
Network Working Group Steve Waldbusser
INTERNET-DRAFT Nextbeacon
Category: Standards Track Jon Saperia
 JDS Consulting, Inc.
 Thippanna Hongal
 Riverstone Networks, Inc.
 May 2004

Policy Based Management MIB
draft-ietf-snmpconf-pm-15.txt

May 16, 2004

Status of this Memo

This document is an Internet-Draft and is subject to all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet
Engineering Task Force (IETF), its areas, and its working
groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed
at http://www.ietf.org/shadow.html

Various Authors Expires November 16, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet Draft Policy-Based Management MIB Apr 16, 2004

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base
(MIB) for use with network management protocols in TCP/IP-
based internets. In particular, this MIB defines objects that
enable policy-based monitoring and management of SNMP
infrastructures as well as a scripting language and a script
execution environment.

1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the
 current Internet-Standard Management Framework, please
 refer to section 7 of RFC 3410 [15].

 Managed objects are accessed via a virtual information
 store, termed the Management Information Base or MIB. MIB
 objects are generally accessed through the Simple Network
 Management Protocol (SNMP). Objects in the MIB are defined
 using the mechanisms defined in the Structure of Management
 Information (SMI). This memo specifies a MIB module that
 is compliant to the SMIv2, which is described in STD 58,

RFC 2578 [2], STD 58, RFC 2579 [3] and STD 58, RFC 2580
 [4].

2. Overview

Large IT organizations have developed management strategies to cope
with the extraordinarily large scale and complexity inherent in
today's networks. In particular, they try to configure the network as
a whole by describing and implementing high-level business policies,
rather than managing device by device, where orders of magnitude more
decisions (and mistakes) may be made.

To illustrate the concept of "business policies", some examples are:
 - All routers will run code version 6.2
 - On-site contractors will only be connected to ports that are
 configured with special security restrictions
 - All voice over cable ports in California must provide free local
 calling
 - Apply special forwarding to all ports whose customers have paid

https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580

Various Authors Expires November 16, 2004 [Page 2]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 for premium service.

Each of these policies could represent an action applied to hundreds
of thousands of variables.

In order to automate this practice, customers need software tools that
will implement business policies across their network, as well as
a standard protocol that will ensure that it can be applied to all of
their devices, regardless of the vendor.

This practice is called Policy-Based Management. This document
defines managed objects for the Simple Network Management
Protocol that are used to distribute policies in a common form
throughout the network.

Various Authors Expires November 16, 2004 [Page 3]

Internet Draft Policy-Based Management MIB Apr 16, 2004

3. Policy-Based Management Architecture

Policy-based management is the practice of applying management
operations globally on all managed elements that share certain
attributes.

Policies are intended to express a notion of:
 if (an element has certain characteristics) then (apply operation to
 that element)

Policies take the following normal form:

 if (policyCondition) then (policyAction)

A policyCondition is a script which results in a boolean
to determine whether or not an element is a member of a set of
elements upon which an action is to be performed.

A policyAction is an operation performed on an element or a set of
elements.

These policies are most often executed on or near managed devices,
where the elements live (and thus their characteristics may be easily
inspected), and where operations on those elements will be performed.

A management station is responsible for distributing an organization's
policies to all of the managed devices in the infrastructure. The
pmPolicyTable provides managed objects for representing a policy on a
managed device.

An element is an instance of a physical or logical entity and is
embodied by a group of related MIB variables such as all the variables
for interface #7. This enables policies to be expressed more
efficiently and concisely. Elements can also model circuits, CPUs,
queues, processes, systems, etc.

Conceptually, policies are executed in the following manner:

 foreach element for which policyCondition returns true
 execute policyAction on that element

For example:

 If (interface is fast ethernet) then (apply full-duplex mode)
 If (interface is access) then (apply security filters)

Various Authors Expires November 16, 2004 [Page 4]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 If (circuit w/gold service paid for) then (apply special queuing)

Each unique combination of policy and element is called an execution
context. Within a particular execution context, the phrase 'this
element' is often used to refer to the associated element, as most
policy operations will be applied to 'this element'. The address
of 'this element' contains the object identifier of any attribute of the
element, the SNMP context the element was discovered in, and the address of
the system on which the element was discovered.

Policies can manage elements on the same system:

 | |
 | Managed System |
 | |
 | |
 | ------------------ Managed Elements |
 | | | interfaces |
 | | Policy Manager | manages... circuits |
 | | | queues |
 | ------------------ processes |
 | ... |
 | |

or elements on other systems:

 | Managed System |
 -------------------------- | Managed Elements |
		interfaces
Management Station or		circuits
Mid-Level Manager		...

------------------	manages...	
	Policy Manager	
------------------		Managed System
		Managed Elements
 -------------------------- | interfaces |
 | circuits |
 | ... |

 ...

Various Authors Expires November 16, 2004 [Page 5]

Internet Draft Policy-Based Management MIB Apr 16, 2004

PolicyConditions have the capability of performing comparison operations
on SNMP variables, logical expressions, and other functions. Many
device characteristics are already defined in MIB Modules and are
easy to include in policyCondition expressions (ifType == ethernet,
frCircuitCommittedBurst < 128K, etc). However, there are
important characteristics that aren't currently in MIB objects, and
worse, it is not current practice to store this information on managed
devices. Therefore, this document defines MIB objects for this
information. To meet today's needs there are three missing areas:
roles, capabilities and time.

Roles

A role is an administratively specified characteristic of a managed
element. It is a selector for policies, to determine the applicability
of the policy to a particular managed element.

Some examples of roles are political, financial, legal,
geographical, or architectural characteristics, typically not directly
derivable from information stored on the managed system. For example,
"paid for premium service" or "is plugged into a UPS" are examples of
roles, whereas the "percent utilization of a link" would not be.

Some types of information one would put into a role include:

 political - describes the role of a person or group of people, or of
 a service that a group of people use. Examples:
 executive, sales, outside-contractor, customer.
 If (attached user is executive) then (apply higher bandwidth)
 If (attached user is outside-contractor) then (restrict access)

 financial/legal - describes what financial consideration was
 received. Could also include contractual or legal
 considerations. Examples:
 paid, gold, free, trial, demo, lifeline
 If (gold service paid for) then (apply special queuing)

 geographical - describes the location of an element. Examples:
 California, Headquarters, insecure conduit.
 If (interface leaves the building) then (apply special security)

 architectural - describes the network architects "intent" for an
 element. For example: backup, trunk.
 If (interface is backup) then (set ifAdminStatus = down)

Various Authors Expires November 16, 2004 [Page 6]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 Roles in this model are human defined strings that can be referenced
 by policy code. The role table in this MIB may be used to assign
 role strings to elements and to view all role string
 assignments. Implementation-specific mechanisms may also be used to
 assign role strings, however such assignments must be visible in the
 role table. Multiple roles may be assigned to each element. Because
 policy code has access to data in MIB objects that represent the
 current state of the system and (in contrast) role strings are more
 static, it is recommended that role strings not duplicate
 information that is available in MIB objects. Role strings generally
 should be used to describe information not accessible in MIB objects.

 Policy scripts may inspect roles assignments to make decisions based
 on whether or not an element has a particular role assigned to it.

 The pmRoleTable allows a management station to learn what roles
 exist on a managed system. The management station may choose not to
 install policies that depend on a role that does not exist on any
 elements in the system. The management station can then register for
 notifications of new roles. Upon receipt of a pmNewRoleNotification,
 it may choose to install new policies that make use of that new
 role.

Capabilities

 The capabilities table allows a management station to learn what
 capabilities exist on a managed system. The management station may
 choose not to install policies that depend on a capability that
 does not exist on any elements in the system. The management station
 can then register for notifications of new capabilities. Upon
 receipt of a pmNewCapabilityNotification, it may choose to install
 new policies that make use of that new capability.

Time

 Managers may wish to define policies that are intended to apply for
 certain periods of time. This might mean that a policy is installed
 and is dormant for a period of time, becomes ready, and then later
 goes dormant. Sometimes these time periods will be regular
 (Monday-Friday 9-5) and sometimes ad-hoc. This MIB provides a
 schedule table that can schedule when a policy is ready and when it
 is dormant.

Various Authors Expires November 16, 2004 [Page 7]

Internet Draft Policy-Based Management MIB Apr 16, 2004

A policy manager contains:

 | Policy Manager |
--

Various Authors Expires November 16, 2004 [Page 8]

Internet Draft Policy-Based Management MIB Apr 16, 2004

4. Policy Based Management Execution Environment

4.1. Terminology

Active Schedule - A schedule specifies certain times that it will be
 considered active. A schedule is active during those times.

Valid Policy - A valid policy is a policy that is fully configured and
 enabled to run. A valid policy may run unless it is linked to a
 schedule entry that says the policy is not currently active.

Ready Policy - A ready policy is a valid policy that either has no
 schedule or is linked to a schedule that is currently active.

Precedence Group - Multiple policies can be assigned to a precedence
 group with the resulting behavior that for each element, of the
 ready policies that match the condition, only the one with the
 highest precedence value will be active. For example if there is a
 default bronze policy that applies to any interface and a special
 policy for gold interfaces, the higher precedence of the gold
 policy will ensure that it is run on gold ports and the bronze
 policy isn't.

Active Execution Context - An active execution context is a pairing of
 a ready policy with an element that matches the element type
 filter and the policy condition. If there are multiple policies in
 the precedence group, it is also necessary that no higher
 precedence policy in the group match the policy condition.

Run-Time Exception (RTE) - A run-time exception is a fatal error
 caused in language or function processing. If, during the
 invocation of a script, a run-time exception occurs, execution of
 that script is immediately terminated. If a policyCondition
 experiences a run-time exception while processing an element, the
 element is not matched by the condition and the associated action
 will not be run on that element. A run-time exception can cause an
 entry to be added to the pmDebuggingTable and will be reflected in
 the pmTrackingPEInfo object. The phrase run-time exception will be
 commonly abbreviated to RTE.

Various Authors Expires November 16, 2004 [Page 9]

Internet Draft Policy-Based Management MIB Apr 16, 2004

4.2. Execution Environment - Elements of Procedure

There are several steps performed in order to execute policies
in this environment:

 - Element Discovery
 - Element Filtering
 - Policy Enforcement

4.3. Element Discovery

An element is an instance of a physical or logical entity.
Examples of elements include interfaces, circuits, queues,
CPUs, and processes. Sometimes various attributes of an entity
will be described through tables in several standard and
proprietary MIB Modules - as long as the indexing is
consistent between these tables, the entity can be modeled as
one element. For example, the ifTable and the dot3Stats table
both contain attributes of interfaces and share the same index
(ifIndex), therefore they can be modeled as one element type.

The Element Type Registration table allows the manager to
learn what element types are being managed by the system and
to register new types if necessary. An element type is
registered by providing the OID of an SNMP object (i.e.,
without the instance). Each SNMP instance that exists under
that object is a distinct element. The index part of the
discovered OID will be supplied to policy conditions and
actions so that this code can inspect and configure the
element. The agent can determine the index portion of
discovered OIDs based on the length of the
pmElementTypeRegOIDPrefix for the portion of the MIB that is
being retrieved. For example, if the OIDPrefix is 'ifEntry'
which has 9 subids, the index starts on the 11th subid
(skipping the subidentifier for the column, e.g.: ifSpeed).

For each element that is discovered, the policy condition is
called with the element's name as an argument to see if the
element is a member of the set that the policy acts upon.

Note that agents may automatically configure entries in this
table for frequently used element types (interfaces, circuits,
etc.). In particular, it may configure elements for whom
discovery is optimized in one or both of the following ways:

Various Authors Expires November 16, 2004 [Page 10]

Internet Draft Policy-Based Management MIB Apr 16, 2004

1. The agent may discover elements by scanning internal data
 structures as opposed to issuing local SNMP requests. It is
 possible to recreate the exact semantics described in this
 table even if local SNMP requests are not issued.

2. The agent may receive asynchronous notification of new
 elements (for example, "card inserted") and use that
 information to instantly create elements rather than
 through polling. A similar feature might be available for
 the deletion of elements.

Note that upon restart, the disposition of agent-installed
entries is described by the pmPolicyStorageType object.

A special element type "0.0" exists representing the "system
element". "0.0" represents the single instance of the system
itself and provides an execution context for policies to
operate on "the system" as well as on MIB objects modeled as
scalars. For example, "0.0" gives an execution context for
policy-based selection of the operating system code version
(likely modeled as a scalar MIB object). The element type
"0.0" always exists - as a consequence, no actual discovery
will take place and the pmElementTypeRegMaxLatency object will
have no effect for the "0.0" element type. However, if the
"0.0" element type is not registered in the table, policies
will not be executed on the "0.0" element.

If the agent is discovering elements by polling, it should
check for new elements no less frequently than
pmElementTypeRegMaxLatency would dictate. When an element is
first discovered all policyConditions are run immediately and
policyConditions that match will have the associated
policyAction run immediately. Subsequently, the
policyCondition will be run regularly for the element with no
more than pmPolicyConditionMaxLatency milliseconds elapsing
between each invocation. Note that if an implementation has
the ability to be alerted immediately when a particular type
of element is created, it is urged to discover that type of
element in this fashion rather than through polling, resulting
in immediate configuration of the discovered element.

Various Authors Expires November 16, 2004 [Page 11]

Internet Draft Policy-Based Management MIB Apr 16, 2004

4.3.1. Implementation Notes

Note that while the external behavior of this registration
process is defined in terms of the walking of MIB tables,
implementation strategies may differ. For example, commonly-
used element types (like interface) may have purpose-built
element discovery capability built-in and advertised to
managers through an entry in the pmElementTypeRegTable.

Before registering an element type, it is the responsibility
of a manager to inspect the table and see if it is already
registered (either by the agent or by another manager). Note
that entries that differ only in the last subid (which
specifies which object in an entry) are effectively duplicates
and should be treated as such by the manager.

The system which implements the Policy-Based Management MIB
may not have knowledge of the format of object identifiers in
other MIB Modules. Therefore it is inappropriate for it to
check these OIDs for errors. It is the responsibility of the
management station to register well-formed object-identifiers.
For example, if an extra sub-identifier is supplied when
registering the ifTable, no elements will be discovered.
Similarly, if a sub-identifier is missing, every element will
be discovered numerous times (once per column) and none of the
element addresses will be well-formed.

4.4. Element Filtering

The first step in executing a policy is to see if the policy
is ready to run based on its schedule. If the pmPolicySchedule
object is equal to zero, there is no schedule defined and the
policy is always ready. If the pmPolicySchedule object is non-
zero, then the policy is ready only if the referenced schedule
group contains at least one valid schedule entry that is
active at the current time.

If the policy is ready, the next step in executing a policy is
to see which elements match the policy condition. To evaluate
a policy, the policy condition is called once for each element
and runs to completion. The element's name is the only
argument that is passed to the condition code for each
invocation. No state is remembered within the policy script

Various Authors Expires November 16, 2004 [Page 12]

Internet Draft Policy-Based Management MIB Apr 16, 2004

from the previous invocation of 'this element' nor from the
previous invocation of the policy condition except for state
accessible through library functions. Two notable examples of
state accessible through library functions are the scratchpad
functions which explicitly provide for storing state, and the
SNMP functions which can store state in local or remote MIB
objects. If any run-time exception occurs, the condition will
terminate immediately for 'this element'. If the condition
returns non-zero, the corresponding policy action will be
executed for 'this element'.

If an element matches a condition and it had not matched that
condition the last time it was checked (or it is a newly-
discovered element), the associated policyAction will be
executed immediately. If the element had matched the condition
at the last check, it will remain in the set of elements whose
policyAction will be run within the policyActionMaxLatency.

4.4.1. Implementation Notes

It is an implementation-dependent matter as to whether policy
conditions are multi-tasked. Each condition/element
combination is conceptually its own process and can be
scheduled sequentially or two or more could be run
simultaneously.

4.5. Policy Enforcement

For each element that has returned non-zero from the policy
condition, the corresponding policy action is called. The
element's name is the only argument that is passed to the
policy action for each invocation. Except for state
accessible from library functions, no state is remembered from
the policy condition evaluation, nor from the previous
condition/action invocation of 'this element' nor from the
previous invocation of the policy condition or action on any
other element. If any run-time exception occurs, the action
will terminate immediately for 'this element'.

Various Authors Expires November 16, 2004 [Page 13]

Internet Draft Policy-Based Management MIB Apr 16, 2004

4.5.1. Implementation Notes

It is an implementation-dependent matter as to how policy
actions are multi-tasked. Each condition/element combination
is conceptually its own process and can be scheduled
sequentially or two or more could be run simultaneously.

Various Authors Expires November 16, 2004 [Page 14]

Internet Draft Policy-Based Management MIB Apr 16, 2004

5. The PolicyScript Language

Policy conditions and policy actions are expressed with the
PolicyScript language. The PolicyScript language is designed
to be a small interpreted language that is simple to
understand and implement; it is designed to be appropriate for
writing small scripts that make up policy conditions and
actions.

PolicyScript is intended to be familiar to programmers that
know one of several common languages, including Perl and C.
PolicyScript is nominally a subset of the C language - however
it was desirable to have access to C++'s operator overloading
(solely to aid in documenting the language). Therefore,
PolicyScript is defined formally as a subset of the C++
language in which many of the operators are overloaded as part
of the "var" class. Note, however that a PolicyScript program
cannot further overload operators because the syntax to
specify overloading is not part of the PolicyScript syntax. A
subset was used to provide for easy development of low-cost
interpreters of PolicyScript and to take away language
constructs that are peculiar to the C/C++ languages. For
example, it is expected that both C and Perl programmers will
understand the constructs allowed in PolicyScript.

Some examples of the C/C++ features that are not available
are: function definitions, pointer variables, structures,
enums, typedefs, floating point and pre-processor functions
(except for comments).

This language is formally defined as a subset of ISO C++ [10],
but only allows those constructs that may be expressed in the
Extended Backus-Naur Form (EBNF) documented here. This is done
because while EBNF doesn't fully specify syntactical rules (it
allows constructs that are invalid) and doesn't specify
semantic rules, it can successfully be used to define the
subset of the language that is required for conformance to
this specification. Unless explicitly described herein, the
meaning of any construct expressed in the EBNF can be found by
reference to the ISO C++ standard.

The use of comments and newlines are allowed and encouraged in
order to promote readability of PolicyScript code. Comments
begin with '/*' and end with '*/' or begin with '//' and go
until the end of the line.

Various Authors Expires November 16, 2004 [Page 15]

Internet Draft Policy-Based Management MIB Apr 16, 2004

One subset is not expressible in the EBNF syntax: all
variables within an instance of a PolicyScript script are
within the same scope. In other words, variables defined in a
block delimited with '{' and '}' are not in a separate scope
from variables in the enclosing block.

PolicyScript code must be expressed in the ASCII character
set.

In the EBNF used here, terminals are character set members
(singly or in a sequence) that are enclosed between two
single-quote characters or described as a phrase between '<'
and '>' characters. Nonterminals are a sequence of letters
and underscore characters. A colon (:) following a
nonterminal introduces its definition, a production. In a
production, a '|' character separates alternatives. The '('
and ')' symbols group the enclosed items. The '[' and ']'
symbols indicate that the enclosed items are optional. The '?'
symbol following an item indicates that the item is optional.
The '*' symbol following an item indicates that the item is
repeated zero, one, or more times. The '+' symbol following an
item indicates that the item is repeated one or more times.
The symbol '--' begins a comment that ends at the end of the
line.

5.1. Formal Definition

The PolicyScript language follows the syntax and semantics of
ISO C++ [10], but is limited to that which can be expressed in
the EBNF below.

The following keywords are reserved words and cannot be used
in any policy script. This prevents someone from using a word
that is a common keyword in another language as an identifier
in a script and thereby confusing the meaning of the script.
The reserved words are:
 auto, case, char, const, default, do, double, enum,
 extern, float, goto, inline, int, long, register, short,
 signed, sizeof, static, struct, switch, typedef, union,
 unsigned, void, and volatile.

Any syntax error, use of a reserved keyword, reference of an
unknown identifier, improper number of function arguments,
error in coercing an argument to the proper type, exceeding

Various Authors Expires November 16, 2004 [Page 16]

Internet Draft Policy-Based Management MIB Apr 16, 2004

local limitations on string length or exceeding local
limitations on the total amount of storage used by local
variables will cause a RTE.

PolicyScript permits comments using the comment delimiters,
'/*' to '*/' or the start of comment symbol '//'.

-- Lexical Grammar

 letter: '_' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'
 | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm'
 | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't'
 | 'u' | 'v' | 'w' | 'x' | 'y' | 'z'
 | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
 | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M'
 | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T'
 | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z'

 digit: '0' | '1' | '2' | '3' | '4'
 | '5' | '6' | '7' | '8' | '9'

 non_zero: '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

 oct_digit: '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'

 hex_digit: digit | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'
 | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'

 escape_seq: '\'' | '\"' | '\?' | '\\'
 | '\a' | '\b' | '\f' | '\n'
 | '\r' | '\t' | '\v'
 | '\' oct_digit+ | '\x' hex_digit+

 non_quote: Any character in the ASCII character set
 except single quote ('), double quote ("),
 backslash ('\') or newline.

 c_char: non_quote | '"' | escape_seq

 string_literal: '"' s_char* '"'

 s_char: non_quote | ''' | escape_seq

 char_constant: ''' c_char '''

Various Authors Expires November 16, 2004 [Page 17]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 decimal_constant: non_zero digit*

 octal_constant: '0' oct_digit*

 hex_constant: ('0x' | '0X') hex_digit+

 integer_constant: decimal_constant | octal_constant | hex_constant

 identifier: letter (letter | digit)*

-- Phrase Structure Grammar

 -- Expressions

 primary_expr: identifier | integer_constant | char_constant
 | string_literal | '(' expression ')'

 postfix_expr: primary_expr
 | identifier '(' argument_expression_list? ')'
 | postfix_expr '++'
 | postfix_expr '--'
 | postfix_expr '[' expression ']'

 argument_expression_list:
 assignment_expr
 | argument_expression_list ',' assignment_expr

 unary_expr: postfix_expr | unary_op unary_expr

 unary_op: '+' | '-' | '~' | '!' | '++' | '--'

 binary_expr: unary_expr | binary_expr binary_op unary_expr

 binary_op: '||' | '&&' | '|' | '^' | '&' | '!='
 | '==' | '>=' | '<=' | '>' | '<' | '>>'
 | '<<' | '-' | '+' | '%' | '/' | '*'

 assignment_expr: binary_expr
 | unary_expr assignment_op assignment_expr

 assignment_op: '=' | '*=' | '/=' | '%=' | '+=' | '-='
 | '<<=' | '>>=' | '&=' | '^=' | '|='

 expression: assignment_expr | expression ',' assignment_expr

Various Authors Expires November 16, 2004 [Page 18]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 -- Declarations

 declaration: 'var' declarator_list ';'

 declarator_list: init_declarator
 | declarator_list ',' init_declarator

 init_declarator: identifier ['=' assignment_expr]

 -- Statements

 statement: declaration
 | compound_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement

 compound_statement: '{' statement* '}'

 expression_statement: expression? ';'

 selection_statement:
 'if' '(' expression ')' statement
 | 'if' '(' expression ')' statement 'else' statement

 iteration_statement:
 'while' '(' expression ')' statement
 | 'for' '(' expression? ';' expression? ';' expression? ')'
 statement

 jump_statement: 'continue' ';'
 | 'break' ';'
 | 'return' expression? ';'

 -- Root production

 PolicyScript: statement*

5.2. Variables

To promote shorter scripts and ease in writing scripts,
PolicyScript provides a loosely-typed data class, "var", that
can store both integer and string values. The native C++

Various Authors Expires November 16, 2004 [Page 19]

Internet Draft Policy-Based Management MIB Apr 16, 2004

types (char, int, etc.) are thus unnecessary and have not been
carried into the subset that comprises this language. The
semantics of the "var" type are modeled after those of
ECMAScript[16].

 For example:

 var number = 0, name = "IETF";

This language will be executed in an environment where the
following typedef is declared. (Note that this typedef will
not be visible in the policyCondition or policyAction code.)

 typedef ... var;

While this declaration is expressed here as a typedef, the
'typedef' keyword itself is not available to be used in
PolicyScript code.

5.2.1. The var class

A value is an entity that takes on one of two types: string or
integer.

The String type is the set of all finite ordered sequences of
zero or more 8-bit unsigned integer values ("elements"). The
string type can store textual data as well as binary data
sequences. Each element is regarded as occupying a position
within the sequence. These positions are indexed with
nonnegative integers. The first element (if any) is at
position 0, the next element (if any) at position 1, and so
on. The length of a string is the number of elements (i.e.,
8-bit values) within it. The empty string has length zero and
therefore contains no elements.

The integer type is the set of all integer values in the range
-9223372036854775808 (-2^63) to 18446744073709551615 (2^64-1).
If an integer operation would cause a (positive) overflow,
then the result is returned modulo 2^64. If an integer
operation would cause a (negative) underflow, then the result
is undefined. Integer division rounds towards zero.

Prior to initialization, a var object has type String and a
length of zero.

Various Authors Expires November 16, 2004 [Page 20]

Internet Draft Policy-Based Management MIB Apr 16, 2004

The policy script runtime system performs automatic type
conversion as needed. To clarify the semantics of certain
constructs it is useful to define a set of conversion
operators: ToInteger(), ToString(), ToBoolean() and Type().
These operators are not a part of the language; they are
defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is,
they can accept a value of any standard type.

ToInteger

The operator ToInteger converts its argument to a value of
type Integer according to the following table:

 Integer The result equals the input argument
 (no conversion).
 String See grammar and note below
 integer_constant The result equals the input argument
 (no conversion).
 string_literal See grammar and note below
 char_constant See grammar and note below

ToInteger Applied to strings

ToInteger applied to the String Type, string_literal and
char_constants applies the following grammar to the input. If
the grammar cannot interpret the string as an expansion of
numeric_string, then an RTE is generated. Note that a
numeric_string that is empty or contains only white space is
converted to 0.

-- EBNF for numeric_string

 numeric_string : white_space* numeric? white_space*

 white_space : <TAB> | <SP> | <NBSP> | <FF> | <VT>
 | <CR> | <LF> | <LS> | <PS> | <USP>

 numeric : signed_decimal | hex_constant | octal_constant |
 enum_decimal

 signed_decimal: ['-' | '+'] decimal_constant

 enum_decimal: [letter | digit | '-']* '(' decimal_constant ')'

Various Authors Expires November 16, 2004 [Page 21]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 -- decimal_constant, hex_constant, octal_constant are defined in the
 -- PolicyScript EBNF described earlier

 Note that when converting the enum_decimal form, the sequence of
 characters before the parenthesis and the pair of parenthesis
 themselves are completely ignored and the decimal_constant inside
 the parenthesis is converted. Thus, "frame-relay(32)" translates to
 the integer 32.

 While this will make the script more readable than
 using the constant "32", the burden is on the code writer to be
 accurate because "ethernet-csmacd(32)" and "frame-relay(999)" will
 also be accepted.

ToString

The operator ToString converts its argument to a value of type String
according to the following table:

 Integer Return the string containing the decimal
 representation of the input argument in
 the form of signed_decimal except that
 no leading '+' will be used.
 String Return the input argument (no conversion)
 integer_constant Return the string containing the decimal
 representation of the input argument in the
 form of signed_decimal except that no
 leading '+' will be used.
 string_literal Return the input argument (no conversion)
 char_constant Return the string of length one containing
 the value of the input argument.

ToBoolean

The operator ToBoolean converts its argument to a value of type
Integer according to the following table:

 Integer The result is 0 if the argument is 0.
 Otherwise the result is 1.
 String The results is 0 if the argument is the
 empty string. Otherwise the result is 1.
 integer_constant The result is 0 if the argument is 0.
 Otherwise the result is 1.
 string_literal The result is 0 if the argument is the
 empty string. Otherwise the result is 1.

Various Authors Expires November 16, 2004 [Page 22]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 char_constant The result is 1.

Operators

The rules below specify the type conversion rules for the
various operators.

 A++: A = ToInteger(A); A++;
 A--: A = ToInteger(A); A--;
 ++A: A = ToInteger(A); ++A;
 --A: A = ToInteger(A); --A;
 +A: ToInteger(A);
 -A: -1 * ToInteger(A);
 ~A: ToInteger(A);
 !A: !ToBoolean(A);
 A * B, A - B, A & B, A ^ B , A | B, A << B, A >> B:
 ToInteger(A) <operator> ToInteger(B)
 A / B, A % B:
 if (ToInteger(B) == 0)
 RTE, terminate;
 else
 ToInteger(A) <operator> ToInteger(B)
 A + B:
 if (Type(A) == String || Type(B) == String)
 ToString(A) concatenated with ToString(B)
 else
 A + B
 Compound Assignment (<operator>=):
 Simply follow rules above. Note that type of LHS (Left
 Hand Side) may be changed as a result.

 A < B, A > B, A <= B, A >= B, A == B, A != B:
 if (Type(A) == String && Type(B) == String)
 lexically compare strings with strcmp() logic
 else
 ToInteger(A) <operator> ToInteger(B)
 A && B:
 if (ToBoolean(A))
 ToBoolean(B);
 else
 false;
 A || B:
 if (ToBoolean(A))
 true;

Various Authors Expires November 16, 2004 [Page 23]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 else
 ToBoolean(B);

 if(A):
 if (ToBoolean(A))
 while(A):
 while(ToBoolean(A))
 for(...; A; ...):
 for(...; ToBoolean(A); ...)

 A[B] as a RHS (Right Hand Side) value:
 if (Type(A) != String
 || ToInteger(B) >= strlen(A))
 RTE, terminate;
 A[ToInteger(B)]
 The contents are returned as a string of length one

 A[B] = C as a LHS value:
 if (Type(A) != String
 || ToInteger(B) >= strlen(A))
 RTE, terminate;
 if (strlen(ToString(C)) == 0)
 RTE, terminate
 A[ToInteger(B)] = First octet of ToString(C)

 Note that this is only applicable in a simple assignment.

For example, in the expression

 "getVar("ifSpeed.1") < 128000"

getVar always returns a string and '128000' is implicitly an
integer. The rules for '<' dictate that if either argument is
an integer then a 'numeric less than' is performed on
ToInteger(A) and ToInteger(B).

If "getVar("ifSpeed.1")" returns "64000", the expression can
be translated to:
 ToInteger("64000") < ToInteger(128000); or,
 64000 < 128000; or,
 True

Various Authors Expires November 16, 2004 [Page 24]

Internet Draft Policy-Based Management MIB Apr 16, 2004

5.3. PolicyScript QuickStart Guide

PolicyScript is designed so that programmers fluent in other
languages can quickly begin to write scripts.

One way to become familiar with a language is to see it in
action. The following nonsensical script exercises most of
the PolicyScript constructs (though it skips some usage
options and many arithmetic operators).

 var x, index = 7, str = "Hello World", oid = "ifSpeed.";

 x = 0;
 while(x < 10){
 if (str < "Goodbye") /* string comparison */
 continue;
 else
 break;
 x++;
 }
 if (oidlen(oid) == 10)
 oid += "." + index; // append index to oid
 for(x = 0; x < 7; x++){
 str += "a";

 var y = 12;
 index = ((x * 7) + y) % 3;
 if (str[6] == 'W')
 return index;
 }
 return;

A few examples that are more practical are:

For a condition:
 // Return 1 if this is an interface and it is tagged
 // with the role "gold"
 return (inSubtree(elementName(), "ifEntry")
 && roleMatch("gold"))

A condition/action pair:
First, register the Host Resources MIB hrSWRunEntry as a new element
in the pmElementTypeRegTable. This will cause the policy to run for
every process on the system. The token '$*' will be replaced by the
script interpreter with a process index (see Section 7 for a

Various Authors Expires November 16, 2004 [Page 25]

Internet Draft Policy-Based Management MIB Apr 16, 2004

definition of the '$*' token).

The condition:
 // if it's a process and it's an application and it's
 // consumed more than 5 minutes of CPU time
 return (inSubtree(elementName(), "hrSWRunEntry")
 && getVar("hrSWRunType.$*") == 4 // app, not OS or driver
 && getVar("hrSWRunPerfCPU.$*") > 30000) // 300 seconds

The action:
 // Kill it
 setVar("hrSWRunStatus.$*", 4, Integer); // invalid(4) kills it

A more substantial action to start an RMON2 host table on interfaces
that match the condition:

 var pdu, index;

 pdu = newPDU();
 writeVar(pdu, 0, "hlHostControlDataSource.*",
 "ifIndex." + ev(0), Oid);
 writeVar(pdu, 1, "hlHostControlNlMaxDesiredEntries.*", 1000,
 Integer);
 writeVar(pdu, 2, "hlHostControlAlMaxDesiredEntries.*", 1000,
 Integer);
 writeVar(pdu, 3, "hlHostControlOwner.*", "policy", String);
 writeVar(pdu, 4, "hlHostControlStatus.*", "active(1)", Integer);
 if (createRow(pdu, 5, 4, 20, 65535, index) == 0
 || index == -1)
 return;

Because PolicyScript is a least common denominator, it
contains nothing that would astonish programmers familiar with
C, C++, Perl, Tcl, JavaScript or Python. While a new
programmer may attempt to use language constructs that aren't
available in PolicyScript, they should be able to understand
any existing PolicyScript and will likely know how to use
anything that is valid in PolicyScript. The lists below
quickly enumerate the changes of note for programmers coming
from some particular languages. These lists won't describe the
unavailable constructs but it is easy to see from the
definition above what is available.

Various Authors Expires November 16, 2004 [Page 26]

Internet Draft Policy-Based Management MIB Apr 16, 2004

5.3.1. Quickstart for C Programmers

 - Character constants (i.e. 'c') are treated as one-character
 strings, not integers. So operations like ('M' - 'A') or (x + 'A')
 will not perform as expected.
 - Functions can change the value of arguments even though
 they are not pointers (or called like '&arg').
 - All variables are in the same scope

5.3.2. Quickstart for Perl Programmers

 - Comments are '/* comment */' and '// till end of line', not '#'
 - No need to put a '$' in front of variables
 - Strings are compared with ==, <=, < etc. (Details in Sec. 6.2.1)
 - Strings are concatenated with '+'. (Details in Sec. 6.2.1)
 - No variable substitution in "" strings. '' strings are 1 char only.
 - Variables must be declared before use (but no type is necessary)
 - All variables are in the same scope

5.3.3. Quickstart for TCL Programmers

 - Comments are '/* comment */' and '// till end of line', not '#'
 - No need to put a '$' in front of variables
 - Function calls are func-name(arg1, arg2, ...)
 - Square braces [] don't interpret their contents
 - Double quotes "" surround a string but no substitutions are
 performed ("" is like { } in TCL)
 - Statements are terminated by a semicolon;
 - Instead of "Set a b", use "b = a;"
 - Strings are concatenated with '+'. (Details in Sec. 6.2.1)
 - All variables are in the same scope

5.3.4. Quickstart for Python Programmers

 - Comments are '/* comment */' and '// till end of line', not '#'
 - Single quotes can be used only for single-character strings ('a')
 - Indentation doesn't matter. Braces {} define blocks.
 - Variables must be declared before use (but no type is necessary)
 - The expression for if and while is always surrounded by
 parenthesis, like "if (x < 5)".
 - 'for' syntax is "for(expression; expression; expression)" (see EBNF).
 - All variables are in the same scope

Various Authors Expires November 16, 2004 [Page 27]

Internet Draft Policy-Based Management MIB Apr 16, 2004

5.3.5. Quickstart for JavaScript/ECMAScript/JScript
Programmers

 - Variables must be declared before use.
 - Functions can change the value of arguments
 - All variables are in the same scope

5.4. PolicyScript script return values

A PolicyScript script execution is normally ended by the
execution of a return statement, or by having the flow of
execution reach the end of the final statement in the script.
A normal script execution always returns a Boolean value. If
no explicit value is specified in the return statement, or if
the flow of control proceeds through the end of the script,
the return value is implicitly zero. If an expression is
provided with the return statement, the expression is
evaluated, and the result of the expression is implicitly
converted with the ToBoolean operator before being returned to
the script execution environment.

The return value of a policyCondition script is used to
determine whether the associated policyAction script is
executed. If the returned value is zero, the associated
policyAction script is not executed. If the returned value is
one, the associated policyAction script will be executed.

The return value of a policyAction script is ignored.

A RTE or invocation of the fail() function will cause the
return value of the script to be set to zero. Note however,
that execution of the defer() or fail() functions may set the
defer attribute so that the lower precedence script may be
executed. This is independent of the return value of the
policy script execution.

6. Index information for `this element'

PolicyScript code needs a convenient way to get the components
of the index for 'this element' so that they can perform SNMP
operations on it or on related elements.

Two mechanisms are provided.

Various Authors Expires November 16, 2004 [Page 28]

Internet Draft Policy-Based Management MIB Apr 16, 2004

1. For all OID input parameters to all SNMP Library Functions (but
 not OID utility functions), the token "$n" ('$' followed by an
 integer between 0 and 128) can be used in place of any decimal
 sub-identifier. This token is expanded by the agent at execution
 time to contain the n'th subid of the index for the current
 element. For example, if the element is interface #7, and the
 objectIdentifier is "1.3.6.1.2.1.2.2.1.3.$0", it will be expanded
 to "1.3.6.1.2.1.2.2.1.3.7". The special token "$*" is expanded to
 contain all of the subidentifiers of the index of the current
 element, separated by '.' characters.

 It is an RTE if a token is specified that is beyond the length of
 the index for the current element.

 Note that the "$n" convention is only active within strings

2. The ec() and ev() functions allow access to the components of the
 index for 'this element'. ec() takes no argument and returns the
 number of index components that exist. ev() takes an integer
 argument specifying which component of the index (numbered starting
 at 0) and returns an integer containing the value of the n'th
 subidentifier. Refer to the Library functions section for the
 complete definition of ec() and ev().

 For example, if 'this element' is frCircuitDLCI.5.57
 (ifIndex = 5, DLCI = 57)
 then ec() returns 2
 ev(0) returns 5
 ev(1) returns 57

 This is helpful when wishing to address a related element.
 Extending the previous example, to find the port speed of the port
 the circuit (above) runs over:

 portSpeed = getVar("ifSpeed." + ev(0));

A script may check the type of 'this element' by calling the
elementName() function. While it is possible to write a script
that will work with different types of elements, many scripts
will assume a particular element type and will work
incorrectly if used on different element types.

Various Authors Expires November 16, 2004 [Page 29]

Internet Draft Policy-Based Management MIB Apr 16, 2004

7. Library Functions

Library functions are built-in functions available primarily
to provide access to information on the local system or to
more efficiently manipulate this information. A group of
functions is organized into a library, the unit of conformance
for function implementation. In order to claim conformance to
a library, an implementation must implement all functions in a
library to the specifications of the library.

In order for a management station or a condition or action to
understand if a certain library of functions is implemented,
each library will have a name that it registers in the role
table as a characteristic of the system element ("0.0") in the
default SNMP context. Thus, conformance to a library can be
tested with the roleMatch library function (in the base
library) with the call roleMatch("libraryName", "0.0").

Note that in the descriptions of these functions below, the
function prototype describes the type of argument expected.
Even though variables are not declared with a particular type,
their contents must be as appropriate for each function
argument. If the type is variable, the keyword 'var' will be
used. If only a string is appropriate, the keyword 'string'
will be used. If only an integer is appropriate, the keyword
'integer' will be used. If the argument is declared as
'string' or 'integer' and a value of a different type is
passed, the argument will be coerced with ToInteger() or
ToString(). Any failure of this coercion will cause an RTE (in
particular for ToInteger(), which will fail if its string-
valued argument is not a well-formed integer).

In the function prototype, if the '&' character precedes the
identifier for an argument, that argument may be modified by
the function (e.g., "integer &result, ...)"). Arguments
without the '&' character cannot be modified by the function.
In a script, modifiable arguments don't need to be preceeded
by a '&'. It is a RTE if a constant is passed to a modifiable
function argument (regardless of whether the function actually
writes to the argument).

In the function prototype, the '[' and ']' characters surround
arguments that are optional. In PolicyScript code, the
optional argument may only be included if all optional
arguments to the left of it are included. The function may

Various Authors Expires November 16, 2004 [Page 30]

Internet Draft Policy-Based Management MIB Apr 16, 2004

place restrictions on when an optional argument must, or must
not, be included.

In the function prototype, if a type is listed before the name
of the function, the function returns a value of that type. If
no type is listed, the function returns no value.

8. Base Function Library

A standard base library of functions is available to all
systems that implement this specification. This library is
registered with the name "pmBaseFunctionLibrary". While the
specification of this library is modularized into 4 separate
sections, conformance to the library requires implementation
of all functions in all sections.

The sections are:

 - SNMP library functions
 - Policy library functions
 - Utility functions
 - Library Functions

8.1. SNMP Library Functions

Two sets of SNMP Library functions are available with
different situations in mind:

 - Convenience SNMP Functions

 In an effort to keep simple things simple, these functions are
 easy to use and promote easy to understand code. These functions
 will suffice for the majority of situations where a single
 variable is referenced and the desired error recovery is to simply
 (and immediately) give up (and move to the next policy-element
 combination). In more complex cases, the General SNMP Functions
 can be used at the cost of several times the code complexity.

 The convenience SNMP functions are getVar, exists, setVar,
 setRowStatus, createRow, counterRate and searchColumn.

 - General SNMP Functions

Various Authors Expires November 16, 2004 [Page 31]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 The General SNMP functions allow nearly any legal SNMP Message to
 be generated, including those with multiple varbinds, getNext
 operations, notifications, and messages with explicit addressing
 or security specifications.

 The general SNMP functions are writeVar, readVar, snmpSend,
 readError and writeBulkParameters.

8.1.1. SNMP Operations on Non-Local Systems

>From time to time, a script may need to perform an operation
on a different SNMP system than that which 'this element'
resides on. Scripts may also need to specify the use of
alternate security parameters. In order to do this, the
following optional arguments are provided for the SNMP library
functions:

snmp-function(...[, integer mPModel,
 string tDomain, string tAddress,
 integer secModel, string secName,
 integer secLevel, string contextEngineID
])

for example:

 getVar("sysDescr.0", "", SNMPv3, "transportDomainUdpIpv4",
 "192.168.1.1:161", USM, "joe", NoAuthNoPriv);

The use of these arguments is denoted in function definitions
by the keyword 'NonLocalArgs'. The definitions of these
arguments are as follows:

 'mPModel' is the integer value of the SnmpMessageProcessingModel
 to use for this operation.

 'tDomain' is a string containing an ASCII dotted-decimal
 object identifier representing the transport domain to use for
 this operation.

 'tAddress' is a string containing the transport address
 formatted according to the 'tDomain' argument. The ASCII formats
 for various values of 'tDomain' are defined by the
 DISPLAY-HINT for a TEXTUAL-CONVENTION that represents an address
 of that type. The DISPLAY-HINT's used are:

Various Authors Expires November 16, 2004 [Page 32]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 tDomain Source of DISPLAY-HINT [5] [11]
 ------- ----------------------
 transportDomainUdpIpv4 TransportAddressIPv4
 transportDomainUdpIpv6 TransportAddressIPv6
 transportDomainUdpDns TransportAddressDns
 snmpCLNSDomain snmpOSIAddress
 snmpCONSDomain snmpOSIAddress
 snmpDDPDomain snmpNBPAddress
 snmpIPXDomain snmpIPXAddress
 rfc1157Domain snmpUDPAddress
 Other Use DISPLAY-HINT "1x:"

 'secModel' is the integer value of the SnmpSecurityModel to use
 for this operation.

 'secName' is a string value representing the SnmpSecurityName to
 use for this operation.

 'secLevel' is the integer value of the SnmpSecurityLevel to use
 for this operation.

 An SNMP operation will be sent to the target system using security
 parameters retrieved from a local configuration datastore based on
 'secModel', 'secName' and 'secLevel'. It is the responsibility of
 the agent to ensure that sensitive information in the local
 configuration datastore is used on behalf of the correct
 principals as identified by the security credentials of the last
 entity to modify the pmPolicyAdminStatus for a policy.

 To illustrate how this must be configured, consider an example
 where 'joe' installs a policy on 'PMAgent' that will periodically
 configure objects on 'TargetAgent' with the credentials of
 'Operator'. The following conditions must be true
 for this policy to execute with the proper privileges:

 - 'Operator's security credentials for TargetAgent must be
 installed in PMAgent's local configuration datastore
 (e.g., usmUserTable [6]) indexed by TargetAgent's engineID and
 'Operator'
 - VACM [9] must be configured on PMAgent such that 'joe' has
 access to the above entry in the appropriate MIB for the local
 configuration datastore (e.g., usmUserTable).
 - 'joe' must be the last user to modify the pmPolicyAdminStatus
 object for the policy.

Various Authors Expires November 16, 2004 [Page 33]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 See the Security Considerations section for more information.

 For convenience, constants for 'mPModel', 'secModel' and
 'secLevel' are defined in the "Constants" section below.

 'contextEngineID' is a string representing the contextEngineID of
 the SNMP entity targeted by this operation. It is encoded as a
 pair of hex digits (upper and lower case are valid) for each octet
 of the contextEngineID. If 'tDomain' and 'tAddress' are provided
 but 'contextEngineID' is not provided, then the operation will be
 directed to the SNMP entity reachable at 'tDomain' and 'tAddress'.

 In order for PolicyScript code to use any of these arguments, all
 optional arguments to the left must be included. 'mPModel',
 'tDomain', 'tAddress', 'secModel', 'secName', and 'secLevel'
 must be used as a group - if one is specified, they must all be
 specified. 'contextEngineID' may only be specified if all others
 are specified.

 Note that a function that uses NonLocalArgs must provide a
 parameter for the contextName that will be required when the
 NonLocalArgs are present. Many functions will have the following
 logic:

 ContextName NonLocalArgs
 Supplied Supplied

 No No Addressed to default context on
 local system
 Yes No Addressed to named context on
 local system
 Yes Yes Addressed to named context on
 potentially remote system
 No Yes Not allowed

8.1.2. Form of SNMP Values

Many of the library functions have input or output parameters
that may be one of the many SMI data types. The actual type is
not encoded in the value, but rather is specified elsewhere,
possibly by nature of the situation in which it is used. The
exact usage for input and output is:

Various Authors Expires November 16, 2004 [Page 34]

Internet Draft Policy-Based Management MIB Apr 16, 2004

Any Integer value
 (INTEGER, Integer32, Counter32, Counter64, Gauge32, Unsigned32,
 TimeTicks, Counter64):

 On input:
 An Integer or a String that can be successfully coerced to an
 Integer with the ToInteger() operator. It is an RTE if
 a string is passed that cannot be converted by ToInteger() into
 an integer.

 A string of the form

 enum_decimal: [letter | digit | '-']* '(' decimal_constant ')'

 will also be accepted. In this case the sequence of characters
 before the parenthesis and the pair of parenthesis themselves
 are completely ignored and the decimal_constant inside the
 parenthesis is converted. Thus, "frame-relay(32)" translates to
 the integer 32.

 On output:
 An Integer containing the returned value.

Octet String
 On input:
 Either a String or an Integer. If an Integer, it will be coerced
 to a String with the ToString() function. This string will be
 used as an unencoded representation of the octet string value.

 On output:
 A String containing the unencoded value of the octet string.

Object Identifier
 On input and on output:
 A String containing a decimal ASCII encoded object identifier
 of the following form:

 oid: subid ['.' subid]* ['.']
 subid: '0' | decimal_constant

 It is an RTE if an Object Identifier argument is not in the form
 above. Note that a trailing '.' is acceptable and will simply be
 ignored (note however, that a trailing dot could cause a strncmp()
 comparison of two otherwise-identical OIDs to fail - instead use
 oidncmp()).

Various Authors Expires November 16, 2004 [Page 35]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 Note that ASCII descriptors (e.g. "ifIndex") are never used in
 these encodings "over the wire". They are never returned from
 library functions nor are they ever accepted by them. NMS user
 interfaces are encouraged to allow humans to view object
 identifiers with ASCII descriptors, but they must translate those
 descriptors to dotted-decimal format before sending them in MIB
 objects to policy agents.

Null
 On input:
 The input is ignored.

 On output:
 A zero length string.

8.1.3. Convenience SNMP Functions

8.1.3.1. getVar()

The getVar() function is used to retrieve the value of an SNMP
MIB object instance.

 string getVar(string oid [, string contextName, NonLocalArgs])

 'oid' is a string containing an ASCII dotted-decimal
 representation of an object identifier
 (e.g. "1.3.6.1.2.1.1.1.0").

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 The optional 'NonLocalArgs' provide addressing and security
 information to perform an SNMP operation on a different system
 than 'this element'.

 It is an RTE if the queried object identifier value does not
 exist.

 This function returns a string containing the returned value,
 encoded according to the returned type. Note that no actual

Various Authors Expires November 16, 2004 [Page 36]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 SNMP PDU needs to be generated and parsed when the policy MIB
 agent resides on the same system as the managed elements.

 It is recommended that NMS user interfaces display and allow
 input of MIB object names by their descriptor values followed
 by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.2. exists()

The exists() function is used to verify the existence of an
SNMP MIB object instance.

 integer exists(string oid [, string contextName, NonLocalArgs])

 'oid' is a string containing an ASCII dotted-decimal
 representation of an object identifier
 (e.g. "1.3.6.1.2.1.1.1.0").

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 The optional 'NonLocalArgs' provide addressing and security
 information to perform an SNMP operation on a different system
 than 'this element'.

 This function returns the value 1 if the SNMP instance exists
 and 0 if it doesn't exist. Note that no actual SNMP PDU needs
 to be generated and parsed when the policy MIB agent resides
 on the same system as the managed elements.

 It is recommended that NMS user interfaces display and allow
 input of MIB object names by their descriptor values followed
 by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.3. setVar()

The setVar() function is used to set a MIB object instance to
a certain value. The setVar() function is only valid in
policyActions.

 setVar(string oid, var value, integer type
 [, string contextName, NonLocalArgs])

Various Authors Expires November 16, 2004 [Page 37]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 'oid' is a string containing an ASCII dotted-decimal
 representation of an object identifier
 (e.g. "1.3.6.1.2.1.1.1.0").

 'value' is a string encoded in the format appropriate to
 the 'type' parameter. The agent will set the variable
 specified by 'oid' to the value specified by 'value'.

 'type' will be the type of the 'value'' parameter and will
 be set to one of the values for DataType Constants.

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 The optional 'NonLocalArgs' provide addressing and security
 information to perform an SNMP operation on a different system
 than 'this element'. Note that no actual SNMP PDU needs
 to be generated and parsed when the policy MIB agent resides
 on the same system as the managed elements.

 It is an RTE if the set encounters any error.

 It is recommended that NMS user interfaces display and allow
 input of MIB object names by their descriptor values followed
 by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.4. searchColumn()

 integer searchColumn(string columnoid, string &oid,
 string pattern, integer mode
 [, string contextName, NonLocalArgs])

 searchColumn performs an SNMP walk on a portion of the MIB
 searching for objects with values equal to the `pattern'
 parameter.

 'columnoid' constrains the search to only those variables that
 share the same OID prefix (i.e. are beneath it in the OID
 tree).

 A getnext request will be sent requesting the object
 identifier 'oid'. If 'oid' is an empty string, the value of
 'columnoid' will be sent.

Various Authors Expires November 16, 2004 [Page 38]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 The value returned in each response packet will be transformed
 to a string representation of the value of the returned
 variable. The string representation of the value will be
 formed by putting the value in the form dictated by the "Form
 of SNMP Values" rules, and then performing the ToString()
 function on this value, forming 'SearchString'.

 The 'mode' value controls what type of match to perform on
 this 'SearchString' value. There are 6 possibilities for mode:

 mode Search Action
 ExactMatch Case sensitive exact match of 'pattern'
 and 'SearchString'
 ExactCaseMatch Case insensitive exact match of 'pattern'
 and 'SearchString'
 SubstringMatch Case sensitive substring match, finding
 'pattern' in 'SearchString'
 SubstringCaseMatch Case insensitive substring match, finding
 'pattern' in 'SearchString'
 RegexpMatch Case sensitive regular expression match,
 searching 'SearchString' for the regular
 expression given in 'pattern'.
 RegexpCaseMatch Case insensitive regular expression match,
 searching 'SearchString' for the regular
 expression given in 'pattern'.

 Constants for the values of 'mode' are defined in the
 'Constants' section below.

 searchColumn uses the POSIX extended regular expressions
 defined in POSIX 1003.2.

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 The optional 'NonLocalArgs' provide addressing and security
 information to perform SNMP operations on a different system
 than 'this element'.

 If a match is found, 'oid' is set to the OID of the matched
 value and 1 is returned. If the search traverses beyond
 columnoid or returns an error without finding a match, zero is
 returned and 'oid' isn't modified.

Various Authors Expires November 16, 2004 [Page 39]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 To find the first match, the caller should set 'oid' to the
 empty string. To find additional matches, subsequent calls to
 searchColumn should have 'oid' set to the OID of the last
 match, an operation that searchColumn performs automatically.

 For example:
 To find an ethernet interface
 oid = "";
 searchColumn("ifType", oid, "6", 0);

 This sends a getnext request for ifType and continues to walk
 the tree until a value matching 6 is found or a variable
 returns that is not in the 'ifType' subtree.

 To find the next ethernet interface, assuming interface #3
 was discovered to be the first:
 oid = "ifType.3";
 searchColumn("ifType", oid, "6", 0);

 In a loop to determine all the ethernet interfaces, this looks
 simply like:
 oid = "";
 while(searchColumn("ifType", oid, "6", 0)){
 /* Do something with oid */
 }

 Note that in the preceding examples, "ifType" is used as a
 notational convenience and the actual code downloaded to the
 policy MIB agent must use the string "1.3.6.1.2.1.2.2.1.3" as
 there may be no MIB compiler (or MIB file) available on the
 policy MIB agent.

 Note that if the value of 'columnoid' is too short and thus
 references too much of the object identifier tree
 (e.g. "1.3.6"), 'columnoid' could end up searching a huge
 number of variables (if it was "1.3.6", it would search ALL
 variables on the agent). It is the responsibility of the
 caller to make sure that 'columnoid' is set appropriately.

8.1.3.5. setRowStatus()

 integer setRowStatus(string oid, integer maxTries
 [, integer freeOnException , integer seed
 , string contextName, NonLocalArgs])

Various Authors Expires November 16, 2004 [Page 40]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 setRowStatus is used to automate the process of finding an
 unused row in a read-create table that uses RowStatus whose
 index contains an arbitrary integer component for uniqueness.

 'oid' is a string containing an ASCII dotted-decimal
 representation of an object identifier, with one of
 the subids replaced with a '*' character
 (e.g. "1.3.6.1.3.1.99.1.2.1.9.*"). 'oid' must reference an
 'instance' of the RowStatus object and the '*' must replace
 any integer index item that may be set to some random value.

 setRowStatus will come up with a number for the selected index
 item and will attempt to create the instance with the
 createAndWait state. If the attempt fails, it will retry with
 a different random index value. It will attempt this no more
 than 'maxTries' times.

 If the optional 'freeOnException' argument is present and
 equal to 1, the agent will free this row by setting RowStatus
 to 'destroy' if later in the same script invocation this
 script dies with a run-time exception or by a call to fail().
 Note that this does not apply to exceptions experienced in
 subsequent invocations of the script.

 If the optional 'seed' argument is present, the initial index
 will be set to 'seed'. Otherwise it will be random. 'seed' may
 not be present if the 'freeOnException' argument is not
 present.

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 The optional 'NonLocalArgs' provide addressing and security
 information to perform an SNMP operation on a different system
 than 'this element'.

 setRowStatus returns the successful integer value for the
 index. If unsuccessful after 'maxTries' or if zero or more
 than one '*' is in OID, -1 will be returned.

 The createRow function (below) can also be used when adding
 rows to tables. While createRow has more functionality,
 setRowStatus may be preferable in certain situations (for

Various Authors Expires November 16, 2004 [Page 41]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 example to have the opportunity to inspect default values
 created by the agent).

8.1.3.6. createRow()

 integer createRow(integer reqPDU, integer reqNumVarbinds,
 integer statusColumn, integer maxTries,
 integer indexRange,
 integer &respPDU, integer &respNumVarbinds,
 integer &index
 [, integer freeOnException, string contextName,
 NonLocalArgs])

 createRow is used to automate the process of creating a row in
 a read-create table whose index contains an arbitrary integer
 component for uniqueness. In particular, it encapsulates the
 algorithm behind using either the createAndWait or createAndGo
 mechanism and the algorithm for finding an unused row in the
 table. createRow is not useful for creating rows in tables
 whose index doesn't contain an arbitrary integer component.

 createRow will perform the operation by sending 'reqPDU'
 and returning the results in 'respPDU'. Both 'reqPDU' and
 'respPDU' must previously have been allocated with
 newPDU. 'reqPDU' and 'respPDU' may both contain the same PDU
 handle, in which case the 'reqPDU' is sent and then replaced
 with the contents of the received PDU.

 'reqNumVarbinds' is a integer greater than zero that specified
 which varbinds in the PDU will be used in this operation. The
 first 'reqNumVarbinds' in the PDU are used. Each such varbind
 must be of a special form in which the object name must have
 one of its subids replaced with a '*' character
 (e.g. "1.3.6.1.3.1.99.1.2.1.9.*"). The subid selected to be
 replaced will be an integer index item that may be set to some
 random value. The same subid should be selected in each
 varbind in the PDU.

 'respNumVarbinds' will be modified to contain the number
 of varbinds received in last response PDU.

 'statusColumn' identifies which varbind in 'pdu' should be
 treated as the RowStatus column, where 0 identifies the 1st
 varbind.

Various Authors Expires November 16, 2004 [Page 42]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 createRow will come up with a random integer index value
 and will substitute that value in place of the '*' subid in
 each varbind. It will then set the value of the RowStatus
 column to select the 'createAndGo' mechanism and execute the
 set. If the attempt fails due to unavailability of the
 'createAndGo' mechanism, it will retry with the
 'createAndWait' mechanism selected. If the attempt fails due
 to the chosen index value already in use, the operation will
 be retried with a different random index value. It will
 continue to retry different index values until it succeeds,
 until it has made 'maxTries' attempts, or until it encounters
 an error. The value of 'maxTries' should be chosen to be high
 enough to minimize the chance that as the table fills up that
 an attempt to create a new entry will 'collide' too often and
 fail.

 All random index values must be between 1 and 'indexRange',
 inclusive. This is so that values are not attempted for an
 index that fall outside of that index's restricted range
 (e.g. 1..65535).

 If the optional 'freeOnException' argument is present and
 equal to 1, the agent will free this row by setting RowStatus
 to 'destroy' if later in the same script invocation this
 script dies with a run-time exception or by a call to fail().
 Note that this does not apply to exceptions experienced in
 subsequent invocations of the script.

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 The optional 'NonLocalArgs' provide addressing and security
 information to perform an SNMP operation on a different system
 than 'this element'.

 Note that no actual SNMP PDU needs to be generated and parsed
 when the policy MIB agent resides on the same system as the
 managed elements. If no PDU is generated, the agent must
 correctly simulate the behavior of the SNMP Response PDU,
 particularly in case of an error.

 This function returns zero unless an error occurs in which
 case it returns the proper SNMP Error Constant. If an error

Various Authors Expires November 16, 2004 [Page 43]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 occurred, respPDU will contain the last response PDU as
 received from the agent unless no response PDU was received in
 which case respNumVarbinds will be 0. In any event, readError
 may be called on the pdu to determine error information for
 the transaction.

 The 'index' parameter returns the chosen index. If successful,
 'index' will be set to the successful integer index. If no
 SNMP error occurs but the operation does not succeed due to
 the following reasons, 'index' will be set to -1:
 1) Unsuccessful after 'maxTries'
 2) An object name had no '*' in it
 3) An object name had more than one '*' in it

 For example, createRow() might be used as follows:

 var index, pdu = newPDU(), nVars = 0;

 writeVar(pdu, nVars++, "hlHostControlDataSource.*",
 "ifIndex." + ev(0), Oid);
 writeVar(pdu, nVars++, "hlHostControlNlMaxDesiredEntries.*",
 1000, Integer);
 writeVar(pdu, nVars++, "hlHostControlAlMaxDesiredEntries.*",
 1000, Integer);
 writeVar(pdu, nVars++, "hlHostControlOwner.*", "policy",
 String);
 writeVar(pdu, nVars++, "hlHostControlStatus.*", "active(1)",
 Integer);
 if (createRow(pdu, nVars, 4, 20, 65535,
 pdu, nVars, index) != 0
 || index == -1)
 return;
 // index now contains index of new row

8.1.3.7. counterRate()

When a policy wishes to make a decision based on the rate of a
counter, it faces a couple of problems:

1. It may need to run every X minutes, but need to make
 decisions on rates calculated over at least Y minutes
 where Y > X. This would require the complexity of managing
 a queue of old counter values.

Various Authors Expires November 16, 2004 [Page 44]

Internet Draft Policy-Based Management MIB Apr 16, 2004

2. The policy script has no control over exactly when it
 will run

The counterRate() function is designed to easily surmount
these problems.

 integer counterRate(string oid, integer minInterval
 [, integer 64bit,
 string discOid, integer discMethod,
 string contextName, NonLocalArgs])

 counterRate retrieves the variable specified by oid once per
 invocation. It keeps track of timestamped values retrieved on
 previous invocations by this execution context so that it can
 calculate a rate over a longer period than since the last
 invocation.

 'oid' is the object identifier of the counter value that will
 be retrieved. The most recent previously-saved value of the
 same object identifier that is at least 'minInterval'
 seconds old will be subtracted from the newly-retrieved value,
 yielding a delta. If 'minInterval' is zero, this delta will be
 returned. Otherwise, this delta will be divided by the number
 of seconds elapsed between the two retrievals and the
 integer-valued result will be returned (rounding down when
 necessary).

 If there was no previously-saved retrieval older than
 'minInterval' seconds, then -1 will be returned. It is an RTE
 if the query returns noSuchName, noSuchInstance or
 noSuchObject or an object that is not of type Counter32 or
 Counter64.

 The delta calculation will allow for 32-bit counter semantics
 if it encounters rollover between the two retrievals unless
 the optional argument '64bit' is present and equal to 1,
 in which case it will allow for 64-bit counter semantics.

 'discOid' and 'discMethod' may only be present together.
 'discOid' contains an object identifier of a discontinuity
 indicator value that will be retrieved simultaneously with
 each counter value:

 1. If 'discMethod' is equal to 1 and the discontinuity

Various Authors Expires November 16, 2004 [Page 45]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 indicator is less than the last one retrieved, then a
 discontinuity is indicated.
 2. If 'discMethod' is equal to 2 and the discontinuity
 indicated is different than the last one retrieved,
 then a discontinuity is indicated.

 If this value indicates a discontinuity, this counter value
 (and its timestamp) will be stored, but all previously stored
 counter values will be invalidated and -1 will be returned.

 The implementation will need to store a number of timestamped
 counter values. The implementation must keep all values that
 are newer than minInterval seconds plus the newest value that
 is older than minInterval seconds. Other than this one value
 that is older than minInterval seconds, the implementation
 should discard any older values.

 For example:
 Policy which executes every 60 seconds:
 rate = counterRate("ifInOctets.$*", 300);
 if (rate > 1000000)
 ...

 Another example with discontinuity indicator:

 Policy which executes every 60 seconds:
 rate = counterRate("ifInOctets.$*", 300, 0,
 "sysUpTime.0", 1);
 if (rate > 1000000)
 ...

 Another example with zero minInterval:
 Policy which executes every 60 seconds:
 delta = counterRate("ifInErrors.$*", 0);
 if (delta > 100)
 ...

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

Various Authors Expires November 16, 2004 [Page 46]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.1.4. General SNMP Functions

It is desirable for a general SNMP interface have the ability
to perform SNMP operations on multiple variables at once and
for it to allow multiple varbind lists to exist at once. The
newPdu, readVar and writeVar functions exist in order to
provide these facilities in a language without pointers,
arrays and memory allocators.

newPDU is called to allocate a PDU and return an integer
handle to it. Since PDUs are automatically freed when the
script exits and because they can be reused during execution,
there is no freePDU().

readVar and writeVar access a variable length varbind list for
a PDU. The PDU handle and the index of the variable within
that PDU are specified in every readVar and writeVar
operation. Once a PDU has been fully specified by one or more
calls to writeVar, it is passed to snmpSend (by referencing
the PDU handle) and the number of varbinds to be included in
the operation. When a response is returned, the contents of
the response are returned in another PDU and may be read by
one or more calls to readVar. Error information may be read
from the PDU with the readError function. Because GetBulk PDUs
send additional information in the SNMP header, the
writeBulkParameters function is provided to configure these
parameters.

Varbinds in this data store are created automatically whenever
they are written by any writeVar or snmpSend operation.

For example:
 var pdu = newPDU();
 var nVars = 0, oid, type, value;

 writeVar(pdu, nVars++, "sysDescr.0", "", Null);
 writeVar(pdu, nVars++, "sysOID.0", "", Null);
 writeVar(pdu, nVars++, "ifNumber.0", "", Null);
 if (snmpSend(pdu, nVars, Get, pdu, nVars))
 return;
 readVar(pdu, 0, oid, value, type);
 readVar(pdu, 1, oid, value, type);
 readVar(pdu, 2, oid, value, type);
 ...

Various Authors Expires November 16, 2004 [Page 47]

Internet Draft Policy-Based Management MIB Apr 16, 2004

or,
 var pdu = newPDU();
 var nVars = 0, oid1, oid2;

 writeVar(pdu, nVars++, "ifIndex", "", Null);
 writeVar(pdu, nVars++, "ifType", "", Null);
 while(!done){
 if (snmpSend(pdu, nVars, Getnext, pdu, nVars))
 continue;
 readVar(pdu, 0, oid1, value, type);
 readVar(pdu, 1, oid2, value, type);
 /* leave OIDs alone, now PDU #0 is set up for next step
 in table walk. */
 if (oidncmp(oid1, "ifIndex", oidlen("ifIndex")))
 done = 0;
 ...
 }

Note that in the preceding examples, descriptors such as
ifType and sysDescr are used in object identifiers solely as a
notational convenience and the actual code downloaded to the
policy MIB agent must use a dotted decimal notation only, as
there may be no MIB compiler (or MIB file) available on the
policy MIB agent.

To be conformant to this specification, implementations must
allow each policy script invocation to allocate at least 5
PDUs with at least 64 varbinds per list. It is suggested that
implementations limit the total number of PDUs per invocation
to protect other script invocations from a malfunctioning
script (e.g. a script that calls newPDU() in a loop).

8.1.4.1. newPDU()

 integer newPDU()

 newPDU will allocate a new PDU and return a handle to the
 PDU. If no PDU could be allocated, -1 will be returned. The
 PDU's initial values of nonRepeaters and maxRepetitions will
 be zero.

Various Authors Expires November 16, 2004 [Page 48]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.1.4.2. writeVar()

 writeVar(integer pdu, integer varBindIndex,
 string oid, var value, integer type)

 writeVar will store 'oid', 'value' and 'type' in
 the specified varbind.

 'pdu' is the handle to a PDU allocated by newPDU().

 'varBindIndex' is a non-negative integer that identifies the
 varbind within the specified PDU modified by this call. The
 first varbind is number 0.

 'oid' is a string containing an ASCII dotted-decimal
 representation of an object identifier
 (e.g. "1.3.6.1.2.1.1.1.0").

 'value' is the value to be stored, of a type appropriate to the
 'type' parameter.

 'type' will be the type of the value parameter and will be set
 to one of the values for DataType Constants.

 It is an RTE if any of the parameters don't conform to the
 rules above.

8.1.4.3. readVar()

 readVar(integer pdu, integer varBindIndex, string &oid,
 var &value, integer &type)

 readVar will retrieve the oid, the value and its type
 from the specified varbind.

 'pdu' is the handle to a PDU allocated by newPDU().

 'varBindIndex' is a non-negative integer that identifies the
 varbind within the specified PDU read by this call. The
 first varbind is number 0.

 The object identifier value of the referenced varbind will be
 copied into the 'oid' parameter, formatted in an ASCII

Various Authors Expires November 16, 2004 [Page 49]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 dotted-decimal representation (e.g. "1.3.6.1.2.1.1.1.0").

 'value' is the value retrieved, of a type appropriate to the
 'type' parameter.

 'type' is the type of the value parameter and will be set to
 one of the values for DataType Constants.

 It is an RTE if 'pdu' doesn't reference a valid PDU or
 'varBindIndex' doesn't reference a valid varbind.

8.1.4.4. snmpSend()

 integer snmpSend(integer reqPDU, integer reqNumVarbinds,
 integer opcode,
 integer &respPDU, integer &respNumVarbinds,
 [, string contextName , NonLocalArgs])

 snmpSend will perform an SNMP operation by sending 'reqPDU'
 and returning the results in 'respPDU'. Both 'reqPDU' and
 'respPDU' must previously have been allocated with
 newPDU. 'reqPDU' and 'respPDU' may both contain the same PDU
 handle, in which case the 'reqPDU' is sent and then replaced
 with the contents of the received PDU. If the opcode specifies
 a Trap or V2trap, 'respPDU' will not be modified.

 'reqNumVarbinds' is a integer greater than zero that specified
 which varbinds in the PDU will be used in this
 operation. The first 'reqNumVarbinds' in the PDU are
 used. 'respNumVarbinds' will be modified to contain the number
 of varbinds received in the response PDU which in the case of
 GetBulk or an error may be substantially different than
 reqNumVarbinds.

 'opcode' is the type of SNMP operation to perform and must be
 one of the values for SNMP Operation Constants listed
 in the 'Constants' section below.

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

Various Authors Expires November 16, 2004 [Page 50]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 Note that no actual SNMP PDU needs to be generated and parsed
 when the policy MIB agent resides on the same system as the
 managed elements. If no PDU is generated, the agent must
 correctly simulate the behavior of the SNMP Response PDU,
 particularly in case of an error.

 This function returns zero unless an error occurs in which
 case it returns the proper SNMP Error Constant. If an error
 occurred, respPDU will contain the response PDU as received
 from the agent unless no response PDU was received in which
 case respNumVarbinds will be 0. In any event, readError may be
 called on the pdu to determine error information for the
 transaction.

 If a SNMP Version 1 trap is requested (the opcode is Trap(4)),
 then SNMP Version 2 trap parameters are supplied and
 converted according to the rules of RFC3584 [8] section 3.2.
 The first variable binding must be sysUpTime.0, and the second
 must be snmpTrapOID.0 RFC3416 [7], section 4.2.6. Subsequent
 variable bindings are copied to the SNMP Version 1 trap PDU in
 the usual fashion.

8.1.4.5. readError()

 readError(integer pdu, integer numVarbinds, integer &errorStatus,
 integer &errorIndex, integer &hasException)

 Returns the error information in a PDU.

 'errorStatus' contains the error-status field from the response
 PDU or a local error constant if the error was generated
 locally. If no error was experienced or no PDU was ever copied
 into this PDU, this value will be 0.

 'errorIndex' contains the error-index field from the response
 PDU. If no PDU was ever copied into this PDU, this value will
 be 0.

 'hasException' will be 1 if any of the first 'numVarbinds'
 varbinds in the PDU contain an exception (Nosuchobject,
 Nosuchinstance, Endofmibview), otherwise it will be 0.

 It is an RTE if 'pdu' does not reference a valid PDU or if
 'numVarbinds' references varbinds that aren't valid.

https://datatracker.ietf.org/doc/html/rfc3584
https://datatracker.ietf.org/doc/html/rfc3416

Various Authors Expires November 16, 2004 [Page 51]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.1.4.6. writeBulkParameters()

 writeBulkParameters(integer pdu, integer nonRepeaters,
 integer maxRepetitions)

 Modifies the parameters in a PDU in any subsequent GetBulk
 operation sent by the PDU. 'nonRepeaters' will be copied into the
 PDU's non-repeaters field and 'maxRepetitions' will be copied into
 the max-repetitions field.

 This function may be called before or after writeVar is called to
 add varbinds to the pdu, but must be called before the pdu is sent
 or else it will have no effect. A new PDU is initialized with
 nonRepeaters set to zero and maxRepetitions set to zero - if a
 Bulk PDU is sent before writeBulkParameters is called, these
 default values will be used. If writeBulkParameters is called to
 modify a pdu, it is acceptable if that PDU is later sent as a type
 other than bulk - the writeBulkParameters call will only affect
 subsequent sends of Bulk PDUs. If a PDU is used to receive the
 contents of a response, the values of nonRepeaters and
 maxRepetitions are never modified.

8.1.5. Constants for SNMP Library Functions

The following constants are defined for use with all SNMP
Library Functions. Policy code will be executed in an
environment where the following constants are declared. (Note
that the constant declarations below will not be visible in
the policyCondition or policyAction code.) These constants are
reserved words and cannot be used for any variable or function
name.

While these declarations are expressed here as C 'const's, the
'const' construct itself is not available to be used in policy
code.

 // Datatype Constants

 // From RFC 2578 [2]
 const integer Integer = 2;
 const integer Integer32 = 2;
 const integer String = 4;
 const integer Bits = 4;

https://datatracker.ietf.org/doc/html/rfc2578

Various Authors Expires November 16, 2004 [Page 52]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 const integer Null = 5;
 const integer Oid = 6;
 const integer IpAddress = 64;
 const integer Counter32 = 65;
 const integer Gauge32 = 66;
 const integer Unsigned32 = 66;
 const integer TimeTicks = 67;
 const integer Opaque = 68;
 const integer Counter64 = 70;

 // SNMP Exceptions from RFC 3416 [7]
 const integer NoSuchObject = 128;
 const integer NoSuchInstance = 129;
 const integer EndOfMibView = 130;

 // SNMP Error Constants from RFC 3416 [7]

 const integer NoError = 0;
 const integer TooBig = 1;
 const integer NoSuchName = 2;
 const integer BadValue = 3;
 const integer ReadOnly = 4;
 const integer GenErr = 5;
 const integer NoAccess = 6;
 const integer WrongType = 7;
 const integer WrongLength = 8;
 const integer WrongEncoding = 9;
 const integer WrongValue = 10;
 const integer NoCreation = 11;
 const integer InconsistentValue = 12;
 const integer ResourceUnavailable = 13;
 const integer CommitFailed = 14;
 const integer UndoFailed = 15;
 const integer AuthorizationError = 16;
 const integer NotWritable = 17;
 const integer InconsistentName = 18;

 // "Local" Errors
 // These are also possible choices for errorStatus returns

 // For example: unknown PDU, maxVarbinds is bigger than number written
 // with writeVar, unknown opcode, etc.
 const integer BadParameter = 1000;

 // Request would have created a PDU larger than local limitations

https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3416

Various Authors Expires November 16, 2004 [Page 53]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 const integer TooLong = 1001;

 // A response to the request was received but errors were encountered
 // when parsing it.
 const integer ParseError = 1002;

 // Local system has complained of an authentication failure
 const integer AuthFailure = 1003;

 // No valid response was received in a timely fashion
 const integer TimedOut = 1004;

 // General local failure including lack of resources
 const integer GeneralFailure = 1005;

 // SNMP Operation Constants from RFC 3416 [7]

 const integer Get = 0;
 const integer Getnext = 1;
 const integer Set = 3;
 const integer Trap = 4;
 const integer Getbulk = 5;
 const integer Inform = 6;
 const integer V2trap = 7;

 // Constants from RFC3411 [1] for SnmpMessageProcessingModel

 const integer SNMPv1 = 0;
 const integer SNMPv2c = 1;
 const integer SNMPv3 = 3;

 // Constants from RFC3411 [1] for SnmpSecurityModel

 const integer SNMPv1 = 1;
 const integer SNMPv2c = 2;
 const integer USM = 3;

 // SnmpSecurityLevel Constants from RFC3411 [1]

 const integer NoAuthNoPriv = 1;
 const integer AuthNoPriv = 2;
 const integer AuthPriv = 3;

 // Constants for use with searchColumn
 const integer ExactMatch = 0;

https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Various Authors Expires November 16, 2004 [Page 54]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 const integer ExactCaseMatch = 1;
 const integer SubstringMatch = 2;
 const integer SubstringCaseMatch = 3;
 const integer RegexpMatch = 4;
 const integer RegexpCaseMatch = 5;

8.2. Policy Library Functions

Policy Library Functions provide access to information
specifically related to the execution of policies.

8.2.1. elementName()

The elementName() function is used to determine what the
current element is and can be used to provide information
about the type of element as well as how it is indexed.

 string elementName()

 elementName returns a string containing an ASCII
 dotted-decimal representation of an object identifier
 (e.g. 1.3.6.1.2.1.1.1.0). This object identifier identifies an
 instance of a MIB object that is an attribute of 'this element'.

8.2.2. elementAddress()

 elementAddress(&tDomain, &tAddress)

 elementAddress finds a domain/address pair that can be used to
 access 'this element' and returns the values in 'tDomain' and
 'tAddress'.

8.2.3. elementContext()

 string elementContext()

 elementContext() returns a string containing the SNMP
 contextName of 'this element'.

Various Authors Expires November 16, 2004 [Page 55]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.2.4. ec()

The ec() (element count) and ev() (element value) functions
provide convenient access to the components of the index for
'this element'. Typical uses will be in creating the index to
other, related elements.

 integer ec()

 ec() returns an integer count of the number of index
 subidentifiers that exist in the index for 'this element'.

8.2.5. ev()

 integer ev(integer n)

 ev() returns the value of the n'th subidentifier in the index
 for 'this element'. The first subidentifier is indexed at
 0. It is an RTE if 'n' specifies a subidentifier beyond the
 last subidentifier.

8.2.6. roleMatch()

The roleMatch() function is used to check to see if an element
has been assigned a particular role.

 integer roleMatch(string roleString [, string element,
 string contextName, string contextEngineID])

 'roleString' is a string. The optional argument
 'element' contains the OID name of an element, defaulting
 to the current element if 'element' is not supplied.
 If roleString exactly matches (content and length) any role
 assigned to the specified element, the function returns 1. If
 no roles match, the function returns 0.

 The optional 'contextName' argument contains the SNMP context
 to operate on. If 'contextName' is not present, the
 contextName of 'this element' will be used. If 'contextName'
 is the zero length string, the default context is used.

 'contextEngineID' contains the contextEngineID of the remote
 system that 'element' resides on. It is encoded as a pair of

Various Authors Expires November 16, 2004 [Page 56]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 hex digits (upper and lower case are valid) for each octet of
 the contextEngineID. If 'contextEngineID' is not present, the
 contextEngineID of 'this element' will be used.
 'contextEngineID' may only be present if the 'element'
 and 'context' arguments are present.

8.2.7. Scratchpad Functions

Every maxLatency time period, every policy runs once for each
element. When the setScratchpad function executes, it stores a
value named by a string that can be retrieved with
getScratchpad() even after this policy execution code exits.
This allows sharing of data between a condition and an action,
two conditions executing on different elements, or even
different policies altogether.

The value of 'scope' controls which policy/element
combinations can retrieve this 'varName'/'value' pair. The
options for 'scope' are:

 Global
 The 'varName'/'value' combination will be available in the
 condition or action of any policy while executing on any
 element. Note that any information placed here will be visible
 to all other scripts on this system regardless of their
 authority. Sensitive information should not be placed in
 global scratchpad variables.

 Policy
 The 'varName'/'value' combination will be available in any
 future execution of the condition or action of the current
 policy (regardless of what element the policy is executing
 on). If a policy is ever deleted or its condition or action
 code is modified, all values in its 'Policy' scope will be
 deleted.

 PolicyElement
 The 'varName'/'value' combination will be available in future
 executions of the condition or action of the current policy
 but only when the policy is executing on the current
 element. If a policy is ever deleted or its condition or
 action code is modified, all values in its 'PolicyElement'
 scope will be deleted. The agent may also periodically delete
 values in a 'PolicyElement' scope if the corresponding element

Various Authors Expires November 16, 2004 [Page 57]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 does not exist (in other words, if an element disappears for a
 period and reappears, values in its 'PolicyElement' scope may
 or may not be deleted).

setScratchpad's 'storageType' argument allows the script to
control the lifetime of a variable stored in the scratchpad.
If the storageType is equal to the constant 'volatile', then
this variable must be deleted on a reboot. If it is equal to
'nonVolatile', then this variable should be stored in non-
volatile storage where it will be available after a reboot. If
the 'storageType' argument is not present, the variable will
be volatile and will be erased on reboot.

If the optional 'freeOnException' argument is present and
equal to 1, the agent will free this variable if later in the
same script invocation this script dies with a run-time
exception or by a call to fail() (note that this does not
apply to exceptions experienced in subsequent invocations of
the script).

Note that there may be implementation-specific limits on the
number of scratchpad variables that can be allocated. The
limit of unique scratchpad variables may be different for each
scope or storageType. It is suggested that implementations
limit the total number of scratchpad variables per script to
protect other scripts from a malfunctioning script. In
addition, compliant implementations must support at least 50
Global variables, 5 Policy variables per policy and 5
PolicyElement variables per policy-element pair.

Scratchpad Usage Examples

 Policy Element Action
 A ifIndex.1 setScratchpad(Global, "foo", "55")
 A ifIndex.1 getScratchpad(Global, "foo", val) --> 55
 A ifIndex.2 getScratchpad(Global, "foo", val) --> 55
 B ifIndex.2 getScratchpad(Global, "foo", val) --> 55
 B ifIndex.2 setScratchpad(Global, "foo", "16")
 A ifIndex.1 getScratchpad(Global, "foo", val) --> 16

 Policy Element Action
 A ifIndex.1 setScratchpad(Policy, "bar", "75")
 A ifIndex.1 getScratchpad(Policy, "bar", val) --> 75

Various Authors Expires November 16, 2004 [Page 58]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 A ifIndex.2 getScratchpad(Policy, "bar", val) --> 75
 B ifIndex.1 getScratchpad(Policy, "bar", val) not found
 B ifIndex.1 setScratchpad(Policy, "bar", "20")
 A ifIndex.2 getScratchpad(Policy, "bar", val) --> 75
 B ifIndex.2 getScratchpad(Policy, "bar", val) --> 20

 Policy Element Action
 A ifIndex.1 setScratchpad(PolicyElement, "baz", "43")
 A ifIndex.1 getScratchpad(PolicyElement, "baz", val) --> 43
 A ifIndex.2 getScratchpad(PolicyElement, "baz", val) not found
 B ifIndex.1 getScratchpad(PolicyElement, "baz", val) not found
 A ifIndex.2 setScratchpad(PolicyElement, "baz", "54")
 B ifIndex.1 setScratchpad(PolicyElement, "baz", "65")
 A ifIndex.1 getScratchpad(PolicyElement, "baz", val) --> 43
 A ifIndex.2 getScratchpad(PolicyElement, "baz", val) --> 54
 B ifIndex.1 getScratchpad(PolicyElement, "baz", val) --> 65

 Policy Element Action
 A ifIndex.1 setScratchpad(PolicyElement, "foo", "11")
 A ifIndex.1 setScratchpad(Global, "foo", "22")
 A ifIndex.1 getScratchpad(PolicyElement, "foo", val) --> 11
 A ifIndex.1 getScratchpad(Global, "foo", val) --> 22

Constants

The following constants are defined for use for the scratchpad
functions. Policy code will be executed in an environment
where the following constants are declared. (Note that these
constant declarations will not be visible in the
policyCondition or policyAction MIB objects.)

While these declarations are expressed here as C 'const's, the
'const' construct itself is not available to be used inside of
policy code.

 // Scratchpad Constants

 // Values of scope
 const integer Global = 0;
 const integer Policy = 1;
 const integer PolicyElement = 2;

 // Values of storageType
 const integer Volatile = 0;
 const integer NonVolatile = 1;

Various Authors Expires November 16, 2004 [Page 59]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.2.8. setScratchpad()

 setScratchpad(integer scope, string varName [, string value,
 integer storageType, integer freeOnException])

 The setScratchpad function stores a value that can be
 retrieved even after this policy execution code exits.

 The value of 'scope' controls which policy/element
 combinations can retrieve this 'varName'/'value' pair. The
 options for 'scope' are Global, Policy, and PolicyElement.

 'varName' is a string used to identify the value. Subsequent
 retrievals of the same 'varName' in the proper scope will
 return the value stored. Note that the namespace for 'varName'
 is distinct for each scope. 'varName' is case sensitive.

 'value' is a string containing the value to be stored.
 ToString(value) is called on 'value' to convert it
 to a string before storage.

 If the 'value' argument this missing, the effect will be to
 delete 'varName' in scope 'scope' if it exists.

 If the optional 'storageType' argument is present and is equal
 to the constant 'Volatile', then this variable must be deleted
 on a reboot. If it is equal to 'NonVolatile', then this
 variable should be stored in non-volatile storage where it
 will be available after a reboot. If the 'storageType'
 argument is not present, the variable will be volatile and
 will be erased on reboot. 'storageType' may not be present if
 the 'value' argument is not present. If the variable already
 existed, its previous storageType is updated according to the
 current 'storageType' argument.

 If the optional 'freeOnException' argument is present and
 equal to 1, the agent will free this variable if later in the
 same script invocation this script dies with a run-time
 exception or by a call to fail() (note that this does not
 apply to exceptions experienced in subsequent invocations of
 the script).

Various Authors Expires November 16, 2004 [Page 60]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.2.9. getScratchpad()

 integer getScratchpad(integer scope, string varName,
 string &value)

 The getScratchpad function allows the retrieval of values that
 were stored previously in this execution context or in
 other execution contexts. The value of 'scope' controls which
 execution contexts can pass a value to this execution context.
 The options for 'scope' are Global, Policy, and
 PolicyElement.

 'varName' is a string used to identify the value. Subsequent
 retrievals of the same 'varName' in the proper scope will return
 the value stored. Note that the namespace for varName is
 distinct for each scope. As a result, getScratchpad cannot
 force access to a variable in an inaccessible scope - it can
 only retrieve variables by referencing the proper scope in
 which they were set. 'varName' is case sensitive.

 On successful return, 'value' will be set to the value that was
 previously stored, otherwise 'value' will not be modified.

 This function returns 1 if a value was previously stored and 0
 otherwise.

8.2.10. signalError()

The signalError() function is used by the script to indicate
to a management station that it is experiencing abnormal
behavior. signalError() turns on the conditionUserSignal(3) or
actionUserSignal(5) bit in the associated pmTrackingPEInfo
object (subsequent calls to signalError() have no additional
effect). This bit is initially cleared at the beginning of
each execution. If upon a subsequent execution, the script
finishes without calling signalError, the bit will be cleared.

 signalError()

 The signalException function takes no arguments and returns no
 value.

Various Authors Expires November 16, 2004 [Page 61]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.2.11. defer()

Precedence groups enforce the rule that for each element, of
the ready policies that match the condition, only the one with
the highest precedence value will be active. Unfortunately,
once the winning policy has been selected and the action
begins running, situations can occur where the policy script
determines that it cannot complete its task. In many such
cases, it is desirable that the next runner-up ready policy be
executed. In the previous example it would be desirable that
at least bronze behavior be configured if gold is appropriate
but gold isn't possible.

When a policy defers it exits and the ready, condition-
matching policy with the next-highest precedence is
immediately run. Because it's possible that might defer as
well, the execution environment must remember where it is in
the precedence chain so that it can continue going down the
chain until an action completes without deferring or no
policies are left in the precedence group. Once a policy
completes successfully, the next iteration will begin at the
top of the precedence chain.

There are two ways to defer. A script can exit by calling
fail() and specify that it should defer immediately.
Alternately, a script can instruct the execution environment
to automatically defer in the event of a run-time exception.

 defer(integer deferOnRTE)

 The defer function changes the run-time exception behavior of a
 script. By default, a script will not defer when it encounters
 an RTE. If defer(1) is called, the exit behavior is changed so
 the script will defer when it is terminated due to an RTE. If
 defer(0) is called, the script is reset to its default
 behavior and will not defer.

 Note that calling defer doesn't cause the script to exit. Defer
 only changes the default behavior if an RTE occurs later in
 this invocation.

Various Authors Expires November 16, 2004 [Page 62]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.2.12. fail()

 fail(integer defer, integer free [, string message])

 The fail function causes the script to optionally perform
 certain functions and then exit.

 If 'defer' is 1, this script will defer to the next lower
 precedence ready policy in the same precedence group whose
 condition matches. If 'defer' isn't 1, it will not defer. Note
 that if a condition defers, it is functionally equivalent to
 the condition returning false.

 If 'free' is 1, certain registered resources will be freed. If
 earlier in this script invocation any rows were created by
 createRow with the 'freeOnException' option, the execution
 environment will set the RowStatus of each row to 'destroy' to
 delete the row. Further, if earlier in this script invocation
 any scratchpad variables were created or modified with the
 'freeOnException' option, they will be deleted.

 If the optional 'message' argument is present, it will be
 logged to the debugging table if pmPolicyDebugging is turned on
 for this policy.

 This function does not return. Instead, the script will
 terminate.

8.2.13. getParameters()

>From time to time, policy scripts may be parameterized such
that they are supplied one or more parameters (e.g., site-
specific constants). These parameters may be installed in the
pmPolicyParameters object and are accessible to the script via
the getParameters() function. If it is necessary for multiple
parameters to be passed to the script, the script can choose
whatever encoding/delimiting mechanism is most appropriate
such that the multiple parameters can be stored in the
associated instance of pmPolicyParameters.

 string getParameters()

 The getParameters function takes no arguments. It returns a
 string containing the value of the pmPolicyParameters object

Various Authors Expires November 16, 2004 [Page 63]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 for the running policy.

For example, if a policy is to apply to "slow speed
interfaces" and the cutoff point for slow speed should be
parameterized, the policy filter should be:
 getVar("ifSpeed.$*") == getParameters()

In this example, one can store the string "128000" in the
policy's pmPolicyParameters object to cause this policy to act
on all 128 Kbps interfaces.

8.3. Utility Library Functions

Utility Library Functions are provided to enable more
efficient policy scripts.

8.3.1. regexp()

 integer regexp(string pattern, string str,
 integer case [, string &match])

 regexp searches 'str' for matches to the regular expression
 given in `pattern`. regexp uses the POSIX extended regular
 expressions defined in POSIX 1003.2.

 If `case` is 0, the search will be case insensitive, otherwise
 it will be case sensitive.

 If a match is found, 1 is returned, otherwise 0 is returned.

 If the optional argument 'match' is provided and a match is
 found, 'match' will be replaced with the text of the first
 substring of 'str' that matches 'pattern'. If no match is
 found it will be unchanged.

8.3.2. regexpReplace()

 string regexpReplace(string pattern, string replacement,
 string str, integer case)

 regexpReplace searches 'str' for matches to the regular
 expression given in `pattern`, replacing each occurrence of

Various Authors Expires November 16, 2004 [Page 64]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 matched text with 'replacement'. regexpReplace uses the POSIX
 extended regular expressions defined in POSIX 1003.2.

 If `case` is 0, the search will be case insensitive, otherwise
 it will be case sensitive.

 The modified string is returned (which would be the same as
 the original string if no matches were found).

8.3.3. oidlen()

 integer oidlen(string oid)

 oidlen returns the number of subidentifiers in 'oid'. 'oid' is
 a string containing an ASCII dotted-decimal representation of
 an object identifier (e.g. "1.3.6.1.2.1.1.1.0").

8.3.4. oidncmp()

 integer oidncmp(string oid1, string oid2, integer n)

 Arguments 'oid1' and 'oid2' are strings containing
 ASCII dotted-decimal representations of object identifiers
 (e.g. "1.3.6.1.2.1.1.1.0").

 oidcmp compares not more than 'n' subidentifiers of 'oid1' and
 'oid2' and returns -1 if 'oid1' is less than 'oid2', 0 if they
 are equal, and 1 if 'oid1' is greater than 'oid2'.

8.3.5. inSubtree()

 integer inSubtree(string oid, string prefix)

 Arguments 'oid' and 'prefix' are strings containing
 ASCII dotted-decimal representations of object identifiers
 (e.g. "1.3.6.1.2.1.1.1.0").

 inSubtree returns 1 if every subidentifier in 'prefix' equals
 the corresponding subidentifier in 'oid', otherwise it returns
 0. The is equivalent to oidncmp(oid1, prefix, oidlen(prefix))
 is provided because this is an idiom and because it avoids
 evaluating 'prefix' twice if it is an expression.

Various Authors Expires November 16, 2004 [Page 65]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.3.6. subid()

 integer subid(string oid, integer n)

 subid returns the value of the 'n'th (starting at zero)
 subidentifier of 'oid'. 'oid' is a string containing an ASCII
 dotted-decimal representation of an object identifier
 (e.g. "1.3.6.1.2.1.1.1.0").

 If 'n' specifies a subidentifier beyond the length of 'oid', a
 value of -1 is returned.

8.3.7. subidWrite()

 integer subidWrite(string oid, integer n, integer subid)

 subidWrite sets the value of the 'n'th (starting at zero)
 subidentifier of 'oid' to `subid'. 'oid' is a string
 containing an ASCII dotted-decimal representation of an object
 identifier (e.g. "1.3.6.1.2.1.1.1.0").

 If 'n' specifies a subidentifier beyond the length of 'oid',
 a value of -1 is returned. Note that appending subidentifiers
 can be accomplished with the string concatenation '+'
 operator. If no error occurs, zero is returned.

8.3.8. oidSplice()

 string oidSplice(string oid1, integer offset, integer len, string oid2)

 oidSplice returns an OID formed by replacing 'len'
 subidentifiers in 'oid1' with all of the subidentifiers from
 'oid2', starting at 'offset' in 'oid1' (the first
 subidentifier is at offset 0). The OID length will be extended
 if necessary if 'offset' + 'len' extends beyond the end of
 'oid1'. If 'offset' is larger than the length of oid1, then a
 RTE will occur.

 The resulting OID is returned.

 For example:
 oidSplice("1.3.6.1.2.1", 5, 1, "7") => "1.3.6.1.2.7"
 oidSplice("1.3.6.1.2.1", 4, 2, "7.7") => "1.3.6.1.7.7"

Various Authors Expires November 16, 2004 [Page 66]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 oidSplice("1.3.6.1.2.1", 4, 3, "7.7.7") => "1.3.6.1.7.7.7"

8.3.9. parseIndex()

ParseIndex is provided to make it easy to pull index values
from OIDs into variables.

 var parseIndex(string oid, integer &index, integer type,
 integer len)

 parseIndex pulls values from the instance identification
 portion of 'oid', encoded as per Section 7.7 "Mapping of the
 INDEX clause" of the SMIv2[2].

 'oid' is the OID to be parsed.

 'index' describes which subid to begin parsing at. 'index'
 will be modified to indicate the subid after the last one
 parsed (even if this points past the last subid). The first
 subid is index 0. If any error occurs, 'index' will set to -1
 on return. If the input index is less than 0 or refers past
 the end of the OID, 'index' will be set to -1 on return and
 the function will return 0.

 If 'type' is Integer, 'len' will not be consulted. The return
 value is the integer value of the next subid.

 If 'type' is String and 'len' is greater than zero, 'len'
 subids will be parsed. For each subid parsed, the chr() value
 of the subid will be appended to the returned string. If any
 subid is greater than 255, 'index' will be set to -1 on return
 and an empty string will be returned. If there are fewer than
 'len' subids left in 'oid', 'index' will be set to -1 on
 return but a string will be returned containing a character
 for each subid that was left.

 If 'type' is String and 'len' is zero, the next subid will be
 parsed to find 'N', the length of the string. Then this many
 subids will be parsed. For each subid parsed, the chr() value
 of the subid will be appended to the returned string. If any
 subid is greater than 255, 'index' will be set to -1 on return
 and an empty string will be returned. If there are fewer than
 'N' subids left in 'oid', 'index' will be set to -1 on return
 but a string will be returned containing a character for each

Various Authors Expires November 16, 2004 [Page 67]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 subid that was left.

 If 'type' is String and 'len' is -1, subids will be parsed
 until the end of 'oid'. For each subid parsed, the chr() value
 of the subid will be appended to the returned string. If any
 subid is greater than 255, 'index' will be set to -1 on return
 and an empty string will be returned.

 If 'type' is Oid and 'len' is greater than zero, 'len' subids
 will be parsed. For each subid parsed, the decimal-encoded
 value of the subid will be appended to the returned string,
 with a '.' character appended between each output subid but
 not after the last subid. If there are fewer than 'len' subids
 left in 'oid', 'index' will be set to -1 on return but a
 string will be returned containing an encoding for each subid
 that was left.

 If 'type' is Oid and 'len' is zero, the next subid will be
 parsed to find 'N', the number of subids to parse. For each
 subid parsed, the decimal-encoded value of the subid will be
 appended to the returned string, with a '.' character appended
 between each output subid but not after the last subid. If
 there are fewer than 'N' subids left in 'oid', 'index' will be
 set to -1 on return but a string will be returned containing
 an encoding for each subid that was left.

 If 'type' is Oid and 'len' is -1, subids will be parsed until
 the end of 'oid'. For each subid parsed, the decimal-encoded
 value of the subid will be appended to the returned string,
 with a '.' character appended between each output subid but
 not after the last subid.

For example, to decode the index component of an instance of
the ipForward table:
 oid = "ipForwardIfIndex.0.0.0.0.13.0.192.168.1.1";
 index = 11;
 dest = parseIndex(oid, index, String, 4);
 proto = parseIndex(oid, index, Integer, 0);
 policy = parseIndex(oid, index, Integer, 0);
 nextHop = parseIndex(oid, index, String, 4);
 // proto and policy now contain integer values
 // dest and nextHop now contain 4 byte IP addresses. Use
 // stringToDotted to get them to dotted decimal notation:
 // e.g.: stringToDotted(nextHop) => "192.168.1.1"

Various Authors Expires November 16, 2004 [Page 68]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.3.10. stringToDotted()

stringToDotted() is provided to encode strings suitable for
the index portion of an OID or to convert the binary encoding
of an ip address to a dotted-decimal encoding.

 string stringToDotted(string value)

 If 'value' is the zero length string, the zero length string
 is returned.

 The decimal encoding of the first byte of 'value' is appended
 to the output string. Then for each additional byte in
 'value', a '.' is appended to the output string followed by
 the decimal encoding of the additional byte.

8.3.11. integer()

 integer integer(var input)

 integer converts 'input' into an integer by using the rules
 specified for ToInteger(), returning the integer-typed
 results.

8.3.12. string()

 string string(var input)

 string converts 'input' into a string by using the rules
 specified for ToString(), returning the string-typed
 results.

8.3.13. type()

 string type(var variable)

 type returns the type of its argument as either the string
 'String' or the string 'Integer'.

Various Authors Expires November 16, 2004 [Page 69]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.3.14. chr()

 string chr(integer char)

 Returns a one-character string containing the character
 specified by the ASCII code contained in 'char'.

8.3.15. ord()

 integer ord(string str)

 Returns the ASCII value of the first character of
 'str'. This function complements chr().

8.3.16. substr()

 string substr(string &str, integer offset
 [, integer len, string replacement])

 Extracts a substring out of 'str' and returns it. The first
 octet is at offset 0. If offset is negative, the returned
 string starts that far from the end of 'str'. If 'len' is
 positive, the returned string contains up to 'len' octets,
 up to the end of the string. If 'len' is omitted, the returned
 string includes everything to the end of 'str'. If 'len' is
 negative, abs(len) octets are left off the end of the
 string.

 If you specify a substring that is partly outside the string,
 the part within the string is returned. If the substring is
 totally outside the string, a zero-length string is produced.

 If the optional 'replacement' argument is included, 'str' is
 modified. 'offset' and 'len' act as above to select a range of
 octets in 'str'. These octets are replaced with
 octets from 'replacement'. If the replacement string is
 shorter or longer than the number of octets selected,
 'str' will shrink or grow respectively. If 'replacement' is
 included, the 'len' argument must also be included.

 Note that to replace everything from offset to the end of the

Various Authors Expires November 16, 2004 [Page 70]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 string, substr() should be called like:
 substr(str, offset, strlen(str) - offset, replacement)

8.4. General Functions

The following POSIX standard library functions are provided:

 strncmp()
 strncasecmp()
 strlen()
 random()
 sprintf()
 sscanf()

9. International String Library

This library is optional for systems that wish to have support
for collating (sorting) and verify equality of international
strings in a manner that will be least surprising to humans.
This library is registered with the name
"pmInternationalStringLibrary".

When verifying equality of international strings in the
Unicode chacter set, it is recommended to first normalize the
strings with the stringprep() function before checking for
equality.

When attempting to sort international strings in the Unicode
chacter set, normalization should also be performed but it
should be noted that the result is highly context dependent
and hard to implement correctly. Just ordering by Unicode
Codepoint Value is in many cases not what the end user
expects. See Unicode technical note #9 for more information
about sorting.

9.1. stringprep()

 integer stringprep(string utf8Input, string &utf8Output)

 Performs the Stringprep [13] transformation for appropriate
 comparison of internationalized strings. The transformation is

Various Authors Expires November 16, 2004 [Page 71]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 performed on 'utf8Input' and only if the transformation
 comletes without error, the resulting string is written to
 utf8Output. The stringprep profile used is specified below in

Section 9. If sucessful, the function returns 1.

 If the stringprep transformation encounters an error, 0 is
 returned and the utf8Output parameter remains unchanged.

 For example, to compare UTF8 strings 'one' and 'two':

 if (stringprep(one, a) && stringprep(two, b)){
 if (a == b){
 // strings are identical
 } else {
 // strings are different
 }
 } else {
 // strings couldn't be transformed for comparison
 }

 See Stringprep [13] for more information.

9.1.1. Stringprep Profile

The Stringprep specification [13] describes a framework for
preparing Unicode text strings in order to increase the
likelihood that string input and string comparison work in
ways that make sense for typical users throughout the world.
Specifications that specify stringprep (as this one does) are
required to fully specify stringprep's processing options by
documenting a stringprep profile.

This profile defines the following, as required by Stringprep:

- The intended applicability of the profile: internationalized
network management information

- The character repertoire that is the input and output to
stringprep: Unicode 3.2, as defined in Stringprep [13]
Appendix A.1.

- The mapping tables used: Table B.1 from Stringprep [13]

Various Authors Expires November 16, 2004 [Page 72]

Internet Draft Policy-Based Management MIB Apr 16, 2004

- Any additional mapping tables specific to the profile: None

- The Unicode normalization used: Form KC as described in
Stringprep [13]

- The characters that are prohibited as output: As specified
in the following tables from Stringprep [13]:
 Table C.2
 Table C.3
 Table C.4
 Table C.5
 Table C.6
 Table C.7
 Table C.8
 Table C.9

- Bidirectional character handling: not performed

- Any additional characters that are prohibited as output:
None

9.2. utf8Strlen()

 integer utf8Strlen(string str)

 Returns the number of UTF-8 characters in 'str' which may be
 less than the number of octets in 'str' if one of more
 characters are multi-byte characters.

9.3. utf8Chr()

 string utf8Chr(integer utf8)

 Returns a one-character string containing the character
 specified by the UTF-8 code contained in 'utf8'. The resulting
 string, while it contains only 1 UTF-8 character, may be more
 than 1 octet in length.

Various Authors Expires November 16, 2004 [Page 73]

Internet Draft Policy-Based Management MIB Apr 16, 2004

9.4. utf8Ord()

 integer utf8Ord(string str)

 Returns the UTF-8 code-point value of the first character of
 'str'. Note that the first UTF-8 character in 'str' may be
 more than 1 octet in length. This function complements chr().

9.5. utf8Substr()

 string utf8Substr(string &str, integer offset
 [, integer len, string replacement])

 Extracts a substring out of 'str' and returns it, keeping
 track of UTF-8 character boundaries and using these
 boundaries, instead of octets, as the basis for offset and
 length calculations. The first character is at offset 0. If
 offset is negative, the returned string starts that far from
 the end of 'str'. If 'len' is positive, the returned string
 contains up to 'len' characters, up to the end of the
 string. If 'len' is omitted, the returned string includes
 everything to the end of 'str'. If 'len' is negative, abs(len)
 characters are left off the end of the string.

 If you specify a substring that is partly outside the string,
 the part within the string is returned. If the substring is
 totally outside the string, a zero-length string is produced.

 If the optional 'replacement' argument is included, 'str' is
 modified. 'offset' and 'len' act as above to select a range of
 characters in 'str'. These characters are replaced with
 characters from 'replacement'. If the replacement string is
 shorter or longer than the number of characters selected,
 'str' will shrink or grow respectively. If 'replacement' is
 included, the 'len' argument must also be included.

 Note that to replace everything from offset to the end of the
 string, substr() should be called like:
 substr(str, offset, strlen(str) - offset, replacement)

Various Authors Expires November 16, 2004 [Page 74]

Internet Draft Policy-Based Management MIB Apr 16, 2004

10. Schedule Table

This table is an adapted form of the policyTimePeriodCondition
class defined in the Policy Core Information Model, RFC 3090
[17].

The policy schedule table allows control over when a valid
policy will be ready, based on the date and time.

A policy's pmPolicySchedule variable refers to a group of one
or more schedules in the schedule table. At any given point in
time, if any of these schedules are active, the policy will be
ready (assuming that it is enabled and thus valid) and its
conditions and actions will be executed as appropriate. At
times when none of these schedules are active, the policy will
not be ready and will have no effect. A policy will always be
ready if its pmPolicySchedule variable is 0. If a policy has a
non-zero pmPolicySchedule that doesn't refer to a group that
includes an active schedule, then the policy will not be
ready, even if this is due to a misconfiguration of the
pmPolicySchedule object or the pmSchedTable.

A policy that is controlled by a schedule group immediately
executes its policy condition (and conditionally the
policyAction) when the schedule group becomes active,
periodically re-executing these scripts as appropriate until
the schedule group becomes inactive (i.e. all schedules are
inactive).

An individual schedule item is active at those times that
match all of the variables that define the schedule:
pmSchedTimePeriod, pmSchedMonth, pmSchedDay, pmSchedWeekDay,
and pmSchedTimeOfDay. It is possible to specify multiple
values for each schedule item. This provides a mechanism for
defining complex schedules. For example, a schedule could be
defined which is active the entire workday each weekday.

Months, days and weekdays are specified using the objects
pmSchedMonth, pmSchedDay and pmSchedWeekDay of type BITS.
Setting multiple bits in these objects causes an OR operation.
For example, setting the bits monday(1) and friday(5) in
pmSchedWeekDay restricts the schedule to Mondays and Fridays.

The matched times for pmSchedTimePeriod, pmSchedMonth,
pmSchedDay pmSchedWeekDay, and pmSchedTimeOfDay are ANDed

https://datatracker.ietf.org/doc/html/rfc3090

Various Authors Expires November 16, 2004 [Page 75]

Internet Draft Policy-Based Management MIB Apr 16, 2004

together to determine the time periods that the schedule will
be active; in other words, the schedule is only active for
those times that ALL of these schedule attributes match. For
example, a schedule with an overall validity range of January
1, 2000 through December 31, 2000; a month mask that selects
March and April; a day-of-the-week mask that selects Fridays;
and a time of day range of 0800 through 1600 would represent
the following time periods:

 Friday, March 5, 2000, from 0800 through 1600;
 Friday, March 12, 2000, from 0800 through 1600;
 Friday, March 19, 2000, from 0800 through 1600;
 Friday, March 26, 2000, from 0800 through 1600;
 Friday, April 2, 2000, from 0800 through 1600;
 Friday, April 9, 2000, from 0800 through 1600;
 Friday, April 16, 2000, from 0800 through 1600;
 Friday, April 23, 2000, from 0800 through 1600;
 Friday, April 30, 2000, from 0800 through 1600.

Wildcarding of schedule attributes of type BITS is achieved by
setting all bits to one.

It is possible to define schedules that will never cause a
policy to be activated. For example, one can define a schedule
which should be active on February 31st.

Various Authors Expires November 16, 2004 [Page 76]

Internet Draft Policy-Based Management MIB Apr 16, 2004

11. Definitions

POLICY-BASED-MANAGEMENT-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Counter32, Gauge32, Unsigned32,
 mib-2 FROM SNMPv2-SMI
 RowStatus, RowPointer, TEXTUAL-CONVENTION,
 DateAndTime, StorageType FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP FROM SNMPv2-CONF
 SnmpAdminString FROM SNMP-FRAMEWORK-MIB;

-- Policy-Based Management MIB

pmMib MODULE-IDENTITY
 LAST-UPDATED "2004004160000Z" -- April 16, 2004
 ORGANIZATION "IETF SNMP Configuration Working Group"
 CONTACT-INFO
 "

 Steve Waldbusser

 Phone: +1-650-948-6500
 Fax: +1-650-745-0671
 Email: waldbusser@nextbeacon.com

 Jon Saperia (WG Co-chair)
 JDS Consulting, Inc.
 174 Chapman St.
 Watertown MA 02472-3063
 USA
 Phone: +1-617-744-1079
 Fax: +1-617-249-0874
 Email: saperia@jdscons.com

 Thippanna Hongal
 Riverstone Networks, Inc.
 5200 Great America Parkway
 Santa Clara, CA, 95054
 USA

 Phone: +1-408-878-6562
 Fax: +1-408-878-6501

Various Authors Expires November 16, 2004 [Page 77]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 Email: hongal@riverstonenet.com

 David Partain (WG Co-chair)
 Postal: Ericsson Radio Systems
 P.O. Box 1248
 SE-581 12 Linkoping
 Sweden
 Tel: +46 13 28 41 44
 E-mail: David.Partain@ericsson.com

 Any questions or comments about this document can also be
 directed to the working group at snmpconf@snmp.com."
 DESCRIPTION
 "The MIB module for policy-based configuration of SNMP
 infrastructures.

 Copyright (C) The Internet Society (2004). This version of
 this MIB module is part of RFC xxxx; see the RFC itself for
 full legal notices."

 REVISION "200404160000Z" -- April 16, 2004
 DESCRIPTION
 "The original version of this MIB, published as RFCXXXX."
 -- RFC-Editor assigns XXXX
 ::= { mib-2 xxx } -- xxx to be assigned by IANA

PmUTF8String ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "An octet string containing information typically in
 human-readable form.

 To facilitate internationalization, this
 information is represented using the ISO/IEC
 IS 10646-1 character set, encoded as an octet
 string using the UTF-8 transformation format
 described in RFC3629.

 Since additional code points are added by
 amendments to the 10646 standard from time
 to time, implementations must be prepared to
 encounter any code point from 0x00000000 to
 0x10FFFF. Byte sequences that do not
 correspond to the valid UTF-8 encoding of a

https://datatracker.ietf.org/doc/html/rfc3629

Various Authors Expires November 16, 2004 [Page 78]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 code point or are outside this range are
 prohibited.

 The use of control codes should be avoided.

 When it is necessary to represent a newline,
 the control code sequence CR LF should be used.

 For code points not directly supported by user
 interface hardware or software, an alternative
 means of entry and display, such as hexadecimal,
 may be provided.

 For information encoded in 7-bit US-ASCII,
 the UTF-8 encoding is identical to the
 US-ASCII encoding.

 UTF-8 may require multiple bytes to represent a
 single character / code point; thus the length
 of this object in octets may be different from
 the number of characters encoded. Similarly,
 size constraints refer to the number of encoded
 octets, not the number of characters represented
 by an encoding.

 Note that when this TC is used for an object that
 is used or envisioned to be used as an index, then
 a SIZE restriction MUST be specified so that the
 number of sub-identifiers for any object instance
 does not exceed the limit of 128, as defined by

RFC3416.

 Note that the size of an PmUTF8String object is
 measured in octets, not characters."
 SYNTAX OCTET STRING (SIZE (0..65535))

-- The policy table

pmPolicyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmPolicyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The policy table. A policy is a pairing of a
 policyCondition and a policyAction which is used to apply the

https://datatracker.ietf.org/doc/html/rfc3416

Various Authors Expires November 16, 2004 [Page 79]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 action to a selected set of elements."
 ::= { pmMib 1 }

pmPolicyEntry OBJECT-TYPE
 SYNTAX PmPolicyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the policy table representing one policy."
 INDEX { pmPolicyAdminGroup, pmPolicyIndex }
 ::= { pmPolicyTable 1 }

PmPolicyEntry ::= SEQUENCE {
 pmPolicyAdminGroup PmUTF8String,
 pmPolicyIndex Unsigned32,
 pmPolicyPrecedenceGroup PmUTF8String,
 pmPolicyPrecedence Unsigned32,
 pmPolicySchedule Unsigned32,
 pmPolicyElementTypeFilter PmUTF8String,
 pmPolicyConditionScriptIndex Unsigned32,
 pmPolicyActionScriptIndex Unsigned32,
 pmPolicyParameters OCTET STRING,
 pmPolicyConditionMaxLatency Unsigned32,
 pmPolicyActionMaxLatency Unsigned32,
 pmPolicyMaxIterations Unsigned32,
 pmPolicyDescription PmUTF8String,
 pmPolicyMatches Gauge32,
 pmPolicyAbnormalTerminations Gauge32,
 pmPolicyExecutionErrors Counter32,
 pmPolicyDebugging INTEGER,
 pmPolicyAdminStatus INTEGER,
 pmPolicyStorageType StorageType,
 pmPolicyRowStatus RowStatus
}

pmPolicyAdminGroup OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An administratively assigned string that can be used to group
 policies for convenience, readability or to simplify
 configuration of access control.

 The value of this string does not affect policy processing in

Various Authors Expires November 16, 2004 [Page 80]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 any way. If grouping is not desired or necessary, this object
 may be set to a zero-length string."
 ::= { pmPolicyEntry 1 }

pmPolicyIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for this policy entry, unique amongst all
 policies regardless of administrative group."
 ::= { pmPolicyEntry 2 }

pmPolicyPrecedenceGroup OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "An administratively assigned string that is used to group
 policies. For each element, only one policy in the same
 precedence group may be active on that element. If multiple
 policies would be active on an element (because their
 conditions return non-zero), the execution environment will
 only allow the policy with the highest value of
 pmPolicyPrecedence to be active.

 All values of this object must have been successfully
 transformed by Stringprep RFC3454. Management stations
 must perform this translation and must only set this object to
 string values that have been transformed."
 ::= { pmPolicyEntry 3 }

pmPolicyPrecedence OBJECT-TYPE
 SYNTAX Unsigned32 (0..65535)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "If while checking to see which policy conditions match an
 element, 2 or more ready policies in the same precedence group
 match the same element, the pmPolicyPrecedence object provides
 the rule to arbitrate which single policy will be active on
 'this element'. Of policies in the same precedence group, only
 the ready and matching policy with the highest precedence
 value (i.e. 2 is higher than 1) will have its policy action
 periodically executed on 'this element'.

https://datatracker.ietf.org/doc/html/rfc3454

Various Authors Expires November 16, 2004 [Page 81]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 When a policy is active on an element but the condition ceases
 to match the element, its action (if currently running) will
 be allowed to complete and then the condition-matching ready
 policy with the next-highest precedence will immediately
 become active (and has its action run immediately). If the
 condition of a higher-precedence ready policy suddenly begins
 matching an element, the previously-active policy's action (if
 currently running) will be allowed to complete and then the
 higher precedence policy will immediately become active, its
 action will run immediately and any lower-precedence matching
 policy will not be active anymore.

 In the case where multiple ready policies share the highest
 value, it is an implementation-dependent matter as to which
 single policy action will be chosen.

 Note that if it is necessary to take certain actions after a
 policy is no longer active on an element, these actions should
 be included in a lower-precedence policy that is in the same
 precedence group."
 ::= { pmPolicyEntry 4 }

pmPolicySchedule OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This policy will be ready if any of the associated schedule
 entries are active.

 If the value of this object is 0, this policy is always
 ready.

 If the value of this object is non-zero but it doesn't
 refer to a schedule group that includes an active schedule,
 then the policy will not be ready, even if this is due to a
 misconfiguration of this object or the pmSchedTable."
 ::= { pmPolicyEntry 5 }

pmPolicyElementTypeFilter OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..128))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object specifies the element types for which this policy

Various Authors Expires November 16, 2004 [Page 82]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 can be executed.

 The format of this object will be a sequence of
 pmElementTypeRegOIDPrefix values, encoded in the following
 BNF form:

 elementTypeFilter: oid [';' oid]*
 oid: subid ['.' subid]*
 subid: '0' | decimal_constant

 For example, to register for the policy to be run on all
 interface elements, the 'ifEntry' element type will be
 registered as '1.3.6.1.2.1.2.2.1'.

 If a value is included that does not represent a registered
 pmElementTypeRegOIDPrefix, then that value will be ignored."
 ::= { pmPolicyEntry 6 }

pmPolicyConditionScriptIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A pointer to the row or rows in the pmPolicyCodeTable that
 contain the condition code for this policy. When a policy entry
 is created, a pmPolicyCodeIndex value unused by this
 policy's adminGroup will be assigned to this object.

 A policy condition is one or more PolicyScript statements
 which results in a boolean value that represents whether or
 not an element is a member of a set of elements upon which an
 action is to be performed. If a policy is ready and the
 condition returns true for an element of a proper element
 type, and no higher-precedence policy should be active, then
 the policy is active on that element.

 Condition evaluation stops immediately when any run-time
 exception is detected and the policyAction is not executed.

 The policyCondition is evaluated for various elements. Any
 element for which the policyCondition returns any nonzero value
 will match the condition and will have the associated
 policyAction executed on that element unless a
 higher-precedence policy in the same precedence group also

Various Authors Expires November 16, 2004 [Page 83]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 matches 'this element'.

 If the condition object is empty (contains no code) or otherwise
 does not return a value, the element will not be matched.

 When executing this condition, if SNMP requests are made to
 the local system and secModel/secName/secLevel aren't
 specified, access to objects is under the security
 credentials of the requester who most recently modified the
 associated pmPolicyAdminStatus object. If SNMP requests are
 made in which secModel/secName/secLevel are specified, then
 the specified credentials are retrieved from the local
 configuration datastore if and only if VACM is configured to
 allow access to the requester who most recently modified the
 associated pmPolicyAdminStatus object. See the Security
 Considerations section for more information."
 ::= { pmPolicyEntry 7 }

pmPolicyActionScriptIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A pointer to the row or rows in the pmPolicyCodeTable that
 contain the action code for this policy. When a policy entry
 is created, a pmPolicyCodeIndex value unused by this policy's
 adminGroup will be assigned to this object.

 A PolicyAction is an operation performed on a
 set of elements for which the policy is active.

 Action evaluation stops immediately when any run-time
 exception is detected.

 When executing this condition, if SNMP requests are made to
 the local system and secModel/secName/secLevel aren't
 specified, access to objects is under the security
 credentials of the requester who most recently modified the
 associated pmPolicyAdminStatus object. If SNMP requests are
 made in which secModel/secName/secLevel are specified, then
 the specified credentials are retrieved from the local
 configuration datastore if and only if VACM is configured to
 allow access to the requester who most recently modified the
 associated pmPolicyAdminStatus object. See the Security
 Considerations section for more information."

Various Authors Expires November 16, 2004 [Page 84]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 ::= { pmPolicyEntry 8 }

pmPolicyParameters OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..65535))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "From time to time, policy scripts may desire one or more
 parameters (e.g., site-specific constants). These parameters
 may be installed with the script in this object and are
 accessible to the script via the getParameters() function. If
 it is necessary for multiple parameters to be passed to the
 script, the script can choose whatever encoding/delimiting
 mechanism is most appropriate."
 ::= { pmPolicyEntry 9 }

pmPolicyConditionMaxLatency OBJECT-TYPE
 SYNTAX Unsigned32 (0..2147483647)
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Every element under the control of this agent is
 re-checked periodically to see if it is under control of this
 policy by re-running the condition for this policy.
 This object lets the manager control the maximum amount of
 time that may pass before an element is re-checked.

 In other words, in any given interval of this duration, all
 elements must be re-checked. Note that it is an
 implementation-dependent matter as to how the policy agent
 schedules the checking of various elements within this
 interval. Implementations may wish to re-run a condition more
 quickly if they note a change to the role strings for an
 element."
 ::= { pmPolicyEntry 10 }

pmPolicyActionMaxLatency OBJECT-TYPE
 SYNTAX Unsigned32 (0..2147483647)
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Every element that matches this policy's condition and is
 therefore under control of this policy will have this policy's

Various Authors Expires November 16, 2004 [Page 85]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 action executed periodically to ensure that the element
 remains in the state dictated by the policy.
 This object lets the manager control the maximum amount of
 time that may pass before an element has the action run on
 it.

 In other words, in any given interval of this duration, all
 elements under control of this policy must have the action run
 on them. Note that it is an implementation-dependent matter as
 to how the policy agent schedules the policy action on various
 elements within this interval."
 ::= { pmPolicyEntry 11 }

pmPolicyMaxIterations OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "If a condition or action script iterates in loops too many
 times in one invocation, it may be considered by the execution
 environment to be in an infinite loop or otherwise not acting
 as intended and may be terminated by the execution
 environment. The execution environment will count the
 cumulative number of times all 'for' or 'while' loops iterated
 and will apply a threshold to determine when to terminate the
 script. It is an implementation-dependent manner as to what
 threshold the execution environment uses, but the value of
 this object SHOULD be the basis for choosing the threshold for
 each script. The value of this object represents a
 policy-specific threshold and can be tuned for policies of
 varying workloads. If this value is zero, no
 threshold will be enforced except for any
 implementation-dependent maximum. Regardless of this value,
 the agent is allowed to terminate any script invocation that
 exceeds a local CPU or memory limitation.

 Note that the condition and action invocations are tracked
 separately."
 ::= { pmPolicyEntry 12 }

pmPolicyDescription OBJECT-TYPE
 SYNTAX PmUTF8String
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

Various Authors Expires November 16, 2004 [Page 86]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 "A description of this rule and its significance, typically
 provided by a human."
 ::= { pmPolicyEntry 13 }

pmPolicyMatches OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "elements"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of elements that, in their most recent execution
 of the associated condition, were matched by the condition."
 ::= { pmPolicyEntry 14 }

pmPolicyAbnormalTerminations OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "elements"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of elements that, in their most recent execution
 of the associated condition or action, have experienced a
 run-time exception and terminated abnormally. Note that if a
 policy was experiencing a run-time exception while processing
 a particular element but on a subsequent invocation it runs
 normally, this number can decline."
 ::= { pmPolicyEntry 15 }

pmPolicyExecutionErrors OBJECT-TYPE
 SYNTAX Counter32
 UNITS "errors"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of times that execution of this policy's
 condition or action has been terminated due to run-time
 exceptions."
 ::= { pmPolicyEntry 16 }

pmPolicyDebugging OBJECT-TYPE
 SYNTAX INTEGER {
 off(1),
 on(2)
 }
 MAX-ACCESS read-create

Various Authors Expires November 16, 2004 [Page 87]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 STATUS current
 DESCRIPTION
 "The status of debugging for this policy. If this is turned
 on(2), log entries will be created in the pmDebuggingTable
 for each run-time exception that is experienced by this
 policy."
 DEFVAL { off }
 ::= { pmPolicyEntry 17 }

pmPolicyAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 disabled(1),
 enabled(2),
 enabledAutoRemove(3)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The administrative status of this policy.

 The policy will be valid only if the associated
 pmPolicyRowStatus is set to active(1) and this object is set
 to enabled(2) or enabledAutoRemove(3).

 If this object is set to enabledAutoRemove(3), the next time
 the associated schedule moves from the active state to the
 inactive state, this policy will immediately be deleted,
 including any associated entries in the pmPolicyCodeTable.

 The following related objects may not be changed unless this
 object is set to disabled(1):
 pmPolicyPrecedenceGroup, pmPolicyPrecedence,
 pmPolicySchedule, pmPolicyElementTypeFilter,
 pmPolicyConditionScriptIndex, pmPolicyActionScriptIndex,
 pmPolicyParameters, and any pmPolicyCodeTable row
 referenced by this policy.
 In order to change any of these parameters, the policy must
 be moved to the disabled(1) state, changed, and then
 re-enabled.

 When this policy moves to either enabled state from the
 disabled state, any cached values of policy condition must be
 erased and any Policy or PolicyElement scratchpad values for
 this policy should be removed. Policy execution will begin by
 testing the policy condition on all appropriate elements."

Various Authors Expires November 16, 2004 [Page 88]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 ::= { pmPolicyEntry 18 }

pmPolicyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this policy and any associated
 entries in the pmPolicyCodeTable are kept in volatile storage
 and lost upon reboot or if this row is backed up by
 non-volatile or permanent storage.

 If the value of this object is 'permanent', the values for
 the associated pmPolicyAdminStatus object must remain
 writable."
 ::= { pmPolicyEntry 19 }

pmPolicyRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The row status of this pmPolicyEntry.

 The status may not be set to active if any of the related
 entries in the pmPolicyCode table do not have a status of
 active or if any of the objects in this row are not set to
 valid values. Only the following objects may be modified
 while in the active state:
 pmPolicyParameters
 pmPolicyConditionMaxLatency
 pmPolicyActionMaxLatency
 pmPolicyDebugging
 pmPolicyAdminStatus

 If this row is deleted, any associated entries in the
 pmPolicyCodeTable will be deleted as well."
 ::= { pmPolicyEntry 20 }

-- Policy Code Table

pmPolicyCodeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmPolicyCodeEntry

Various Authors Expires November 16, 2004 [Page 89]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmPolicyCodeTable stores the code for policy conditions and
 actions.

 An example of the relationships between the code table and the
 policy table:

 pmPolicyTable
 AdminGroup Index ConditionScriptIndex ActionScriptIndex
 A '' 1 1 2
 B 'oper' 1 1 2
 C 'oper' 2 3 4

 pmPolicyCodeTable
 AdminGroup ScriptIndex Segment Note
 '' 1 1 Filter for policy A
 '' 2 1 Action for policy A
 'oper' 1 1 Filter for policy B
 'oper' 2 1 Action 1/2 for policy B
 'oper' 2 2 Action 2/2 for policy B
 'oper' 3 1 Filter for policy C
 'oper' 4 1 Action for policy C

 In this example there are 3 policies, 1 in the '' adminGroup
 and 2 in the 'oper' adminGroup. Policy A has been assigned
 script index 1 and 2 (these script indexes are assigned out of
 a separate pool per adminGroup) with 1 code segment each for
 the filter and the action. Policy B has been assigned script
 index 1 and 2 (out of the pool for the 'oper' adminGroup).
 While the filter has 1 segment, the action is longer and is
 loaded into 2 segments. Finally, Policy C has been assigned
 script index 3 and 4 with 1 code segment each for the filter
 and the action."
 ::= { pmMib 2 }

pmPolicyCodeEntry OBJECT-TYPE
 SYNTAX PmPolicyCodeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the policy code table representing one code
 segment. Entries that share a common AdminGroup/ScriptIndex
 pair make up a single script. Valid values of ScriptIndex are

Various Authors Expires November 16, 2004 [Page 90]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 retrieved from pmPolicyConditionScriptIndex and
 pmPolicyActionScriptIndex after a pmPolicyEntry is
 created. Segments of code can then be written to this table
 using the learned ScriptIndex values.

 The StorageType of this entry is determined by the value of
 the associated pmPolicyStorageType.

 The pmPolicyAdminGroup element of the index represents the
 administrative group of the policy this code entry is a part."
 INDEX { pmPolicyAdminGroup, pmPolicyCodeScriptIndex,
 pmPolicyCodeSegment }
 ::= { pmPolicyCodeTable 1 }

PmPolicyCodeEntry ::= SEQUENCE {
 pmPolicyCodeScriptIndex Unsigned32,
 pmPolicyCodeSegment Unsigned32,
 pmPolicyCodeText PmUTF8String,
 pmPolicyCodeStatus RowStatus
}

pmPolicyCodeScriptIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for each policy condition or action. The code
 for each such condition or action may be composed of multiple
 entries in this table if the code cannot fit in one entry.
 Values of pmPolicyCodeScriptIndex may not be used unless
 they have previously been assigned in the
 pmPolicyConditionScriptIndex or pmPolicyActionScriptIndex
 objects."
 ::= { pmPolicyCodeEntry 1 }

pmPolicyCodeSegment OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for each segment of a policy condition or
 action.

 When a policy condition or action spans multiple entries in
 this table, the code of that policy starts from the

Various Authors Expires November 16, 2004 [Page 91]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 lowest-numbered segment and continues with increasing segment
 values until ending with the highest-numbered segment."
 ::= { pmPolicyCodeEntry 2 }

pmPolicyCodeText OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (1..1024))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A segment of policy code (condition or action). Lengthy Policy
 conditions or actions may be stored in multiple segments in this
 table that share the same value of pmPolicyCodeScriptIndex.
 When multiple segments are used, it is recommended that each
 segment be as large as practical.

 Entries in this table are associated with policies by values
 of the pmPolicyConditionScriptIndex and
 pmPolicyActionScriptIndex objects. If the status of the
 related policy is active, then this object may not be
 modified."
 ::= { pmPolicyCodeEntry 3 }

pmPolicyCodeStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this code entry.

 Entries in this table are associated with policies by values
 of the pmPolicyConditionScriptIndex and
 pmPolicyActionScriptIndex objects. If the status of the
 related policy is active, then this object can not be
 modified (I.E., deleted or set to notInService) nor may new
 entries be created.

 If the status of this object is active, no objects in this
 row may be modified."
 ::= { pmPolicyCodeEntry 4 }

-- Element Type Registration Table

pmElementTypeRegTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmElementTypeRegEntry
 MAX-ACCESS not-accessible

Various Authors Expires November 16, 2004 [Page 92]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 STATUS current
 DESCRIPTION
 "A registration table for element types managed by this
 system.

 The Element Type Registration table allows the manager to
 learn what element types are being managed by the system and
 to register new types if necessary. An element type is
 registered by providing the OID of an SNMP object (i.e.,
 without the instance). Each SNMP instance that exists under
 that object is a distinct element. The index of the element is
 the index part of the discovered OID. This index will be
 supplied to policy conditions and actions so that this code
 can inspect and configure the element.

 For example, this table might contain the following entries,
 the first three are agent-installed, while the 4th was
 downloaded by a management station:

 OIDPrefix MaxLatency Description StorageType
 ifEntry 100 mS interfaces - builtin readOnly
 0.0 100 mS system element - builtin readOnly
 frCircuitEntry 100 mS FR Circuits - builtin readOnly
 hrSWRunEntry 60 sec Running Processes volatile

 Note that agents may automatically configure elements in this
 table for frequently used element types (interfaces, circuits,
 etc.). In particular, it may configure elements for whom
 discovery is optimized in one or both of the following ways:

 1. The agent may discover elements by scanning internal data
 structures as opposed to issuing local SNMP requests. It is
 possible to recreate the exact semantics described in this
 table even if local SNMP requests are not issued.

 2. The agent may receive asynchronous notification of new
 elements (for example, 'card inserted') and use that
 information to instantly create elements rather than
 through polling. A similar feature might be available for
 the deletion of elements.

 Regardless of
 Note that the disposition of agent-installed entries is
 described by the pmPolicyStorageType object."
 ::= { pmMib 3 }

Various Authors Expires November 16, 2004 [Page 93]

Internet Draft Policy-Based Management MIB Apr 16, 2004

pmElementTypeRegEntry OBJECT-TYPE
 SYNTAX PmElementTypeRegEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A registration of an element type.

 Note that some values of this table's index may result in an
 instance name that exceeds 128 sub-identifiers in length which
 exceeds the maximum for the SNMP protocol. Implementations
 should take care to avoid such values."
 INDEX { pmElementTypeRegOIDPrefix }
 ::= { pmElementTypeRegTable 1 }

PmElementTypeRegEntry ::= SEQUENCE {
 pmElementTypeRegOIDPrefix OBJECT IDENTIFIER,
 pmElementTypeRegMaxLatency Unsigned32,
 pmElementTypeRegDescription PmUTF8String,
 pmElementTypeRegStorageType StorageType,
 pmElementTypeRegRowStatus RowStatus
}

pmElementTypeRegOIDPrefix OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This OBJECT IDENTIFIER value identifies a table in which all
 elements of this type will be found. Every row in the
 referenced table will be treated as an element for the
 period of time that it remains in the table. The agent will
 then execute policy conditions and actions as appropriate on each
 of these elements.

 This object identifier value is specified down to the 'entry'
 component (e.g. ifEntry) of the identifier.

 The index of each discovered row will be passed to each
 invocation of the policy condition and policy action.

 The actual mechanism by which instances are discovered is
 implementation-dependent. Periodic walks of the table to
 discover the rows in the table is one such mechanism. This
 mechanism has the advantage that it can be performed by an
 agent with no knowledge of the names, syntax or semantics

Various Authors Expires November 16, 2004 [Page 94]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 of the MIB objects in the table. This mechanism also serves as
 the reference design. Other implementation-dependent
 mechanisms may be implemented that are more efficient (perhaps
 because they are hard-coded) or that don't require polling.
 These mechanisms must discover the same elements as the
 table-walking reference design.

 This object can contain a OBJECT IDENTIFIER, '0.0'.
 '0.0' represents the single instance of the system
 itself and provides an execution context for policies to
 operate on the 'system element' as well as on MIB objects
 modeled as scalars. For example, '0.0' gives an execution
 context for policy-based selection of the operating system
 code version (likely modeled as a scalar MIB object). The
 element type '0.0' always exists - as a consequence, no actual
 discovery will take place and the pmElementTypeRegMaxLatency
 object will have no effect for the '0.0' element
 type. However, if the '0.0' element type is not registered in
 the table, policies will not be executed on the '0.0' element.

 When a policy is invoked on behalf of a '0.0' entry in this
 table, the element name will be '0.0' and there is no index
 of 'this element' (in other words it has zero length).

 As this object is used in the index for the
 pmElementTypeRegTable, users of this table should be careful
 not to create entries that would result in instance names with
 more than 128 subidentifiers."
 ::= { pmElementTypeRegEntry 2 }

pmElementTypeRegMaxLatency OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The PM agent is responsible for discovering new elements of
 types that are registered. This object lets the manager
 control the maximum amount of time that may pass between the
 time an element is created and when it is discovered.

 In other words, in any given interval of this duration, all
 new elements must be discovered. Note that it is an
 implementation-dependent matter as to how the policy agent
 schedules the checking of various elements within this

Various Authors Expires November 16, 2004 [Page 95]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 interval."
 ::= { pmElementTypeRegEntry 3 }

pmElementTypeRegDescription OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..64))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A descriptive label for this registered type."
 ::= { pmElementTypeRegEntry 4 }

pmElementTypeRegStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this row is kept
 in volatile storage and lost upon reboot or if this row is
 backed up by non-volatile or permanent storage.

 If the value of this object is 'permanent', no values in the
 associated row need to be writable."
 ::= { pmElementTypeRegEntry 5 }

pmElementTypeRegRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this registration entry.

 If the value of this object is active, no objects in this row
 may be modified."
 ::= { pmElementTypeRegEntry 6 }

-- Role Table

pmRoleTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmRoleEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmRoleTable is a read-create table that organizes role
 strings sorted by element. This table is used to create and
 modify role strings and their associations as well as to allow

Various Authors Expires November 16, 2004 [Page 96]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 a management station to learn about the existence of roles and
 their associations.

 It is the responsibility of the agent to keep track of any
 re-indexing of the underlying SNMP elements and to continue to
 associate role strings with the element with which they were
 initially configured.

 Policy MIB agents that have elements in multiple local SNMP
 contexts need to allow some roles to be assigned to elements
 in particular contexts. This is particularly true when some
 elements have the same names in different contexts and the
 context is required to disambiguate them. In those situations,
 a value for the pmRoleContextName may be provided. When a
 pmRoleContextName value is not provided, the assignment is to
 the element in the default context.

 Policy MIB agents that discover elements on other systems and
 execute policies on their behalf need to have access to role
 information for these remote elements. In such situations,
 role assignments for other systems can be stored in this table
 by providing values for the pmRoleContextEngineID parameters.

 For example:
 Example:
 element role context ctxEngineID #comment
 ifindex.1 gold local, default context
 ifindex.2 gold local, default context
 repeaterid.1 foo rptr1 local, rptr1 context
 repeaterid.1 bar rptr2 local, rptr2 context
 ifindex.1 gold '' A different system
 ifindex.1 gold '' B different system

 The agent must store role string associations in nonvolatile
 storage."
 ::= { pmMib 4 }

pmRoleEntry OBJECT-TYPE
 SYNTAX PmRoleEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A role string entry associates a role string with an
 individual element.

Various Authors Expires November 16, 2004 [Page 97]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 Note that some combinations of index values may result in an
 instance name that exceeds 128 sub-identifiers in length
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 combinations."
 INDEX { pmRoleElement, pmRoleContextName,
 pmRoleContextEngineID, pmRoleString }
 ::= { pmRoleTable 1 }

PmRoleEntry ::= SEQUENCE {
 pmRoleElement RowPointer,
 pmRoleContextName SnmpAdminString,
 pmRoleContextEngineID OCTET STRING,
 pmRoleString PmUTF8String,
 pmRoleStatus RowStatus
}

pmRoleElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element to which this role string is associated.

 For example, if the element is interface #3, then this object
 will contain the OID for 'ifIndex.3'.

 If the agent assigns new indexes in the MIB table to
 represent the same underlying element (re-indexing), the
 agent will modify this value to contain the new index for the
 underlying element.

 As this object is used in the index for the pmRoleTable,
 users of this table should be careful not to create entries
 that would result in instance names with more than 128
 subidentifiers."
 ::= { pmRoleEntry 1 }

pmRoleContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the

Various Authors Expires November 16, 2004 [Page 98]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmRoleEntry 2 }

pmRoleContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system for which this role string
 assignment is valid. If the element is on the local system
 this object will be the empty string."
 ::= { pmRoleEntry 3 }

pmRoleString OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..64))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The role string that is associated with an element through
 this table. All role strings must have been successfully
 transformed by Stringprep RFC3454. Management stations
 must perform this translation and must only set this object
 to string values that have been transformed.

 A role string is an administratively specified characteristic
 of a managed element (for example, an interface). It is a
 selector for policy rules, to determine the applicability of
 the rule to a particular managed element."
 ::= { pmRoleEntry 4 }

pmRoleStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this role string.

 If the value of this object is active, no object in this row
 may be modified."
 ::= { pmRoleEntry 5 }

-- Capabilities table

https://datatracker.ietf.org/doc/html/rfc3454

Various Authors Expires November 16, 2004 [Page 99]

Internet Draft Policy-Based Management MIB Apr 16, 2004

pmCapabilitiesTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmCapabilitiesEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmCapabilitiesTable contains a description of
 the inherent capabilities of the system so that
 management stations can learn of an agent's capabilities and
 differentially install policies based on the capabilities.

 Capabilities are expressed at the system level. There can be
 variation in how capabilities are realized from one vendor or
 model to the next. Management systems should consider these
 differences before selecting which policy to install in a
 system."
 ::= { pmMib 5 }

pmCapabilitiesEntry OBJECT-TYPE
 SYNTAX PmCapabilitiesEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A capabilities entry holds an OID indicating support for a
 particular capability. Capabilities may include hardware and
 software functions as well as the implementation of MIB Modules.
 The semantics of the OID are defined in the description of
 pmCapabilitiesType.

 Entries appear in this table if any element in the system has
 a specific capability. A capability should appear in this
 table only once regardless of the number of elements in the
 system with that capability. An entry is removed from this
 table when the last element in the system that has the
 capability is removed. In some cases, capabilities are
 dynamic and exist only in software. This table should have an
 entry for the capability even if there are no current
 instances. Examples include systems with database or WEB
 services. While the system has the ability to create new
 databases or WEB services, the entry should exist. In these
 cases, the ability to create these services could come from
 other processes that are running in the system even though
 there are no currently open databases or WEB servers running.

 Capabilities may include the implementation of MIB Modules
 but need not be limited to those that represent MIB Modules

Various Authors Expires November 16, 2004 [Page 100]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 with one or more configurable objects. It may also be
 valuable to include entries for capabilities that do not
 include configuration objects since that information, in
 combination with other entries in this table, might be used
 by the management software to determine whether or not to
 install a policy.

 Vendor software may also add entries in this table to express
 capabilities from their private branch.

 Note that some values of this table's index may result in an
 instance name that exceeds 128 sub-identifiers in length
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 values."
 INDEX { pmCapabilitiesType }
 ::= { pmCapabilitiesTable 1 }

PmCapabilitiesEntry ::= SEQUENCE {
 pmCapabilitiesType OBJECT IDENTIFIER
}

pmCapabilitiesType OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "There are three types of OIDs that may be present in the
 pmCapabilitiesType object:

 1) The OID of a MODULE-COMPLIANCE macro that represents the
 highest level of compliance realized by the agent for that
 MIB Module. For example, an agent that implements the OSPF
 MIB Module at the highest level of compliance would have the
 value of '1.3.6.1.2.1.14.15.2' in the pmCapabilitiesType
 object. In the case of software that realizes standard MIB
 Modules that do not have compliance statements, the base OID
 of the MIB Module should be used instead. If the OSPF MIB
 Module had not been created with a compliance statement, then
 the correct value of the pmCapabilitiesType would be
 '1.3.6.1.2.1.14'. In the cases where multiple compliance
 statements in a MIB Module are supported by the agent, and
 one compliance statement does not by definition include the
 other, each of the compliance OIDs would have entries in this
 table.

Various Authors Expires November 16, 2004 [Page 101]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 MIB Documents can contain more than one MIB Module. In the case of
 OSPF, there is a second MIB Module in that document that describes
 notifications for the OSPF Version 2 Protocol. If the agent
 also realizes these functions, an entry will also exist for
 those capabilities in this table.

 2) Vendors should install OIDs in this table that represent
 vendor-specific capabilities. These capabilities can be
 expressed just as those described above for MIB Modules on
 the standards track. In addition, vendors may install any
 OID they desire from their registered branch. The OIDs may be
 at any level of granularity, from the root of their entire
 branch to an instance of a single OID. There is no
 restriction on the number of registrations they may make,
 though care should be taken to avoid unnecessary entries.

 3) OIDs that represent one or a collection of capabilities
 which could be any collection of MIB Objects or hardware or
 software functions may be created in working groups and
 registered in a MIB Module. Other entities (e.g., vendors)
 may also make registrations. Software will register these
 standard capability OIDs as well as vendor specific OIDs.

 If the OID for a known capability is not present in the
 table, then it should be assumed that the capability is not
 implemented.

 As this object is used in the index for the
 pmCapabilitiesTable, users of this table should be careful
 not to create entries that would result in instance names
 with more than 128 subidentifiers."
 ::= { pmCapabilitiesEntry 1 }

-- Capabilities override table

pmCapabilitiesOverrideTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmCapabilitiesOverrideEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmCapabilitiesOverrideTable allows management stations
 to override pmCapabilitiesTable entries that have been
 registered by the agent. This facility can be used to avoid
 the condition where managers in the network send policies to
 a system that has advertised a capability in the

Various Authors Expires November 16, 2004 [Page 102]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 pmCapabilitiesTable but which should not be installed on this
 particular system. One case could be newly deployed equipment
 that is still in a trial state, or when resources are
 reserved for some other administrative reason. This table can
 also be used to override entries in the pmCapabilitiesTable
 through the use of the pmCapabilitiesOverrideState
 object. Capabilities can also be declared available in this
 table that were not registered in the pmCapabilitiesTable. A
 management application can make an entry in this table for
 any valid OID and declare the capability available by setting
 the pmCapabilitiesOverrideState for that row to valid(1)."
 ::= { pmMib 6 }

pmCapabilitiesOverrideEntry OBJECT-TYPE
 SYNTAX PmCapabilitiesOverrideEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table indicates whether a particular
 capability is valid or invalid.

 Note that some values of this table's index may result in an
 instance name that exceeds 128 sub-identifiers in length
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 values."
 INDEX { pmCapabilitiesOverrideType }
 ::= { pmCapabilitiesOverrideTable 1 }

PmCapabilitiesOverrideEntry ::= SEQUENCE {
 pmCapabilitiesOverrideType OBJECT IDENTIFIER,
 pmCapabilitiesOverrideState INTEGER,
 pmCapabilitiesOverrideRowStatus RowStatus
}

pmCapabilitiesOverrideType OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This is the OID of the capability that is declared valid or
 invalid by the pmCapabilitiesOverrideState value for this
 row. Any valid OID as described in the pmCapabilitiesTable is
 permitted in the pmCapabilitiesOverrideType object. This means
 that capabilities can be expressed at any level from a specific

Various Authors Expires November 16, 2004 [Page 103]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 instance of an object to a table or entire module. There are no
 restrictions on whether these objects are from standards track
 MIB documents or in the private branch of the MIB.

 If an entry exists in this table for which there is a
 corresponding entry in the pmCapabilitiesTable, then this entry
 shall have precedence over the entry in the
 pmCapabilitiesTable. All entries in this table must be
 preserved across reboots.

 As this object is used in the index for the
 pmCapabilitiesOverrideTable, users of this table should be
 careful not to create entries that would result in instance
 names with more than 128 subidentifiers."
 ::= { pmCapabilitiesOverrideEntry 1 }

pmCapabilitiesOverrideState OBJECT-TYPE
 SYNTAX INTEGER {
 invalid(1),
 valid(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A pmCapabilitiesOverrideState of invalid indicates that
 management software should not send policies to this system
 for the capability identified in the
 pmCapabilitiesOverrideType for this row of the table. This
 behavior is the same whether the capability represented by
 the pmCapabilitiesOverrideType exists only in this table,
 that is it was installed by an external management
 application, or exists in this table as well as the
 pmCapabilitiesTable. This would be the case when a manager
 wanted to disable a capability that the native management
 system found and registered in the pmCapabilitiesTable.

 An entry in this table that has a pmCapabilitiesOverrideState
 of valid should be treated as if it appeared in the
 pmCapabilitiesTable. If the entry also exists in the
 pmCapabilitiesTable in the pmCapabilitiesType object, and the
 value of this object is valid, then the system shall operate
 as if this entry did not exist and policy installations and
 executions will continue in a normal fashion."
 ::= { pmCapabilitiesOverrideEntry 2 }

Various Authors Expires November 16, 2004 [Page 104]

Internet Draft Policy-Based Management MIB Apr 16, 2004

pmCapabilitiesOverrideRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The row status of this pmCapabilitiesOverrideEntry.

 If the value of this object is active, no object in this row
 may be modified."
 ::= { pmCapabilitiesOverrideEntry 3 }

-- The Schedule Group

pmSchedLocalTime OBJECT-TYPE
 SYNTAX DateAndTime (SIZE (11))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The local time used by the scheduler. Schedules which
 refer to calendar time will use the local time indicated
 by this object. An implementation MUST return all 11 bytes
 of the DateAndTime textual-convention so that a manager
 may retrieve the offset from GMT time."
 ::= { pmMib 7 }

--
-- The schedule table which controls the scheduler.
--

pmSchedTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmSchedEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table defines schedules for policies."
 ::= { pmMib 8 }

pmSchedEntry OBJECT-TYPE
 SYNTAX PmSchedEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular schedule.

 Unless noted otherwise, writable objects of this row can be

Various Authors Expires November 16, 2004 [Page 105]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 modified independent of the current value of pmSchedRowStatus,
 pmSchedAdminStatus and pmSchedOperStatus. In particular, it
 is legal to modify pmSchedWeekDay, pmSchedMonth, and
 pmSchedDay when pmSchedRowStatus is active."
 INDEX { pmSchedIndex }
 ::= { pmSchedTable 1 }

PmSchedEntry ::= SEQUENCE {
 pmSchedIndex Unsigned32,
 pmSchedGroupIndex Unsigned32,
 pmSchedDescr PmUTF8String,
 pmSchedTimePeriod PmUTF8String,
 pmSchedMonth BITS,
 pmSchedDay BITS,
 pmSchedWeekDay BITS,
 pmSchedTimeOfDay PmUTF8String,
 pmSchedLocalOrUtc INTEGER,
 pmSchedStorageType StorageType,
 pmSchedRowStatus RowStatus
}

pmSchedIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally-unique, administratively assigned index for this
 scheduling entry."
 ::= { pmSchedEntry 1 }

pmSchedGroupIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The locally-unique, administratively assigned index for the
 schedule group that this scheduling entry belongs to.

 To assign multiple schedule entries to the same group, the
 pmSchedGroupIndex of each entry in the group will be set to
 the same value. This pmSchedGroupIndex value must be equal to
 the pmSchedIndex of one of the entries in the group. If the
 entry is deleted whose pmSchedIndex equals the
 pmSchedGroupIndex for the group, the agent will assign a new
 pmSchedGroupIndex to all remaining members of the group.

Various Authors Expires November 16, 2004 [Page 106]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 If an entry is not a member of a group, its pmSchedGroupIndex
 must be assigned to the value of its pmSchedIndex.

 Policies that are controlled by a group of schedule entries
 are active when any schedule in the group is active."
 ::= { pmSchedEntry 2 }

pmSchedDescr OBJECT-TYPE
 SYNTAX PmUTF8String
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The human readable description of the purpose of this
 scheduling entry."
 DEFVAL { ''H }
 ::= { pmSchedEntry 3 }

pmSchedTimePeriod OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..31))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The overall range of calendar dates and times over which this
 schedule is active. It is stored in a slightly extended version
 of the format for a 'period-explicit' defined in RFC 2445.
 This format is expressed as a string representing the
 starting date and time, in which the character 'T' indicates
 the beginning of the time portion, followed by the solidus
 character '/', followed by a similar string representing an
 end date and time. The start of the period MUST be before the
 end of the period. Date-Time values are expressed as
 substrings of the form 'yyyymmddThhmmss'. For example:

 20000101T080000/20000131T130000

 January 1, 2000, 0800 through January 31, 2000, 1PM

 The 'Date with UTC time' format defined in RFC 2445 in which
 the Date-Time string ends with the character 'Z' is not
 allowed.

 This 'period-explicit' format is also extended to allow two
 special cases in which one of the Date-Time strings is
 replaced with a special string defined in RFC 2445:

https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445

Various Authors Expires November 16, 2004 [Page 107]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 1. If the first Date-Time value is replaced with the string
 'THISANDPRIOR', then the value indicates that the schedule
 is active at any time prior to the Date-Time that appears
 after the '/'.

 2. If the second Date-Time is replaced with the string
 'THISANDFUTURE', then the value indicates that the schedule
 is active at any time after the Date-Time that appears
 before the '/'.

 Note that while RFC 2445 defines these two strings, they are
 not specified for use in the 'period-explicit' format. The use
 of these strings represents an extension to the
 'period-explicit' format."
 ::= { pmSchedEntry 4 }

pmSchedMonth OBJECT-TYPE
 SYNTAX BITS {
 january(0),
 february(1),
 march(2),
 april(3),
 may(4),
 june(5),
 july(6),
 august(7),
 september(8),
 october(9),
 november(10),
 december(11)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the specific months within that time period that the schedule
 is active. Setting all bits will cause the schedule to act
 independently of the month."
 DEFVAL { { january, february, march, april, may, june, july,
 august, september, october, november, december } }
 ::= { pmSchedEntry 5 }

pmSchedDay OBJECT-TYPE
 SYNTAX BITS {

https://datatracker.ietf.org/doc/html/rfc2445

Various Authors Expires November 16, 2004 [Page 108]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 d1(0), d2(1), d3(2), d4(3), d5(4),
 d6(5), d7(6), d8(7), d9(8), d10(9),
 d11(10), d12(11), d13(12), d14(13), d15(14),
 d16(15), d17(16), d18(17), d19(18), d20(19),
 d21(20), d22(21), d23(22), d24(23), d25(24),
 d26(25), d27(26), d28(27), d29(28), d30(29),
 d31(30),
 r1(31), r2(32), r3(33), r4(34), r5(35),
 r6(36), r7(37), r8(38), r9(39), r10(40),
 r11(41), r12(42), r13(43), r14(44), r15(45),
 r16(46), r17(47), r18(48), r19(49), r20(50),
 r21(51), r22(52), r23(53), r24(54), r25(55),
 r26(56), r27(57), r28(58), r29(59), r30(60),
 r31(61)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the specific days of the month within that time period that
 the schedule is active.

 There are two sets of bits one can use to define the day
 within a month:

 Enumerations starting with the letter 'd' indicate a
 day in a month relative to the first day of a month.
 The first day of the month can therefore be specified
 by setting the bit d1(0) and d31(30) means the last
 day of a month with 31 days.

 Enumerations starting with the letter 'r' indicate a
 day in a month in reverse order, relative to the last
 day of a month. The last day in the month can therefore
 be specified by setting the bit r1(31), and r31(61) means
 the first day of a month with 31 days.

 Setting multiple bits will include several days in the set
 of possible days for this schedule. Setting all bits starting
 with the letter 'd' or all bits starting with the letter 'r'
 will cause the schedule to act independently of the day of the
 month."
 DEFVAL { { d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
 d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,

Various Authors Expires November 16, 2004 [Page 109]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 d21, d22, d23, d24, d25, d26, d27, d28, d29, d30,
 d31, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10,
 r11, r12, r13, r14, r15, r16, r17, r18, r19, r20,
 r21, r22, r23, r24, r25, r26, r27, r28, r29, r30,
 r31 } }
 ::= { pmSchedEntry 6 }

pmSchedWeekDay OBJECT-TYPE
 SYNTAX BITS {
 sunday(0),
 monday(1),
 tuesday(2),
 wednesday(3),
 thursday(4),
 friday(5),
 saturday(6)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the specific days of the week within that time period that
 the schedule is active. Setting all bits will cause the
 schedule to act independently of the day of the week."
 DEFVAL { { sunday, monday, tuesday, wednesday, thursday,
 friday, saturday } }
 ::= { pmSchedEntry 7 }

pmSchedTimeOfDay OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..15))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the range of times in a day that the schedule is active.

 This value is stored in a format based on the RFC 2445 format
 for 'time': The character 'T' followed by a 'time' string,
 followed by the solidus character '/', followed by the
 character 'T' followed by a second time string. The first time
 indicates the beginning of the range, while the second time
 indicates the end. Thus, this value takes the form:

https://datatracker.ietf.org/doc/html/rfc2445

Various Authors Expires November 16, 2004 [Page 110]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 'Thhmmss/Thhmmss'.

 The second substring always identifies a later time than the
 first substring. To allow for ranges that span midnight,
 however, the value of the second string may be smaller than
 the value of the first substring. Thus, 'T080000/T210000'
 identifies the range from 0800 until 2100, while
 'T210000/T080000' identifies the range from 2100 until 0800 of
 the following day.

 When a range spans midnight, it by definition includes parts
 of two successive days. When one of these days is also
 selected by either the MonthOfYearMask, DayOfMonthMask, and/or
 DayOfWeekMask, but the other day is not, then the policy is
 active only during the portion of the range that falls on the
 selected day. For example, if the range extends from 2100
 until 0800, and the day of week mask selects Monday and
 Tuesday, then the policy is active during the following three
 intervals:

 From midnight Sunday until 0800 Monday;
 From 2100 Monday until 0800 Tuesday;
 From 2100 Tuesday until 23:59:59 Tuesday.

 Setting this value to 'T000000/T235959' will cause the
 schedule to act independently of the time of day."
 DEFVAL { '543030303030302F54323335393539'H } -- T000000/T235959
 ::= { pmSchedEntry 8 }

pmSchedLocalOrUtc OBJECT-TYPE
 SYNTAX INTEGER {
 localTime(1),
 utcTime(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object indicates whether the times represented in the
 TimePeriod object and in the various Mask objects represent
 local times or UTC times."
 DEFVAL { utcTime }
 ::= { pmSchedEntry 9 }

pmSchedStorageType OBJECT-TYPE
 SYNTAX StorageType

Various Authors Expires November 16, 2004 [Page 111]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this schedule entry is kept
 in volatile storage and lost upon reboot or if this row is
 backed up by non-volatile or permanent storage.

 Conceptual rows having the value `permanent' must allow write
 access to the columnar objects pmSchedDescr, pmSchedWeekDay,
 pmSchedMonth, and pmSchedDay.

 If the value of this object is 'permanent', no values in the
 associated row need to be writable."
 DEFVAL { volatile }
 ::= { pmSchedEntry 10 }

pmSchedRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this schedule entry.

 If the value of this object is active, no object in this row
 may be modified."
 ::= { pmSchedEntry 11 }

-- Policy Tracking

-- The "policy to element" (PE) table and the "element to policy" (EP)
-- table track the status of execution contexts grouped by policy and
-- element respectively.

pmTrackingPETable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmTrackingPEEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmTrackingPETable describes what elements
 are active (under control of) a policy. This table is indexed
 in order to optimize retrieval of the entire status for a
 given policy."
 ::= { pmMib 9 }

pmTrackingPEEntry OBJECT-TYPE

Various Authors Expires November 16, 2004 [Page 112]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 SYNTAX PmTrackingPEEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the pmTrackingPETable. The pmPolicyIndex in
 the index specifies the policy tracked by this entry.

 Note that some combinations of index values may result in an
 instance name that exceeds 128 sub-identifiers in length
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 combinations."
 INDEX { pmPolicyIndex, pmTrackingPEElement,
 pmTrackingPEContextName, pmTrackingPEContextEngineID }
 ::= { pmTrackingPETable 1 }

PmTrackingPEEntry ::= SEQUENCE {
 pmTrackingPEElement RowPointer,
 pmTrackingPEContextName SnmpAdminString,
 pmTrackingPEContextEngineID OCTET STRING,
 pmTrackingPEInfo BITS
}

pmTrackingPEElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element that is acted upon by the associated policy.

 As this object is used in the index for the
 pmTrackingPETable, users of this table should be careful not
 to create entries that would result in instance names with
 more than 128 subidentifiers."
 ::= { pmTrackingPEEntry 1 }

pmTrackingPEContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."

Various Authors Expires November 16, 2004 [Page 113]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 ::= { pmTrackingPEEntry 2 }

pmTrackingPEContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system on which the associated
 element resides. If the element is on the local system
 this object will be the empty string."
 ::= { pmTrackingPEEntry 3 }

pmTrackingPEInfo OBJECT-TYPE
 SYNTAX BITS {
 actionSkippedDueToPrecedence(0),
 conditionRunTimeException(1),
 conditionUserSignal(2),
 actionRunTimeException(3),
 actionUserSignal(4)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object returns information about the previous policy
 script executions.

 If the actionSkippedDueToPrecedence(1) bit is set, the last
 execution of the associated policy condition returned non-zero
 but the action is not active because it was trumped by a
 matching policy condition in the same precedence group with a
 higher precedence value.

 If the conditionRunTimeException(2) bit is set, the last
 execution of the associated policy condition encountered a
 run-time exception and aborted.

 If the conditionUserSignal(3) bit is set, the last
 execution of the associated policy condition called the
 signalError() function.

 If the actionRunTimeException(4) bit is set, the last
 execution of the associated policy action encountered a
 run-time exception and aborted.

Various Authors Expires November 16, 2004 [Page 114]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 If the actionUserSignal(5) bit is set, the last
 execution of the associated policy action called the
 signalError() function.

 Entries will only exist in this table of one or more bits are
 set. In particular, if an entry does not exist for a
 particular policy/element combination, it can be assumed that
 the policy's condition did not match 'this element'."
 ::= { pmTrackingPEEntry 4 }

-- Element to Policy Table

pmTrackingEPTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmTrackingEPEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmTrackingEPTable describes what policies
 are controlling an element. This table is indexed in
 order to optimize retrieval of the status of all policies
 active for a given element."
 ::= { pmMib 10 }

pmTrackingEPEntry OBJECT-TYPE
 SYNTAX PmTrackingEPEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the pmTrackingEPTable. Entries exist for all
 element/policy combinations for which the policy's condition
 matches and only if the schedule for the policy is active.

 The pmPolicyIndex in the index specifies the policy
 tracked by this entry.

 Note that some combinations of index values may result in an
 instance name that exceeds 128 sub-identifiers in length which
 exceeds the maximum for the SNMP protocol. Implementations
 should take care to avoid such combinations."
 INDEX { pmTrackingEPElement, pmTrackingEPContextName,
 pmTrackingEPContextEngineID, pmPolicyIndex }
 ::= { pmTrackingEPTable 1 }

PmTrackingEPEntry ::= SEQUENCE {
 pmTrackingEPElement RowPointer,

Various Authors Expires November 16, 2004 [Page 115]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 pmTrackingEPContextName SnmpAdminString,
 pmTrackingEPContextEngineID OCTET STRING,
 pmTrackingEPStatus INTEGER
}

pmTrackingEPElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element acted upon by the associated policy.

 As this object is used in the index for the
 pmTrackingEPTable, users of this table should be careful
 not to create entries that would result in instance names
 with more than 128 subidentifiers."
 ::= { pmTrackingEPEntry 1 }

pmTrackingEPContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmTrackingEPEntry 2 }

pmTrackingEPContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system on which the associated
 element resides. If the element is on the local system
 this object will be the empty string."
 ::= { pmTrackingEPEntry 3 }

pmTrackingEPStatus OBJECT-TYPE
 SYNTAX INTEGER {
 on(1),
 forceOff(2)

Various Authors Expires November 16, 2004 [Page 116]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This entry will only exist if the calendar for the policy is
 active and if the associated policyCondition returned 1 for
 'this element'.

 A policy can be forcibly disabled on a particular element
 by setting this value to forceOff(2). The agent should then
 act as if the policyCondition failed for 'this element'. The
 forceOff(2) state will persist (even across reboots) until
 this value is set to on(1) by a management request. The
 forceOff(2) state may be set even if the entry does not
 previously exist so that future policy invocations can be
 avoided.

 Unless forcibly disabled, if this value exists its value
 will be on(1)."
 ::= { pmTrackingEPEntry 4 }

-- Policy Debugging Table

pmDebuggingTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmDebuggingEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Policies that have debugging turned on will generate a log
 entry in the policy debugging table for every runtime
 exception that occurs in either the condition or action
 code.

 The pmDebuggingTable logs debugging messages when
 policies experience run-time exceptions in either the condition
 or action code and the associated pmPolicyDebugging object
 has been turned on.

 It is an implementation-dependent manner as to the maximum
 number of debugging entries that will be stored and the
 maximum length of time an entry will be kept. If entries must
 be discarded to make room for new entries, the oldest entries
 must be discarded first.

Various Authors Expires November 16, 2004 [Page 117]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 If the system restarts, all debugging entries may be deleted."
 ::= { pmMib 11 }

pmDebuggingEntry OBJECT-TYPE
 SYNTAX PmDebuggingEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the pmDebuggingTable. The pmPolicyIndex in the
 index specifies the policy that encountered the exception
 that led to this log entry.

 Note that some combinations of index values may result in an
 instance name that exceeds 128 sub-identifiers in length which
 exceeds the maximum for the SNMP protocol. Implementations
 should take care to avoid such combinations."
 INDEX { pmPolicyIndex, pmDebuggingElement,
 pmDebuggingContextName, pmDebuggingContextEngineID,
 pmDebuggingLogIndex }
 ::= { pmDebuggingTable 1 }

PmDebuggingEntry ::= SEQUENCE {
 pmDebuggingElement RowPointer,
 pmDebuggingContextName SnmpAdminString,
 pmDebuggingContextEngineID OCTET STRING,
 pmDebuggingLogIndex Unsigned32,
 pmDebuggingMessage PmUTF8String
}

pmDebuggingElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element the policy was executing on when it encountered
 the error that led to this log entry.

 For example, if the element is interface #3, then this object
 will contain the OID for 'ifIndex.3'.

 As this object is used in the index for the
 pmDebuggingTable, users of this table should be careful
 not to create entries that would result in instance names with more
 than 128 subidentifiers."
 ::= { pmDebuggingEntry 1 }

Various Authors Expires November 16, 2004 [Page 118]

Internet Draft Policy-Based Management MIB Apr 16, 2004

pmDebuggingContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmDebuggingEntry 2 }

pmDebuggingContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system on which the associated
 element resides. If the element is on the local system
 this object will be the empty string."
 ::= { pmDebuggingEntry 3 }

pmDebuggingLogIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for this log entry amongst other log entries
 for this policy/element combination."
 ::= { pmDebuggingEntry 4 }

pmDebuggingMessage OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..128))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An error message generated by the policy execution
 environment. It's recommended that this message include the
 time of day that the message was generated, if known."
 ::= { pmDebuggingEntry 5 }

-- Notifications

pmNotifications OBJECT IDENTIFIER ::= { pmMib 0 }

Various Authors Expires November 16, 2004 [Page 119]

Internet Draft Policy-Based Management MIB Apr 16, 2004

pmNewRoleNotification NOTIFICATION-TYPE
 OBJECTS { pmRoleStatus }
 STATUS current
 DESCRIPTION
 "The pmNewRoleNotification is sent when an agent is configured with
 its first instance of a previously unused role string (not
 every time a new element is given a particular role).

 An instance of the pmRoleStatus object is sent containing
 the new roleString in its index. In the event that two or
 more elements are given the same role simultaneously, it is an
 implementation-dependent matter as to which pmRoleTable
 instance will be included in the notification."
 ::= { pmNotifications 1 }

pmNewCapabilityNotification NOTIFICATION-TYPE
 OBJECTS { pmCapabilitiesType }
 STATUS current
 DESCRIPTION
 "The pmNewCapabilityNotification is sent when an agent
 gains a new capability that did not previously exist in any
 element on the system (not every time an element gains a
 particular capability).

 An instance of the pmCapabilitiesType object is sent containing
 the identity of the new capability. In the event that two or
 more elements gain the same capability simultaneously, it is an
 implementation-dependent matter as to which pmCapabilitiesType
 instance will be included in the notification."
 ::= { pmNotifications 2 }

pmAbnormalTermNotification NOTIFICATION-TYPE
 OBJECTS { pmTrackingPEInfo }
 STATUS current
 DESCRIPTION
 "The pmAbnormalTermNotification is sent when a policy's
 pmPolicyAbnormalTerminations gauge changes value from zero to
 any value greater than zero and no such notification has been
 sent for that policy in the last 5 minutes.

 The notification contains an instance of the pmTrackingPEInfo
 object where the pmPolicyIndex component of the index
 identifies the associated policy and the rest of the index
 identifies an element on which the policy failed."
 ::= { pmNotifications 3 }

Various Authors Expires November 16, 2004 [Page 120]

Internet Draft Policy-Based Management MIB Apr 16, 2004

-- Compliance Statements

 pmConformance OBJECT IDENTIFIER ::= { pmMib 12 }
 pmCompliances OBJECT IDENTIFIER ::= { pmConformance 1 }
 pmGroups OBJECT IDENTIFIER ::= { pmConformance 2 }

pmCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "Describes the requirements for conformance to
 the Policy-Based Management MIB"
 MODULE -- this module
 MANDATORY-GROUPS { pmPolicyManagementGroup, pmSchedGroup,
 pmNotificationGroup }
 ::= { pmCompliances 1 }

pmPolicyManagementGroup OBJECT-GROUP
 OBJECTS { pmPolicyPrecedenceGroup, pmPolicyPrecedence,
 pmPolicySchedule, pmPolicyElementTypeFilter,
 pmPolicyConditionScriptIndex, pmPolicyActionScriptIndex,
 pmPolicyParameters,
 pmPolicyConditionMaxLatency, pmPolicyActionMaxLatency,
 pmPolicyMaxIterations,
 pmPolicyDescription, pmPolicyMatches,
 pmPolicyAbnormalTerminations,
 pmPolicyExecutionErrors, pmPolicyDebugging,
 pmPolicyStorageType, pmPolicyAdminStatus,
 pmPolicyRowStatus, pmPolicyCodeText, pmPolicyCodeStatus,
 pmElementTypeRegMaxLatency, pmElementTypeRegDescription,
 pmElementTypeRegStorageType, pmElementTypeRegRowStatus,
 pmRoleStatus,
 pmCapabilitiesType, pmCapabilitiesOverrideState,
 pmCapabilitiesOverrideRowStatus,
 pmTrackingPEInfo,
 pmTrackingEPStatus,
 pmDebuggingMessage }
 STATUS current
 DESCRIPTION
 "Objects that allow for the creation and management of
 configuration policies."
 ::= { pmGroups 1 }

pmSchedGroup OBJECT-GROUP
 OBJECTS { pmSchedLocalTime, pmSchedGroupIndex,
 pmSchedDescr, pmSchedTimePeriod,

Various Authors Expires November 16, 2004 [Page 121]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 pmSchedMonth, pmSchedDay, pmSchedWeekDay,
 pmSchedTimeOfDay, pmSchedLocalOrUtc, pmSchedStorageType,
 pmSchedRowStatus
 }
 STATUS current
 DESCRIPTION
 "Objects that allow for the scheduling of policies."
 ::= { pmGroups 2 }

pmNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS { pmNewRoleNotification,
 pmNewCapabilityNotification,
 pmAbnormalTermNotification }
 STATUS current
 DESCRIPTION
 "Notifications sent by an Policy MIB agent."
 ::= { pmGroups 3 }

pmBaseFunctionLibrary OBJECT IDENTIFIER ::= { pmGroups 4 }

END

Various Authors Expires November 16, 2004 [Page 122]

Internet Draft Policy-Based Management MIB Apr 16, 2004

12. Relationship to other MIB Modules

When using policy-based management specifically for (policy-
based) configuration, the "Configuring Networks and Devices
With SNMP" [RFC 3512] document describes configuration
management practices, terminology, and an example MIB Module
that may be helpful to those developing and using this
technology.

The Policy MIB accesses system instrumentation for the purpose
of policy evaluation, control, notification, monitoring and
error reporting. This information is available to managers in
the form of MIB objects. Detail information about system
configuration is modified by the Policy MIB through MIB
objects defined in other MIB Modules.

Details about the operational or configuration details of a
system are retrieved by the manager via access to the specific
MIB objects available in a network element. As such the Policy
MIB can use any standard or vendor-defined object that exists
on a managed system. In particular, the Policy MIB may access
standard or vendor specific objects that are instance-specific
such as BGP time out parameters, specific interface counters,
etc.

13. Security Considerations

This MIB contains no objects for which read access would
disclose sensitive information.

There are a number of management objects defined in this MIB
that have a MAX-ACCESS clause of read-write and/or read-
create. Such objects may be considered sensitive or
vulnerable in some network environments. The support for SET
operations in a non-secure environment without proper
protection can have a negative effect on network operations.

With the exception of pmPolicyDescription, pmPolicyDebugging,
pmElementTypeRegDescription and pmSchedDescr, EVERY read-
create and read-write object in this MIB should be considered
sensitive because if an unauthorized user was able to
manipulate these objects they could cause the Policy MIB
system to use the stored credentials of an authorized user to
perform unauthorized and potentially harmful operations.

https://datatracker.ietf.org/doc/html/rfc3512

Various Authors Expires November 16, 2004 [Page 123]

Internet Draft Policy-Based Management MIB Apr 16, 2004

There are no read-only objects in this MIB that contain
sensitive information.

SNMP versions prior to SNMPv3 did not include adequate
security. Even if the network itself is secure (for example
by using IPSec), even then, there is no control as to who on
the secure network is allowed to access and GET/SET
(read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security
features as provided by the SNMPv3 framework (see [15],
section 8), including full support for the SNMPv3
cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT
RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and
to enable cryptographic security. It is then a
customer/operator responsibility to ensure that the SNMP
entity giving access to an instance of this MIB module is
properly configured to give access to the objects only to
those principals (users) that have legitimate rights to indeed
GET or SET (change/create/delete) them.

An implementation must ensure that access control rules are
applied when performing SNMP operations in policy scripts. To
ensure this, an implementation must record and maintain the
security credentials of the last entity to modify each
policy's pmPolicyAdminStatus object. The credentials to store
are the securityModel, securityName and securityLevel and will
be used as input parameters for isAccessAllowed from the
Architecture for Describing SNMP Management Frameworks [1].
This mechanism was first introduced in the DISMAN-SCHEDULE-MIB
[12].

SNMP requests made where secModel, secName and secLevel are
specified use credentials stored in the local configuration
datastore. Access to these credentials depends on the security
credentials of the last entity to modify the policy's
pmPolicyAdminStatus object. In order to determine whether the
credentials can be accessed, the isAccessAllowed abstract
service interface defined in RFC 3411 [1] is called:

 statusInformation = -- success or
errorIndication
 isAccessAllowed(

https://datatracker.ietf.org/doc/html/rfc3411

Various Authors Expires November 16, 2004 [Page 124]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 IN securityModel -- Security Model used
 IN securityName -- principal who wants to
access
 IN securityLevel -- Level of Security used
 IN viewType -- write
 IN contextName -- context containing
variableName
 IN variableName -- OID for an object in the
proper
 -- LCD entry
)

 The securityModel, securityName and securityLevel
parameters are set
 to the values that were recorded when the policy was
 modified. The viewType is set to write and the contextName
and
 variableName are set to select any read-create object in
the
 appropriate LCD entry.

Proper configuration of VACM requires that write access to an
LCD entry not be given to entities who aren't authorized to
use the credentials therein.

Access control for SNMP requests made to the local system
where secModel, secName and secLevel aren't specified depends
on the security credentials of the last entity to modify the
policy's pmPolicyAdminStatus object. In order to determine
whether the operation should succeed, the isAccessAllowed
abstract service interface defined in RFC 3411 [1] is called:

 statusInformation = -- success or
errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to
access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify
view
 IN contextName -- context as specified
 IN variableName -- OID for the managed
object
)

https://datatracker.ietf.org/doc/html/rfc3411

Various Authors Expires November 16, 2004 [Page 125]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 The securityModel, securityName and securityLevel
parameters are set
 to the values that were recorded when the policy was
 modified. The viewType, contextName and variableName
parameters are
 set as appropriate for the requested SNMP operation.

Unless all users who have write access to the pmPolicyTable
and pmPolicyCodeTable have equivalent access to the managed
system, policy scripts could be used by a user to gain the
privileges of another user. Therefore, when policy users have
different access, access control should be applied so that a
user's policies cannot be modified by another user. To make
this more convenient, a user can place all of their policies
in the same pmPolicyAdminGroup so that a single access control
view can apply to all of them.

Some policies may be designed to ensure the security of a
network. If these policies have not been installed pending the
appearance of a role or capability, some delay will occur in
the activation of these policies when the role or capability
appears because a responsible manager must notice the change
and install the policy. This delay may expose the device or
the network to unacceptable security vulnerabilities during
this delay. If the role or capability appears during a time of
network stress or when the management station is unavailable,
this delay could be extensive, further increasing the
exposure. It is recommended that management stations install
any security-related policies that might ever be needed on a
particular managed device, even if a nonexistent role or
capability suggests it is not needed at a given time.

14. IANA Considerations

 This is a profile of stringprep. It has been registered by
the
 IANA in the stringprep profile registry
 (www.iana.org/assignments/stringprep-profiles).

 Name of this profile:
 Policy MIB Stringprep

 RFC in which the profile is defined:
 This document.

Various Authors Expires November 16, 2004 [Page 126]

Internet Draft Policy-Based Management MIB Apr 16, 2004

 Indicator whether or not this is the newest version of
the
 profile:
 This is the first version of Policy MIB Stringprep

15. Acknowledgements

The authors gratefully acknowledge the significant
contributions to this work made by Jeff Case, Patrik Falstrom,
Joel Halpern, Pablo Halpern, Bob Moore, Steve Moulton, David
Partain and Walter Weiss.

This MIB uses a security delegation mechanism that was first
introduced in the DISMAN-SCHEDULE-MIB [12]. The Schedule table
of this MIB borrows heavily from the PolicyTimePeriodCondition
of the Policy Core Information Model (PCIM) [17] and from the
DISMAN-SCHEDULE-MIB [12].

16. Author's Addresses

Steve Waldbusser

Phone: +1-650-948-6500
Fax: +1-650-745-0671
Email: waldbusser@nextbeacon.com

Jon Saperia (WG Co-chair)
JDS Consulting, Inc.
174 Chapman St.
Watertown MA 02472-3063
USA
Phone: +1-617-744-1079
Fax: +1-617-249-0874
Email: saperia@jdscons.com

Various Authors Expires November 16, 2004 [Page 127]

Internet Draft Policy-Based Management MIB Apr 16, 2004

Thippanna Hongal
Riverstone Networks, Inc.
5200 Great America Parkway
Santa Clara, CA, 95054
USA

Phone: +1-408-878-6562
Fax: +1-408-878-6501
Email: hongal@riverstonenet.com

Various Authors Expires November 16, 2004 [Page 128]

Internet Draft Policy-Based Management MIB Apr 16, 2004

17. Normative References

[1] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", RFC 3411,
 December 2002.

[2] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M., and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

[3] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M., and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

[4] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M., and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

[5] Case, J., McCloghrie, K., Presuhn, R., Rose, M., and S.
 Waldbusser, "Transport Mappings for Version 2 of the
 Simple Network Management Protocol (SNMP)", STD 62, RFC

3417, December 2002.

[6] Blumenthal, U., and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

[7] Case, J., McCloghrie, K., Presuhn, R., Rose, M., and S.
 Waldbusser, "Protocol Operations for Version 2 of the
 Simple Network Management Protocol (SNMP)", STD 62, RFC

3416, December 2002.

[8] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",

RFC 3584, August 2003.

[9] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3584
https://datatracker.ietf.org/doc/html/rfc3415

Various Authors Expires November 16, 2004 [Page 129]

Internet Draft Policy-Based Management MIB Apr 16, 2004

[10] International Standards Organization, "Information
 Technology - Programming Languages - C++", ISO/IEC
 14882-1998

[11] Daniele, M., and J. Schoenwaelder, "Textual Conventions
 for Transport Addresses", RFC 3419, December 2002.

[12] Levi, D. and J. Schoenwaelder, "Definitions of Managed
 Objects for Scheduling Management Operations", RFC 3231,
 January 2002

[13] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep").", RFC 3454,
 December 2002.

[14] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 3629, November 2003.

18. Informative References

[15] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

[16] ECMA, "ECMAScript Language Specification", ECMA-262,
 December 1999

[17] Moore, B., Ellesson, E., Strassner, J., and A.
 Westerinen, "Policy Core Information Model -- Version 1
 Specification", RFC 3060, February 2001.

[18] Dawson, F. and D. Stenerson, "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)", RFC

2445, November 1998

19. Intellectual Property

The IETF takes no position regarding the validity or scope of
any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the
technology described in this document or the extent to which

https://datatracker.ietf.org/doc/html/rfc3419
https://datatracker.ietf.org/doc/html/rfc3231
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc3060
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445

Various Authors Expires November 16, 2004 [Page 130]

Internet Draft Policy-Based Management MIB Apr 16, 2004

any license under such rights might or might not be available;
neither does it represent that it has made any effort to
identify any such rights. Information on the IETF's
procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11.
Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result
of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementors or
users of this specification can be obtained from the IETF
Secretariat.

The IETF invites any interested party to bring to its
attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may
be required to practice this standard. Please address the
information to the IETF Executive Director.

20. Full Copyright Statement

Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and
furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the
copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the
purpose of developing Internet standards in which case the
procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will
not be revoked by the Internet Society or its successors or
assigns.

This document and the information contained herein is provided
on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR

https://datatracker.ietf.org/doc/html/bcp11

Various Authors Expires November 16, 2004 [Page 131]

Internet Draft Policy-Based Management MIB Apr 16, 2004

IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Table of Contents

1 The Internet-Standard Management Framework 2
2 Overview .. 2
3 Policy-Based Management Architecture 4
4 Policy Based Management Execution Environment 9
4.1 Terminology ... 9
4.2 Execution Environment - Elements of Procedure 10
4.3 Element Discovery 10
4.3.1 Implementation Notes 12
4.4 Element Filtering 12
4.4.1 Implementation Notes 13
4.5 Policy Enforcement 13
4.5.1 Implementation Notes 14
5 The PolicyScript Language 15
5.1 Formal Definition 16
5.2 Variables ... 19
5.2.1 The var class 20
5.3 PolicyScript QuickStart Guide 25
5.3.1 Quickstart for C Programmers 27
5.3.2 Quickstart for Perl Programmers 27
5.3.3 Quickstart for TCL Programmers 27
5.3.4 Quickstart for Python Programmers 27
5.3.5 Quickstart for JavaScript/ECMAScript/JScript
 Programmers .. 28
5.4 PolicyScript script return values 28
6 Index information for `this element' 28
7 Library Functions 30
8 Base Function Library 31
8.1 SNMP Library Functions 31
8.1.1 SNMP Operations on Non-Local Systems 32
8.1.2 Form of SNMP Values 34
8.1.3 Convenience SNMP Functions 36
8.1.3.1 getVar() .. 36
8.1.3.2 exists() .. 37
8.1.3.3 setVar() .. 37
8.1.3.4 searchColumn() 38
8.1.3.5 setRowStatus() 40
8.1.3.6 createRow() 42

Various Authors Expires November 16, 2004 [Page 132]

Internet Draft Policy-Based Management MIB Apr 16, 2004

8.1.3.7 counterRate() 44
8.1.4 General SNMP Functions 47
8.1.4.1 newPDU() .. 48
8.1.4.2 writeVar() 49
8.1.4.3 readVar() 49
8.1.4.4 snmpSend() 50
8.1.4.5 readError() 51
8.1.4.6 writeBulkParameters() 52
8.1.5 Constants for SNMP Library Functions 52
8.2 Policy Library Functions 55
8.2.1 elementName() 55
8.2.2 elementAddress() 55
8.2.3 elementContext() 55
8.2.4 ec() .. 56
8.2.5 ev() .. 56
8.2.6 roleMatch() 56
8.2.7 Scratchpad Functions 57
8.2.8 setScratchpad() 60
8.2.9 getScratchpad() 61
8.2.10 signalError() 61
8.2.11 defer() .. 62
8.2.12 fail() ... 63
8.2.13 getParameters() 63
8.3 Utility Library Functions 64
8.3.1 regexp() .. 64
8.3.2 regexpReplace() 64
8.3.3 oidlen() .. 65
8.3.4 oidncmp() ... 65
8.3.5 inSubtree() 65
8.3.6 subid() ... 66
8.3.7 subidWrite() 66
8.3.8 oidSplice() 66
8.3.9 parseIndex() 67
8.3.10 stringToDotted() 69
8.3.11 integer() .. 69
8.3.12 string() ... 69
8.3.13 type() ... 69
8.3.14 chr() .. 70
8.3.15 ord() .. 70
8.3.16 substr() ... 70
8.4 General Functions 71
9 International String Library 71
9.1 stringprep() .. 71
9.1.1 Stringprep Profile 72
9.2 utf8Strlen() .. 73

Various Authors Expires November 16, 2004 [Page 133]

Internet Draft Policy-Based Management MIB Apr 16, 2004

9.3 utf8Chr() ... 73
9.4 utf8Ord() ... 74
9.5 utf8Substr() .. 74
10 Schedule Table 75
11 Definitions .. 77
12 Relationship to other MIB Modules 123
13 Security Considerations 123
14 IANA Considerations 126
15 Acknowledgements 127
16 Author's Addresses 127
17 Normative References 129
18 Informative References 130
19 Intellectual Property 130
20 Full Copyright Statement 131

Various Authors Expires November 16, 2004 [Page 134]

