
draft Simplified Configuration Model March 1995

The Simplified Configuration Model for SNMPv2

 19 March 1995 |

draft-ietf-snmpv2-scm-ds-00.txt |

 Steven Waldbusser
 Carnegie Mellon University
 waldbusser@cmu.edu

 Jeffrey D. Case
 SNMP Research, Inc.
 case@snmp.com

 Keith McCloghrie
 Cisco Systems, Inc.
 kzm@cisco.com

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 mrose@dbc.mtview.ca.us

 Status of this Memo

This document is an Internet Draft. Internet Drafts are working
documents of the Internet Engineering Task Force (IETF), its Areas, and
its Working Groups. Note that other groups may also distribute working
documents as Internet Drafts.

Internet Drafts are valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet Drafts as reference material or to cite
them other than as a "work in progress".

https://datatracker.ietf.org/doc/html/draft-ietf-snmpv2-scm-ds-00.txt

Expires September 1995 [Page 1]

draft Simplified Configuration Model March 1995

1. Introduction

A network management system contains: several (potentially many) nodes,
each with a processing entity, termed an agent, which has access to
management instrumentation; at least one management station; and, a
management protocol, used to convey management information between the
agents and management stations. Operations of the protocol are carried
out under an administrative framework which defines both authentication
and authorization policies.

Network management stations execute management applications which
monitor and control network elements. Network elements are devices such
as hosts, routers, terminal servers, etc., which are monitored and
controlled through access to their management information.

The Administrative Infrastructure for SNMPv2 [1] defines how the
administrative framework is applied to realize effective network
management in a variety of configurations and environments. It is the
purpose of this document, the Simplified Configuration Model for SNMPv2,
to define one such deployment strategy using the administrative
framework.

1.1. A Note on Terminology

For the purpose of exposition, the original Internet-standard Network
Management Framework, as described in RFCs 1155, 1157, and 1212, is
termed the SNMP version 1 framework (SNMPv1). The current framework is
termed the SNMP version 2 framework (SNMPv2).

2. Overview

The model describe here is based on the notion of creating transient
"management sessions" for use by a management application. Each session
is initialized by consulting a user profile, which has been previously
configured at the agent. The profile specifies such information as
authentication and authorization information, along with a maximum time
that a session may be inactive before the agent destroys it.

When a session is created, the SNMPv2 parties and corresponding access
control information are dynamically created. These parties are used to
perform protocol operations. If the management application completes
before the management session expires, it may explicitly destroy the
session. Regardless, when a session is destroyed, the corresponding

Expires September 1995 [Page 2]

draft Simplified Configuration Model March 1995

resources (e.g., parties and ACLs), are deleted by the agent.

Pictorially:

 management
 station agent
 ---------- -----
 user "logs in"

 request to establish a
 -->
 session for the user
 agent consults
 profile for user
 and creates session
 <--
 identity of session

 ...

 user requests operations

 SNMP requests
 -->
 agent performs
 operations
 <--
 SNMP responses

 ...

 user "logs out"

 request to destroy the
 -->
 user's session
 agent deletes
 session
 <--
 confirmation

Expires September 1995 [Page 3]

draft Simplified Configuration Model March 1995

3. User-based Maintenance Functions

Maintenance functions are defined in [1] as a special means for
providing controlled access to an SNMPv2 engine in order to perform
operations which are not easily accomplished using the administrative
infrastructure. The Simplified Configuration Model defines a class of
maintenance functions termed "user-based maintenance functions". As
with all maintenance functions, the "parties" and "contexts" employed
are not accessible to entities which make use of an SNMPv2 engine, nor
are they visible through the SNMPv2-PARTY-MIB [2]. These artifacts of
SNMPv2's administrative maintenance facility are not actual parties or
contexts.

A user-based maintenance function is identified when the context of a
management communication has the value userMaintContext, and the source
and destination parties identically have the form
userMaintParty.<userID>, where <userID> corresponds to an active entry |
in the |
scmUserTable, i.e.,

 dstParty userMaintParty.<userID>
 srcParty userMaintParty.<userID>
 context userMaintContext

Each valid userMaintParty has these characteristics:

 party value
 ----- -----
 AuthProtocol scmUserAuthProtocol
 AuthClock '7fffffff'H
 AuthPrivate password_to_key(scmUserAuthProtocol,scmUserPassword)
 AuthPublic ''H
 PrivProtocol noPriv

To determine the algorithm that maps scmUserPassword to an
authentication key, consult the definition of scmUserAuthProtocol in
Section 6. Note that since the clock value for these parties is at the
maximum, no replay protection is afforded when a user-based maintenance
function is performed. Further note that these parties are configured
indirectly, by manipulating the scmUserTable -- it is not possible to
specify the instances corresponding to a userMaintParty in an SNMP
operation.

The access allowed to any pairing of userMaintParty.<userID> and
userMaintContext is statically defined to be read/write access to all

Expires September 1995 [Page 4]

draft Simplified Configuration Model March 1995

instances in one (and only one) subtree, userMaintActions.

Expires September 1995 [Page 5]

draft Simplified Configuration Model March 1995

4. Session Creation Algorithm

Sessions are created when the management station issues a user-based
maintenance function, which identifies a user configured at the agent.

Pictorially:

 management
 station agent
 ---------- -----
 user supplies
 identity and
 password

 user-based maintenance function
 -->
 parameters: transport domain and addresses
 manager's maximum message size
 manager desires traps
 manager's desired inactivity
 time for session

 agent creates parties
 and ACLs which realize
 user's capabilities,
 secrets for parties are
 calculated using user's
 password and a one-time
 value

 user-based maintenance function
 <--
 parameters: result indicator
 identity of session (parties)
 agent's maximum message size
 actual inactivity time for
 session
 one-time values for secrets

 manager mirrors
 parties/ACLs
 created by agent

Expires September 1995 [Page 6]

draft Simplified Configuration Model March 1995

4.1. Step 1: Manager Requests Creation -

The manager performs a user-based maintenance function consisting of a |
getRequest operation containing a variable-binding supplying the |
parameters of the session to be created. An agent is not required to |
support such a getRequest hvaing more than one variable-binding. The |
variable-binding is: |

 userMaintCreate.<tDomain>.<mAddr>.<aAddr>.<mMMS>.<mTraps>.<mLinger> |

where:

<tDomain>
 identifies the transport domain to be used for the created parties,
 encoded as a single sub-identifier, specifically the value of the
 last sub-identifier of a transport domain defined under snmpDomains
 [3]:

 value meaning
 ----- --------
 1 snmpUDPDomain
 2 snmpCLNSDomain
 3 snmpCONSDomain
 4 snmpDDPDomain
 5 snmpIPXDomain

<mAddr> |
 identifies the transport address to be used when the agent sends
 traps to the manager, encoded as 1+N sub-identifiers, where the
 first sub-identifier indicates the length of the address, and the
 remaining sub-identifiers correspond to one octet from that address
 ([3] defines the address format corresponding to each transport
 domain). If the manager doesn't desire traps, then this field is
 encoded as a single sub-identifier having the value zero.

<aAddr> |
 identifies the transport address that the agent listens to when the
 manager sends traffic, encoded as 1+N sub-identifiers, where the
 first sub-identifier indicates the length of the address, and the
 remaining sub-identifiers correspond to one octet from that address
 ([3] defines the address format corresponding to each transport
 domain).

<mMMS> |
 identifies the maximum message size which the manager can receive,

Expires September 1995 [Page 7]

draft Simplified Configuration Model March 1995

 encoded as 1 sub-identifier in the range 484 to 65507.

<mTraps> |
 identifies whether the manager wishes to receive traps from the
 agent, encoded as a single sub-identifier:

 value meaning
 ----- --------
 0 no traps
 1 send traps using without authentication or privacy
 2 send traps using authentication
 3 send traps using authentication and privacy

<mLinger> |
 identifies the manager's desire for minimum number of contiguous
 seconds of inactivity for all parties and access control entries
 created before they are destroyed by the agent, encoded as 1 sub-
 identifier in the range 1 to 2147483647.

4.2. Step 2: Agent Analyzes Request

The agent receives the get request from the manager and identifies it as
a user-based maintenance function to create a session.

The agent examines the parameter encoded in the instance-identifier of
the one (and only) variable-binding of the get operation, and if any are
unacceptable, it generates a response to the get operation, containing a
single octet value:

 value meaning
 ----- --------
 1 bad tDomain value
 2 bad mAddr value |
 3 bad aAddr value |
 4 bad mMMS value |
 5 bad mTraps value |
 6 bad mLinger value |

Expires September 1995 [Page 8]

draft Simplified Configuration Model March 1995

Otherwise, the agent retrieves the following information:

(1) the entry in the scmUserTable which corresponds to the user
 identified in the management communication;

(2) its 12-octet administratively-unique identifier, agentID [2]; |
 and,

(3) the maximum message size which the agent can receive, aMMS. |

The agent calculates actualLinger by taking the minimum of mLinger and |
the corresponding instance of scmUserLinger. If the value of
actualLinger is 2147483647, then the agent sets creationType to
nonVolatile, otherwise creationType is set to volatile.

The agent computes an integer, sessionID, such that there are no parties
known to the agent whose name is any of:

 scmAgentNoAuthPartyID.<agentID>.<sessionID>
 scmManagerNoAuthPartyID.<agentID>.<sessionID>
 scmAgentAuthPartyID.<agentID>.<sessionID>
 scmManagerAuthPartyID.<agentID>.<sessionID>
 scmAgentPrivPartyID.<agentID>.<sessionID>
 scmManagerPrivPartyID.<agentID>.<sessionID>

where <agentID> identifies the agent's unique identifier, encoded as 12
sub-identifiers.

The agent generates an unpredictable 128-bit quantity, aPad. The agent
computes aSecret, based on an algorithm which uses the pairing of the
value of partyAuthPrivate for userMaintParty.<userID> and aPad --
consult the definition of scmUserAuthProtocol in Section 6.

If the value of scmUserPrivProtocol is any value other than noPriv, the
agent generates a second unpredictable 128-bit quantity, pPad, and the
agent computes pSecret, based on an algorithm which uses the pairing of
the value of partyAuthPrivate for userMaintParty.<userID> and pPad --
consult the definition of scmUserAuthProtocol in Section 6.

Expires September 1995 [Page 9]

draft Simplified Configuration Model March 1995

4.3. Step 3: Agent Creates Parties

The agent creates four parties named as:

 scmAgentNoAuthPartyID.<agentID>.<sessionID>
 scmManagerNoAuthPartyID.<agentID>.<sessionID>
 scmAgentAuthPartyID.<agentID>.<sessionID>
 scmManagerAuthPartyID.<agentID>.<sessionID>

where:

<agentID>
 identifies the agent's agentID [2], |
 encoded as 12 sub-identifiers.

<sessionID>
 identifies this session's sessionID, encoded as 1 sub-identifier.

The parties are created with these values:

 Agent Manager Agent Manager
party noAuth noAuth Auth Auth
----- ------- ------- ------- -------
TDomain tDomain tDomain tDomain tDomain
TAddress aAddr mAddr aAddr mAddr |
MaxMessageSize aMMS mMMS aMMS mMMS |
Local true false true false
AuthProtocol noAuth noAuth scmUserAuth scmUserAuth
AuthClock 0 0 0 0
AuthPrivate ''H ''H aSecret aSecret
AuthPublic ''H ''H ''H ''H
PrivProtocol noPriv noPriv noPriv noPriv
PrivPrivate ''H ''H ''H ''H
PrivPublic ''H ''H ''H ''H
StorageType creationType creationType creationType creationType
Status active active active active

Expires September 1995 [Page 10]

draft Simplified Configuration Model March 1995

If the value of scmUserPrivProtocol is any value other than noPriv, then
the agent also creates two more parties named as:

 scmAgentPrivPartyID.<agentID>.<sessionID>
 scmManagerPrivPartyID.<agentID>.<sessionID>

and having these values:

 Agent Manager
party Priv Priv
----- ------- -------
TDomain tDomain tDomain
TAddress aAddr mAddr |
MaxMessageSize aMMS mMMS |
Local true false
AuthProtocol scmUserAuth scmUserAuth
AuthClock 0 0
AuthPrivate aSecret aSecret
AuthPublic ''H ''H
PrivProtocol scmUserPriv scmUserPriv
PrivPrivate pSecret pSecret
PrivPublic ''H ''H
StorageType creationType creationType
Status active active

Expires September 1995 [Page 11]

draft Simplified Configuration Model March 1995

4.4. Step 4: Agent Authorizes Parties

For each entry in the scmCapTable whose value of scmCapIndex equals the
value of scmUserCapIndex for the user identified in the management
communication, the agent performs Step 4a and 4b.

4.4.1. Step 4a: Agent Checks Contexts

If the context named as:

 scmContextID.<agentID>.<localTime>.<localEntity>

where:

<agentID>
 identifies the agent's agentID, encoded as 12 sub-identifiers.

<localTime>
 identifies the value of scmCapCtxLocalTime, encoded as 1 sub-
 identifier.

<localEntity>
 identifies the value of scmCapCtxLocalEntity, encoded as N
 (possibly 0) sub-identifiers.

does not exist, then the agent creates it:

context value
------- -----
Local true
View 1
LocalEntity scmCapCtxLocalEntity
LocalTime scmCapCtxLocalTime
 (expressed as the equivalent OBJECT IDENTIFIER)
ProxyDstParty 0.0
ProxySrcParty 0.0
ProxyContext 0.0
StorageType creationType
Status active

Expires September 1995 [Page 12]

draft Simplified Configuration Model March 1995

4.4.2. Step 4b: Agent Creates Access Control Entries

The agent creates 2 entries in the acTable:

ac value for ACL #1 value for ACL #2
----- ---------------- ----------------
Target Agent noAuth Agent Auth
Subject Manager noAuth Manager Auth
Context context from Step 4a context from Step 4a
Privileges scmCapNPrivileges scmCapAPrivileges
ReadViewIndex scmCapNReadView scmCapAReadView
WriteViewIndex scmCapNWriteView scmCapAWriteView
StorageType creationType creationType
Status active active

If the value of mTraps is 1, |
then 128 is added to the value of acPrivileges for ACL #1; otherwise, if |
the value of mTraps is 2, |
then 128 is added to the value of acPrivileges for ACL #2.

If the value of scmUserPrivProtocol is any value other than noPriv, then
the agent creates a third entry in the acTable:

ac value for ACL #3
----- ----------------
Target Agent Priv
Subject Manager Priv
Context context from Step 4a
Privileges scmCapPPrivileges
ReadViewIndex scmCapPReadView
WriteViewIndex scmCapPWriteView
StorageType creationType
Status active

If the value of mTraps is 3, |
then 128 is added to the value of acPrivileges for ACL #3.

When an agent already has many activated user sessions, it is |
undesirable for the creation of a new session to be denied due to the |
inability of the agent to create the additional parties or access |
control entries. |
As such, if an agent having many active user sessions is unable to |
perform Steps 3 or 4 due to lack of party-related resources, the agent |
should begin destroying sessions, |
in the order least recently used, until sufficient party-related

Expires September 1995 [Page 13]

draft Simplified Configuration Model March 1995

resources exist to perform Steps 3 and 4.

Expires September 1995 [Page 14]

draft Simplified Configuration Model March 1995

4.5. Step 5: Agent Responds

The agent generates a response to the get operation, an octet string
having this value:

<result>
 a single octet, containing the value 0.

<agentID>
 12 octets, containing the agent's 12-octet administratively-unique
 identifier.

<sessionID>
 4 octets, encoded as an unsigned integer using network-byte
 ordering (big-endian encoding).

<agentMMS>
 2 octets, encoded as an unsigned integer using network-byte
 ordering (big-endian encoding).

<actualLinger>
 4 octets, encoded as an unsigned integer using network-byte
 ordering (big-endian encoding).

<aPad>
 16 octets.

<pPad>
 16 octets.

If the value of scmUserPrivProtocol is noPriv, then no pPad value is
sent (the aPad value completes the response).

4.6. Step 6: Agent Starts Initial Inactivity Timer

Upon sending the response to the get operation, the agent starts a 5 +
minute timer. If any of the session's 2 or 4 authenticated parties are +
used before the timer expires, then the timer is cancelled. Otherwise, +
if the timer expires before their use, then all 4 or 6 of the session's +
parties and their associated access control entries are immediately +
deleted. +

By use of this timeout, a created session for which the agent-generated +
response is lost, is deleted after after 5 minutes of non-use. +

Expires September 1995 [Page 15]

draft Simplified Configuration Model March 1995

4.7. Step 7: Manager Analyzes Response +

The manager receives the response from the agent and correlates to its
earlier request. It then creates mirrors of the parties and access
control entries described in Steps 3 and 4b, except that the values of
partyLocal are inverted.

The manager should then issue an authenticated request which uses the +
created session. This usage serves to confirm that the session has been +
successfully created, and to cancel the agent's initial inactivity (5- +
minute) timer. +

Expires September 1995 [Page 16]

draft Simplified Configuration Model March 1995

5. Session Destruction Algorithm

Sessions are destroyed when the management station issues a user-based
maintenance function, which identifies a user configured at the agent.

Pictorially:

 management
 station agent
 ---------- -----
 application terminates

 user-based maintenance function
 -->
 parameters: identity of session

 agent removes parties
 and ACLs

 user-based maintenance function
 <--
 parameters: result indicator

 manager removes
 mirrored parties/ACLs

Expires September 1995 [Page 17]

draft Simplified Configuration Model March 1995

5.1. Step 1: Manager Requests Destruction

The manager performs a user-based maintenance function consisting of a
set operation for

 userMaintDestroy.0

setting it to an octet string having this value:

 <agentID><sessionID>

where:

<agentID>
 12 octets, containing the agent's 12-octet administratively-unique
 identifier.

<sessionID>
 4 octets, encoded as an unsigned integer using network-byte
 ordering (big-endian encoding).

5.2. Step 2: Agent Analyzes Request and Responds

The agent receives the set request from the manager and identifies it as
a user-based maintenance function to destroy a session.

The agent locates those parties whose name is any of:

 scmAgentNoAuthPartyID.<agentID>.<sessionID>
 scmManagerNoAuthPartyID.<agentID>.<sessionID>
 scmAgentAuthPartyID.<agentID>.<sessionID>
 scmManagerAuthPartyID.<agentID>.<sessionID>
 scmAgentPrivPartyID.<agentID>.<sessionID>
 scmManagerPrivPartyID.<agentID>.<sessionID>

If no such parties exist, or if the partyStorageType of any such party
isn't volatile, or if the parties weren't created by the user
corresponding to this user-based management function, then the agent
generates an inconsistentValue response. Otherwise, the agent generates
a noError response to the set operation, and deletes all parties and |
associated access control entries. |

Expires September 1995 [Page 18]

draft Simplified Configuration Model March 1995

5.3. Step 3: Manager Analyzes Response

The manager receives the response from the agent and correlates to its
earlier request. It then destroys the mirrors of the parties and access
control entries that it created earlier.

Expires September 1995 [Page 19]

draft Simplified Configuration Model March 1995

6. Definitions

SNMPv2-SCM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, snmpModules
 FROM SNMPv2-SMI
 DisplayString, RowStatus
 FROM SNMPv2-TC
 AccessPrivileges, StorageType, v2md5AuthProtocol, noPriv |
 FROM SNMPv2-PARTY-MIB;

scmMIB MODULE-IDENTITY
 LAST-UPDATED "9503180000Z" |
 ORGANIZATION "IETF SNMPv2 Working Group" |
 CONTACT-INFO
 " Keith McCloghrie

 Postal: Cisco Systems, Inc.
 170 West Tasman Drive,
 San Jose, CA 95134-1706
 US

 Tel: +1 408 526 5260

 E-mail: kzm@cisco.com"
 DESCRIPTION
 "The MIB module for the Simplified Configuration Model."
 ::= { snmpModules 4 } |

Expires September 1995 [Page 20]

draft Simplified Configuration Model March 1995

-- administrative assignments

scmAdmin OBJECT IDENTIFIER ::= { scmMIB 1 }

-- parties under these subtrees are created dynamically by the agent
scmPartyID OBJECT IDENTIFIER ::= { scmAdmin 1 }

scmAgentNoAuthPartyID
 OBJECT IDENTIFIER ::= { scmPartyID 1 }
scmManagerNoAuthPartyID
 OBJECT IDENTIFIER ::= { scmPartyID 2 }
scmAgentAuthPartyID
 OBJECT IDENTIFIER ::= { scmPartyID 3 }
scmManagerAuthPartyID
 OBJECT IDENTIFIER ::= { scmPartyID 4 }
scmAgentPrivPartyID
 OBJECT IDENTIFIER ::= { scmPartyID 5 }
scmManagerPrivPartyID
 OBJECT IDENTIFIER ::= { scmPartyID 6 }

-- context under this subtree might be created by the agent,
-- but normally exist

scmContextID OBJECT IDENTIFIER ::= { scmAdmin 2 }

-- these are employed by user-based maintenance functions

userMaintParty OBJECT IDENTIFIER ::= { scmAdmin 3 }

userMaintContext
 OBJECT IDENTIFIER ::= { 0 1 }

Expires September 1995 [Page 21]

draft Simplified Configuration Model March 1995

-- object assignments

scmMIBObjects OBJECT IDENTIFIER ::= { scmMIB 2 }

-- user table

scmUserTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ScmUserEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The user table."
 ::= { scmMIBObjects 1 }

scmUserEntry OBJECT-TYPE
 SYNTAX ScmUserEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual row in the user table."
 INDEX { IMPLIED scmUserID }
 ::= { scmUserTable 1 }

ScmUserEntry ::=
 SEQUENCE {
 scmUserID DisplayString,
 scmUserPassword OCTET STRING,
 scmUserAuthProtocol OBJECT IDENTIFIER,
 scmUserPrivProtocol OBJECT IDENTIFIER,
 scmUserCapIndex INTEGER,
 scmUserLinger INTEGER,
 scmUserStorageType StorageType,
 scmUserStatus RowStatus
 }

Expires September 1995 [Page 22]

draft Simplified Configuration Model March 1995

scmUserID OBJECT-TYPE
 SYNTAX DisplayString (SIZE (1..64))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The identity of the user corresponding to this conceptual
 row."
 ::= { scmUserEntry 1 }

scmUserPassword OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (8..128))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The user's password. On retrieval, this object has the
 value of 8 zero-valued octets."
 ::= { scmUserEntry 2 }

Expires September 1995 [Page 23]

draft Simplified Configuration Model March 1995

scmUserAuthProtocol OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The authentication protocol for this user. This object may
 never take the value noAuth.

 Once an instance of this object is created, its value can
 not be changed.

 If the value of this object is v2md5AuthProtocol, then two
 algorithms are defined:

 To map scmUserPassword to an authentication key for the
 corresponding userMaintParty: form a string of length
 1,048,576 octets by repeating the value of scmUserPassword
 as often as necessary, truncating accordingly, and use the
 resulting string as the input to the MD5 algorithm. The
 resulting digest is the authentication key for
 userMaintParty.<userID>.

 To map the pairing of a user's authentication key and the
 aPad quantity to the authentication key for a newly
 created party: append aPad to the value of
 partyAuthPrivate for userMaintParty.<userID>, and use the
 resulting string as the input to the MD5 algorithm. The
 resulting digest is the authentication key for the newly
 created party."
 DEFVAL { v2md5AuthProtocol }
 ::= { scmUserEntry 3 }

Expires September 1995 [Page 24]

draft Simplified Configuration Model March 1995

scmUserPrivProtocol OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The privacy protocol for this user. The value noPriv
 signifies that messages received by the party are not
 protected.

 Once an instance of this object is created, its value can
 not be changed.

 If the value of this object is desPrivProtocol, then one
 algorithm is defined:

 To map the pairing of a user's authentication key and the
 pPad quantity to the privacy key for a newly created
 party: append pPad to the value of partyAuthPrivate for
 userMaintParty.<userID>, and use the resulting string as
 the input to the MD5 algorithm. The resulting digest is
 the privacy key for the newly created party."
 DEFVAL { noPriv }
 ::= { scmUserEntry 4 }

scmUserCapIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of an instance of this object identifies one or
 more conceptual rows in the scmCapTable, and has the same
 value as the instance of scmCapIndex for those conceptual
 rows."
 ::= { scmUserEntry 5 }

Expires September 1995 [Page 25]

draft Simplified Configuration Model March 1995

scmUserLinger OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The upper bound on the minimum number of contiguous seconds
 that a dynamically created party may reside in the agent and
 neither generate nor receive management communications,
 before the agent may choose to set the party's status to
 `destroy(6)'."
 ::= { scmUserEntry 7 }

scmUserStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row in the
 scmUserTable."
 ::= { scmUserEntry 8 }

scmUserStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row in the scmUserTable. If
 set to `destroy(6)', then any parties (and associated access
 control entries) having a storage type of `volatile(2)'
 which were earlier created for this user have their status
 set to `destroy(6)'."
 ::= { scmUserEntry 9 }

Expires September 1995 [Page 26]

draft Simplified Configuration Model March 1995

-- capabilities table

scmCapNextIndex OBJECT-TYPE
 SYNTAX INTEGER (0..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The next unassigned value of scmCapIndex. The value 0
 indicates that no unassigned values are available.

 Reading a non-zero value causes the assignment of the
 retrieved value for use as the scmCapIndex of a future
 capability, and thus causes the value of this object to
 change. -

 The algorithm for changing scmCapIndex is implementation- +
 dependent, and the agent may use a subset of values within +
 1..2147483647, but the agent must guarantee that the value +
 held by this object is not assigned to any in-use value of +
 scmCapIndex, e.g., is not pointed to by any other MIB +
 object. +

 A management station should create a new MIB view using this
 algorithm: first, issue a management protocol retrieval
 operation to obtain the value of scmCapNextIndex -- this
 value is used as the scmCapIndex of the new capability; and,
 second, issue a management protocol set operation to create
 an instance of the scmCapStatus object setting its value to
 `createAndGo' or `createAndWait' (as specified in the
 description of the RowStatus textual convention)."
 ::= { scmMIBObjects 2 }

scmCapTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ScmCapEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The capabilities table."
 ::= { scmMIBObjects 3 }

Expires September 1995 [Page 27]

draft Simplified Configuration Model March 1995

scmCapEntry OBJECT-TYPE
 SYNTAX ScmCapEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual row in the capabilities table."
 INDEX { scmCapIndex, scmCapCtxLocalTime,
 IMPLIED scmCapCtxLocalEntity }
 ::= { scmCapTable 1 }

ScmCapEntry ::=
 SEQUENCE {
 scmCapIndex INTEGER,
 scmCapCtxLocalTime INTEGER,
 scmCapCtxLocalEntity OCTET STRING,
 scmCapNPrivileges AccessPrivileges,
 scmCapNReadView INTEGER,
 scmCapNWriteView INTEGER,
 scmCapAPrivileges AccessPrivileges,
 scmCapAReadView INTEGER,
 scmCapAWriteView INTEGER,
 scmCapPPrivileges AccessPrivileges,
 scmCapPReadView INTEGER,
 scmCapPWriteView INTEGER,
 scmCapStorageType StorageType,
 scmCapStatus RowStatus
 }

scmCapIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique value for each capability. The value for each
 capability must remain constant at least from one re-
 initialization of the entity's network management system to
 the next re-initialization."
 ::= { scmCapEntry 1 }

Expires September 1995 [Page 28]

draft Simplified Configuration Model March 1995

scmCapCtxLocalTime OBJECT-TYPE
 SYNTAX INTEGER { currentTime(1), restartTime(2) }
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The temporal context associated with this capability."
 ::= { scmCapEntry 2 }

scmCapCtxLocalEntity OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The local entity associated with this capability."
 ::= { scmCapEntry 3 }

scmCapNPrivileges OBJECT-TYPE
 SYNTAX AccessPrivileges
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The access privileges which govern the flow of management
 information between the user and the agent when
 communicating using unauthenticated traffic."
 ::= { scmCapEntry 4 }

scmCapNReadView OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A reference to a MIB view of a locally accessible entity,
 when the user requests the get, get-next, or get-bulk
 operations using unauthenticated traffic; the value of the
 instance identifies the particular MIB view which has the
 same value of viewIndex."
 ::= { scmCapEntry 5 }

Expires September 1995 [Page 29]

draft Simplified Configuration Model March 1995

scmCapNWriteView OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A reference to a MIB view of a locally accessible entity,
 when the user requests the set operation using
 unauthenticated traffic; the value of the instance
 identifies the particular MIB view which has the same value
 of viewIndex."
 ::= { scmCapEntry 6 }

scmCapAPrivileges OBJECT-TYPE
 SYNTAX AccessPrivileges
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The access privileges which govern the flow of management
 information between the user and the agent when
 communicating using authenticated, but not private,
 traffic."
 ::= { scmCapEntry 7 }

scmCapAReadView OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A reference to a MIB view of a locally accessible entity,
 when the user requests the get, get-next, or get-bulk
 operations using authenticated, but not private, traffic;
 the value of the instance identifies the particular MIB view
 which has the same value of viewIndex."
 ::= { scmCapEntry 8 }

Expires September 1995 [Page 30]

draft Simplified Configuration Model March 1995

scmCapAWriteView OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A reference to a MIB view of a locally accessible entity,
 when the user requests the set operation using
 authenticated, but not private, traffic; the value of the
 instance identifies the particular MIB view which has the
 same value of viewIndex."
 ::= { scmCapEntry 9 }

scmCapPPrivileges OBJECT-TYPE
 SYNTAX AccessPrivileges
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The access privileges which govern the flow of management
 information between the user and the agent when
 communicating using authenticated and private traffic."
 ::= { scmCapEntry 10 }

scmCapPReadView OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A reference to a MIB view of a locally accessible entity,
 when the user requests the get, get-next, or get-bulk
 operations using authenticated and private traffic; the
 value of the instance identifies the particular MIB view
 which has the same value of viewIndex."
 ::= { scmCapEntry 11 }

Expires September 1995 [Page 31]

draft Simplified Configuration Model March 1995

scmCapPWriteView OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A reference to a MIB view of a locally accessible entity,
 when the user requests the set operation using authenticated
 and private traffic; the value of the instance identifies
 the particular MIB view which has the same value of
 viewIndex."
 ::= { scmCapEntry 12 }

scmCapStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row in the
 scmCapTable."
 ::= { scmCapEntry 13 }

scmCapStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row in the scmCapTable."
 ::= { scmCapEntry 14 }

Expires September 1995 [Page 32]

draft Simplified Configuration Model March 1995

-- maintenance assignments

-- these objects are accessible only to user-based maintenance
-- functions

userMaintActions
 OBJECT IDENTIFIER ::= { scmMIB 3 }

userMaintTable OBJECT-TYPE
 SYNTAX SEQUENCE OF UserMaintEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A pseudo-table provided to allow indexing for
 userMaintCreate."
 ::= { userMaintActions 1 }

userMaintEntry OBJECT-TYPE
 SYNTAX UserMaintEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Entries in this table are created by the agent dynamically
 when processing a getRequest operation, and are deleted |
 immediately thereafter. |
 As such, entries are not accessible via other retrieval
 operations."
 INDEX { IMPLIED userMaintIndex } |
 ::= { userMaintTable 1 }

UserMaintEntry ::=
 SEQUENCE {
 userMaintIndex OCTET STRING,
 userMaintCreate OCTET STRING
 }

Expires September 1995 [Page 33]

draft Simplified Configuration Model March 1995

userMaintIndex OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A pseudo-index provided to allow indexing for |
 userMaintCreate. Its value is the BER-encoding of the set |
 of OBJECT IDENTIFIER sub-identifiers which a manager appends |
 to userMaintCreate in order to supply the parameters for the |
 session creation algorithm." |
 ::= { userMaintEntry 1 }

userMaintCreate OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (1|39|55))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A getRequest operation on this object is used to invoke the |
 session creation algorithm." |
 ::= { userMaintEntry 2 }

userMaintDestroy OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (16))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A set operation on this object is used to invoke the
 session destruction algorithm. On retrieval, this object
 has the value of 16 zero-valued octets."
 ::= { userMaintActions 2 }

Expires September 1995 [Page 34]

draft Simplified Configuration Model March 1995

-- conformance information

scmMIBConformance
 OBJECT IDENTIFIER ::= { scmMIB 4 }

scmMIBCompliances
 OBJECT IDENTIFIER ::= { scmMIBConformance 1 }
scmMIBGroups
 OBJECT IDENTIFIER ::= { scmMIBConformance 2 }

-- compliance statements

scmMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMPv2 entities which
 implement the Simplified Configuration Model."
 MODULE -- this module
 MANDATORY-GROUPS { scmGroup, userMaintGroup }
 ::= { scmMIBCompliances 1 }

Expires September 1995 [Page 35]

draft Simplified Configuration Model March 1995

-- units of conformance

scmGroup OBJECT-GROUP
 OBJECTS { scmUserPassword,
 scmUserAuthProtocol, scmUserPrivProtocol,
 scmUserCapIndex, scmUserLinger,
 scmUserStorageType, scmUserStatus,
 scmCapNextIndex,
 scmCapNPrivileges, scmCapNReadView, scmCapNWriteView,
 scmCapAPrivileges, scmCapAReadView, scmCapAWriteView,
 scmCapPPrivileges, scmCapPReadView, scmCapPWriteView,
 scmCapStorageType, scmCapStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing support for the
 Simplified Configuration Model."
 ::= { scmMIBGroups 1 }

userMaintGroup OBJECT-GROUP
 OBJECTS { userMaintCreate, userMaintDestroy }
 STATUS current
 DESCRIPTION
 "A collection of objects providing support for user-based
 maintenance functions."
 ::= { scmMIBGroups 2 }

END

Expires September 1995 [Page 36]

draft Simplified Configuration Model March 1995

7. Appendix A: Password to Key Algorithm

The following code fragment demonstrates the password to key algorithm |
used when mapping scmUserPassword to an authentication key for a |
userMaintParty when the |
value of scmUserAuthProtocol is v2md5AuthProtocol:

void v2md5auth_password_to_key(password, passwordlen, key) |
 u_char *password; /* IN */
 u_int passwordlen; /* IN */
 u_char *key; /* OUT - caller supplies pointer to 16
 octet buffer */ {
 MDstruct MD;
 u_char *cp, password_buf[64];
 u_long password_index = 0;
 u_long count = 0, i;

 MDbegin(&MD); /* initialize MD5 */

 /* loop until we've done 1 Megabyte */
 while (count < 1048576) {
 cp = password_buf;
 for(i = 0; i < 64; i++){
 *cp++ = password[password_index++ % passwordlen];
 /*
 * Take the next byte of the password, wrapping to the
 * beginning of the password as necessary.
 */
 }

 MDupdate(&MD, password_buf, 64 * 8);
 /*
 * 1048576 is divisible by 64, so the last MDupdate will be
 * aligned as well.
 */
 count += 64;
 }
 MDupdate(&MD, password_buf, 0); /* tell MD5 we're done */
 copy_digest_to_buffer(&MD, key);
 return; }

Expires September 1995 [Page 37]

draft Simplified Configuration Model March 1995

8. Acknowledgements

The Simplified Configuration Model is based on the "Simplified Security
Conventions" developed by Steve Waldbusser, and subsequently updated by
the SNMPv2 Working Group.

The authors wish to acknowledge in particular the contributions of the +
following individuals +

 Dave Arneson (Cabletron), +
 Uri Blumenthal (IBM), +
 Doug Book (Chipcom), +
 Deirdre Kostik (Bellcore), +
 Dave Harrington (Cabletron), +
 Jeff Johnson (Cisco Systems), +
 Brian O'Keefe (Hewlett Packard), +
 Dave Perkins (Bay Networks), +
 Randy Presuhn (Peer Networks), +
 Shawn Routhier (Epilogue), +
 Bob Stewart (Cisco Systems), +
 Kaj Tesink (Bellcore). +

Expires September 1995 [Page 38]

draft Simplified Configuration Model March 1995

9. References

[1] Case, J., Galvin, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Administrative Model for version 2 of the Simple Network
 Management Protocol (SNMPv2)", in progress, SNMP Research, Inc.,
 Trusted Information Systems, Cisco Systems, Dover Beach Consulting,
 Inc., Carnegie Mellon University, March, 1995.

[2] Case, J., Galvin, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Party MIB for version 2 of the Simple Network Management Protocol
 (SNMPv2)", in progress, SNMP Research, Inc., Trusted Information
 Systems, Cisco Systems, Dover Beach Consulting, Inc., Carnegie
 Mellon University, March, 1995.

[3] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Transport
 Mappings for version 2 of the Simple Network Management Protocol
 (SNMPv2)", in progress, SNMP Research Inc., Cisco Systems, Inc.,
 Dover Beach Consulting, Inc., Carnegie Mellon University, March,
 1995.

Expires September 1995 [Page 39]

draft Simplified Configuration Model March 1995

10. Security Considerations

The mechanisms defined in this document allow "users" to be configured,
and to activate management sessions for them. How "users" are defined
is subject to the security policy of the network administration. For
example, users could be individuals (e.g., "joe" or "jane"), or a
particular role (e.g., "operator" or "administrator"), or a combination
(e.g., "joe-operator", "jane-operator" or "joe-admin"). Furthermore, a
"user" may be a logical entity, such as a manager station application or
set of manager station applications, acting on behalf of a individual or
role, or set of individuals, or set of roles, including combinations.
The mechanisms also allow management capabilities to be defined, where
one or more users can be authorized for a set of capabilities.

A password is defined for each user, and these passwords will often be
generated, remembered, and input by a human. Because human-generated
passwords may be less than the 16 octets required by the MD5
authentication protocols, and because brute force attacks can be quite
easy on a relatively short ASCII character set, passwords are not used
directly, but are instead mapped by the algorithm described in Section 6
and Appendix A. Agent implementations (and agent configuration
applications) must ensure that passwords are at least 8 characters in
length.

Because these passwords are used (nearly) directly, it is very important
that they not be easily guessed. It is suggested that they be composed
of mixed-case alphanumeric and punctuation characters that don't form
words or phrases that might be found in a dictionary. Longer passwords
improve the security of the system. Users may wish to input multiword
phrases to make their password string longer while ensuring that it is
memorable.

Note that there is security risk in configuring the same "user" on |
multiple systems where the same password is used on each system, since |
the compromise of that user's secrets on one system results in the |
compromise of that user on all other systems having the same password. |
There is also greater security risk and less accountability in allowing |
multiple humans to know the password for a given "user". |

Note also that the userMaintParty authentication key for a user is the |
same for all systems on which the user has the same password, and it is |
necessary to store that authentication key on each such system. As |
such, an implementation must, to the maximal extent possible, prohibit |
read-access to these authentication keys under all circumstances except |
as required to generate and/or validate SNMPv2 messages containing |

Expires September 1995 [Page 40]

draft Simplified Configuration Model March 1995

user-based maintenance functions. |

With respect to the replay-ability of user-based maintenance functions,
note that all such operations are effectively idempotent: replaying a
request to create a session results in a new session being created, but
the session has a new unique set of keys, which can be derived only by
an authorized user; similarly, replaying a request to destroy a session
results in an inconsistentValue error.

Expires September 1995 [Page 41]

draft Simplified Configuration Model March 1995

11. Authors' Address

 Steven Waldbusser
 Carnegie Mellon University
 5000 Forbes Ave
 Pittsburgh, PA 15213
 US

 Phone: +1 412 268 6628
 Email: waldbusser@cmu.edu

 Jeffrey D. Case
 SNMP Research, Inc.
 3001 Kimberlin Heights Rd.
 Knoxville, TN 37920-9716
 US

 Phone: +1 615 573 1434
 Email: case@snmp.com

 Keith McCloghrie
 Cisco Systems, Inc.
 170 West Tasman Drive,
 San Jose, CA 95134-1706

 Phone: +1 408 526 5260
 EMail: kzm@cisco.com

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 420 Whisman Court
 Mountain View, CA 94043-2186
 US

 Phone: +1 415 968 1052
 Email: mrose@dbc.mtview.ca.us

Expires September 1995 [Page 42]

draft Simplified Configuration Model March 1995

Table of Contents

1 Introduction .. 2
1.1 A Note on Terminology ... 2
2 Overview .. 2
3 User-based Maintenance Functions 4
4 Session Creation Algorithm 6
4.1 Step 1: Manager Requests Creation 7
4.2 Step 2: Agent Analyzes Request 8
4.3 Step 3: Agent Creates Parties 10
4.4 Step 4: Agent Authorizes Parties 12
4.4.1 Step 4a: Agent Checks Contexts 12
4.4.2 Step 4b: Agent Creates Access Control Entries 13
4.5 Step 5: Agent Responds .. 15
4.6 Step 6: Agent Starts Initial Inactivity Timer 15
4.7 Step 7: Manager Analyzes Response 16
5 Session Destruction Algorithm 17
5.1 Step 1: Manager Requests Destruction 18
5.2 Step 2: Agent Analyzes Request and Responds 18
5.3 Step 3: Manager Analyzes Response 19
6 Definitions ... 20
6.1 Administrative Assignments 21
6.2 Object Assignments .. 22
6.3 Maintenance Assignments 33
6.4 Conformance Information 35
6.4.1 Compliance Statements 35
6.4.2 Units of Conformance .. 36
7 Appendix A: Password to Key Algorithm 37
8 Acknowledgements .. 38
9 References .. 39
10 Security Considerations .. 40
11 Authors' Address ... 42

Expires September 1995 [Page 43]

