructing
 valid certification paths for the certificate provided in
 certificates.pKC and the attribute certificates provided
 in certificates.aC. These certificates are optional
 because they might already be included elsewhere in the
 message (e.g., in the outer CMS layer).

3.1.4. Delete GL Member

 GLOs use the glDeleteMember to request deletion of GL members, and GL
 members use the glDeleteMember to request their own removal from the
 GL. The glDeleteMember message MUST be signed by either the GLO or
 the GL member. The glDeleteMember control attribute has the syntax
 GLDeleteMember:

 GLDeleteMember ::= SEQUENCE {
 glName GeneralName,
 glMemberToDelete GeneralName }

 The fields in GLDeleteMembers have the following meaning:

 - glName indicates the name of the GL from which the member should
 be removed.

 - glMemberToDelete indicates the name or address of the member to
 be deleted.

3.1.5. Rekey GL

 GLOs use the glRekey to request a GL rekey. The glRekey message MUST
 be signed by the GLO. The glRekey control attribute has the syntax
 GLRekey:

 GLRekey ::= SEQUENCE {
 glName GeneralName,
 glAdministration GLAdministration OPTIONAL,
 glNewKeyAttributes GLNewKeyAttributes OPTIONAL,
 glRekeyAllGLKeys BOOLEAN OPTIONAL }

Turner Expires July 28, 2008 [Page 15]

Internet-Draft CMS SymKeyDist January 2008

 GLNewKeyAttributes ::= SEQUENCE {
 rekeyControlledByGLO [0] BOOLEAN OPTIONAL,
 recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
 duration [2] INTEGER OPTIONAL,
 generationCounter [3] INTEGER OPTIONAL,
 requestedAlgorithm [4] AlgorithmIdentifier OPTIONAL }

 The fields in GLRekey have the following meaning:

 - glName indicates the name of the GL to be rekeyed.

 - glAdministration indicates if there is any change to how the GL
 should be administered. See section 3.1.1 for the three options.
 This field is only included if there is a change from the
 previously registered administered.

 - glNewKeyAttributes indicates whether the rekey of the GLO is
 controlled by the GLA or GL, what algorithm and parameters the
 GLO wishes to use, the duration of the key, and how many keys
 will be issued. The field is only included if there is a change
 from the previously registered glKeyAttributes.

 - glRekeyAllGLKeys indicates whether the GLO wants all of the
 outstanding GL's shared KEKs rekeyed. If it is set to TRUE then
 all outstanding KEKs MUST be issued. If it is set to FALSE then
 all outstanding KEKs need not be resissued.

3.1.6. Add GL Owner

 GLOs use the glAddOwner to request that a new GLO be allowed to
 administer the GL. The glAddOwner message MUST be signed by a
 registered GLO. The glAddOwner control attribute has the syntax
 GLOwnerAdministration:

 GLOwnerAdministration ::= SEQUENCE {
 glName GeneralName,
 glOwnerInfo GLOwnerInfo }

 The fields in GLAddOwners have the following meaning:

 - glName indicates the name of the GL to which the new GLO should
 be associated.

 - glOwnerInfo indicates the name, address, and certificates of the
 new GLO. As this message includes names of new GLOs, the
 certificates.pKC MUST be included, and it MUST include the
 encryption certificate of the new GLO.

Turner Expires July 28, 2008 [Page 16]

Internet-Draft CMS SymKeyDist January 2008

3.1.7. Remove GL Owner

 GLOs use the glRemoveOwner to request that a GLO be disassociated
 with the GL. The glRemoveOwner message MUST be signed by a registered
 GLO. The glRemoveOwner control attribute has the syntax
 GLOwnerAdministration:

 GLOwnerAdministration ::= SEQUENCE {
 glName GeneralName,
 glOwnerInfo GLOwnerInfo }

 The fields in GLRemoveOwners have the following meaning:

 - glName indicates the name of the GL to which the GLO should be
 disassociated.

 - glOwnerInfo indicates the name and address of the GLO to be
 removed. The certificates field SHOULD be omitted, as it will be
 ignored.

3.1.8. GL Key Compromise

 GL members and GLOs use glkCompromise to indicate that the shared KEK
 possessed has been compromised. The glKeyCompromise control attribute
 has the syntax GeneralName. This message is always redirected by the
 GLA to the GLO for further action. The glkCompromise MAY be included
 in an EnvelopedData generated with the compromised shared KEK. The
 name of the GL to which the compromised key is associated with is
 placed in GeneralName:

 GLKCompromise ::= GeneralName

3.1.9. GL Key Refresh

 GL members use the glkRefresh to request that the shared KEK be
 redistributed to them. The glkRefresh control attribute has the
 syntax GLKRefresh.

 GLKRefresh ::= SEQUENCE {
 glName GeneralName,
 dates SEQUENCE SIZE (1..MAX) OF Date }

 Date ::= SEQUENCE {
 start GeneralizedTime,
 end GeneralizedTime OPTIONAL }

Turner Expires July 28, 2008 [Page 17]

Internet-Draft CMS SymKeyDist January 2008

 The fields in GLKRefresh have the following meaning:

 - glName indicates the name of the GL for which the GL member wants
 shared KEKs.

 - dates indicates a date range for keys the GL member wants. The
 start field indicates the first date the GL member wants and the
 end field indicates the last date. The end date MAY be omitted
 to indicate the GL member wants all keys from the specified
 start date to the current date. Note that a procedural mechanism
 is needed to restrict users from accessing messages that they
 are not allowed to access.

3.1.10. GLA Query Request and Response

 There are situations where GLOs and GL members may need to determine
 some information from the GLA about the GL. GLOs and GL members use
 the glaQueryRequest, defined in section 3.1.10.1, to request
 information and GLAs use the glaQueryResponse, defined in section

3.1.10.2, to return the requested information. Section 3.1.10.3
 includes one request and response type and value; others may be
 defined in additional documents.

3.1.10.1. GLA Query Request

 GLOs and GL members use the glaQueryRequest to ascertain information
 about the GLA. The glaQueryRequest control attribute has the syntax
 GLAQueryRequest:

 GLAQueryRequest ::= SEQUENCE {
 glaRequestType OBJECT IDENTIFIER,
 glaRequestValue ANY DEFINED BY glaRequestType }

3.1.10.2. GLA Query Response

 GLAs return the glaQueryResponse after receiving a GLAQueryRequest.
 The glaQueryResponse MUST be signed by a GLA. The glaQueryResponse
 control attribute has the syntax GLAQueryResponse:

 GLAQueryResponse ::= SEQUENCE {
 glaResponseType OBJECT IDENTIFIER,
 glaResponseValue ANY DEFINED BY glaResponseType }

Turner Expires July 28, 2008 [Page 18]

Internet-Draft CMS SymKeyDist January 2008

3.1.10.3. Request and Response Types

 Request and Responses are registered as a pair under the following
 object identifier arc:

 id-cmc-glaRR OBJECT IDENTIFIER ::= { id-cmc 99 }

 This document defines one request/response pair for GL members and
 GLOs to query the GLA for the list of algorithm it supports. The
 following object identifier (OID) is included in the glaQueryType
 field:

 id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::={ id-cmc-glaRR 1 }

 SKDAlgRequest ::= NULL

 If the GLA supports GLAQueryRequest and GLAQueryResponse messages,
 the GLA may return the following OID in the glaQueryType field:

 id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }

 The glaQueryValue has the form of the smimeCapabilities attributes as
 defined in [MSG].

3.1.11. Provide Cert

 GLAs and GLOs use the glProvideCert to request that a GL member
 provide an updated or new encryption certificate. The glProvideCert
 message MUST be signed by either GLA or GLO. If the GL member's PKC
 has been revoked, the GLO or GLA MUST NOT use it to generate the
 EnvelopedData that encapsulates the glProvideCert request. The
 glProvideCert control attribute has the syntax GLManageCert:

 GLManageCert ::= SEQUENCE {
 glName GeneralName,
 glMember GLMember }

 The fields in GLManageCert have the following meaning:

 - glName indicates the name of the GL to which the GL member's new
 certificate is to be associated.

 - glMember indicates particulars for the GL member:

 -- glMemberName indicates the GL member's name.

Turner Expires July 28, 2008 [Page 19]

Internet-Draft CMS SymKeyDist January 2008

 -- glMemberAddress indicates the GL member's address. It MAY be
 omitted.

 -- certificates SHOULD be omitted.

3.1.12. Update Cert

 GL members and GLOs use the glUpdateCert to provide a new certificate
 for the GL. GL members can generate an unsolicited glUpdateCert or
 generate a response glUpdateCert as a result of receiveing a
 glProvideCert message. GL members MUST sign the glUpdateCert. If the
 GL member's encryption certificate has been revoked, the GL member
 MUST NOT use it to generate the EnvelopedData that encapsulates the
 glUpdateCert request or response. The glUpdateCert control attribute
 has the syntax GLManageCert:

 GLManageCert ::= SEQUENCE {
 glName GeneralName,
 glMember GLMember }

 The fields in GLManageCert have the following meaning:

 - glName indicates the name of the GL to which the GL member's new
 certificate should be associated.

 - glMember indicates the particulars for the GL member:

 -- glMemberName indicates the GL member's name.

 -- glMemberAddress indicates the GL member's address. It MAY be
 omitted.

 -- certificates MAY be omitted if the GLManageCert message is
 sent to request the GL member's certificate; otherwise, it
 MUST be included. It includes the following three fields:

 ---- certificates.pKC includes the member's encryption
 certificate that will be used to encrypt the shared KEK
 for that member.

 --- certificates.aC MAY be included to convey one or more
 attribute certificate associated with the member's
 encryption certificate.

 --- certificates.certPath MAY also be included to convey
 certificates that might aid the recipient in
 constructing valid certification paths for the

Turner Expires July 28, 2008 [Page 20]

Internet-Draft CMS SymKeyDist January 2008

 certificate provided in certificates.pKC and the
 attribute certificates provided in certificates.aC.
 These certificates is optional because they might
 already be included elsewhere in the message (e.g., in
 the outer CMS layer).

3.1.13. GL Key

 The GLA uses the glKey to distribute the shared KEK. The glKey
 message MUST be signed by the GLA. The glKey control attribute has
 the syntax GLKey:

 GLKey ::= SEQUENCE {
 glName GeneralName,
 glIdentifier KEKIdentifier, -- See [CMS]
 glkWrapped RecipientInfos, -- See [CMS]
 glkAlgorithm AlgorithmIdentifier,
 glkNotBefore GeneralizedTime,
 glkNotAfter GeneralizedTime }

 -- KEKIdentifier is included only for illustrative purposes as
 -- it is imported from [CMS].

 KEKIdentifier ::= SEQUENCE {
 keyIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 The fields in GLKey have the following meaning:

 - glName is the name of the GL.

 - glIdentifier is the key identifier of the shared KEK. See
 paragraph 6.2.3 of [CMS] for a description of the subfields.

 - glkWrapped is the wrapped shared KEK for the GL for a particular
 duration. The RecipientInfos MUST be generated as specified in
 section 6.2 of [CMS]. The ktri RecipientInfo choice MUST be
 supported. The key in the EncryptedKey field (i.e., the
 distributed shared KEK) MUST be generated according to the
 section concerning random number generation in the security
 considerations of [CMS].

 - glkAlgorithm identifies the algorithm the shared KEK is used
 with. Since no encrypted data content is being conveyed at this
 point, the parameters encoded with the algorithm should be the

Turner Expires July 28, 2008 [Page 21]

Internet-Draft CMS SymKeyDist January 2008

 structure defined for smimeCapabilities rather than encrypted
 content.

 - glkNotBefore indicates the date at which the shared KEK is
 considered valid. GeneralizedTime values MUST be expressed in
 UTC (Zulu) and MUST include seconds (i.e., times are
 YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
 GeneralizedTime values MUST NOT include fractional seconds.

 - glkNotAfter indicates the date after which the shared KEK is
 considered invalid. GeneralizedTime values MUST be expressed in
 UTC (Zulu) and MUST include seconds (i.e., times are
 YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
 GeneralizedTime values MUST NOT include fractional seconds.

 If the glKey message is in response to a glUseKEK message:

 - The GLA MUST generate separate glKey messages for each recipient
 if glUseKEK.glKeyAttributes.recipientsNotMutuallyAware is set to
 TRUE. For each recipient, you want to generate a message that
 contains that recipient's key (i.e., one message with one
 attribute).

 - The GLA MUST generate the requested number of glKey messages. The
 value in glUseKEK.glKeyAttributes.generationCounter indicates
 the number of glKey messages requested.

 If the glKey message is in response to a glRekey message:

 - The GLA MUST generate separate glKey messages for each recipient
 if glRekey.glNewKeyAttributes.recipientsNotMutuallyAware is set
 to TRUE.

 - The GLA MUST generate the requested number of glKey messages. The
 value in glUseKEK.glKeyAttributes.generationCounter indicates
 the number of glKey messages requested.

 - The GLA MUST generate one glKey messagefor each outstanding
 shared KEKs for the GL when glRekeyAllGLKeys is set to TRUE.

 If the glKey message was not in response to a glRekey or glUseKEK
 (e.g., where the GLA controls rekey):

 - The GLA MUST generate separate glKey messages for each recipient
 when glUseKEK.glNewKeyAttributes.recipientsNotMutuallyAware that
 set up the GL was set to TRUE.

Turner Expires July 28, 2008 [Page 22]

Internet-Draft CMS SymKeyDist January 2008

 - The GLA MAY generate glKey messages prior to the duration on the
 last outstanding shared KEK expiring, where the number of glKey
 messages generated is generationCounter minus one (1). Other
 distribution mechanisms can also be supported to support this
 functionality.

3.2. Use of CMC, CMS, and PKIX

 The following sections outline the use of CMC, CMS, and the PKIX
 certificate and CRL profile.

3.2.1. Protection Layers

 The following sections outline the protection required for the
 control attributes defined in this document.

 Note: There are multiple ways to encapsulate SignedData and
 EnvelopedData. The first is to use a MIME wrapper around each
 ContentInfo, as specified in [MSG]. The second is to not use a MIME
 wrapper around each ContentInfo, as specified in Transporting S/MIME
 Objects in X.400 [X400TRANS].

3.2.1.1. Minimum Protection

 At a minimum, a SignedData MUST protect each request and response
 encapsulated in PKIData and PKIResponse. The following is a depiction
 of the minimum wrappings:

 Minimum Protection

 SignedData
 PKIData or PKIResponse
 controlSequence

 Prior to taking any action on any request or response SignedData(s)
 MUST be processed according to [CMS].

Turner Expires July 28, 2008 [Page 23]

Internet-Draft CMS SymKeyDist January 2008

3.2.1.2. Additional Protection

 An additional EnvelopedData MAY also be used to provide
 confidentiality of the request and response. An additional SignedData
 MAY also be added to provide authentication and integrity of the
 encapsulated EnvelopedData. The following is a depiction of the
 optional additional wrappings:

 Authentication and Integrity
 Confidentiality Protection of Confidentiality Protection
 -------------------------- -----------------------------
 EnvelopedData SignedData
 SignedData EnvelopedData
 PKIData or PKIResponse SignedData
 controlSequence PKIData or PKIResponse
 controlSequence

 If an incoming message is encrypted, the confidentiality of the
 message MUST be preserved. All EnvelopedData objects MUST be
 processed as specified in [CMS]. If a SignedData is added over an
 EnvelopedData, a ContentHints attribute SHOULD be added. See
 paragraph 2.9 of Extended Security Services for S/MIME [ESS].

 If the GLO or GL member applies confidentiality to a request, the
 EnvelopedData MUST include the GLA as a recipient. If the GLA
 forwards the GL member request to the GLO, then the GLA MUST decrypt
 the EnvelopedData content, strip the confidentiality layer, and apply
 its own confidentiality layer as an EnvelopedData with the GLO as a
 recipient.

Turner Expires July 28, 2008 [Page 24]

Internet-Draft CMS SymKeyDist January 2008

3.2.2. Combining Requests and Responses

 Multiple requests and response corresponding to a GL MAY be included
 in one PKIData.controlSequence or PKIResponse.controlSequence.
 Requests and responses for multiple GLs MAY be combined in one
 PKIData or PKIResponse by using PKIData.cmsSequence and
 PKIResponse.cmsSequence. A separate cmsSequence MUST be used for
 different GLs. That is, requests corresponding to two different GLs
 are included in different cmsSequences. The following is a diagram
 depicting multiple requests and responses combined in one PKIData and
 PKIResponse:

 Multiple Request and Response
 Request Response
 ------- --------
 SignedData SignedData
 PKIData PKIResponse
 cmsSequence cmsSequence
 SignedData SignedData
 PKIData PKIResponse
 controlSequence controlSequence
 One or more requests One or more responses
 corresponding to one GL corresponding to one GL
 SignedData SignedData
 PKIData PKIResponse
 controlSequence controlSequence
 One or more requests One or more responses
 corresponding to another GL corresponding to another GL

 When applying confidentiality to multiple requests and responses, all
 of the requests/response MAY be included in one EnvelopedData.

Turner Expires July 28, 2008 [Page 25]

Internet-Draft CMS SymKeyDist January 2008

 The following is a depiction:

 Confidentiality of Multiple Requests and Responses
 Wrapped Together

 EnvelopedData
 SignedData
 PKIData
 cmsSequence
 SignedData
 PKIResponse
 controlSequence
 One or more requests
 corresponding to one GL
 SignedData
 PKIData
 controlSequence
 One or more requests
 corresponding to one GL

 Certain combinations of requests in one PKIData.controlSequence and
 one PKIResponse.controlSequence are not allowed. The invalid
 combinations listed here MUST NOT be generated:

 Invalid Combinations

 glUseKEK & glDeleteMember
 glUseKEK & glRekey
 glUseKEK & glDelete
 glDelete & glAddMember
 glDelete & glDeleteMember
 glDelete & glRekey
 glDelete & glAddOwner
 glDelete & glRemoveOwner

 To avoid unnecessary errors, certain requests and responses SHOULD be
 processed prior to others. The following is the priority of message
 processing, if not listed it is an implementation decision as to
 which to process first: glUseKEK before glAddMember, glRekey before
 glAddMember, and glDeleteMember before glRekey. Note that there is a
 processing priority but it does not imply an ordering within the
 content.

3.2.3. GLA Generated Messages

 When the GLA generates a success or fail message, it generates one
 for each request. SKDFailInfo values of unsupportedDuration,

Turner Expires July 28, 2008 [Page 26]

Internet-Draft CMS SymKeyDist January 2008

 unsupportedDeliveryMethod, unsupportedAlgorithm, noGLONameMatch,
 nameAlreadyInUse, alreadyAnOwner, notAnOwner are not returned to GL
 members.

 If GLKeyAttributes.recipientsNotMutuallyAware is set to TRUE, a
 separate PKIResponse.cMCStatusInfoExt and PKIData.glKey MUST be
 generated for each recipient. However, it is valid to send one
 message with multiple attributes to the same recipient.

 If the GL has multiple GLOs, the GLA MUST send cMCStatusInfoExt
 messages to the requesting GLO. The mechanism to determine which GLO
 made the request is beyond the scope of this document.

 If a GL is managed and the GLA receives a glAddMember,
 glDeleteMember, or glkCompromise message, the GLA redirects the
 request to the GLO for review. An additional, SignedData MUST be
 applied to the redirected request as follows:

 GLA Forwarded Requests

 SignedData
 PKIData
 cmsSequence
 SignedData
 PKIData
 controlSequence

3.2.4. CMC Control Attributes and CMS Signed Attributes

 CMC carries control attributes as CMS signed attributes. These
 attributes are defined in [CMC] and [CMS]. Some of these attributes
 are REQUIRED; others are OPTIONAL. The required attributes are as
 follows: cMCStatusInfoExt transactionId, senderNonce, recipientNonce,
 queryPending, and signingTime. Other attributes can also be used;
 however, their use is beyond the scope of this document. The
 following sections specify requirements in addition to those already
 specified in [CMC] and [CMS].

3.2.4.1. Using cMCStatusInfoExt

 cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
 that a request was unsuccessful. Two classes of failure codes are
 used within this document. Errors from the CMCFailInfo list, found in

section 5.1.4 of CMC, are encoded as defined in CMC. Error codes
 defined in this document are encoded using the ExtendedFailInfo field
 of the cmcStatusInfoExt structure. If the same failure code applies
 to multiple commands, a single cmcStatusInfoExt structure can be used

Turner Expires July 28, 2008 [Page 27]

Internet-Draft CMS SymKeyDist January 2008

 with multiple items in cMCStatusInfoExt.bodyList. The GLA MAY also
 return other pertinent information in statusString. The SKDFailInfo
 object identifier and value are:

 id-cet-skdFailInfo OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }

 SKDFailInfo ::= INTEGER {
 unspecified (0),
 closedGL (1),
 unsupportedDuration (2),
 noGLACertificate (3),
 invalidCert (4),
 unsupportedAlgorithm (5),
 noGLONameMatch (6),
 invalidGLName (7),
 nameAlreadyInUse (8),
 noSpam (9),
 deniedAccess (10),
 alreadyAMember (11),
 notAMember (12),
 alreadyAnOwner (13),
 notAnOwner (14) }

 The values have the following meaning:

 - unspecified indicates that the GLA is unable or unwilling to
 perform the requested action and does not want to indicate the
 reason.

 - closedGL indicates that members can only be added or deleted by
 the GLO.

 - unsupportedDuration indicates the GLA does not support generating
 keys that are valid for the requested duration.

 - noGLACertificate indicates that the GLA does not have a valid
 certificate.

 - invalidCert indicates the member's encryption certificate was not
 verifiable (i.e., signature did not validate, certificate's
 serial number present on a CRL, expired, etc.).

 - unsupportedAlgorithm indicates the GLA does not support the
 requested algorithm.

Turner Expires July 28, 2008 [Page 28]

Internet-Draft CMS SymKeyDist January 2008

 - noGLONameMatch indicates that one of the names in the certificate
 used to sign a request does not match the name of a registered
 GLO.

 - invalidGLName indicates the GLA does not support the glName
 present in the request.

 - nameAlreadyInUse indicates the glName is already assigned on the
 GLA.

 - noSpam indicates the prospective GL member did not sign the
 request (i.e., if the name in glMember.glMemberName does not
 match one of the names (either the subject distinguished name or
 one of the subject alternative names) in the certificate used to
 sign the request).

 - alreadyAMember indicates the prospective GL member is already a
 GL member.

 - notAMember indicates the prospective GL member to be deleted is
 not presently a GL member.

 - alreadyAnOwner indicates the prospective GLO is already a GLO.

 - notAnOwner indicates the prospective GLO to be deleted is not
 presently a GLO.

 cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
 that a request was successfully completed. If the request was
 successful, the GLA returns a cMCStatusInfoExt response with
 cMCStatus.success and optionally other pertinent information in
 statusString.

 When the GL is managed and the GLO has reviewed GL member initiated
 glAddMember, glDeleteMember, and glkComrpomise requests, the GLO uses
 cMCStatusInfoExt to indicate the success or failure of the request.
 If the request is allowed, cMCStatus.success is returned and
 statusString is optionally returned to convey additional information.
 If the request is denied, cMCStatus.failed is returned and
 statusString is optionally returned to convey additional information.
 Additionally, the appropriate SKDFailInfo can be included in
 cMCStatusInfoExt.extendedFailInfo.

 cMCStatusInfoExt is used by GLOs, GLAs, and GL members to indicate
 that signature verification failed. If the signature failed to verify
 over any control attibute except a cMCStatusInfoExt, a
 cMCStatusInfoExt control attribute MUST be returned indicating

Turner Expires July 28, 2008 [Page 29]

Internet-Draft CMS SymKeyDist January 2008

 cMCStatus.failed and otherInfo.failInfo.badMessageCheck. If the
 signature over the outermost PKIData failed, the bodyList value is
 zero (0). If the signature over any other PKIData failed the bodyList
 value is the bodyPartId value from the request or response. GLOs and
 GL members who receive cMCStatusInfoExt messages whose signatures are
 invalid SHOULD generate a new request to avoid badMessageCheck
 message loops.

 cMCStatusInfoExt is also used by GLOs and GLAs to indicate that a
 request could not be performed immediately. If the request could not
 be processed immediately by the GLA or GLO, the cMCStatusInfoExt
 control attribute MUST be returned indicating cMCStatus.pending and
 otherInfo.pendInfo. When requests are redirected to the GLO for
 approval (for managed lists), the GLA MUST NOT return a
 cMCStatusInfoExt indicating query pending.

 cMCStatusInfoExt is also used by GLAs to indicate that a
 glaQueryRequest is not supported. If the glaQueryRequest is not
 supported, the cMCStatusInfoExt control attribute MUST be returned
 indicating cMCStatus.noSupport and statusString is optionally
 returned to convey additional information.

 cMCStatusInfoExt is also used by GL members, GLOs, and GLAs to
 indicate that the signingTime (see section 3.2.4.3) is not close
 enough to the locally specified time. If the local time is not close
 enough to the time specified in signingTime, a cMCStatus.failed and
 otherInfo.failInfo.badTime MAY be returned.

3.2.4.2. Using transactionId

 transactionId MAY be included by GLOs, GLAs, or GL members to
 identify a given transaction. All subsequent requests and responses
 related to the original request MUST include the same transactionId
 control attribute. If GL members include a transactionId and the
 request is redirected to the GLO, the GLA MAY include an additional
 transactionId in the outer PKIData. If the GLA included an additional
 transactionId in the outer PKIData, when the GLO generates a
 cMCStatusInfoExt response it generates one for the GLA with the GLA's
 transactionId and one for the GL member with the GL member's
 transactionId.

3.2.4.3. Using nonces and signingTime

 The use of nonces (see section 5.6 of [CMC]) and an indication of
 when the message was signed (see section 11.3 of [CMS]) can be used
 to provide application-level replay prevention.

Turner Expires July 28, 2008 [Page 30]

Internet-Draft CMS SymKeyDist January 2008

 To protect the GL, all messages MUST include the signingTime
 attribute. Message originators and recipients can then use the time
 provided in this attribute to determine whether they have previously
 received the message.

 If the originating message includes a senderNonce, the response to
 the message MUST include the received senderNonce value as the
 recipientNonce and a new value as the senderNonce value in the
 response.

 If a GLA aggragates multiple messages together or forwards a message
 to a GLO, the GLA MAY optionally generate a new nonce value and
 include that in the wrapping message. When the response comes back
 from the GLO, the GLA builds a response to the originator(s) of the
 message(s) and deals with each of the nonce values from the
 originating messages.

 For these attributes it is necessary to maintain state information on
 exchanges to compare one result to another. The time period for which
 this information is maintained in a local policy.

3.2.4.4. CMC and CMS Attribute Support Requirements

 The following are the implementation requirements for CMC control
 attributes and CMS signed attributes for an implementation be
 considered conformant to this specification:

 Implementation Requirement |
 GLO | GLA | GL Member | Attribute
 O R | O R F | O R |
 --------- | ------------- | --------- | ----------
 MUST MUST | MUST MUST - | MUST MUST | cMCStatusInfoExt
 MAY MAY | MUST MUST - | MAY MAY | transactionId
 MAY MAY | MUST MUST - | MAY MAY | senderNonce
 MAY MAY | MUST MUST - | MAY MAY | recepientNonce
 MUST MUST | MUST MUST - | MUST MUST | SKDFailInfo
 MUST MUST | MUST MUST - | MUST MUST | signingTime

3.2.5. Resubmitted GL Member Messages

 When the GL is managed, the GLA forwards the GL member requests to
 the GLO for GLO approval by creating a new request message containing
 the GL member request(s) as a cmsSequence item. If the GLO approves
 the request it can either add a new layer of wrapping and send it
 back to the GLA or create a new message and send it to the GLA. (Note
 in this case there are now 3 layers of PKIData messages with
 appropriate signing layers.)

Turner Expires July 28, 2008 [Page 31]

Internet-Draft CMS SymKeyDist January 2008

3.2.6. PKIX Certificate and CRL Profile

 Signatures, certificates, and CRLs are verified according to the PKIX
 profile [PROFILE].

 Name matching is performed according to the PKIX profile [PROFILE].

 All distinguished name forms must follow the UTF8String convention
 noted in the PKIX profile [PROFILE].

 A certificate per-GL would be issued to the GLA.

 GL policy may mandate that the GL member's address be included in the
 GL member's certificate.

4. Administrative Messages

 There are a number of administrative messages that must be performed
 to manage a GL. The following sections describe each request and
 response message combination in detail. The procedures defined in
 this section are not prescriptive.

4.1. Assign KEK To GL

 Prior to generating a group key, a GL needs to be setup and a shared
 KEK assigned to the GL. Figure 3 depicts the protocol interactions to
 setup and assign a shared KEK. Note that error messages are not
 depicted in Figure 3. Additionally, behavior for the optional
 transactionId, senderNonce, and recipientNonce CMC control attributes
 is not addressed in these procedures.

 +-----+ 1 2 +-----+
 | GLA | <-------> | GLO |
 +-----+ +-----+

 Figure 3 - Create Group List

 The process is as follows:

 1 - The GLO is the entity responsible for requesting the creation
 of the GL. The GLO sends a
 SignedData.PKIData.controlSequence.glUseKEK request to the GLA
 (1 in Figure 3). The GLO MUST include: glName, glAddress,
 glOwnerName, glOwnerAddress, and glAdministration. The GLO MAY
 also include their preferences for the shared KEK in
 glKeyAttributes by indicating whether the GLO controls the
 rekey in rekeyControlledByGLO, whether separate glKey messages

Turner Expires July 28, 2008 [Page 32]

Internet-Draft CMS SymKeyDist January 2008

 should be sent to each recipient in recipientsNotMutuallyAware,
 the requested algorithm to be used with the shared KEK in
 requestedAlgorithm, the duration of the shared KEK, and how
 many shared KEKs should be initially distributed in
 generationCounter. The GLO MUST also include the signingTime
 attribute with this request.

 1.a - If the GLO knows of members to be added to the GL, the
 glAddMember request(s) MAY be included in the same
 controlSequence as the glUseKEK request (see section 3.2.2).
 The GLO indicates the same glName in the glAddMember request
 as in glUseKEK.glInfo.glName. Further glAddMember procedures
 are covered in section 4.3.

 1.b - The GLO can apply confidentiality to the request by
 encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.c - The GLO can also optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request, the GLA checks the signingTime and
 verifies the signature on the inner most SignedData.PKIData. If
 an additional SignedData and/or EnvelopedData encapsulates the
 request (see sections 3.2.1.2 and 3.2.2), the GLA verifies the
 outer signature(s) and/or decrypt the outer layer(s) prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 do not verify, the GLA returns a cMCStatusInfoExt response
 indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures do verify but the GLA does not have a
 valid certificate, the GLA returns a cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of noValidGLACertificate. Additionally, a signingTime
 attribute is included with the response. Instead of
 immediately returning the error code, the GLA attempts to
 get a certificate, possibly using [CMC].

Turner Expires July 28, 2008 [Page 33]

Internet-Draft CMS SymKeyDist January 2008

 2.d - Else the signatures are valid and the GLA does have a valid
 certificate, the GLA checks that one of the names in the
 certificate used to sign the request matches one of the
 names in glUseKEK.glOwnerInfo.glOwnerName.

 2.d.1 - If the names do not match, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noGLONameMatch. Additionally, a signingTime attribute is
 included with the response.

 2.d.2 - Else if the names all match, the GLA checks that the glName
 and glAddress is not already in use. The GLA also checks
 any glAddMember included within the controlSequence with
 this glUseKEK. Further processing of the glAddMember is
 covered in section 4.3.

 2.d.2.a - If the glName is already in use the GLA returns a
 response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 nameAlreadyInUse. Additionally, a signingTime attribute
 is included with the response.

 2.d.2.b - Else if the requestedAlgorithm is not supported, the GLA
 returns a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unsupportedAlgorithm. Additionally, a signingTime
 attribute is included with the response.

 2.d.2.c - Else if the duration cannot be supported, determining
 this is beyond the scope of this document, the GLA
 returns a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unsupportedDuration. Additionally, a signingTime
 attribute is included with the response.

 2.d.2.d - Else if the GL cannot be supported for other reasons,
 which the GLA does not wish to disclose, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unspecified. Additionally, a signingTime attribute is
 included with the response.

Turner Expires July 28, 2008 [Page 34]

Internet-Draft CMS SymKeyDist January 2008

 2.d.2.e - Else if the glName is not already in use, the duration
 can be supported, and the requestedAlgorithm is
 supported, the GLA MUST return a cMCStatusInfoExt
 indicating cMCStatus.success and a signingTime attribute.
 (2 in Figure 3). The GLA also takes administrative
 actions, which are beyond the scope of this document, to
 store the glName, glAddress, glKeyAttributes,
 glOwnerName, and glOwnerAddress. The GLA also sends a
 glKey message as described in section 5.

 2.d.2.e.1 - The GLA can apply confidentiality to the response by
 encapsulating the SignedData.PKIResponse in an
 EnvelopedData if the request was encapsulated in an
 EnvelopedData (see section 3.2.1.2).

 2.d.2.e.2 - The GLA can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 3 - Upon receipt of the cMCStatusInfoExt responses, the GLO checks
 the signingTime and verifies the GLA signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GLO verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 do verify, the GLO MUST check that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO should
 not believe the response.

 3.b.2 - Else if the name of the GL does match the name present in
 the certificate and:

 3.b.2.a - If the signatures do verify and the response was
 cMCStatusInfoExt indicating cMCStatus.success, the GLO
 has successfully created the GL.

Turner Expires July 28, 2008 [Page 35]

Internet-Draft CMS SymKeyDist January 2008

 3.b.2.b - Else if the signatures are valid and the response is
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 GLO can reattempt to create the GL using the information
 provided in the response. The GLO can also use the
 glaQueryRequest to determine the algorithms and other
 characteristics supported by the GLA (see section 4.9).

4.2. Delete GL From GLA

 From time to time, there are instances when a GL is no longer needed.
 In this case, the GLO deletes the GL. Figure 4 depicts that protocol
 interactions to delete a GL. Note that behavior for the optional
 transactionId, senderNonce, and recipientNonce CMC control attributes
 is not addressed in these procedures.

 +-----+ 1 2 +-----+
 | GLA | <-------> | GLO |
 +-----+ +-----+

 Figure 4 - Delete Group List

 The process is as follows:

 1 - The GLO is responsible for requesting the deletion of the GL.
 The GLO sends a SignedData.PKIData.controlSequence.glDelete
 request to the GLA (1 in Figure 4). The name of the GL to be
 deleted is included in GeneralName. The GLO MUST also include
 the signingTime attribute and can also include a transactionId
 and senderNonce attributes.

 1.a - The GLO can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.b - The GLO MAY optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request the GLA checks the signingTime and
 verifies the signature on the inner most SignedData.PKIData. If
 an additional SignedData and/or EnvelopedData encapsulates the
 request (see section 3.2.1.2 or 3.2.2), the GLA verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response

Turner Expires July 28, 2008 [Page 36]

Internet-Draft CMS SymKeyDist January 2008

 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GLA returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures verify, the GLA makes sure the GL is
 supported by checking the name of the GL matches a glName
 stored on the GLA.

 2.c.1 - If the glName is not supported by the GLA, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of invalidGLName. Additionally, a signingTime
 attribute is included with the response.

 2.c.2 - Else if the glName is supported by the GLA, the GLA ensures
 a registered GLO signed the glDelete request by checking if
 one of the names present in the digital signature
 certificate used to sign the glDelete request matches a
 registered GLO.

 2.c.2.a - If the names do not match, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noGLONameMatch. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b - Else if the names do match, but the GL cannot be deleted
 for other reasons, which the GLA does not wish to
 disclose, the GLA returns a response indicating
 cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unspecified. Additionally, a signingTime attribute is
 included with the response. Actions beyond the scope of
 this document must then be taken to delete the GL from
 the GLA.

 2.c.2.c - Else if the names do match, the GLA returns a
 cMCStatusInfoExt indicating cMCStatus.success and a
 signingTime attribute (2 in Figure 4). The GLA ought not
 accept further requests for member additions, member
 deletions, or group rekeys for this GL.

Turner Expires July 28, 2008 [Page 37]

Internet-Draft CMS SymKeyDist January 2008

 2.c.2.c.1 - The GLA can apply confidentiality to the response by
 encapsulating the SignedData.PKIResponse in an
 EnvelopedData if the request was encapsulated in an
 EnvelopedData (see section 3.2.1.2).

 2.c.2.c.2 - The GLA MAY optionally apply another SignedData over
 the EnvelopedData (see section 3.2.1.2).

 3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks
 the signingTime and verifies the GLA signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GLO verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 verify, the GLO checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO should
 not believe the response.

 3.b.2 - Else if the name of the GL does match the name present in
 the certificate and:

 3.b.2.a - If the signatures verify and the response was
 cMCStatusInfoExt indicating cMCStatus.success, the GLO
 has successfully deleted the GL.

 3.b.2.b - Else if the signatures do verify and the response was
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 GLO can reattempt to delete the GL using the information
 provided in the response.

4.3. Add Members To GL

 To add members to GLs, either the GLO or prospective members use the
 glAddMember request. The GLA processes GLO and prospective GL member
 requests differently though. GLOs can submit the request at any time
 to add members to the GL, and the GLA, once it has verified the

Turner Expires July 28, 2008 [Page 38]

Internet-Draft CMS SymKeyDist January 2008

 request came from a registered GLO, should process it. If a
 prospective member sends the request, the GLA needs to determine how
 the GL is administered. When the GLO initially configured the GL,
 they set the GL to be unmanaged, managed, or closed (see section

3.1.1). In the unmanaged case, the GLA merely processes the member's
 request. For the managed case, the GLA forwards the requests from the
 prospective members to the GLO for review. Where there are multiple
 GLOs for a GL, which GLO the request is forwarded to is beyond the
 scope of this document. The GLO reviews the request and either
 rejects it or submits a reformed request to the GLA. In the closed
 case, the GLA will not accept requests from prospective members. The
 following sections describe the processing for the GLO(s), GLA, and
 prospective GL members depending on where the glAddMeber request
 originated, either from a GLO or from prospective members. Figure 5
 depicts the protocol interactions for the three options. Note that
 the error messages are not depicted. Additionally, note that behavior
 for the optional transactionId, senderNonce, and recipientNonce CMC
 control attributes is not addressed in these procedures.

 +-----+ 2,B{A} 3 +----------+
 | GLO | <--------+ +-------> | Member 1 |
 +-----+ | | +----------+
 1 | |
 +-----+ <--------+ | 3 +----------+
 | GLA | A +-------> | ... |
 +-----+ <-------------+ +----------+
 |
 | 3 +----------+
 +-------> | Member n |
 +----------+

 Figure 5 - Member Addition

 An important decision that needs to be made on a group by group basis
 is whether to rekey the group every time a new member is added.
 Typically, unmanaged GLs should not be rekeyed when a new member is
 added, as the overhead associated with rekeying the group becomes
 prohibitive, as the group becomes large. However, managed and closed
 GLs can be rekeyed to maintain the confidentiality of the traffic
 sent by group members. An option to rekeying managed or closed GLs
 when a member is added is to generate a new GL with a different group
 key. Group rekeying is discussed in sections 4.5 and 5.

Turner Expires July 28, 2008 [Page 39]

Internet-Draft CMS SymKeyDist January 2008

4.3.1. GLO Initiated Additions

 The process for GLO initiated glAddMember requests is as follows:

 1 - The GLO collects the pertinent information for the member(s) to
 be added (this may be done through an out of bands means). The
 GLO then sends a SignedData.PKIData.controlSequence with a
 separate glAddMember request for each member to the GLA (1 in
 Figure 5). The GLO includes: the GL name in glName, the
 member's name in glMember.glMemberName, the member's address in
 glMember.glMemberAddress, and the member's encryption
 certificate in glMember.certificates.pKC. The GLO can also
 include any attribute certificates associated with the member's
 encryption certificate in glMember.certificates.aC, and the
 certification path associated with the member's encryption and
 attribute certificates in glMember.certificates.certPath. The
 GLO MUST also include the signingTime attribute with this
 request.

 1.a - The GLO can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.b - The GLO can also optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request, the GLA checks the signingTime and
 verifies the signature on the inner most SignedData.PKIData. If
 an additional SignedData and/or EnvelopedData encapsulates the
 request (see section 3.2.1.2 or 3.2.2), the GLA verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GLA returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures verify, the glAddMember request is
 included in a controlSequence with the glUseKEK request, and
 the processing in section 4.1 item 2.e is successfully

Turner Expires July 28, 2008 [Page 40]

Internet-Draft CMS SymKeyDist January 2008

 completed the GLA returns a cMCStatusInfoExt indicating
 cMCStatus.success and a signingTime attribute (2 in Figure
 5).

 2.c.1 - The GLA can apply confidentiality to the response by
 encapsulating the SignedData.PKIData in an EnvelopedData if
 the request was encapsulated in an EnvelopedData (see

section 3.2.1.2).

 2.c.2 - The GLA can also optionally apply another SignedData over
 the EnvelopedData (see section 3.2.1.2).

 2.d - Else if the signatures verify and the GLAddMember request is
 not included in a controlSequence with the GLCreate request,
 the GLA makes sure the GL is supported by checking that the
 glName matches a glName stored on the GLA.

 2.d.1 - If the glName is not supported by the GLA, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of invalidGLName. Additionally, a signingTime
 attribute is included with the response.

 2.d.2 - Else if the glName is supported by the GLA, the GLA checks
 to see if the glMemberName is present on the GL.

 2.d.2.a - If the glMemberName is present on the GL, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 alreadyAMember. Additionally, a signingTime attribute is
 included with the response.

 2.d.2.b - Else if the glMemberName is not present on the GL, the
 GLA checks how the GL is administered.

 2.d.2.b.1 - If the GL is closed, the GLA checks that a registered
 GLO signed the request by checking that one of the
 names in the digital signature certificate used to
 sign the request matches a registered GLO.

 2.d.2.b.1.a - If the names do not match, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noGLONameMatch. Additionally, a signingTime attribute
 is included with the response.

Turner Expires July 28, 2008 [Page 41]

Internet-Draft CMS SymKeyDist January 2008

 2.d.2.b.1.b - Else if the names match, the GLA verifies the
 member's encryption certificate.

 2.d.2.b.1.b.1 - If the member's encryption certificate cannot be
 verified, the GLA can return a response indicating
 cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 invalidCert to the GLO. Additionally, a
 signingTime attribute is included with the
 response. If the GLA does not return a
 cMCStatusInfoExt.cMCStatus.failed response, the
 GLA issues a glProvideCert request (see section

4.10).

 2.d.2.b.1.b.2 - Else if the member's certificate verifies, the GLA
 returns a cMCStatusInfoExt indicating
 cMCStatus.success and a signingTime attribute (2
 in Figure 5). The GLA also takes administrative
 actions, which are beyond the scope of this
 document, to add the member to the GL stored on
 the GLA. The GLA also distributes the shared KEK
 to the member via the mechanism described in

section 5.

 2.d.2.b.1.b.2.a - The GLA applies confidentiality to the response
 by encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

 2.d.2.b.1.b.2.b - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 2.d.2.b.2 - Else if the GL is managed, the GLA checks that either a
 registered GLO or the prospective member signed the
 request. For GLOs, one of the names in the certificate
 used to sign the request needs to match a registered
 GLO. For the prospective member, the name in
 glMember.glMemberName needs to match one of the names
 in the certificate used to sign the request.

 2.d.2.b.2.a - If the signer is neither a registered GLO nor the
 prospective GL member, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noSpam. Additionally, a signingTime attribute is
 included with the response.

Turner Expires July 28, 2008 [Page 42]

Internet-Draft CMS SymKeyDist January 2008

 2.d.2.b.2.b - Else if the signer is a registered GLO, the GLA
 verifies the member's encryption certificate.

 2.d.2.b.2.b.1 - If the member's certificate cannot be verified, the
 GLA can return a response indicating
 cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 invalidCert. Additionally, a signingTime attribute
 is included with the response. If the GLA does not
 return a cMCStatus.failed response, the GLA MUST
 issue a glProvideCert request (see section 4.10).

 2.d.2.b.2.b.2 - Else if the member's certificate verifies, the GLA
 MUST return a cMCStatusInfoExt indicating
 cMCStatus.success and a signingTime attribute to
 the GLO (2 in Figure 5). The GLA also takes
 administrative actions, which are beyond the scope
 of this document, to add the member to the GL
 stored on the GLA. The GLA also distributes the
 shared KEK to the member via the mechanism
 described in section 5. The GL policy may mandate
 that the GL member's address be included in the GL
 member's certificate.

 2.d.2.b.2.b.2.a - The GLA applies confidentiality to the response
 by encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

 2.d.2.b.2.b.2.b - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 2.d.2.b.2.c - Else if the signer is the prospective member, the GLA
 forwards the glAddMember request (see section

3.2.3) to a registered GLO (B{A} in Figure 5). If
 there is more than one registered GLO, the GLO to
 which the request is forwarded to is beyond the
 scope of this document. Further processing of the
 forwarded request by GLOs is addressed in 3 of

section 4.3.2.

 2.d.2.b.2.c.1 - The GLA applies confidentiality to the forwarded
 request by encapsulating the SignedData.PKIData in
 an EnvelopedData if the original request was
 encapsulated in an EnvelopedData (see section

3.2.1.2).

Turner Expires July 28, 2008 [Page 43]

Internet-Draft CMS SymKeyDist January 2008

 2.d.2.b.2.c.2 - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 2.d.2.b.3 - Else if the GL is unmanaged, the GLA checks that either
 a registered GLO or the prospective member signed the
 request. For GLOs, one of the names in the certificate
 used to sign the request needs tp match the name of a
 registered GLO. For the prospective member, the name
 in glMember.glMemberName needs to match one of the
 names in the certificate used to sign the request.

 2.d.2.b.3.a - If the signer is neither a registered GLO nor the
 prospective member, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noSpam. Additionally, a signingTime attribute is
 included with the response.

 2.d.2.b.3.b - Else if the signer is either a registered GLO or the
 prospective member, the GLA verifies the member's
 encryption certificate.

 2.d.2.b.3.b.1 - If the member's certificate cannot be verified, the
 GLA can return a response indicating
 cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 invalidCert and a signingTime attribute to either
 the GLO or the prospective member depending on
 where the request originated. If the GLA does not
 return a cMCStatus.failed response, the GLA issues
 a glProvideCert request (see section 4.10) to
 either the GLO or prospective member depending on
 where the request originated.

 2.d.2.b.3.b.2 - Else if the member's certificate verifies, the GLA
 returns a cMCStatusInfoExt indicating
 cMCStatus.success and a signingTime attribute to
 the GLO (2 in Figure 5) if the GLO signed the
 request and to the GL member (3 in Figure 5) if
 the GL member signed the request. The GLA also
 takes administrative actions, which are beyond the
 scope of this document, to add the member to the
 GL stored on the GLA. The GLA also distributes the
 shared KEK to the member via the mechanism
 described in section 5.

Turner Expires July 28, 2008 [Page 44]

Internet-Draft CMS SymKeyDist January 2008

 2.d.2.b.3.b.2.a - The GLA applies confidentiality to the response
 by encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

 2.d.2.b.3.b.2.b - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks
 the signingTime and verifies the GLA signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GLO verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 verify, the GLO checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO should
 not believe the response.

 3.b.2 - Else if the name of the GL matches the name present in the
 certificate and:

 3.b.2.a - If the signatures verify and the response is
 cMCStatusInfoExt indicating cMCStatus.success, the GLA
 has added the member to the GL. If member was added to a
 managed list and the original request was signed by the
 member, the GLO sends a
 cMCStatusInfoExt.cMCStatus.success and a signingTime
 attribute to the GL member.

 3.b.2.b - Else if the GLO received a
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 GLO can reattempt to add the member to the GL using the
 information provided in the response.

Turner Expires July 28, 2008 [Page 45]

Internet-Draft CMS SymKeyDist January 2008

 4 - Upon receipt of the cMCStatusInfoExt response, the prospective
 member checks the signingTime and verifies the GLA signatures
 or GLO signatures. If an additional SignedData and/or
 EnvelopedData encapsulates the response (see section 3.2.1.2 or
 3.2.2), the GLO verifies the outer signature and/or decrypt the
 outer layer prior to verifying the signature on the inner most
 SignedData.

 4.a - If the signingTime attribute value is not within the locally
 accepted time window, the prospective member MAY return a
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badTime and a signingTime attribute.

 4.b - Else if signature processing continues and if the signatures
 verify, the GL member checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 4.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GL member
 should not believe the response.

 4.b.2 - Else if the name of the GL matches the name present in the
 certificate and:

 4.b.2.a - If the signatures verify, the prospective member has been
 added to the GL.

 4.b.2.b - Else if the prospective member received a
 cMCStatusInfoExt.cMCStatus.failed, for any reason, the
 prospective member MAY reattempt to add themselves to the
 GL using the information provided in the response.

4.3.2. Prospective Member Initiated Additions

 The process for prospective member initiated glAddMember requests is
 as follows:

 1 - The prospective GL member sends a
 SignedData.PKIData.controlSequence.glAddMember request to the
 GLA (A in Figure 5). The prospective GL member includes: the GL
 name in glName, their name in glMember.glMemberName, their
 address in glMember.glMemberAddress, and their encryption
 certificate in glMember.certificates.pKC. The prospective GL
 member can also include any attribute certificates associated
 with their encryption certificate in glMember.certificates.aC,
 and the certification path associated with their encryption and

Turner Expires July 28, 2008 [Page 46]

Internet-Draft CMS SymKeyDist January 2008

 attribute certificates in glMember.certificates.certPath. The
 prosepective member MUST also include the signingTime attribute
 with this request.

 1.a - The prospective GL member can optionally apply
 confidentiality to the request by encapsulating the
 SignedData.PKIData in an EnvelopedData (see section

3.2.1.2).

 1.b - The prospective GL member MAY optionally apply another
 SignedData over the EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request, the GLA verifies the request as
 per 2 in section 4.3.1.

 3 - Upon receipt of the forwarded request, the GLO checks the
 signingTime and verifies the prospective GL member signature on
 the inner most SignedData.PKIData and the GLA signature on the
 outer layer. If an EnvelopedData encapsulates the inner most
 layer (see section 3.2.1.2 or 3.2.2), the GLO decrypts the
 outer layer prior to verifying the signature on the inner most
 SignedData.

 Note: For cases where the GL is closed and either a) a
 prospective member sends directly to the GLO or b) the GLA has
 mistakenly forwarded the request to the GLO, the GLO should
 first determine whether to honor the request.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime.

 3.b - Else if signature processing continues and if the signatures
 verify, the GLO checks to make sure one of the names in the
 certificate used to sign the request matches the name in
 glMember.glMemberName.

 3.b.1 - If the names do not match, the GLO sends a
 SignedData.PKIResponse.controlSequence message back to the
 prospective member with cMCStatusInfoExt.cMCStatus.failed
 indicating why the prospective member was denied in
 cMCStausInfo.statusString. This stops people from adding
 people to GLs without their permission. Additionally, a
 signingTime attribute is included with the response.

 3.b.2 - Else if the names match, the GLO determines whether the
 prospective member is allowed to be added. The mechanism is

Turner Expires July 28, 2008 [Page 47]

Internet-Draft CMS SymKeyDist January 2008

 beyond the scope of this document; however, the GLO should
 check to see that the glMember.glMemberName is not already
 on the GL.

 3.b.2.a - If the GLO determines the prospective member is not
 allowed to join the GL, the GLO can return a
 SignedData.PKIResponse.controlSequence message back to
 the prospective member with
 cMCStatusInfoExt.cMCtatus.failed indicating why the
 prospective member was denied in cMCStatus.statusString.
 Additionally, a signingTime attribute is included with
 the response.

 3.b.2.b - Else if GLO determines the prospective member is allowed
 to join the GL, the GLO verifies the member's encryption
 certificate.

 3.b.2.b.1 - If the member's certificate cannot be verified, the GLO
 returns a SignedData.PKIResponse.controlSequence back
 to the prospective member with
 cMCStatusInfoExt.cMCtatus.failed indicating that the
 member's encryption certificate did not verify in
 cMCStatus.statusString. Additionally, a signingTime
 attribute is included with the response. If the GLO
 does not return a cMCStatusInfoExt response, the GLO
 sends a
 SignedData.PKIData.controlSequence.glProvideCert
 message to the prospective member requesting a new
 encryption certificate (see section 4.10).

 3.b.2.b.2 - Else if the member's certificate verifies, the GLO
 resubmits the glAddMember request (see section 3.2.5)
 to the GLA (1 in Figure 5).

 3.b.2.b.2.a - The GLO applies confidentiality to the new
 GLAddMember request by encapsulating the
 SignedData.PKIData in an EnvelopedData if the initial
 request was encapsulated in an EnvelopedData (see

section 3.2.1.2).

 3.b.2.b.2.b - The GLO can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 4 - Processing continues as in 2 of section 4.3.1.

Turner Expires July 28, 2008 [Page 48]

Internet-Draft CMS SymKeyDist January 2008

4.4. Delete Members From GL

 To delete members from GLs, either the GLO or members to be removed
 use the glDeleteMember request. The GLA processes GLO and members
 requesting their own removal make requests differently. The GLO can
 submit the request at any time to delete members from the GL, and the
 GLA, once it has verified the request came from a registered GLO,
 should delete the member. If a member sends the request, the GLA
 needs to determine how the GL is administered. When the GLO initially
 configured the GL, they set the GL to be unmanaged, managed, or
 closed (see section 3.1.1). In the unmanaged case, the GLA merely
 processes the member's request. For the managed case, the GLA
 forwards the requests from the member to the GLO for review. Where
 there are multiple GLOs for a GL, which GLO the request is forwarded
 to is beyond the scope of this document. The GLO reviews the request
 and either rejects it or submits a reformed request to the GLA. In
 the closed case, the GLA will not accept requests from members. The
 following sections describe the processing for the GLO(s), GLA, and
 GL members depending on where the request originated, either from a
 GLO or from members wanting to be removed. Figure 6 depicts the
 protocol interactions for the three options. Note that the error
 messages are not depicted. Additionally, behavior for the optional
 transactionId, senderNonce, and recipientNonce CMC control attributes
 is not addressed in these procedures.

 +-----+ 2,B{A} 3 +----------+
 | GLO | <--------+ +-------> | Member 1 |
 +-----+ | | +----------+
 1 | |
 +-----+ <--------+ | 3 +----------+
 | GLA | A +-------> | ... |
 +-----+ <-------------+ +----------+
 |
 | 3 +----------+
 +-------> | Member n |
 +----------+

 Figure 6 - Member Deletion

 If the member is not removed from the GL, they will continue to
 receive and be able to decrypt data protected with the shared KEK and
 will continue to receive rekeys. For unmanaged lists, there is no
 point to a group rekey because there is no guarantee that the member
 requesting to be removed has not already added themselves back on the
 GL under a different name. For managed and closed GLs, the GLO needs
 to take steps to ensure the member being deleted is not on the GL
 twice. After ensuring this, managed and closed GLs can be rekeyed to

Turner Expires July 28, 2008 [Page 49]

Internet-Draft CMS SymKeyDist January 2008

 maintain the confidentiality of the traffic sent by group members. If
 the GLO is sure the member has been deleted the group rekey mechanism
 can be used to distribute the new key (see sections 4.5 and 5).

4.4.1. GLO Initiated Deletions

 The process for GLO initiated glDeleteMember requests is as follows:

 1 - The GLO collects the pertinent information for the member(s) to
 be deleted (this can be done through an out of bands means).
 The GLO then sends a SignedData.PKIData.controlSequence with a
 separate glDeleteMember request for each member to the GLA (1
 in Figure 6). The GLO MUST include: the GL name in glName and
 the member's name in glMemberToDelete. If the GL from which the
 member is being deleted in a closed or managed GL, the GLO MUST
 also generate a glRekey request and include it with the
 glDeletemember request (see section 4.5). The GLO MUST also
 include the signingTime attribute with this request.

 1.a - The GLO can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.b - The GLO can also optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request, the GLA checks the signingTime
 attribute and verifies the signature on the inner most
 SignedData.PKIData. If an additional SignedData and/or
 EnvelopedData encapsulates the request (see section 3.2.1.2 or
 3.2.2), the GLA verifies the outer signature and/or decrypt the
 outer layer prior to verifying the signature on the inner most
 SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GLA returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

Turner Expires July 28, 2008 [Page 50]

Internet-Draft CMS SymKeyDist January 2008

 2.c - Else if the signatures verify, the GLA makes sure the GL is
 supported by the GLA by checking that the glName matches a
 glName stored on the GLA.

 2.c.1 - If the glName is not supported by the GLA, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of invalidGLName. Additionally, a signingTime
 attribute is included with the response.

 2.c.2 - Else if the glName is supported by the GLA, the GLA checks
 to see if the glMemberName is present on the GL.

 2.c.2.a - If the glMemberName is not present on the GL, the GLA
 returns a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 notAMember. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b - Else if the glMemberName is already on the GL, the GLA
 checks how the GL is administered.

 2.c.2.b.1 - If the GL is closed, the GLA checks that the registered
 GLO signed the request by checking that one of the
 names in the digital signature certificate used to sign
 the request matches the registered GLO.

 2.c.2.b.1.a - If the names do not match, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 closedGL. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b.1.b - Else if the names do match, the GLA returns a
 cMCStatusInfoExt.cMCStatus.success and a signingTime
 attribute (2 in Figure 5). The GLA also takes
 administrative actions, which are beyond the scope of
 this document, to delete the member with the GL
 stored on the GLA. Note that he GL also needs to be
 rekeyed as described in section 5.

 2.c.2.b.1.b.1 - The GLA applies confidentiality to the response by
 encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

Turner Expires July 28, 2008 [Page 51]

Internet-Draft CMS SymKeyDist January 2008

 2.c.2.b.1.b.2 - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 2.c.2.b.2 - Else if the GL is managed, the GLA checks that either a
 registered GLO or the prospective member signed the
 request. For GLOs, one of the names in the certificate
 used to sign the request needs to match a registered
 GLO. For the prospective member, the name in
 glMember.glMemberName needs to match one of the names
 in the certificate used to sign the request.

 2.c.2.b.2.a - If the signer is neither a registered GLO nor the
 prospective GL member, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noSpam. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b.2.b - Else if the signer is a registered GLO, the GLA
 returns a cMCStatusInfoExt.cMCStatus.success and a
 signingTime attribute(2 in Figure 6). The GLA also
 takes administrative actions, which are beyond the
 scope of this document, to delete the member with the
 GL stored on the GLA. Note that the GL will also be
 rekeyed as described in section 5.

 2.c.2.b.2.b.1 - The GLA applies confidentiality to the response by
 encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

 2.c.2.b.2.b.2 - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 2.c.2.b.2.c - Else if the signer is the prospective member, the GLA
 forwards the glDeleteMember request (see section

3.2.3) to the GLO (B{A} in Figure 6). If there is
 more than one registered GLO, the GLO to which the
 request is forwarded to is beyond the scope of this
 document. Further processing of the forwarded request
 by GLOs is addressed in 3 of section 4.4.2.

 2.c.2.b.2.c.1 - The GLA applies confidentiality to the forwarded
 request by encapsulating the SignedData.PKIData in an

Turner Expires July 28, 2008 [Page 52]

Internet-Draft CMS SymKeyDist January 2008

 EnvelopedData if the request was encapsulated in an
 EnvelopedData (see section 3.2.1.2).

 2.c.2.b.2.c.2 - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 2.c.2.b.3 - Else if the GL is unmanaged, the GLA checks that either
 a registered GLO or the prospective member signed the
 request. For GLOs, one of the names in the certificate
 used to sign the request needs to match the name of a
 registered GLO. For the prospective member, the name
 in glMember.glMemberName needs to match one of the
 names in the certificate used to sign the request.

 2.c.2.b.3.a - If the signer is neither the GLO nor the prospective
 member, the GLA returns a response indicating
 cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noSpam. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b.3.b - Else if the signer is either a registered GLO or the
 member, the GLA returns a
 cMCStatusInfoExt.cMCStatus.success and a signingTime
 attribute to the GLO (2 in Figure 6) if the GLO
 signed the request and to the GL member (3 in Figure
 6) if the GL member signed the request. The GLA also
 takes administrative actions, which are beyond the
 scope of this document, to delete the member with the
 GL stored on the GLA.

 2.c.2.b.3.b.1 - The GLA applies confidentiality to the response by
 encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

 2.c.2.b.3.b.2 - The GLA can also optionally apply another
 SignedData over the EnvelopedData (see section

3.2.1.2).

 3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks
 the signingTime and verifies the GLA signatures. If an
 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GLO verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

Turner Expires July 28, 2008 [Page 53]

Internet-Draft CMS SymKeyDist January 2008

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 do verify, the GLO checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO should
 not believe the response.

 3.b.2 - Else if the name of the GL matches the name present in the
 certificate and:

 3.b.2.a - If the signatures verify and the response is
 cMCStatusInfoExt.cMCStatus.success, the GLO has deleted
 the member from the GL. If member was deleted from a
 managed list and the original request was signed by the
 member, the GLO sends a
 cMCStatusInfoExt.cMCStatus.success and a signingTime
 attribute to the GL member.

 3.b.2.b - Else if the GLO received a
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 GLO may reattempt to delete the member from the GL using
 the information provided in the response.

 4 - Upon receipt of the cMCStatusInfoExt response, the member
 checks the signingTime and verifies the GLA signature(s) or GLO
 signature(s). If an additional SignedData and/or EnvelopedData
 encapsulates the response (see section 3.2.1.2 or 3.2.2), the
 GLO verifies the outer signature and/or decrypt the outer layer
 prior to verifying the signature on the inner most SignedData.

 4.a - If the signingTime attribute value is not within the locally
 accepted time window, the prospective member MAY return a
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badTime and a signingTime attribute.

 4.b - Else if signature processing continues and if the signatures
 verify, the GL member checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

Turner Expires July 28, 2008 [Page 54]

Internet-Draft CMS SymKeyDist January 2008

 4.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GL member
 should not believe the response.

 4.b.2 - Else if the name of the GL matches the name present in the
 certificate and:

 4.b.2.a - If the signature(s) verify, the member has been deleted
 from the GL.

 4.b.2.b - Else if the member received a
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 member can reattempt to delete themselves from the GL
 using the information provided in the response.

4.4.2. Member Initiated Deletions

 The process for member initiated deletion of their own membership
 using the glDeleteMember requests is as follows:

 1 - The member sends a
 SignedData.PKIData.controlSequence.glDeleteMember request to
 the GLA (A in Figure 6). The member includes: the name of the
 GL in glName and their own name in glMemberToDelete. The GL
 member MUST also include the signingTime attribute with this
 request.

 1.a - The member can optionally apply confidentiality to the
 request by encapsulating the SignedData.PKIData in an
 EnvelopedData (see section 3.2.1.2).

 1.b - The member can also optionally apply another SignedData over
 the EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request, the GLA verifies the request as
 per 2 in section 4.4.1.

 3 - Upon receipt of the forwarded request, the GLO checks the
 signingTime and verifies the member signature on the inner most
 SignedData.PKIData and the GLA signature on the outer layer. If
 an EnvelopedData encapsulates the inner most layer (see section

3.2.1.2 or 3.2.2), the GLO decrypts the outer layer prior to
 verifying the signature on the inner most SignedData. Note: For
 cases where the GL is closed and either (a) a prospective
 member sends directly to the GLO or (b) the GLA has mistakenly
 forwarded the request to the GLO, the GLO should first
 determine whether to honor the request.

Turner Expires July 28, 2008 [Page 55]

Internet-Draft CMS SymKeyDist January 2008

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues if the signatures
 cannot be verified, the GLO returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck and a signingTime
 attribute.

 3.c - Else if the signatures verify, the GLO checks to make sure
 one of the names in the certificates used to sign the
 request matches the name in glMemberToDelete.

 3.c.1 - If the names match, the GLO sends a
 SignedData.PKIResponse.controlSequence message back to the
 prospective member with cMCStatusInfoExt.cMCtatus.failed
 indicating why the prospective member was denied in
 cMCStatusInfoExt.statusString. This stops people from
 adding people to GLs without their permission.
 Additionally, a signingTime attribute is included with the
 response.

 3.c.2 - Else if the names match, the GLO resubmits the
 glDeleteMember request (see section 3.2.5) to the GLA (1 in
 Figure 6). The GLO makes sure the glMemberName is already
 on the GL. The GLO also generates a glRekey request and
 include it with the GLDeleteMember request (see section

4.5).

 3.c.2.a - The GLO applies confidentiality to the new GLDeleteMember
 request by encapsulating the SignedData.PKIData in an
 EnvelopedData if the initial request was encapsulated in
 an EnvelopedData (see section 3.2.1.2).

 3.c.2.b - The GLO can also optionally apply another SignedData over
 the EnvelopedData (see section 3.2.1.2).

 4 - Further processing is as in 2 of section 4.4.1.

Turner Expires July 28, 2008 [Page 56]

Internet-Draft CMS SymKeyDist January 2008

4.5. Request Rekey Of GL

 From time to time, the GL will need to be rekeyed. Some situations
 follow:

 - When a member is removed from a closed or managed GL. In this
 case, the PKIData.controlSequence containing the glDeleteMember
 ought to contain a glRekey request.

 - Depending on policy, when a member is removed from an unmanaged
 GL. If the policy is to rekey the GL, the
 PKIData.controlSequence containing the glDeleteMember could also
 contain a glRekey request or an out of bands means could be used
 to tell the GLA to rekey the GL. Rekeying of unmanaged GLs when
 members are deleted is not advised.

 - When the current shared KEK has been compromised.

 - When the current shared KEK is about to expire. Consider two
 cases:

 - If the GLO controls the GL rekey, the GLA should not assume
 that a new shared KEK should be distributed, but instead wait
 for the glRekey message.

 - If the GLA controls the GL rekey, the GLA should initiate a
 glKey message as specified in section 5.

 If the generationCounter (see section 3.1.1) is set to a value
 greater than one (1) and the GLO controls the GL rekey, the GLO may
 generate a glRekey any time before the last shared KEK has expired.
 To be on the safe side, the GLO ought to request a rekey one (1)
 duration before the last shared KEK expires.

 The GLA and GLO are the only entities allowed to initiate a GL rekey.
 The GLO indicated whether they are going to control rekeys or whether
 the GLA is going to control rekeys when they assigned the shared KEK
 to GL (see section 3.1.1). The GLO initiates a GL rekey at any time.
 The GLA can be configured to automatically rekey the GL prior to the
 expiration of the shared KEK (the length of time before the
 expiration is an implementation decision). The GLA can also
 automatically rekey GLs that have been compromised, but this is
 covered in section 5. Figure 7 depicts the protocol interactions to
 request a GL rekey. Note that error messages are not depicted.
 Additionally, behavior for the optional transactionId, senderNonce,
 and recipientNonce CMC control attributes is not addressed in these
 procedures.

Turner Expires July 28, 2008 [Page 57]

Internet-Draft CMS SymKeyDist January 2008

 +-----+ 1 2,A +-----+
 | GLA | <-------> | GLO |
 +-----+ +-----+

 Figure 7 - GL Rekey Request

4.5.1. GLO Initiated Rekey Requests

 The process for GLO initiated glRekey requests is as follows:

 1 - The GLO sends a SignedData.PKIData.controlSequence.glRekey
 request to the GLA (1 in Figure 7). The GLO includes the
 glName. If glAdministration and glKeyNewAttributes are omitted
 then there is no change from the previously registered GL
 values for these fields. If the GLO wants to force a rekey for
 all outstanding shared KEKs it includes the glRekeyAllGLKeys
 set to TRUE. The GLO MUST also include a signingTime attribute
 is included with this request.

 1.a - The GLO can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.b - The GLO can also optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the request, the GLA checks the signingTime and
 verifies the signature on the inner most SignedData.PKIData. If
 an additional SignedData and/or EnvelopedData encapsulates the
 request (see section 3.2.1.2 or 3.2.2), the GLA verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 do not verify, the GLA returns a cMCStatusInfoExt response
 indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures do verify, the GLA makes sure the GL
 is supported by the GLA by checking that the glName matches
 a glName stored on the GLA.

Turner Expires July 28, 2008 [Page 58]

Internet-Draft CMS SymKeyDist January 2008

 2.c.1 - If the glName present does not match a GL stored on the
 GLA, the GLA returns a response indicating cMCStatusInfoExt
 with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 invalidGLName. Additionally, a signingTime attribute is
 included with the response.

 2.c.2 - Else if the glName present matches a GL stored on the GLA,
 the GLA checks that a registered GLO signed the request by
 checking that one of the names in the certificate used to
 sign the request is a registered GLO.

 2.c.2.a - If the names do not match, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noGLONameMatch. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b - Else if the names match, the GLA checks the
 glNewKeyAttribute values.

 2.c.2.b.1 - If the new value for requestedAlgorithm is not
 supported, the GLA returns a response indicating
 cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unsupportedAlgorithm. Additionally, a signingTime
 attribute is included with the response.

 2.c.2.b.2 - Else if the new value duration is not supportable,
 determining this is beyond the scope this document,
 the GLA returns a response indicating cMCStatusInfoExt
 with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unsupportedDuration. Additionally, a signingTime
 attribute is included with the response.

 2.c.2.b.3 - Else if the GL is not supportable for other reasons,
 which the GLA does not wish to disclose, the GLA
 returns a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 unspecified. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b.4 - Else if the new requestedAlgorithm and duration are
 supportable or the glNewKeyAttributes was omitted, the
 GLA returns a cMCStatusInfoExt.cMCStatus.success and a

Turner Expires July 28, 2008 [Page 59]

Internet-Draft CMS SymKeyDist January 2008

 sigingTime attribute (2 in Figure 7). The GLA also
 uses the glKey message to distribute the rekey shared
 KEK (see section 5).

 2.c.2.b.4.a - The GLA applies confidentiality to response by
 encapsulating the SignedData.PKIData in an
 EnvelopedData if the request was encapsulated in an
 EnvelopedData (see section 3.2.1.2).

 2.c.2.b.4.b - The GLA can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks
 the signingTime and verifies the GLA signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 forwarded response (see section 3.2.1.2 or 3.2.2), the GLO
 verifies the outer signature and/or decrypt the forwarded
 response prior to verifying the signature on the inner most
 SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 verify, the GLO checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO should
 not believe the response.

 3.b.2 - Else if the name of the GL matches the name present in the
 certificate and:

 3.b.2.a - If the signatures verify and the response is
 cMCStatusInfoExt.cMCStatus.success, the GLO has
 successfully rekeyed the GL.

 3.b.2.b - Else if the GLO received a
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 GLO can reattempt to rekey the GL using the information
 provided in the response.

Turner Expires July 28, 2008 [Page 60]

Internet-Draft CMS SymKeyDist January 2008

4.5.2. GLA Initiated Rekey Requests

 If the GLA is in charge of rekeying the GL the GLA will automatically
 issue a glKey message (see section 5). In addition the GLA will
 generate a cMCStatusInfoExt to indicate to the GL that a successful
 rekey has occurred. The process for GLA initiated rekey is as
 follows:

 1 - The GLA generates for all GLOs a
 SignedData.PKIData.controlSequence.cMCStatusInfoExt.cMCStatus.
 success and includes a signingTime attribute (A in Figure 7).

 1.a - The GLA can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.b - The GLA can also optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the cMCStatusInfoExt.cMCStatus.success
 response, the GLO checks the signingTime and verifies the GLA
 signature(s). If an additional SignedData and/or EnvelopedData
 encapsulates the forwarded response (see section 3.2.1.2 or
 3.2.2), the GLO MUST verify the outer signature and/or decrypt
 the outer layer prior to verifying the signature on the inner
 most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 verify, the GLO checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 2.b.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO ought not
 believe the response.

 2.b.2 - Else if the name of the GL does match the name present in
 the certificate and and the response is
 cMCStatusInfoExt.cMCStatus.success, the GLO knows the GLA
 has successfully rekeyed the GL.

Turner Expires July 28, 2008 [Page 61]

Internet-Draft CMS SymKeyDist January 2008

4.6. Change GLO

 Management of managed and closed GLs can become difficult for one GLO
 if the GL membership grows large. To support distributing the
 workload, GLAs support having GLs be managed by multiple GLOs. The
 glAddOwner and glRemoveOwner messages are designed to support adding
 and removing registered GLOs. Figure 8 depicts the protocol
 interactions to send glAddOwner and glRemoveOwner messages and the
 resulting response messages. Note that error messages are not shown.
 Additionally, behavior for the optional transactionId, senderNonce,
 and recipientNonce CMC control attributes is not addressed in these
 procedures.

 +-----+ 1 2 +-----+
 | GLA | <-------> | GLO |
 +-----+ +-----+

 Figure 8 - GLO Add & Delete Owners

 The process for glAddOwner and glDeleteOwner is as follows:

 1 - The GLO sends a SignedData.PKIData.controlSequence.glAddOwner
 or glRemoveOwner request to the GLA (1 in Figure 8). The GLO
 includes: the GL name in glName, the name and address of the
 GLO in glOwnerName and glOwnerAddress, respectively. The GLO
 MUST also include the signingTime attribute with this request.

 1.a - The GLO can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2).

 1.b - The GLO can also optionally apply another SignedData over the
 EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the glAddOwner or glRemoveOwner request, the
 GLA checks the signingTime and verifies the GLO signature(s).
 If an additional SignedData and/or EnvelopedData encapsulates
 the request (see section 3.2.1.2 or 3.2.2), the GLA verifies
 the outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

Turner Expires July 28, 2008 [Page 62]

Internet-Draft CMS SymKeyDist January 2008

 2.b - Else if signature processing continues and if the signatures
 cannot verified, the GLA returns a cMCStatusInfoExt response
 indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures verify, the GLA makes sure the GL is
 supported by checking that the glName matches a glName
 stored on the GLA.

 2.c.1 - If the glName is not supported by the GLA, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of invalidGLName. Additionally, a signingTime
 attribute is included with the response.

 2.c.2 - Else if the glName is supported by the GLA, the GLA ensures
 a registered GLO signed the glAddOwner or glRemoveOwner
 request by checking that one of the names present in the
 digital signature certificate used to sign the glAddOwner
 or glDeleteOwner request matches the name of a registered
 GLO.

 2.c.2.a - If the names do not match, the GLA returns a response
 indicating cMCStatusInfoExt with cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of
 noGLONameMatch. Additionally, a signingTime attribute is
 included with the response.

 2.c.2.b - Else if the names match, the GLA returns a
 cMCStatusInfoExt.cMCStatus.success and a signingTime
 attribute (2 in Figure 4). The GLA also takes
 administrative actions to associate the new glOwnerName
 with the GL in the case of glAddOwner or to disassociate
 the old glOwnerName with the GL in the cased of
 glRemoveOwner.

 2.c.2.b.1 - The GLA applies confidentiality to the response by
 encapsulating the SignedData.PKIResponse in an
 EnvelopedData if the request was encapsulated in an
 EnvelopedData (see section 3.2.1.2).

 2.c.2.b.2 - The GLA can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks
 the signingTime and verifies the GLA's signature(s). If an

Turner Expires July 28, 2008 [Page 63]

Internet-Draft CMS SymKeyDist January 2008

 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GLO verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 verify, the GLO checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.b.1 - If the name of GL does not match the name present in the
 certificate used to sign the message, the GLO should not
 believe the response.

 3.b.2 - Else if the name of the GL does match the name present in
 the certificate and:

 3.b.2.a - If the signatures verify and the response was
 cMCStatusInfoExt.cMCStatus.success, the GLO has
 successfully added or removed the GLO.

 3.b.2.b - Else if the signatures verify and the response was
 cMCStatusInfoExt.cMCStatus.failed with any reason, the
 GLO can reattempt to add or delete the GLO using the
 information provided in the response.

4.7. Indicate KEK Compromise

 There will be times when the shared KEK is compromised. GL members
 and GLOs use glkCompromise to tell the GLA that the shared KEK has
 been compromised. Figure 9 depicts the protocol interactions for GL
 Key Compromise. Note that error messages are not shown. Additionally,
 behavior for the optional transactionId, senderNonce, and
 recipientNonce CMC control attributes is not addressed in these
 procedures.

Turner Expires July 28, 2008 [Page 64]

Internet-Draft CMS SymKeyDist January 2008

 +-----+ 2{1} 4 +----------+
 | GLO | <----------+ +-------> | Member 1 |
 +-----+ 5,3{1} | | +----------+
 +-----+ <----------+ | 4 +----------+
 | GLA | 1 +-------> | ... |
 +-----+ <---------------+ +----------+
 | 4 +----------+
 +-------> | Member n |
 +----------+

 Figure 9 - GL Key Compromise

4.7.1. GL Member Initiated KEK Compromise Message

 The process for GL member initiated glkCompromise messages is as
 follows:

 1 - The GL member sends a
 SignedData.PKIData.controlSequence.glkCompromise request to the
 GLA (1 in Figure 9). The GL member includes the name of the GL
 in GeneralName. The GL member MUST also include the signingTime
 attribute with this request.

 1.a - The GL member can optionally apply confidentiality to the
 request by encapsulating the SignedData.PKIData in an
 EnvelopedData (see section 3.2.1.2). The glkCompromise can
 be included in an EnvelopedData generated with the
 compromised shared KEK.

 1.b - The GL member can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the glkCompromise request, the GLA checks the
 signingTime and verifies the GL member signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 request (see section 3.2.1.2 or 3.2.2), the GLA verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannotbe verified, the GLA returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and

Turner Expires July 28, 2008 [Page 65]

Internet-Draft CMS SymKeyDist January 2008

 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures verify, the GLA makes sure the GL is
 supported by checking that the indicated GL name matches a
 glName stored on the GLA.

 2.c.1 - If the glName is not supported by the GLA, the GLA returns
 a response indicating cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of invalidGLName. Additionally, a signingTime
 attribute is included with the response.

 2.c.2 - Else if the glName is supported by the GLA, the GLA checks
 who signed the request. For GLOs, one of the names in the
 certificate used to sign the request needs to match a
 registered GLO. For the member, the name in
 glMember.glMemberName needs to match one of the names in
 the certificate used to sign the request.

 2.c.2.a - If the GLO signed the request, the GLA generates a glKey
 message as described in section 5 to rekey the GL (4 in
 Figure 9).

 2.c.2.b - Else if someone other than the GLO signed the request,
 the GLA forwards the glkCompromise message (see section

3.2.3) to the GLO (2{1} in Figure 9). If there is more
 than one GLO, to which GLO the request is forwarded is
 beyond the scope of this document. Further processing by
 the GLO is discussed in section 4.7.2.

4.7.2. GLO Initiated KEK Compromise Message

 The process for GLO initiated glkCompromise messages is as follows:

 1 - The GLO either:

 1.a - Generates the glkCompromise message itself by sending a
 SignedData.PKIData.controlSequence.glkCompromise request to
 the GLA (5 in Figure 9). The GLO includes the name of the GL
 in GeneralName. The GLO MUST also include a signingTime
 attribute with this request.

 1.a.1 - The GLO can optionally apply confidentiality to the request
 by encapsulating the SignedData.PKIData in an EnvelopedData
 (see section 3.2.1.2). The glkCompromise can be included in
 an EnvelopedData generated with the compromised shared KEK.

Turner Expires July 28, 2008 [Page 66]

Internet-Draft CMS SymKeyDist January 2008

 1.a.2 - The GLO can also optionally apply another SignedData over
 the EnvelopedData (see section 3.2.1.2).

 1.b - Otherwise, checks the signingTime and verifies the GLA and GL
 member signatures on the forwarded glkCompromise message. If
 an additional SignedData and/or EnvelopedData encapsulates
 the request (see section 3.2.1.2 or 3.2.2), the GLO verifies
 the outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 1.b.1 - If the signingTime attribute value is not within the
 locally accepted time window, the GLO MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 1.b.2 - Else if signature processing continues and if the
 signatures cannot be verified, the GLO returns a
 cMCStatusInfoExt response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 1.b.2.a - If the signatures verify, the GLO checks the names in the
 certificate match the name of the signer (i.e., the name
 in the certificate used to sign the GL member's request
 is the GL member).

 1.b.2.a.1 - If either name does not match, the GLO ought not trust
 the signer and it ought not forward the message to the
 GLA.

 1.b.2.a.2 - Else if the names match and the signatures verify, the
 GLO determines whether to forward the glkCompromise
 message back to the GLA (3{1} in Figure 9). Further
 processing by the GLA is in 2 of section 4.7.1. The
 GLO can also return a response to the prospective
 member with cMCStatusInfoExt.cMCtatus.success
 indicating that the glkCompromise message was
 successfully received.

4.8. Request KEK Refresh

 There will be times when GL members have unrecoverably lost their
 shared KEK. The shared KEK is not compromised and a rekey of the
 entire GL is not necessary. GL members use the glkRefresh message to
 request that the shared KEK(s) be redistributed to them. Figure 10
 depicts the protocol interactions for GL Key Refresh. Note that error
 messages are not shown. Additionally, behavior for the optional

Turner Expires July 28, 2008 [Page 67]

Internet-Draft CMS SymKeyDist January 2008

 transactionId, senderNonce, and recipientNonce CMC control attributes
 is not addressed in these procedures.

 +-----+ 1 2 +----------+
 | GLA | <-----------> | Member |
 +-----+ +----------+

 Figure 10 - GL KEK Refresh

 The process for glkRefresh is as follows:

 1 - The GL member sends a
 SignedData.PKIData.controlSequence.glkRefresh request to the
 GLA (1 in Figure 10). The GL member includes name of the GL in
 GeneralName. The GL member MUST also include a signingTime
 attribute with this request.

 1.a - The GL member can optionally apply confidentiality to the
 request by encapsulating the SignedData.PKIData in an
 EnvelopedData (see section 3.2.1.2).

 1.b - The GL member can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the glkRefresh request, the GLA checks the
 signingTime and verifies the GL member signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 request (see section 3.2.1.2 or 3.2.2), the GLA verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GLA returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures verify, the GLA makes sure the GL is
 supported by checking that the GLGeneralName matches a
 glName stored on the GLA.

Turner Expires July 28, 2008 [Page 68]

Internet-Draft CMS SymKeyDist January 2008

 2.c.1 - If the name of the GL is not supported by the GLA, the GLA
 returns a response indicating cMCStatusInfoExt with
 cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
 value of invalidGLName. Additionally, a signingTime
 attribute is included with the response.

 2.c.2 - Else if the glName is supported by the GLA, the GLA ensures
 the GL member is on the GL.

 2.c.2.a - If the glMemberName is not present on the GL, the GLA
 returns a response indicating cMCStatusInfoExt with
 cMCStatus.failed and
 otherInfo.extendedFailInfo.SKDFailInfo value of noSpam.
 Additionally, a signingTime attribute is included with
 the response.

 2.c.2.b - Else if the glMemberName is present on the GL, the GLA
 returns a cMCStatusInfoExt.cMCStatus.success, a
 signingTime attribute, and a glKey message (2 in Figure
 10) as described in section 5.

4.9. GLA Query Request and Response

 There will be certain times when a GLO is having trouble setting up a
 GL because they do not know the algorithm(s) or some other
 characteristic that the GLA supports. There can also be times when
 prospective GL members or GL members need to know something about the
 GLA (these requests are not defined in the document). The
 glaQueryRequest and glaQueryResponse message have been defined to
 support determining this information. Figure 11 depicts the protocol
 interactions for glaQueryRequest and glaQueryResponse. Note error
 messages are not shown. Additionally, behavior for the optional
 transactionId, senderNonce, and recipientNonce CMC control attributes
 is not addressed in these procedures.

 +-----+ 1 2 +------------------+
 | GLA | <-------> | GLO or GL Member |
 +-----+ +------------------+

 Figure 11 - GLA Query Request & Response

 The process for glaQueryRequest and glaQueryResponse is as follows:

 1 - The GLO, GL member, or prospective GL member sends a
 SignedData.PKIData.controlSequence.glaQueryRequest request to
 the GLA (1 in Figure 11). The GLO, GL member, or prospective GL
 member indicates the information they are interested in

Turner Expires July 28, 2008 [Page 69]

Internet-Draft CMS SymKeyDist January 2008

 receiving from the GLA. Additionally, a signingTime attribute
 is included with this request.

 1.a - The GLO, GL member, or prospective GL member can optionally
 apply confidentiality to the request by encapsulating the
 SignedData.PKIData in an EnvelopedData (see section

3.2.1.2).

 1.b - The GLO, GL member, or prospective GL member can also
 optionally apply another SignedData over the EnvelopedData
 (see section 3.2.1.2).

 2 - Upon receipt of the glaQueryRequest, the GLA determines if it
 accepts glaQueryRequest messages.

 2.a - If the GLA does not accept glaQueryRequest messages, the GLA
 returns a cMCStatusInfoExt response indicating
 cMCStatus.noSupport and any other information in
 statusString.

 2.b - Else if the GLA does accept GLAQueryRequests, the GLA checks
 the signingTime and verifies the GLO, GL member, or
 prospective GL member signature(s). If an additional
 SignedData and/or EnvelopedData encapsulates the request
 (see section 3.2.1.2 or 3.2.2), the GLA verifies the outer
 signature and/or decrypt the outer layer prior to verifying
 the signature on the inner most SignedData.

 2.b.1 - If the signingTime attribute value is not within the
 locally accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b.2 - Else if the signature processing continues and if the
 signatures cannot be verified, the GLA returns a
 cMCStatusInfoExt response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.b.3 - Else if the signatures verify, the GLA returns a
 glaQueryResponse (2 in Figure 11) with the correct response
 if the glaRequestType is supported or return a
 cMCStatusInfoExt response indicating cMCStatus.noSupport if
 the glaRequestType is not supported. Additionally, a
 signingTime attribute is included with the response.

Turner Expires July 28, 2008 [Page 70]

Internet-Draft CMS SymKeyDist January 2008

 2.b.3.a - The GLA applies confidentiality to the response by
 encapsulating the SignedData.PKIResponse in an
 EnvelopedData if the request was encapsulated in an
 EnvelopedData (see section 3.2.1.2).

 2.b.3.b - The GLA can also optionally apply another SignedData over
 the EnvelopedData (see section 3.2.1.2).

 3 - Upon receipt of the glaQueryResponse, the GLO, GL member, or
 prospective GL member checks the signingTime and verifies the
 GLA signature(s). If an additional SignedData and/or
 EnvelopedData encapsulates the response (see section 3.2.1.2 or
 3.2.2), the GLO, GL member, or prospective GL member verifies
 the outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO, GL member, or prospective GL
 member MAY return a response indicating cMCStatus.failed and
 otherInfo.failInfo.badTime and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 do not verify, the GLO, GL member, or prospective GL member
 returns a cMCStatusInfoExt response indicating
 cMCStatus.failed and otherInfo.failInfo.badMessageCheck.
 Additionally, a signingTime attribute is included with the
 response.

 3.c - Else if the signatures verify, then the GLO, GL member, or
 prospective GL member checks that one of the names in the
 certificate used to sign the response matches the name of
 the GL.

 3.c.1 - If the name of the GL does not match the name present in
 the certificate used to sign the message, the GLO ought not
 believe the response.

 3.c.2 - Else if the name of the GL matches the name present in the
 certificate and the response was glaQueryResponse, then the
 GLO, GL member, or prospective GL member may use the
 information contained therein.

4.10. Update Member Certificate

 When the GLO generates a glAddMember request, when the GLA generates
 a glKey message, or when the GLA processes a glAddMember there can be
 instances when GL member's certificate has expired or is invalid. In

Turner Expires July 28, 2008 [Page 71]

Internet-Draft CMS SymKeyDist January 2008

 these instances the GLO or GLA may request that the GL member provide
 a new certificate to avoid the GLA from being unable to generate a
 glKey message for the GL member. There might also be times when the
 GL member knows their certificate is about to expire or has been
 revoked and they will not be able to receive GL rekeys. Behavior for
 the optional transactionId, senderNonce, and recipientNonce CMC
 control attributes is not addressed in these procedures.

4.10.1. GLO and GLA Initiated Update Member Certificate

 The process for GLO initiated glUpdateCert is as follows:

 1 - The GLO or GLA sends a
 SignedData.PKIData.controlSequence.glProvideCert request to the
 GL member. The GLO or GLA indicates the GL name in glName and
 the GL member name in glMemberName. Additionally, a signingTime
 attribute is included with this request.

 1.a - The GLO or GLA can optionally apply confidentiality to the
 request by encapsulating the SignedData.PKIData in an
 EnvelopedData (see section 3.2.1.2). If the GL member's PKC
 has been revoked, the GLO or GLA ought not use it to
 generate the EnvelopedData that encapsulates the
 glProvideCert request.

 1.b - The GLO or GLA can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the glProvideCert message, the GL member checks
 the signingTime and verifies the GLO or GLA signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GL member verifies
 the outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GL member MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GL member returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

Turner Expires July 28, 2008 [Page 72]

Internet-Draft CMS SymKeyDist January 2008

 2.c - Else if the signatures verify, the GL member generates a
 Signed.PKIResponse.controlSequence.glUpdateCert that
 includes the GL name in glName, the member name in
 glMember.glMemberName, their encryption certificate in
 glMember.certificates.pKC. The GL member can also include
 any attribute certificates associated with their encryption
 certificate in glMember.certificates.aC, and the
 certification path associated with their encryption and
 attribute certificates in glMember.certificates.certPath.
 Additionally, a signingTime attribute is included with the
 response.

 2.c.1 - The GL member can optionally apply confidentiality to the
 request by encapsulating the SignedData.PKIResponse in an
 EnvelopedData (see section 3.2.1.2). If the GL member's PKC
 has been revoked, the GL member ought not use it to
 generate the EnvelopedData that encapsulates the
 glProvideCert request.

 2.c.2 - The GL member can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 3 - Upon receipt of the glUpdateCert message, the GLO or GLA checks
 the signingTime and verifies the GL member signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the
 response (see section 3.2.1.2 or 3.2.2), the GL member verifies
 the outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 3.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLO or GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 3.b - Else if signature processing continues and if the signatures
 cannot be verified, the GLO or GLA returns a
 cMCStatusInfoExt response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 3.c - Else if the signatures verify, the GLO or GLA verifies the
 member's encryption certificate.

 3.c.1 - If the member's encryption certificate cannot be verified,
 the GLO returns either another glProvideCert request or a
 cMCStatusInfoExt with cMCStatus.failed and the reason why
 in cMCStatus.statusString. glProvideCert should be returned

Turner Expires July 28, 2008 [Page 73]

Internet-Draft CMS SymKeyDist January 2008

 only a certain number of times because if the GL member
 does not have a valid certificate they will never be able
 to return one. Additionally, a signingTime attribute is
 included with either response.

 3.c.2 - Else if the member's encryption certificate cannot be
 verified, the GLA returns another glProvideCert request to
 the GL member or a cMCStatusInfoExt with cMCStatus.failed
 and the reason why in cMCStatus.statusString to the GLO.
 glProvideCert should be returned only a certain number of
 times because if the GL member does not have a valid
 certificate they will never be able to return one.
 Additionally, a signingTime attribute is included with the
 response.

 3.c.3 - Else if the member's encryption certificate verifies, the
 GLO or GLA will use it in subsequent glAddMember requests
 and glKey messages associated with the GL member.

4.10.2. GL Member Initiated Update Member Certificate

 The process for an unsolicited GL member glUpdateCert is as follows:

 1 - The GL member sends a
 Signed.PKIData.controlSequence.glUpdateCert that includes the
 GL name in glName, the member name in glMember.glMemberName,
 their encryption certificate in glMember.certificates.pKC. The
 GL member can also include any attribute certificates
 associated with their encryption certificate in
 glMember.certificates.aC, and the certification path associated
 with their encryption and attribute certificates in
 glMember.certificates.certPath. The GL member MUST also include
 a signingTime attribute with this request.

 1.a - The GL member can optionally apply confidentiality to the
 request by encapsulating the SignedData.PKIData in an
 EnvelopedData (see section 3.2.1.2). If the GL member's PKC
 has been revoked, the GLO or GLA ought not use it to
 generate the EnvelopedData that encapsulates the
 glProvideCert request.

 1.b - The GL member can also optionally apply another SignedData
 over the EnvelopedData (see section 3.2.1.2).

 2 - Upon receipt of the glUpdateCert message, the GLA checks the
 signingTime and verifies the GL member signature(s). If an
 additional SignedData and/or EnvelopedData encapsulates the

Turner Expires July 28, 2008 [Page 74]

Internet-Draft CMS SymKeyDist January 2008

 response (see section 3.2.1.2 or 3.2.2), the GLA verifies the
 outer signature and/or decrypt the outer layer prior to
 verifying the signature on the inner most SignedData.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GLA returns a cMCStatusInfoExt
 response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck.

 2.c - Else if the signatures verify, the GLA verifies the member's
 encryption certificate.

 2.c.1 - If the member's encryption certificate cannot be verified,
 the GLA returns another glProvideCert request to the GL
 member or a cMCStatusInfoExt with cMCStatus.failed and the
 reason why in cMCStatus.statusString to the GLO.
 glProvideCert ought not be returned indefinitely; if the
 GL member does not have a valid certificate they will never
 be able to return one. Additionally, a signingTime
 attribute is included with the response.

 2.c.2 - Else if the member's encryption certificate verifies, the
 GLA will use it in subsequent glAddMember requests and
 glKey messages associated with the GL member. The GLA also
 forwards the glUpdateCert message to the GLO.

5. Distribution Message

 The GLA uses the glKey message to distribute new, shared KEK(s) after
 receiving glAddMember, glDeleteMember (for closed and managed GLs),
 glRekey, glkCompromise, or glkRefresh requests and returning a
 cMCStatusInfoExt response for the respective request. Figure 12
 depicts the protocol interactions to send out glKey messages. Unlike
 the procedures defined for the administrative messages, the
 procedures defined in this section MUST be implemented by GLAs for
 origination and by GL members on reception. Note that error messages
 are not shown. Additionally, behavior for the optional transactionId,
 senderNonce, and recipientNonce CMC control attributes is not
 addressed in these procedures.

Turner Expires July 28, 2008 [Page 75]

Internet-Draft CMS SymKeyDist January 2008

 1 +----------+
 +-------> | Member 1 |
 | +----------+
 +-----+ | 1 +----------+
 | GLA | ----+-------> | ... |
 +-----+ | +----------+
 | 1 +----------+
 +-------> | Member n |
 +----------+

 Figure 12 - GL Key Distribution

 If the GL was setup with GLKeyAttributes.recipientsNotMutuallyAware
 set to TRUE, a separate glKey message MUST be sent to each GL member
 so as to not divulge information about the other GL members.

 When the glKey message is generated as a result of a:

 - glAddMember request,

 - glkComrpomise indication,

 - glkRefresh request,

 - glDeleteMember request with the GL's glAdministration set to
 managed or closed, and

 - glRekey request with generationCounter set to zero (0).

 The GLA MUST use either the kari (see section 12.3.2 of [CMS]) or
 ktri (see section 12.3.1 of [CMS]) choice in
 glKey.glkWrapped.RecipientInfo to ensure only the intended recipients
 receive the shared KEK. The GLA MUST support the ktri choice.

 When the glKey message is generated as a result of a glRekey request
 with generationCounter greater than zero (0) or when the GLA controls
 rekeys, the GLA MAY use the kari, ktri, or kekri (see section 12.3.3
 of [CMS]) in glKey.glkWrapped.RecipientInfo to ensure only the
 intended recipients receive the shared KEK. The GLA MUST support the
 RecipientInfo.ktri choice.

5.1. Distribution Process

 When a glKey message is generated the process is as follows:

 1 - The GLA MUST send a SignedData.PKIData.controlSequence.glKey to
 each member by including: glName, glIdentifier, glkWrapped,

Turner Expires July 28, 2008 [Page 76]

Internet-Draft CMS SymKeyDist January 2008

 glkAlgorithm, glkNotBefore, and glkNotAfter. If the GLA can not
 generate a glKey message for the GL member because the GL
 member's PKC has expired or is otherwise invalid, the GLA MAY
 send a glUpdateCert to the GL member requesting a new
 certificate be provided (see section 4.10). The number of glKey
 messages generated for the GL is described in section 3.1.16.
 Additionally, a signingTime attribute is included with the
 distribution message(s).

 1.a - The GLA MAY optionally apply another confidentiality layer to
 the message by encapsulating the SignedData.PKIData in
 another EnvelopedData (see section 3.2.1.2).

 1.b - The GLA MAY also optionally apply another SignedData over the
 EnvelopedData.SignedData.PKIData (see section 3.2.1.2).

 2 - Upon receipt of the glKey message, the GL members MUST check
 the signingTime and verify the signature over the inner most
 SignedData.PKIData. If an additional SignedData and/or
 EnvelopedData encapsulates the message (see section 3.2.1.2 or
 3.2.2), the GL Member MUST verify the outer signature and/or
 decrypt the outer layer prior to verifying the signature on the
 SignedData.PKIData.controlSequence.glKey.

 2.a - If the signingTime attribute value is not within the locally
 accepted time window, the GLA MAY return a response
 indicating cMCStatus.failed and otherInfo.failInfo.badTime
 and a signingTime attribute.

 2.b - Else if signature processing continues and if the signatures
 cannot be verified, the GL member MUST return a
 cMCStatusInfoExt response indicating cMCStatus.failed and
 otherInfo.failInfo.badMessageCheck. Additionally, a
 signingTime attribute is included with the response.

 2.c - Else if the signatures verify, the GL member process the
 RecipientInfos according to [CMS]. Once unwrapped the GL
 member should store the shared KEK in a safe place. When
 stored, the glName, glIdentifier, and shared KEK should be
 associated. Additionally, the GL member MUST return a
 cMCStatusInfoExt indicating cMCStatus.success to tell the
 GLA the KEK was received.

Turner Expires July 28, 2008 [Page 77]

Internet-Draft CMS SymKeyDist January 2008

6. Algorithms

 This section lists the algorithms that MUST be implemented.
 Additional algorithms that SHOULD be implemented are also included.
 Further algorithms MAY also be implemented.

6.1. KEK Generation Algorithm

 Implementations MUST randomly generate content-encryption keys,
 message-authentication keys, initialization vectors (IVs), and
 padding. Also, the generation of public/private key pairs relies on a
 random numbers. The use of inadequate pseudo-random number generators
 (PRNGs) to generate cryptographic keys can result in little or no
 security. An attacker may find it much easier to reproduce the PRNG
 environment that produced the keys, searching the resulting small set
 of possibilities, rather than brute force searching the whole key
 space. The generation of quality random numbers is difficult. RFC

1750 [RANDOM] offers important guidance in this area, and Appendix 3
 of FIPS Pub 186 [FIPS] provides one quality PRNG technique.

6.2. Shared KEK Wrap Algorithm

 In the mechanisms described in sections 5, the shared KEK being
 distributed in glkWrapped MUST be protected by a key of equal or
 greater length (i.e., if an AES 128-bit key is being distributed a
 key of 128-bits or greater must be used to protect the key). The
 algorithm object identifiers included in glkWrapped are as specified
 in [CMSALG] and [CMSAES].

6.3. Shared KEK Algorithm

 The shared KEK distributed and indicated in glkAlgorithm MUST support
 the symmetric key-encryption algorithms as specified in section
 [CMSALG] and [CMSAES].

7. Message Transport

 SMTP [SMTP] MUST be supported. Other transport mechanisms MAY also be
 supported.

8. Security Considerations

 As GLOs control setting up and tearing down the GL, rekeying the GL,
 and can control member additions and deletions, GLOs play an
 important role in the management of the GL, and only "trusted" GLOs
 should be used.

https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1750

Turner Expires July 28, 2008 [Page 78]

Internet-Draft CMS SymKeyDist January 2008

 If a member is deleted or removed from a closed or a managed GL, the
 GL needs to be rekeyed. If the GL is not rekeyed after a member is
 removed or deleted, the member still posses the group key and will be
 able to continue to decrypt any messages that can be obtained.

 Members who store KEKs MUST associate the name of the GLA that
 distributed the key so that the members can make sure subsequent
 rekeys are originated from the same entity.

 When generating keys, care should be taken to ensure that the key
 size is not too small and duration too long because attackers will
 have more time to attack the key. Key size should be selected to
 adequately protect sensitive business communications.

 GLOs and GLAs need to make sure that the generationCounter and
 duration are not too large. For example, if the GLO indicates that
 the generationCounter is 14 and the duration is one year, then 14
 keys are generated each with a validity period of a year. An attacker
 will have at least 13 years to attack the final key.

 Assume that two or more parties have a shared KEK, and the shared KEK
 is used to encrypt a second KEK for confidential distribution to
 those parties. The second KEK might be used to encrypt a third KEK;
 the third KEK might be used to encrypt a fourth KEK; and so on. If
 any of the KEKs in such a chain is compromised, all of the subsequent
 KEKs in the chain MUST also be considered compromised.

 An attacker can attack the group's shared KEK by attacking one
 member's copy of the shared KEK or attacking multiple member's copies
 of the shared KEK. For the attacker it may be easier to either attack
 the group member with the weakest security protecting their copy of
 the shared KEK or by attacking multiple group members.

 An aggregation of the information gathered during the attack(s) may
 lead to the compromise of the group's shared KEK. Mechanisms to
 protect the shared KEK should be commensurate with value of the data
 being protected.

 The nonce and signingTime attributes are used to protect against
 replay attacks. However, these provisions are only helpful if
 entities maintain state information about the messages they have sent
 or received for comparison. If sufficient information is not
 maintained on each exchange, nonces and signingTime are not helpful.

 Local policy determines the amount and duration of state information
 that is maintained. Additionally, without a unified time source,
 there is the possibility of clocks drifting. Local policy determines

Turner Expires July 28, 2008 [Page 79]

Internet-Draft CMS SymKeyDist January 2008

 the acceptable difference between the local time and signingTime,
 which must compensate for unsynchronized clock. Implementations MUST
 handle messages with siginingTime attributes that indicate they were
 created in the future.

9. IANA Considerations

 None: All identifiers are already registered. Please remove this
 section prior to publication as an RFC.

10. Acknowledgements

 Thanks to Russ Housley and Jim Schaad for providing much of the
 background and review required to write this document.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [CMS] Housley, R., "Cryptographic Message Syntax," RFC 3852,
 July 2004.

 [CMC] Myers, M., Liu, X., Schaad, J., Weinsten, J.,
 "Certificate Management Message over CMS," work-in-
 progress, December 2007.

 [PROFILE] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure: Certificate and CRL
 Profile", RFC 3280, April 2002.

 [ACPROF] Farrell, S., Housley, R., "An Internet Attribute
 Certificate Profile for Authorization", RFC 3281, April
 2002.

 [MSG] Ramsdale, B., "S/MIME Version 3.1 Message Specification,"
RFC 3851, July 2004.

 [ESS] Hoffman, P., "Extended Security Services for S/MIME", RFC
2634, June 1999.

 Schaad, J., "Extended Security Services (ESS) Update:
 Adding CertID Algorithm Agility", RFC 5035, August 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3281
https://datatracker.ietf.org/doc/html/rfc3851
https://datatracker.ietf.org/doc/html/rfc2634
https://datatracker.ietf.org/doc/html/rfc2634
https://datatracker.ietf.org/doc/html/rfc5035

Turner Expires July 28, 2008 [Page 80]

Internet-Draft CMS SymKeyDist January 2008

 [CMSALG] Housley, R., "Cryptographic Message Syntax (CMS)
 Algorithms", RFC 3370, August 2002.

 [CMSAES] Schaad, J., "Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS) ", RFC

3565, July 2003.

 [SMTP] Klensin, J., "Simple Mail Transport Protocol," RFC 2821,
 April 2001.

11.2. Informative References

 [X400TRANS] Hoffman, P., and C. Bonatti, "Transporting S/MIME Objects
 in X.400", RFC 3855, July 2004.

 [RANDOM] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
 Recommendations for Security", RFC 4086, June 2005.

 [FIPS] National Institute of Standards and Technology. FIPS Pub
 186-2: Digital Signature Standard. 27 January 2000.

12. ASN.1 Module

 SMIMESymmetricKeyDistribution

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) symkeydist(12) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS All --
 -- The types and values defined in this module are exported for use
 -- in the other ASN.1 modules. Other applications may use them for
 -- their own purposes.

 IMPORTS

 -- PKIX Part 1 - Implicit

 GeneralName

 FROM PKIX1Implicit88 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit(19) }

Turner Expires July 28, 2008 [Page 81]

https://datatracker.ietf.org/doc/html/rfc3370
https://datatracker.ietf.org/doc/html/rfc3565
https://datatracker.ietf.org/doc/html/rfc3565
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc3855
https://datatracker.ietf.org/doc/html/rfc4086

Internet-Draft CMS SymKeyDist January 2008

 -- PKIX Part 1 - Explicit

 AlgorithmIdentifier, Certificate

 FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) }

 -- Cryptographic Message Syntax

 RecipientInfos, KEKIdentifier, CertificateSet

 FROM CryptographicMessageSyntax2004 {iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
 cms-2004(24) }

 -- Advanced Encryption Standard (AES) with CMS

 id-aes128-wrap

 FROM CMSAesRsaesOaep { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-aes(19) }

 -- Attribute Certificate Profile

 AttributeCertificate

 FROM PKIXAttributeCertificate { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-attribute-cert(12) };

 -- This defines the GL symmetric key distribution object identifier
 -- arc.

 id-skd OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) skd(8) }

 -- This defines the GL Use KEK control attribute

 id-skd-glUseKEK OBJECT IDENTIFIER ::= { id-skd 1}

 GLUseKEK ::= SEQUENCE {
 glInfo GLInfo,
 glOwnerInfo SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
 glAdministration GLAdministration DEFAULT 1,
 glKeyAttributes GLKeyAttributes OPTIONAL }

Turner Expires July 28, 2008 [Page 82]

Internet-Draft CMS SymKeyDist January 2008

 GLInfo ::= SEQUENCE {
 glName GeneralName,
 glAddress GeneralName }

 GLOwnerInfo ::= SEQUENCE {
 glOwnerName GeneralName,
 glOwnerAddress GeneralName,
 certificates Certificates OPTIONAL }

 GLAdministration ::= INTEGER {
 unmanaged (0),
 managed (1),
 closed (2) }

 GLKeyAttributes ::= SEQUENCE {
 rekeyControlledByGLO [0] BOOLEAN DEFAULT FALSE,
 recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
 duration [2] INTEGER DEFAULT 0,
 generationCounter [3] INTEGER DEFAULT 2,
 requestedAlgorithm [4] AlgorithmIdentifier
 DEFAULT { id-aes128-wrap } }

 -- This defines the Delete GL control attribute.
 -- It has the simple type GeneralName.

 id-skd-glDelete OBJECT IDENTIFIER ::= { id-skd 2}

 DeleteGL ::= GeneralName

 -- This defines the Add GL Member control attribute

 id-skd-glAddMember OBJECT IDENTIFIER ::= { id-skd 3}

 GLAddMember ::= SEQUENCE {
 glName GeneralName,
 glMember GLMember }

 GLMember ::= SEQUENCE {
 glMemberName GeneralName,
 glMemberAddress GeneralName OPTIONAL,
 certificates Certificates OPTIONAL }

Turner Expires July 28, 2008 [Page 83]

Internet-Draft CMS SymKeyDist January 2008

 Certificates ::= SEQUENCE {
 pKC [0] Certificate OPTIONAL,
 -- See [PROFILE]
 aC [1] SEQUENCE SIZE (1.. MAX) OF
 AttributeCertificate OPTIONAL,
 -- See [ACPROF]
 certPath [2] CertificateSet OPTIONAL }
 -- From [CMS]

 -- This defines the Delete GL Member control attribute

 id-skd-glDeleteMember OBJECT IDENTIFIER ::= { id-skd 4}

 GLDeleteMember ::= SEQUENCE {
 glName GeneralName,
 glMemberToDelete GeneralName }

 -- This defines the Delete GL Member control attribute

 id-skd-glRekey OBJECT IDENTIFIER ::= { id-skd 5}

 GLRekey ::= SEQUENCE {
 glName GeneralName,
 glAdministration GLAdministration OPTIONAL,
 glNewKeyAttributes GLNewKeyAttributes OPTIONAL,
 glRekeyAllGLKeys BOOLEAN OPTIONAL }

 GLNewKeyAttributes ::= SEQUENCE {
 rekeyControlledByGLO [0] BOOLEAN OPTIONAL,
 recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
 duration [2] INTEGER OPTIONAL,
 generationCounter [3] INTEGER OPTIONAL,
 requestedAlgorithm [4] AlgorithmIdentifier OPTIONAL }

 -- This defines the Add and Delete GL Owner control attributes

 id-skd-glAddOwner OBJECT IDENTIFIER ::= { id-skd 6}

 id-skd-glRemoveOwner OBJECT IDENTIFIER ::= { id-skd 7}

 GLOwnerAdministration ::= SEQUENCE {
 glName GeneralName,
 glOwnerInfo GLOwnerInfo }

 -- This defines the GL Key Compromise control attribute.
 -- It has the simple type GeneralName.

Turner Expires July 28, 2008 [Page 84]

Internet-Draft CMS SymKeyDist January 2008

 id-skd-glKeyCompromise OBJECT IDENTIFIER ::= { id-skd 8}

 GLKCompromise ::= GeneralName

 -- This defines the GL Key Refresh control attribute.

 id-skd-glkRefresh OBJECT IDENTIFIER ::= { id-skd 9}

 GLKRefresh ::= SEQUENCE {
 glName GeneralName,
 dates SEQUENCE SIZE (1..MAX) OF Date }

 Date ::= SEQUENCE {
 start GeneralizedTime,
 end GeneralizedTime OPTIONAL }

 -- This defines the GLA Query Request control attribute.

 id-skd-glaQueryRequest OBJECT IDENTIFIER ::= { id-skd 11}

 GLAQueryRequest ::= SEQUENCE {
 glaRequestType OBJECT IDENTIFIER,
 glaRequestValue ANY DEFINED BY glaRequestType }

 -- This defines the GLA Query Response control attribute.

 id-skd-glaQueryResponse OBJECT IDENTIFIER ::= { id-skd 12}

 GLAQueryResponse ::= SEQUENCE {
 glaResponseType OBJECT IDENTIFIER,
 glaResponseValue ANY DEFINED BY glaResponseType }

 -- This defines the GLA Request/Response (glaRR) arc for
 -- glaRequestType/glaResponseType.

 id-cmc-glaRR OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) cmc(7) glaRR(99) }

 -- This defines the Algorithm Request

 id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::= { id-cmc-glaRR 1 }

 SKDAlgRequest ::= NULL

 -- This defines the Algorithm Response

Turner Expires July 28, 2008 [Page 85]

Internet-Draft CMS SymKeyDist January 2008

 id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }

 -- Note that the response for algorithmSupported request is the
 -- smimeCapabilities attribute as defined in MsgSpec [MSG].
 -- This defines the control attribute to request an updated
 -- certificate to the GLA.

 id-skd-glProvideCert OBJECT IDENTIFIER ::= { id-skd 13}

 GLManageCert ::= SEQUENCE {
 glName GeneralName,
 glMember GLMember }

 -- This defines the control attribute to return an updated
 -- certificate to the GLA. It has the type GLManageCert.

 id-skd-glManageCert OBJECT IDENTIFIER ::= { id-skd 14}

 -- This defines the control attribute to distribute the GL shared
 -- KEK.

 id-skd-glKey OBJECT IDENTIFIER ::= { id-skd 15}

 GLKey ::= SEQUENCE {
 glName GeneralName,
 glIdentifier KEKIdentifier, -- See [CMS]
 glkWrapped RecipientInfos, -- See [CMS]
 glkAlgorithm AlgorithmIdentifier,
 glkNotBefore GeneralizedTime,
 glkNotAfter GeneralizedTime }

 -- This defines the CMC error types

 id-cet-skdFailInfo OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }

Turner Expires July 28, 2008 [Page 86]

Internet-Draft CMS SymKeyDist January 2008

 SKDFailInfo ::= INTEGER {
 unspecified (0),
 closedGL (1),
 unsupportedDuration (2),
 noGLACertificate (3),
 invalidCert (4),
 unsupportedAlgorithm (5),
 noGLONameMatch (6),
 invalidGLName (7),
 nameAlreadyInUse (8),
 noSpam (9),
 deniedAccess (10),
 alreadyAMember (11),
 notAMember (12),
 alreadyAnOwner (13),
 notAnOwner (14) }

 END -- SMIMESymmetricKeyDistribution

Turner Expires July 28, 2008 [Page 87]

Internet-Draft CMS SymKeyDist January 2008

Author's Addresses

 Sean Turner

 IECA, Inc.
 3057 Nutley Street, Suite 106
 Fairfax, VA 22031
 USA

 Email: turners@ieca.com

Turner Expires July 28, 2008 [Page 88]

Internet-Draft CMS SymKeyDist January 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Turner Expires July 28, 2008 [Page 89]

