
 User-based Security Model for version 3 of the
 Simple Network Management Protocol (SNMPv3)

 18 June 1997

U. Blumenthal
IBM T. J. Watson Research

uri@watson.ibm.com

 B. Wijnen
 IBM T. J. Watson Research
 wijnen@vnet.ibm.com

 <draft-ietf-snmpv3-usec-01.txt>

 Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference
material or to cite them other than as ``work in progress.''

To learn the current status of any Internet-Draft, please check the
``1id-abstracts.txt'' listing contained in the Internet- Drafts Shadow
Directories on ds.internic.net (US East Coast), nic.nordu.net (Europe),
ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

 Abstract

This document describes the User-based Security Model (USEC) for SNMP
version 3 for use in the SNMP architecture [SNMP-ARCH]. This
document defines the Elements of Procedure for providing SNMP message
level security. This document also includes a MIB for remotely
monitoring/managing the configuration parameters for this Security
model.

0.1 Issues
 - Do we indeed want to move all STATS counters to MPC, we
 have assumed so for now.
 - Do we need to do group mapping here and pass it back to MPC
 we have assumed so for now... but other documents do not pass
 groupName around.

https://datatracker.ietf.org/doc/html/draft-ietf-snmpv3-usec-01.txt

Blumenthal/Wijnen Expires December 1997 [Page 1]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 - Do we want to check reportableFlag to determine if caching
 of securityData is needed or not.

0.2 Change Log

 [version 1.2]
 - changed (simplified) time sync in section 3 item 7.
 - added usecUserMiId
 - cleaned up text
 - defined IV "salt" generation
 - removed Statistics counters (now in MPC) and reportPDU
 generation (now in MPC)
 - Removed auth and des MIBs which are now merged into USEC MIB
 - specified where cachedSecurityData needs to be discarded
 - added abtract service interface definitions
 - removed section on error reporting (is MPC responsibility)
 - removed auth/priv protocol definitions, they are in ARCH now
 - removed MIB definitions for snmpEngineID,Time,Boots. They
 are in ARCH now.

 [version 1.1]
 - removed <securityCookie>.
 - added <securityIdentity>, <securityCachedData>.
 - added abstract function interface description of
 inter-module communications.
 - modified IV generation process to accomodate messages produced
 faster than one-per-second (still open).
 - always update the clock regardless of whether incoming message
 was Report or not (if the message was properly authenticated
 and its timestamp is ahead of our notion of their clock).

 [version 1.0]
 - first version posted to the v3editors mailing list.
 - based on v2adv slides, v2adv items and issues list and on

RFC1910 and SNMPv2u and SNMPv2* documents.
 - various iterations were done by the authors via private email.

https://datatracker.ietf.org/doc/html/rfc1910

Blumenthal/Wijnen Expires December 1997 [Page 2]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

1. Introduction

 The Architecture for describing Internet Management Frameworks
 is composed of multiple subsystems:
 1) a message processing and control subsystem,
 2) a security subsystem,
 3) an access control subsystem, and
 4) orangelets.

 It is important to understand the SNMP architecture and the
 terminology of the architecture to understand where the model
 described in this document fits into the architecture and interacts
 with other subsystems within the architecture. The reader is
 expected to have read and understood the description of the SNMP
 architecture, as defined in [SNMP-ARCH].

 This memo [SNMPv3-USEC] describes the User-Based Security model
 as it is used within the SNMP Architecture. The main idea is that
 we use the traditional concept of a user (identified by a userName)
 to associate security information with.

 This memo describes the use of Keyed-MD5 as the authentication
 protocol and the use of CBC-DES as the privacy protocol.
 The User-based Security model however allows for other such
 protocols to be used instead of or concurrent with these protocols.
 So the description of Keyed-MD5 and CBC-DES are in separate sections.
 That way it shows that they are supposed to be self-contained
 pieces that can be replaced or supplemented in the future.

1.1. Threats

 Several of the classical threats to network protocols are applicable
 to the network management problem and therefore would be applicable
 to any SNMP security model. Other threats are not applicable to
 the network management problem. This section discusses principal
 threats, secondary threats, and threats which are of lesser
 importance.

 The principal threats against which this SNMPv3 security model
 should provide protection are:

 - Modification of Information
 The modification threat is the danger that some unauthorized entity
 may alter in-transit SNMPv3 messages generated on behalf of an
 authorized user in such a way as to effect unauthorized management
 operations, including falsifying the value of an object.

 - Masquerade
 The masquerade threat is the danger that management operations not
 authorized for some user may be attempted by assuming the identity
 of another user that has the appropriate authorizations.

Blumenthal/Wijnen Expires December 1997 [Page 3]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Two secondary threats are also identified. The security protocols
 defined in this memo provide limited protection against:

 - Disclosure
 The disclosure threat is the danger of eavesdropping on the
 exchanges between managed agents and a management station.
 Protecting against this threat may be required as a matter of
 local policy.

 - Message Stream Modification
 The SNMPv3 protocol is typically based upon a connection-less
 transport service which may operate over any sub-network service.
 The re-ordering, delay or replay of messages can and does occur
 through the natural operation of many such sub-network services.
 The message stream modification threat is the danger that messages
 may be maliciously re-ordered, delayed or replayed to an extent
 which is greater than can occur through the natural operation of a
 sub-network service, in order to effect unauthorized management
 operations.

 There are at least two threats that an SNMPv3 security protocol need
 not protect against. The security protocols defined in this memo do
 not provide protection against:

 - Denial of Service
 An SNMPv3 security protocol need not attempt to address the broad
 range of attacks by which service on behalf of authorized users is
 denied. Indeed, such denial-of-service attacks are in many cases
 indistinguishable from the type of network failures with which any
 viable network management protocol must cope as a matter of course.

 - Traffic Analysis
 In addition, an SNMPv3 security protocol need not attempt to
 address traffic analysis attacks. Indeed, many traffic patterns
 are predictable - agents may be managed on a regular basis by a
 relatively small number of management stations - and therefore
 there is no significant advantage afforded by protecting against
 traffic analysis.

1.2. Goals and Constraints

 Based on the foregoing account of threats in the SNMP network
 management environment, the goals of this SNMPv3 security model are
 as follows.

 1) The protocol should provide for verification that each received
 SNMPv3 message has not been modified during its transmission
 through the network in such a way that an unauthorized management
 operation might result.

 2) The protocol should provide for verification of the identity of

Blumenthal/Wijnen Expires December 1997 [Page 4]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 the user on whose behalf a received SNMPv3 message claims to have
 been generated.

 3) The protocol should provide for detection of received SNMPv3
 messages, which request or contain management information, whose
 time of generation was not recent.

 4) The protocol should provide, when necessary, that the contents of
 each received SNMPv3 message are protected from disclosure.

 In addition to the principal goal of supporting secure network
 management, the design of this SNMPv3 security model is also
 influenced by the following constraints:

 1) When the requirements of effective management in times of network
 stress are inconsistent with those of security, the design should
 prefer the former.

 2) Neither the security protocol nor its underlying security
 mechanisms should depend upon the ready availability of other
 network services (e.g., Network Time Protocol (NTP) or key
 management protocols).

 3) A security mechanism should entail no changes to the basic SNMP

 network management philosophy.

1.3. Security Services

 The security services necessary to support the goals of an SNMPv3
 security model are as follows.

 - Data Integrity
 is the provision of the property that data has not been altered or
 destroyed in an unauthorized manner, nor have data sequences been
 altered to an extent greater than can occur non-maliciously.

 - Data Origin Authentication
 is the provision of the property that the claimed identity of the
 user on whose behalf received data was originated is corroborated.

 - Data Confidentiality
 is the provision of the property that information is not made
 available or disclosed to unauthorized individuals, entities, or
 processes.

 For the protocols specified in this memo, it is not possible to
 assure the specific originator of a received SNMPv3 message; rather,
 it is the user on whose behalf the message was originated that is
 authenticated.

 For these protocols, it not possible to obtain data integrity without

Blumenthal/Wijnen Expires December 1997 [Page 5]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 data origin authentication, nor is it possible to obtain data origin
 authentication without data integrity. Further, there is no
 provision for data confidentiality without both data integrity and
 data origin authentication.

 The security protocols used in this memo are considered acceptably
 secure at the time of writing. However, the procedures allow for new
 authentication and privacy methods to be specified at a future time
 if the need arises.

1.4. Implementation Organization

 The security protocols defined in this memo are implemented in three
 different modules and each have their specific responsibilities such
 that together they realize the goals and security services described
 above:

 - The timeliness module must provide for:

 - Protection against message delay or replay (to an extent greater
 than can occur through normal operation)

 - The authentication module must provide for:

 - Data Integrity,

 - Data Origin Authentication

 - The privacy module must provide for

 - Protection against disclosure of the message payload.

 The timeliness module is fixed for this User-based Security model
 while there is provision for multiple authentication and/or privacy
 modules, each of which implements a specific authentication or
 privacy protocol respectively.

1.4.1. Timeliness Module

Section 3 (Elements of procedure) uses the time values in an SNMPv3
 message to do timeliness checking. The timeliness check is only
 performed if authentication is applied to the message. Since the
 complete message is checked for integrity, we can assume that the
 time values in a message that passes the authentication module are
 trustworthy.

1.4.2. Authentication Protocol

Section 6 describes the Keyed-MD5 authentication protocol which is
 the first authentication protocol to be used with the User-based
 Security model. In the future additional or replacement

Blumenthal/Wijnen Expires December 1997 [Page 6]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 authentication protocols may be defined as new needs arise.

 This User-based Security model prescribes that the complete message
 is checked for integrity in the authentication module.

 For a message to be authenticated, it needs to pass authentication
 check by the authentication module and the timeliness check which
 is a fixed part of this User-based Security model.

1.4.3. Privacy Protocol

Section 7 describes the CBC-DES Symmetric Encryption Protocol which
 the first privacy protocol to be used with the User-based Security
 model. In the future additional or replacement privacy protocols
 may be defined as new needs arise.

 This User-based Security model prescribes that the scopedPDU
 is protected from disclosure when a message is sent with privacy.

 This User-based Security model also prescribes that a message needs
 to be authenticated if privacy is in use.

1.5 Protection against Message Replay, Delay and Redirection

1.5.1 Authoritative SNMP Engine

 In order to protect against message replay, delay and redirection,
 one of the SNMP engines involved in each communication is designated
 to be the authoritative engine. For messages with a GET, GETNEXT,
 GETBULK, SET or INFORM request as the payload, the receiver of such
 messages is authoritative. For messages with a SNMPv2-TRAP,
 RESPONSE or REPORT as the payload, the sender is authoritative.

1.5.2 The following mechanisms are used:

 - To protect against the threat of message delay or replay (to an
 extent greater than can occur through normal operation), a set of
 time (at the authoritative source) indicators and a request-id are
 included in each message generated. An SNMPv3 engine evaluates
 the time indicators to determine if a received message is recent.
 An SNMPv3 engine may evaluate the time indicators to ensure that
 a received message is at least as recent as the last message it
 received from the same source. A non-authoritative SNMPv3 engine
 uses received authentic messages to advance its notion of time at
 the remote authoritative source. An SNMPv3 engine also evaluates
 the request-id in received Response messages and discards messages
 which do not correspond to outstanding requests.

 These mechanisms provide for the detection of messages whose time
 of generation was not recent in all but one circumstance; this
 circumstance is the delay or replay of a Report message (sent to a

Blumenthal/Wijnen Expires December 1997 [Page 7]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 receiver) when the receiver has has not recently communicated with
 the source of the Report message. In this circumstance, the
 detection guarantees only that the Report message is more recent
 than the last communication between source and destination of the

 Report message. However, Report messages do not request or contain
 management information, and thus, goal #3 in Section 1.2 above is
 met; further, Report messages can at most cause the receiver to
 advance its notion of time (at the source) by less than the proper
 amount.

 This protection against the threat of message delay or replay does
 not imply nor provide any protection against unauthorized deletion
 or suppression of messages. Also, an SNMPv3 engine may not be able
 to detect message reordering if all the messages involved are sent
 within the Time Window interval. Other mechanisms defined
 independently of the security protocol can also be used to detect
 the re-ordering replay, deletion, or suppression of messages
 containing set operations (e.g., the MIB variable snmpSetSerialNo
 [RFC1907]).

 - verifying that a message sent to/from one SNMPv3 engine cannot be
 replayed to/as-if-from another SNMPv3 engine.

 Included in each message is an identifier unique to the SNMPv3
 engine associated with the sender or intended recipient of the
 message. Also, each message containing a Response PDU contains a
 request-id which associates the message to a recently generated
 request.

 A Report message sent by one SNMPv3 engine to a second SNMPv3
 engine can potentially be replayed to another SNMPv3 engine.
 However, Report messages do not request or contain management
 information, and thus, goal #3 in Section 1.2 above is met;
 further, Report messages can at most cause the receiver to advance
 its notion of time (at the authoritative source) by less than the
 correct amount.

 - detecting messages which were not recently generated.

 A set of time indicators are included in the message, indicating
 the time of generation. Messages (other than those containing
 Report PDUs) without recent time indicators are not considered
 authentic. In addition, messages containing Response PDUs have a
 request-id; if the request-id does not match that of a recently
 generated request, then the message is not considered to be
 authentic.

 A Report message sent by an SNMPv3 engine can potentially be
 replayed at a later time to an SNMPv3 engine which has not
 recently communicated with that source engine. However, Report
 messages do not request or contain management information, and

Blumenthal/Wijnen Expires December 1997 [Page 8]

https://datatracker.ietf.org/doc/html/rfc1907

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 thus, goal #3 in Section 1.2 above is met; further, Report
 messages can at most cause the receiver to advance its notion of
 time (at the authoritative source) by less than the correct
 amount.

 This memo allows the same user to be defined on multiple SNMPv3
 engines. Each SNMPv3 engine maintains a value, snmpEngineID,
 which uniquely identifies the engine. This value is included in
 each message sent to/from the engine that is authoritative (see

section 1.5.1). On receipt of a message, an authoritative engine
 checks the value to ensure it is the intended recipient, and a
 non-authoritative engine uses the value to ensure that the message
 is processed using the correct state information.

 Each SNMPv3 engine maintains two values, engineBoots and engineTime,
 which taken together provide an indication of time at that engine.
 Both of these values are included in an authenticated message sent
 to/received from that engine. On receipt, the values are checked to
 ensure that the indicated time is within a time window of the
 current time. The time window represents an administrative upper
 bound on acceptable delivery delay for protocol messages.

 For an SNMPv3 engine to generate a message which an authoritative
 engine will accept as authentic, and to verify that a message
 received from that authoritative engine is authentic, such an engine
 must first achieve time synchronization with the authoritative
 engine.

Blumenthal/Wijnen Expires December 1997 [Page 9]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

2. Elements of the Model

 This section contains definitions required to realize the security
 model defined by this memo.

2.1. SNMPv3 Users

 Management operations using this security model make use of a defined
 set of user identities. For any SNMPv3 user on whose behalf
 management operations are authorized at a particular SNMPv3 engine,
 that engine must have knowledge of that user. An SNMPv3 engine that
 wishes to communicate with another SNMPv3 engine must also have
 knowledge of a user known to that engine, including knowledge of the
 applicable attributes of that user.

 A user and its attributes are defined as follows:

 <userName>
 A string representing the name of the user.

 <miId>
 A human-readable string representing a (security) model
 independent identity for this user.

 <groupName>
 A string representing the group that the user belongs to.

 <authProtocol>
 An indication of whether messages sent on behalf of this user can
 be authenticated, and if so, the type of authentication protocol
 which is used. One such protocol is defined in this memo: the
 Digest Authentication Protocol.

 <authKey>
 If messages sent on behalf of this user can be authenticated, the
 (private) authentication key for use with the authentication
 protocol. Note that a user's authentication key will normally be
 different at different authoritative engines. Not visible via
 remote access.

 <authKeyChange>
 The only way to remotely update the authentication key. Does that
 in a secure manner, so that the update can be completed without

 the need to employ privacy protection.

 <privProtocol>
 An indication of whether messages sent on behalf of this user can
 be protected from disclosure, and if so, the type of privacy
 protocol which is used. One such protocol is defined in this memo:
 the DES-based Encryption Protocol.

Blumenthal/Wijnen Expires December 1997 [Page 10]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 <privKey>
 If messages sent on behalf of this user can be en/decrypted, the
 (private) privacy key for use with the privacy protocol. Note that
 a user's privacy key will normally be different at different
 authoritative engines. Not visible via remote access.

 <privKeyChange>
 The only way to remotely update the encryption key. Does that
 in a secure manner, so that the update can be completed without
 the need to employ privacy protection.

2.2. Replay Protection

 Each SNMPv3 engine maintains three objects:

 - snmpEngineID, which is an identifier unique among all SNMPv3
 engines in (at least) an administrative domain;

 - engineBoots, which is a count of the number of times the engine has
 re-booted/re-initialized since snmpEngineID was last configured;
 and,

 - engineTime, which is the number of seconds since engineBoots was
 last incremented.

 Each SNMPv3 engine is always authoritative with respect to these
 objects in its own engine. It is the responsibility of a non-
 authoritative SNMPv3 engine to synchronize with the authoritative
 engine, as appropriate.

 An authoritative SNMPv3 engine is required to maintain the values of
 its snmpEngineID and engineBoots in non-volatile storage.

2.2.1. snmpEngineID

 The engineID value contained in an authenticated message is used to
 defeat attacks in which messages from one engine to another engine
 are replayed to a different engine.

 When an authoritative engine is first installed, it sets its local
 value of snmpEngineID according to a enterprise-specific algorithm
 (see the definition of engineID in the SNMP Architecture document
 [SNMP-ARCH]).

2.2.2. engineBoots and engineTime

 The engineBoots and engineTime values contained in an authenticated
 message are used to defeat attacks in which messages are replayed

 when they are no longer valid. Through use of engineBoots and
 engineTime, there is no requirement for an SNMPv3 engine to have a

Blumenthal/Wijnen Expires December 1997 [Page 11]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 non-volatile clock which ticks (i.e., increases with the passage of
 time) even when the engine is powered off. Rather, each time an
 SNMPv3 engine re-boots, it retrieves, increments, and then stores
 engineBoots in non-volatile storage, and resets engineTime to zero.

 When an SNMPv3 engine is first installed, it sets its local values
 of engineBoots and engineTime to zero. If engineTime ever
 reaches its maximum value (2147483647), then engineBoots is
 incremented as if the engine has re-booted and engineTime is reset to
 zero and starts incrementing again.

 Each time an authoritative SNMPv3 engine re-boots, any SNMPv3 engines
 holding that authoritative engine's values of engineBoots and
 engineTime need to re-synchronize prior to sending correctly
 authenticated messages to that authoritative engine (see Section

2.3 for (re-)synchronization procedures). Note, however, that the
 procedures do provide for a notification to be accepted as authentic
 by a receiving engine, when sent by an authoritative engine which has
 re-booted since the receiving engine last (re-)synchronized.

 If an authoritative SNMPv3 engine is ever unable to determine its
 latest engineBoots value, then it must set its engineBoots value to
 0xffffffff.

 Whenever the local value of engineBoots has the value 0xffffffff, it
 latches at that value and an authenticated message always causes an
 notInTimeWindow authentication failure.

 In order to reset an engine whose engineBoots value has reached the
 value 0xffffffff, manual intervention is required. The engine must
 be physically visited and re-configured, either with a new
 snmpEngineID value, or with new secret values for the authentication
 and privacy protocols of all users known to that engine.

2.2.3. Time Window

 The Time Window is a value that specifies the window of time in which
 a message generated on behalf of any user is valid. This memo
 specifies that the same value of the Time Window, 150 seconds, is
 used for all users.

2.3. Time Synchronization

 Time synchronization, required by a non-authoritative engine (see
section 5.1.1) in order to proceed with authentic communications,

 has occurred when the non-authoritative engine has obtained local
 values of engineBoots and engineTime from the authoritative engine
 that are within the authoritative engine's time window. To remain
 synchronized, the local values must remain within the authoritative

 engine's time window and thus must be kept loosely synchronized
 with the values stored at the authoritative engine.

Blumenthal/Wijnen Expires December 1997 [Page 12]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 In addition to keeping a local version of engineBoots and engineTime,
 a non-authoritative engine must also keep one other local variable,
 latestReceivedEngineTime. This value records the highest value of
 engineTime that was received by the non-authoritative engine from
 the authoritative engine and is used to eliminate the possibility
 of replaying messages that would prevent the non-authoritative
 engine's notion of the engineTime from advancing.

 Time synchronization occurs as part of the procedures of receiving
 a message (Section 3.2, step 7b). As such, no explicit time
 synchronization procedure is required by a non-authoritative engine.
 Note, that whenever the local value of snmpEngineID is changed
 (e.g., through discovery) or when secure communications are first
 established with this engine, the local values of engineBoots and
 latestReceivedEngineTime should be set to zero. This will cause
 the time synchronization to occur when the next authentic message
 is received.

2.4. SNMPv3 Messages Using this Model

 The syntax of an SNMPv3 message using this security model adheres
 to the message format defined in the SNMP Architecture document
 [SNMP-ARCH]. The securityParameters in the message are
 defined as an OCTET STRING. The format of that OCTET STRING for
 the User-based Security model is as follows:

 securityParameters ::=
 SEQUENCE {
 -- global parameters
 engineID
 OCTET STRING (SIZE(12)),
 engineBoots
 Unsigned32 (0..4294967295),
 engineTime
 Unsigned32 (0..2147483647),
 userName
 OCTET STRING (SIZE(1..16)),
 authParameters
 OCTET STRING,
 privParameters
 OCTET STRING,
 }
 END

 The authParameters are defined by the authentication protocol in
 use for the message (as defined by the authProtocol column in
 the user's entry in the usecUserTable).

 The privParameters are defined by the privacy protocol in
 use for the message (as defined by the privProtocol column in
 the user's entry in the usecUserTable).

Blumenthal/Wijnen Expires December 1997 [Page 13]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

2.5 Input and Output of the User-based Security Module

 This section describes the inputs and outputs that the User-based
 Security module expects and produces when the Message Processing
 and Control module (MPC) invokes the User-base Security module for
 services.

2.5.1 Input and Output when generating an SNMPv3 Message

 When the Message Processing and Control module (MPC) invokes the
 User-based Security module to secure an outgoing SNMPv3 message,
 there are two possibilities:

 a) A new request is generated. The abstract service interface is:

 generateRequestMsg(version, msgID, mms, msgFlags,
 securityModel, securityParameters,
 LoS, miId, engineID, scopedPDU)

 b) A response is generated. The abtract service interface is:

 generateResponseMsg(version, msgID, mms, msgFlags,
 securityModel, securityParameters,
 scopedPDU, cachedSecurityDataReference)

 Where:

 version
 This is the version number for the SNMP message.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 msgID
 This is the msgID to be generated.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 mms
 This is the maximum message size.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 msgFlags
 This is the field containing the msgFlags.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 It should be consistent with the LoS that is passed.
 securityModel
 This is the securityModel in use. Should be the USEC model.
 This data is not used by the USEC module.
 It is part of the globalData of the message.

 securityParameters
 These are the security parameters. They will be filled in

Blumenthal/Wijnen Expires December 1997 [Page 14]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 by the User-based Security module.
 LoS
 The Level of Security (LoS) from which the User-based Security
 module determines if the message needs to be protected from
 disclosure and if the message needs to be authenticated.
 scopedPDU
 this is the message payload. The data is opaque as far as the
 User-based Security module is concerned.
 miId
 this is the (security) model independent Identifier.
 Together with the engineID it identifies a row in the
 usecUserTable that is to be used for securing the message.
 engineID
 the engineID of the authoritative SNMP engine to which the
 request is to be sent.
 cachedSecurityDataReference
 A handle/reference to cached security data to be used when
 securing an outgoing response. This is the handle/reference
 that was generated by the USEC module when the incoming
 request was processed.

 Upon completion of the process, the User-based Security module
 returns either and error indication or the completed message
 with privacy and authentication applied if such was requested
 by the Level of Security (LoS) flags passed.

 The abstract service interface is:

 returnGeneratedMsg(wholeMsg, wholeMsgLen, statusCode)

 Where:
 wholeMsg
 this is fully encoded and secured message ready to be sent on
 the wire.
 wholeMsgLen
 this is the length of the encoded and secured message wholeMsg.
 statusCode
 this is the indicator of whether the encoding and securing of
 the message was successful, and if not it is an indication of
 the problem.

2.5.2 Input and Output when receiving an SNMPv3 Message

 The Message Processing and Control module (MPC) invokes the
 User-based Security module to verify proper security of an incoming
 SNMPv3 message. The abstract service interface is:

 processMsg(version, msgID, mms, msgFlags,

 securityModel, securityParameters,
 LoS, wholeMsg, wholeMsgLen)

Blumenthal/Wijnen Expires December 1997 [Page 15]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Where:

 version
 This is the version number for the SNMP message.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 msgID
 This is the msgID to be generated.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 mms
 This is the maximum message size.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 msgFlags
 This is the field containing the msgFlags.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 It should be consistent with the LoS that is passed.
 securityModel
 This is the securityModel in use. Should be the USEC model.
 This data is not used by the USEC module.
 It is part of the globalData of the message.
 securityParameters
 These are the security parameters. They will be filled in
 by the User-based Security module.
 LoS
 The Level of Security (LoS) from which the User-based Security
 module determines if the message needs to be protected from
 disclosure and if the message needs to be authenticated.
 wholeMsg
 this is the complete message as it was received by the Message
 Processing and Control module (MPC).
 wholeMsgLen
 this is the length of the wholeMsg as received on the wire.

 Upon completion of the process, the User-based Security module
 returns a statusCode and in case of success authenticated and
 decrypted data. The abstract service interface is:

 returnMsg(miId, groupName, cachedSecurityDataReference,
 scopedPDUmms, scopedPDU, statusCode)

 Where:

 miId
 this is an Security Model-independent Identifier that identifies
 an entry in the usecUserTable. It is to be used later when a

 response message must be secured.
 groupName
 this is the group to which the user belongs. The User-based

Blumenthal/Wijnen Expires December 1997 [Page 16]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Security module retrieves this information from the usecUserTable.
 cachedSecurityDataReference
 cached security data to be used when securing a possible outgoing
 response to this request. Will have to be released explicitly
 by the MPC or the application.
 scopedPDUmms
 this is the maximum message size that a possible response PDU
 may use. The User-based Security module calculates this size such
 that there is always space available for any security parameters
 that need to be added to the response message.
 scopedPDU
 this is the message payload. The data is opaque as far as the
 User-based Security module is concerned. But if the data was
 encrypted because privacy protection was in effect, then upon
 return from the User-based Security module the data will have
 been decrypted.
 statusCode
 this is an indicator of whether the message was parsed,
 authenticated and possibly decrypted successfully. If
 it was not - it indicates what the problem was.

Blumenthal/Wijnen Expires December 1997 [Page 17]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

3. Elements of Procedure

 This section describes the security related procedures followed by
 an SNMPv3 engine when processing SNMPv3 messages according to the
 User-based Security model.

3.1. Processing an Outgoing Message

 This section describes the procedure followed by an SNMPv3 engine
 whenever it generates a message containing a management operation
 (either a request, a response, a notification, or a report) on
 behalf of a user, with a particular Level of Security (LoS).

 1) - If any cachedSecurityDataReference is passed, then
 information concerning the user is extracted from the
 cachedSecurityData. The cachedSecurityData can now be
 discarded.
 - Otherwise, based on the miId, information concerning the user
 at the destination engineID is extracted from the Local
 (security) Configuration Datastore (LCD, usecUserTable).
 If information about the user is absent from the LCD,
 then an error indication (unknownSecurityIdentity) is
 returned to the calling module.

 2) If the Level of Security (LoS) specifies that the message is to
 be protected from disclosure, but the user does not support both
 an authentication and a privacy protocol then the message cannot
 be sent. An error indication (unsupportedLoS) is returned to
 the calling module.

 3) If the Level of Security (LoS) specifies that the message is to
 be authenticated, but the user does not support an authentication
 protocol, then the message cannot be sent. An error indication
 (unsupportedLoS) is returned to the calling module.

 4) If the Level of Security (LoS) specifies that the message is to
 be protected from disclosure, then the octet sequence
 representing the serialized scopedPDU is encrypted according to
 the user's privacy protocol. To do so a call is made to the
 privacy module that implements the user's privacy protocol.
 The abstract service interface is:

 encryptMsg(cryptKey, scopedPDU)

 Where:

 cryptKey
 The user's usecUserPrivKey. This is the secret key
 that can be used by the encryption algorithm.

 scopedPDU
 The data to be encrypted.

Blumenthal/Wijnen Expires December 1997 [Page 18]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Upon completion the privacy module returns:

 returnEncryptedMsg(encryptedPDU, privParameters, statusCode)

 encryptedPDU
 The encrypted scopedPDU (encoded as an octet string).
 privParameters
 The privacy parameters (encoded as an octet string) that
 need to be sent in the outgoing message.
 statusCode
 The indicator of whether the PDU was encrypted successfully
 and if not, it indicates what went wrong.

 If an error indication is returned by the privacy module then
 the message cannot be sent and the error indication is returned
 to the calling module.

 If the privacy module returns success, then the privParameters
 field is put into the securityParameters and the encryptedPDU
 serves as the payload of the message being prepared.

 5) If the Level of Security (LoS) specifies that the message is not
 to be protected from disclosure, then the NULL string is encoded
 as an octet string into the privParameters field of the
 securityParameters and the scopedPDU serves as the payload of
 the message being prepared.

 6) The engineID is encoded as an octet string into the <engineID>
 field of the securityParameters.

 7) If the Level of Security (LoS) specifies that the message is to
 be authenticated, then the current values of engineBoots, and
 engineTime corresponding to engineID from the LCD are used.
 Otherwise, a zero value is used for engineBoots and engineTime.
 The values are encoded as Unsigned32 into the engineBoots and
 engineTime fields of the securityParameters.

 8) The userName is encoded as an octet string into the userName
 field of the securityParameters.

 9) If the Level of Security (LoS) specifies that the message is to
 be authenticated, the message is authenticated according to the
 user's authentication protocol. To do so, a call is made to the
 authentication module that implements the user's authentication
 protocol. The abstract service interface is:

 authMsg(authKey, wholeMsg)

 authKey
 The user's usecUserAuthKey. This is the secret key

Blumenthal/Wijnen Expires December 1997 [Page 19]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 that can be used by the authentication algorithm.
 wholeMsg
 the message to be authenticated.

 Upon completion the authentication module returns:

 returnAuthMsg(wholeMsg, statusCode)

 wholeMsg
 Same as in input, but with authParameters properly filled.
 statusCode
 The indicator of whether the message was successfully
 processed by the authentication module.

 If an error indication is returned by the authentication module,
 then the message cannot be sent and the error indication is
 returned to the calling module.

 10) If the Level of Security (LoS) specifies that the message is not
 to be authenticated then the NULL string is encoded as an octet
 string into the authParameters field of the securityParameters.

 11) The completed message is returned to the calling module with
 the statusCode set to success.

3.2. Processing an Incoming Message

 This section describes the procedure followed by an SNMPv3 engine
 whenever it receives a message containing a management operation
 on behalf of a user, with a particular Level of Security (LoS).

 1) If the received securityParameters is not the serialization
 (according to the conventions of [RFC1906]) of an OCTET STRING
 formated according to the securityParameters defined in section

2.4, then the snmpInASNParseErrs counter [RFC1907] is
 incremented, and an error indication (ASNParseError) is returned
 to the calling module.

 2) The values of the security parameter fields are extracted from
 the securityParameters.

 3) If the engineID field contained in the securityParameters is
 unknown then:

 - a manager that performs discovery may optionally create a
 new entry in its Local (security) Configuration Database (LCD)
 and continue processing; or

 - an error indication (unknownEngineID) is returned to the

https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc1907

 calling module.

Blumenthal/Wijnen Expires December 1997 [Page 20]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 4) Information about the value of the userName and engineID
 fields is extracted from the Local (security) Configuration
 Database (LCD, usecUserTable). If no information is
 available for this user, then an error indication
 (unknownSecurityIdentity) is returned to the calling module.

 5) If the information about the user indicates that it does not
 support the Level of Security indicated by the LoS parameter,
 then and an error indication (unsupportedLoS) is returned to
 the calling module.

 6) If the Level of Security (LoS) specifies that the message is to
 be authenticated, then the message is authenticated according to
 the user's authentication protocol. To do so, a call is made to
 the authentication module that implements the user's
 authentication protocol. The abstract service interface is:

 authIncomingMsg(authKey, authParameters, wholeMsg)

 authKey
 The user's (secret) usecUserAuthKey
 authParameters
 the authParameters from the incoming message.
 wholeMsg
 the message to be authenticated.

 The authentication module returns:

 returnAuthIncomingMsg(wholeMsg, statusCode)

 If the message is not authentic according to the authentication
 protocol module (i.e. it returns an error indication), then the
 error indication is returned to the calling module.

 Otherwise, the authenticated wholeMsg is used for further
 processing.

 7) If the LoS field indicates an authenticated message, then
 the local values of engineBoots and engineTime corresponding to
 the value of the engineID field are extracted from the
 Local (security) Configuration Database (LCD).

 a) If the engineID value is the same as the snmpEngineID of
 the processing SNMPv3 engine (meaning that this is the
 authoritative engine), then if any of the following
 conditions is true, then the message is considered to be
 outside of the Time Window:

 - the local value of engineBoots is 0xffffffff;

 - the engineBoots field differs from the local value of

Blumenthal/Wijnen Expires December 1997 [Page 21]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 engineBoots; or,

 - the value of the engineTime field differs from the local
 notion of engineTime by more than +/- 150 seconds.

 If the message is considered to be outside of the Time Window
 then an error indication (notInTimeWindow) is returned to
 the calling module.

 b) If the engineID value is not the same as the snmpEngineID of
 the processing SNMPv3 engine (meaning that this engine is not
 the authoritative engine), then:

 - if at least one of the following conditions is true:

 - the engineBoots field is greater than the local value
 of engineBoots; or,

 - the engineBoots field is equal to the local value of
 engineBoots and the engineTime field is greater than
 the value of latestReceivedEngineTime,

 then the LCD entry corresponding to the value of the
 engineID field is updated, by setting the local value of
 engineBoots from the engineBoots field, the local value
 latestReceivedEngineTime from the engineTime field, and
 the local value of engineTime from the engineTime field.

 - if any of the following conditions is true, then the message
 is considered to be outside of the Time Window:

 - the local value of engineBoots is 0xffffffff;

 - the engineBoots field is less than the local value of
 engineBoots; or,

 - the engineBoots field is equal to the local value of
 engineBoots and the engineTime field is more than 150
 seconds less than the local notion of engineTime.

 If the message is considered to be outside of the Time
 Window then an error indication (notInTimeWindow) is
 returned to the calling module;
 however, time synchronization procedures may be invoked.
 Note that this procedure allows for engineBoots in the
 message to be greater than the local value of engineBoots
 to allow for received messages to be accepted as authentic
 when received from an authoritative SNMPv3 engine that
 has re-booted since the receiving SNMPv3 engine last

 (re-)synchronized.

Blumenthal/Wijnen Expires December 1997 [Page 22]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 8) If the LoS field indicates that the message was protected from
 disclosure, then the octet sequence representing the scopedPDU
 is decrypted according to the user's privacy protocol to obtain
 a serialized scopedPDUs value. Otherwise the data component is
 assumed to directly contain the scopedPDUs value. To do the
 decryption, a call is made to the privacy module that implements
 the user's privacy protocol. The abstract service interface is:

 decryptMsg(cryptKey, privParameters, encryptedPDU)

 cryptKey
 The user's secret usecUserPrivKey
 privParameters
 The privParameters field from the securityParameters from
 the incoming message.
 encryptedPDU
 the data to be decrypted

 The privacy module returns:

 returnDecryptedMsg(scopedPDU, statusCode)

 scopedPDU
 The decrypted scopedPDU.
 statusCode
 The indicator whether the message was successfully decrypted.

 If an error indication is returned by the privacy module, then
 the error indication is returned to the calling module.

 9) The scopedPDU-MMS is calculated.

 10) The groupName is retrieved from the usecUserTable

 11) The miId is retrieved from the usecUserTable

 12) The securityData is cached, so that a possible response to
 this message can use the same authentication and privacy
 secrets. Information to be saved/cached is as follows:

 usecUserName,
 usecUserAuthProto, usecUserAuthKey,
 usecUserPrivProto, usecUserPrivKey

-- Editor's note:
 If we assume SNMPv3, then we could check the reportableFlag and if
 it is not set, then we do not need to cache any security data
 because then there is no response possible. Do we want to do that?
-- End Editor's note.

 13) The statusCode is set to success and a return is made to the

Blumenthal/Wijnen Expires December 1997 [Page 23]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 calling module according to this abstract service interface:

 returnMsg(miId, groupName, cachedSecurityDataReference,
 scopedPDUmms, scopedPDU, statusCode)

Blumenthal/Wijnen Expires December 1997 [Page 24]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

4. Discovery

 This security model requires that a discovery process obtains
 sufficient information about other SNMP engines in order to
 communicate with them. Discovery requires the SNMP manager to
 learn the engine's snmpEngineID value before communication may
 proceed. This may be accomplished by formulating a get-request
 communication with the LoS set to noAuth/noPriv, the userName set
 to "public", the snmpEngineID set to all zeros (binary), and the
 varBindList left empty. The response to this message will be a
 report PDU that contains the snmpEngineID within the
 securityParameters field (and containing the snmpUnknownEngineIDs
 counter in the varBindList).
 If authenticated communication is required then the discovery
 process may invoke the procedure described in Section 2.3 to
 synchronize the timers.

Blumenthal/Wijnen Expires December 1997 [Page 25]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

5. Definitions

SNMP-USEC-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, snmpModules FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, TestAndIncr,
 RowStatus, StorageType FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF,
 SnmpAdminString, SnmpLoS, SnmpEngineID,
 SnmpSecurityModel,
 imfAuthMD5Protocol, imfNoPrivProtocol FROM IMF-MIB;

snmpUsecMIB MODULE-IDENTITY
 LAST-UPDATED "9706180000Z" -- 18 June 1997, midnight
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-email: snmpv3@tis.com
 Subscribe: majordomo@tis.com
 In msg body: subscribe snmpv3

 Chair: Russ Mundy
 Trusted Information Systems
 postal: 3060 Washington Rd
 Glenwood MD 21738
 email: mundy@tis.com
 phone: 301-854-6889

 Co-editor Uri Blumenthal
 IBM T. J. Watson Research
 postal: 30 Saw Mill River Pkwy,
 Hawthorne, NY 10532
 USA
 email: uri@watson.ibm.com
 phone: +1.914.784.7964

 Co-editor: Bert Wijnen
 IBM T. J. Watson Research
 postal: Schagen 33
 3461 GL Linschoten
 Netherlands
 email: wijnen@vnet.ibm.com
 phone: +31-348-432-794
 "

 DESCRIPTION "The management information definitions for the
 SNMPv3 User-based Security model.
 "
 ::= { snmpModules 99 } -- to be assigned

-- Administrative assignments **

Blumenthal/Wijnen Expires December 1997 [Page 26]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

snmpUsecAdmin OBJECT IDENTIFIER ::= { snmpUsecMIB 1 }
snmpUsecMIBObjects OBJECT IDENTIFIER ::= { snmpUsecMIB 2 }
snmpUsecMIBConformance OBJECT IDENTIFIER ::= { snmpUsecMIB 3 }

-- Textual Conventions ***

UserName ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "A string representing the name of a user for use in
 accordance with the SNMP User-based Security model.
 "
 SYNTAX SnmpAdminString (SIZE(1..16))

-- Editor's note:
-- A real issue is whether the fact that MD5 is used in the following
-- TC is OK. It might be better to use 3DES for 3DES and IDEA for IDEA.
-- End Editor's note

KeyChange ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Every definition of an object with this syntax must identify
 a protocol, P, and a secret key, K. The object's value is a
 manager-generated, partially-random value which, when
 modified, causes the value of the secret key, K, to be
 modified via a one-way function.

 The value of an instance of this object is the concatenation
 of two components: a 'random' component and a 'delta'
 component. The lengths of the random and delta components are
 given by the corresponding value of the protocol, P; if P
 requires K to be a fixed length, the length of both the random
 and delta components is that fixed length; if P allows the
 length of K to be variable up to a particular maximum length,
 the length of the random component is that maximum length and
 the length of the delta component is any length less than or
 equal to that maximum length. For example,
 imfAuthMD5Protocol requires K to be a fixed length of 16
 octets. Other protocols may define other sizes, as deemed
 appropriate.

 When an instance of this object is modified to have a new
 value by the management protocol, the agent generates a new
 value of K as follows:

 - a temporary variable is initialized to the existing value
 of K;
 - if the length of the delta component is greater than 16

 bytes, then:
 - the random component is appended to the value of the

Blumenthal/Wijnen Expires December 1997 [Page 27]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 temporary variable, and the result is input to the MD5
 hash algorithm to produce a digest value, and the
 temporary variable is set to this digest value;
 - the value of the temporary variable is XOR-ed with the
 first (next) 16-bytes of the delta component to produce
 the first (next) 16-bytes of the new value of K.
 - the above two steps are repeated until the unused
 portion of the delta component is 16 bytes or less,
 - the random component is appended to the value of the
 temporary variable, and the result is input to the MD5
 hash algorithm to produce a digest value;
 - this digest value, truncated if necessary to be the same
 length as the unused portion of the delta component, is
 XOR-ed with the unused portion of the delta component to
 produce the (final portion of the) new value of K.

 i.e.,

 iterations = (lenOfDelta - 1)/16; /* integer division */
 temp = keyOld;
 for (i = 0; i < iterations; i++) {
 temp = MD5 (temp || random);
 keyNew[i*16 .. (i*16)+15] =
 temp XOR delta[i*16 .. (i*16)+15];
 }
 temp = MD5 (temp || random);
 keyNew[i*16 .. lenOfDelta-1] =
 temp XOR delta[i*16 .. lenOfDelta-1];

 The value of an object with this syntax, whenever it is
 retrieved by the management protocol, is always the zero-
 length string."
 SYNTAX OCTET STRING

-- ***

-- The valid users for the User-based Security model ******************

usecUser OBJECT IDENTIFIER ::= { snmpUsecMIBObjects 1 }

usecUserTable OBJECT-TYPE
 SYNTAX SEQUENCE OF UsecUserEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The table of users configured in the SNMP engine's
 Local (security) Configuration Datastore (LCD)."
 ::= { usecUser 1 }

usecUserEntry OBJECT-TYPE

 SYNTAX UsecUserEntry
 MAX-ACCESS not-accessible

Blumenthal/Wijnen Expires December 1997 [Page 28]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 STATUS current
 DESCRIPTION "A user configured in the SNMP engine's Local
 (security) Configuration Datastore (LCD) for
 the User-based Security model.
 "
 INDEX { usecUserEngineID,
 IMPLIED usecUserName
 }
 ::= { usecUserTable 1 }

UsecUserEntry ::= SEQUENCE {
 usecUserEngineID SnmpEngineID,
 usecUserName UserName,
 usecUserMiId SnmpAdminString,
 usecUserGroupName SnmpAdminString,
 usecUserCloneFrom RowPointer,
 usecUserAuthProtocol OBJECT IDENTIFIER,
 usecUserAuthKeyChange KeyChange,
-- usecUserAuthKey OCTET STRING, not visible
 usecUserAuthPublic OCTET STRING,
 usecUserPrivProtocol OBJECT IDENTIFIER,
 usecUserPrivKeyChange KeyChange,
-- usecUserPrivKey OCTET STRING, not visible
 usecUserPrivPublic OCTET STRING,
 usecUserStorageType StorageType,
 usecUserStatus RowStatus
}

usecUserEngineID OBJECT-TYPE
 SYNTAX SnmpEngineID
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "An SNMP engine's administratively-unique identifier.

 In a simple agent, this value is always that agent's
 own snmpEngineID value.

 This value can also take the value of the snmpEngineID
 of a remote SNMP engine with which this user can
 communicate.
 "
 ::= { usecUserEntry 1 }

usecUserName OBJECT-TYPE
 SYNTAX UserName
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "A string representing the name of the user. This is

 the (User-based security) model dependent identity.
 "
 ::= { usecUserEntry 2 }

Blumenthal/Wijnen Expires December 1997 [Page 29]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

usecUserMiId OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "A string representing the (security) model independent
 identity for this user.

 The default mapping for the User-based Security model
 is that the miId is the same as the userName.
 "
 ::= { usecUserEntry 3 }

usecUserGroupName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "A string representing the group to which the user
 belongs. A group name of zero length indicates
 that the user is not [perhaps yet] a member of any
 group, possibly because the entry has not yet been
 completely configured. Users which are not a part
 of any group are effectively disabled to perform any
 SNMP operations.
 "
 DEFVAL { ''H } -- the empty string
 ::= { usecUserEntry 4 }

usecUserCloneFrom OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "A pointer to another conceptual row in this
 usecUserTable. The user in this other conceptual row
 is called the clone-from user.

 When a new user is created (i.e., a new conceptual row
 is instantiated in this table), the authentication
 parameters of the new user are cloned from its
 clone-from user.

 The first time an instance of this object is set by a
 management operation (either at or after its
 instantiation), the cloning process is invoked.
 Subsequent writes are successful but invoke no action
 to be taken by the agent.
 The cloning process fails with an 'inconsistentName'
 error if the conceptual row representing the

 clone-from user is not in an active state when the
 cloning process is invoked.

Blumenthal/Wijnen Expires December 1997 [Page 30]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Cloning also causes the initial values of the secret
 authentication key and the secret encryption key of
 the new user to be set to the same value as the
 corresponding secret of the clone-from user.

 When this object is read, the zero length string is
 returned.
 "
 ::= { usecUserEntry 5 }

usecUserAuthProtocol OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An indication of whether messages sent on behalf of
 this user to/from the SNMP engine identified by
 usecUserEngineID, can be authenticated, and if so,
 the type of authentication protocol which is used.

 An instance of this object is created concurrently
 with the creation of any other object instance for
 the same user (i.e., as part of the processing of
 the set operation which creates the first object
 instance in the same conceptual row). Once created,
 the value of an instance of this object can not be
 changed.
 "
 DEFVAL { imfAuthMD5Protocol }
 ::= { usecUserEntry 6 }

usecUserAuthKeyChange OBJECT-TYPE
 SYNTAX KeyChange -- typically (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An object, which when modified, causes the secret
 authentication key used for messages sent on behalf
 of this user to/from the SNMP engine identified by
 usecUserEngineID, to be modified via a one-way
 function.

 The associated protocol is the usecUserAuthProtocol.
 The associated secret key is the user's secret
 authentication key (usecUserAuthKey).

 When creating a new user, it is an 'inconsistentName'
 error for a set operation to refer to this object
 unless it is previously or concurrently initialized
 through a set operation on the corresponding value

 of usecUserCloneFrom.
 "
 DEFVAL { ''H } -- the empty string

Blumenthal/Wijnen Expires December 1997 [Page 31]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 ::= { usecUserEntry 7 }

usecUserAuthPublic OBJECT-TYPE
 SYNTAX OCTET STRING -- for MD5 (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "A publicly-readable value which is written as part
 of the procedure for changing a user's secret key,
 and later read to determine whether the change of
 the secrets was effected.
 "
 DEFVAL { ''H } -- the empty string
 ::= { usecUserEntry 8 }

usecUserPrivProtocol OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An indication of whether messages sent on behalf of
 this user to/from the SNMP engine identified by
 usecUserEngineID, can be protected from disclosure,
 and if so, the type of privacy protocol which is used.

 An instance of this object is created concurrently
 with the creation of any other object instance for
 the same user (i.e., as part of the processing of
 the set operation which creates the first object
 instance in the same conceptual row). Once created,
 the value of an instance of this object can not be
 changed.
 "
 DEFVAL { imfNoPrivProtocol }
 ::= { usecUserEntry 9 }

usecUserPrivKeyChange OBJECT-TYPE
 SYNTAX KeyChange -- typically (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An object, which when modified, causes the secret
 encryption key used for messages sent on behalf
 of this user to/from the SNMP engine identified by
 usecUserEngineID, to be modified via a one-way
 function.

 The associated protocol is the usecUserPrivProtocol.
 The associated secret key is the user's secret
 encryption key (usecUserPrivKey).

 When creating a new user, it is an 'inconsistentName'
 error for a set operation to refer to this object
 unless it is previously or concurrently initialized

Blumenthal/Wijnen Expires December 1997 [Page 32]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 through a set operation on the corresponding value
 of usecUserCloneFrom.
 "
 DEFVAL { ''H } -- the empty string
 ::= { usecUserEntry 10 }

usecUserPrivPublic OBJECT-TYPE
 SYNTAX OCTET STRING -- for DES (SIZE(0..16))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "A publicly-readable value which is written as part
 of the procedure for changing a user's secret key,
 and later read to determine whether the change of
 the secrets was effected.
 "
 DEFVAL { ''H } -- the empty string
 ::= { usecUserEntry 11 }

usecUserStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The storage type for this conceptual row."
 DEFVAL { nonVolatile }
 ::= { usecUserEntry 12 }

usecUserStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The status of this conceptual row. Until instances
 of all corresponding columns are appropriately
 configured, the value of the corresponding instance
 of the usecUserStatus column is 'notReady'.

 For those columnar objects which permit write-access,
 their value in an existing conceptual row can be
 changed irrespective of the value of usecUserStatus
 for that row.
 "
 ::= { usecUserEntry 13 }

usecUserSecretSpinLock OBJECT-TYPE
 SYNTAX TestAndIncr
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "An advisory lock used to allow several cooperating

 SNMPv3 engines, all acting in a manager role, to
 coordinate their use of facilities to alter secrets
 in the usecUserTable.

Blumenthal/Wijnen Expires December 1997 [Page 33]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 "
 ::= { usecUser 2 }

--Editor's note
Is it enough to have just one spin-lock for such a table where
several secrets can be modified? Can the protocol ensure the
consistency? Should it?
--End editor's note

-- Conformance Information ***

snmpUsecMIBCompliances
 OBJECT IDENTIFIER ::= { snmpUsecMIBConformance 1 }
snmpUsecMIBGroups
 OBJECT IDENTIFIER ::= { snmpUsecMIBConformance 2 }

-- Compliance statements

snmpUsecMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMP engines which
 implement the SNMP USEC MIB.
 "

 MODULE -- this module
 MANDATORY-GROUPS { snmpUsecMIBBasicGroup }

 OBJECT usecUserGroupName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT usecUserAuthProtocol
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT usecUserPrivProtocol
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 ::= { snmpUsecMIBCompliances 1 }

-- Units of compliance

snmpUsecMIBBasicGroup OBJECT-GROUP
 OBJECTS {
 usecUserMiId,
 usecUserGroupName,
 usecUserCloneFrom,
 usecUserAuthProtocol,

 usecUserAuthKeyChange,
 usecUserAuthPublic,

Blumenthal/Wijnen Expires December 1997 [Page 34]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 usecUserPrivProtocol,
 usecUserPrivKeyChange,
 usecUserPrivPublic,
 usecUserStorageType,
 usecUserStatus
 }
 STATUS current
 DESCRIPTION "A collection of objects providing for configuration
 of an SNMP engine which implements the SNMP
 User-based Security model.
 "
 ::= { snmpUsecMIBGroups 1 }

END

Blumenthal/Wijnen Expires December 1997 [Page 35]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

6. MD5 Authentication Protocol

 This section describes the Keyed-MD5 authentication protocol.
 This protocol is the first authentication protocol defined for
 the User-based Security model.
 Over time, other authentication protocols may be defined either
 as a replacement of this protocol or in addition to this protocol.

6.1 Mechanisms

 - In support of data integrity, a message digest algorithm is
 required. A digest is calculated over an appropriate portion
 of an SNMPv3 message and included as part of the message sent
 to the recipient.

 - In support of data origin authentication and data integrity, a
 secret value is both inserted into, and appended to, the SNMPv3
 message prior to computing the digest; the inserted value is
 overwritten prior to transmission, and the appended value is not
 transmitted. The secret value is shared by all SNMPv3 engines
 authorized to originate messages on behalf of the appropriate
 user.

 - In order to not expose the shared secrets (keys) at all SNMPv3
 engines in case one of the engines is compromised, such secrets
 (keys) are localized for each authoritative SNMPv3 engine, see
 [Localized-Key].

6.1.1. Digest Authentication Protocol

 The Digest Authentication Protocol defined in this memo provides for:

 - verifying the integrity of a received message (i.e., the message
 received is the message sent).

 The integrity of the message is protected by computing a digest
 over an appropriate portion of a message. The digest is computed
 by the originator of the message, transmitted with the message, and
 verified by the recipient of the message.

 - verifying the user on whose behalf the message was generated.

 A secret value known only to SNMPv3 engines authorized to generate
 messages on behalf of a user is both inserted into, and appended
 to, the message prior to the digest computation. Thus, the
 verification of the user is implicit with the verification of the
 digest. (Note that the use of two copies of the secret, one near
 the start and one at the end, is recommended by [KEYED-MD5].)

 This protocol uses the MD5 [MD5] message digest algorithm. A 128-bit
 digest is calculated over the designated portion of an SNMPv3 message

Blumenthal/Wijnen Expires December 1997 [Page 36]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 and included as part of the message sent to the recipient. The size
 of both the digest carried in a message and the private
 authentication key (the secret) is 16 octets.

6.2 Elements of the Digest Authentication Protocol

 This section contains definitions required to realize the
 authentication module defined by this memo.

6.2.1. SNMPv3 Users

 Authentication using this Digest Authentication protocol makes use
 of a defined set of user identities. For any SNMPv3 user on whose
 behalf a message must be authenticated at a particular SNMPv3 engine,
 that engine must have knowledge of that user. An SNMPv3 engine that
 wishes to communicate with another SNMPv3 engine must also have
 knowledge of a user known to that engine, including knowledge of the
 applicable attributes of that user.

 A user and its attributes are defined as follows:

 <userName>
 A string representing the name of the user.
 <authKey>
 A user's secret key to be used when calculating a digest.

6.2.2. EngineID

 The engineID value contained in an authenticated message specifies
 the authoritative SNMPv3 engine for that particular message.
 (see the definition of engineID in the SNMP Architecture document
 [SNMP-ARCH]).

 The user's (private) authentication key is normally different at
 each authoritative SNMPv3 engine and so the snmpEngineID is used
 to select the proper key for the authentication process.

6.2.3. SNMPv3 Messages Using this Authentication Protocol

 Messages using this authentication protocol carry an authParameters
 field as part of the securityParameters. For this protocol, the
 authParameters field is the serialized octet string representing
 the MD5 digest of the wholeMsg.

 The digest is calculated over the wholeMsg so if a message is
 authenticated, that also means that all the fields in the message
 are intact and have not been tampered with.

6.2.4 Input and Output of the MD5 Authentication Module

Blumenthal/Wijnen Expires December 1997 [Page 37]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 This section describes the inputs and outputs that the MD5
 Authentication module expects and produces when the User-based
 Security module invokes the MD5 Authentication module for
 services.

6.2.4.1 Input and Output when generating an SNMPv3 Message

 This MD5 authentication protocol assumes that the selection of the
 authKey is done by the caller and that the caller passes
 the secret key to be used. The abstract service interface is:

 authMsg(authKey, wholeMsg)

 Where:

 authKey
 The secret key to be used by the authentication algorithm.
 wholeMsg
 the message to be authenticated.

 Upon completion the authentication module returns information.
 The abstract service interface is:

 returnAuthMsg(wholeMsg, statusCode)

 Where:

 wholeMsg
 Same as in input, but with authParameters properly filled.
 statusCode
 The indicator of whether the message was successfully
 processed or not.

 Note, that <authParameters> is filled by the authentication module
 and this field should be already present in the <wholeMsg> before
 the MAC is generated.

6.2.4.2 Input and Output when receiving an SNMPv3 Message

 This MD5 authentication protocol assumes that the selection of the
 authKey is done by the caller and that the caller passes
 the secret key to be used. The abstract service interface is:

 authIncomingMsg(authKey, authParameters, wholeMsg)

 Where:

 authKey
 The secret key to be used by the authentication algorithm.

 authParameters
 the authParameters from the incoming message.

Blumenthal/Wijnen Expires December 1997 [Page 38]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 wholeMsg
 the message to be authenticated.

 Upon completion the authentication module returns information.
 The abstract service interface is:

 returnAuthIncomingMsg(wholeMsg, statusCode)

 wholeMsg
 Same as in input, data has been authenticated.
 statusCode
 The indicator of whether the message was successfully
 processed or not.

6.3 Elements of Procedure

 This section describes the procedures for the Keyed-MD5
 authentication protocol.

6.3.1 Processing an Outgoing Message

 This section describes the procedure followed by an SNMPv3 engine
 whenever it must authenticate an outgoing message using the
 imfAuthMD5Protocol.

 1) The authParameters field is set to the serialization according
 to the rules in [RFC1906] of an octet string representing the
 secret (localized) authKey.

 2) The secret (localized) authKey is then appended to the end of
 the wholeMsg.

 3) The MD5-Digest is calculated according to [MD5]. Then the
 authParameters field is replaced with the calculated digest.

 4) The wholeMsg (excluding the appended secret key) is then
 returned to the caller together with a statusCode of success.

6.3.2 Processing an Incoming Message

 This section describes the procedure followed by an SNMPv3 engine
 whenever it must authenticate an incoming message using the
 imfAuthMD5Protocol.

 1) If the digest received in the authParameters field is not
 16 octets long, then an error indication (authenticationError)
 is returned to the calling module.

 2) The digest received in the authParameters field is saved.

https://datatracker.ietf.org/doc/html/rfc1906

 3) The digest in the authParameters field is replaced by the

Blumenthal/Wijnen Expires December 1997 [Page 39]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 secret (localized) authKey.

 4) The secret (localized) authKey is then appended to the end of
 the wholeMsg.

 5) The MD5-Digest is calculated according to [MD5].
 The authParameters field is replaced with the digest value
 that was saved in step 2).

 6) Then the newly calculated digest is compared with the digest
 saved in step 2). If the digests do not match, then an error
 indication (authenticationError) is returned to the calling
 module.

 7) The wholeMsg (excluding the appended secret key) and a
 statusCode of success are then returned to the caller.

Blumenthal/Wijnen Expires December 1997 [Page 40]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

7. DES Privacy Protocol

 This section describes the DES privacy protocol.
 This protocol is the first privacy protocol defined for the
 User-based Security model.
 Over time, other privacy protocols may be defined either
 as a replacement of this protocol or in addition to this protocol.

7.1 Mechanisms

 - In support of data confidentiality, an encryption algorithm is
 required. An appropriate portion of the message is encrypted
 prior to being transmitted. The User-based Security model
 specifies that the scopedPDU is the portion of the message
 that needs to be encrypted.

 - A secret value is in combination with a time value is used to
 create the en/decryption key and the initialization vector.
 The secret value is shared by all SNMPv3 engines authorized to
 originate messages on behalf of the appropriate user.

 - In order to not expose the shared secrets (keys) at all SNMPv3
 engines in case one of the engines is compromised, such secrets
 (keys) are localized for each authoritative SNMPv3 engine, see
 [Localized-Key].

7.1.1. Symmetric Encryption Protocol

 The Symmetric Encryption Protocol defined in this memo provides
 support for data confidentiality. The designated portion of an
 SNMPv3 message is encrypted and included as part of the message
 sent to the recipient.

 This memo requires that if data confidentiality is supported by
 an SNMPv3 engine, this engine must implement at least the Data
 Encryption Standard (DES) in the Cipher Block Chaining mode of
 operation.

 Two organizations have published specifications defining the DES: the
 National Institute of Standards and Technology (NIST) [DES-NIST] and
 the American National Standards Institute [DES-ANSI]. There is a
 companion Modes of Operation specification for each definition
 (see [DESO-NIST] and [DESO-ANSI], respectively).

 The NIST has published three additional documents that implementors
 may find useful.

 - There is a document with guidelines for implementing and using the

 DES, including functional specifications for the DES and its modes
 of operation [DESG-NIST].

Blumenthal/Wijnen Expires December 1997 [Page 41]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 - There is a specification of a validation test suite for the DES
 [DEST-NIST]. The suite is designed to test all aspects of the DES
 and is useful for pinpointing specific problems.

 - There is a specification of a maintenance test for the DES
 [DESM-NIST]. The test utilizes a minimal amount of data and
 processing to test all components of the DES. It provides a
 simple yes-or-no indication of correct operation and is useful
 to run as part of an initialization step, e.g., when a computer
 re-boots.

7.1.1.1 DES key and Initialization Vector.

 The first 8 bytes of the 16-byte secret (private privacy key) are
 used as a DES key.
 Since DES uses only 56 bits, the Least Significant Bit in each
 byte is disregarded.

 The Initialization Vector for encryption is obtained using the
 following procedure.

 The last 8 bytes of the 16-byte secret (private privacy key)
 are used as pre-IV.

 In order to ensure that IV for two different packets encrypted
 by the same key, are not the same (i.e. IV does not repeat) we
 need to "salt" the pre-IV with something unique per packet.
 An 8-byte octet string is used as the "salt". The concatenation
 of the generating engine's 32-bit snmpEngineBoots and a local
 32-bit integer that the encryption engine maintains is input to
 the "salt". The 32-bit integer is initialized to a random value
 at boot time. The 32-bit snmpEngineBoots is converted to the first
 4 bytes (Most Significant Byte first) of our "salt". The 32-bit
 integer is then converted to the last 4 bytes (Most Significant
 Byte first) of our "salt". The resulting "salt" is then XOR-ed
 with the pre-IV. The 8-byte salt is then put into the privParameters
 field as an octet-string. The "salt" integer is incremented by one
 and wraps when it reaches the maximum value.

 The "salt" must be placed in the privParameters field to enable the
 receiving entity to compute the correct IV and to decrypt the
 message.

 How exactly the value of the "salt" (and thus of the IV) varies,
 is an implementation issue, as long as the measures are taken to
 avoid producing a duplicate IV.

7.1.1.2 Data Encryption.

 The data to be encrypted is treated as sequence of octets. Its

Blumenthal/Wijnen Expires December 1997 [Page 42]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 length should be an integral multiple of 8 - and if not, the
 data is padded at the end as necessary. The actual pad value
 is irrelevant.

 The data is encrypted in Cipher Block Chaining mode.
 The plaintext is divided into 64-bit blocks.

 The plaintext for each block is XOR-ed with the ciphertext
 of the previous block, the result is encrypted and the output
 of the encryption is the ciphertext for the block.
 This procedure is repeated until there are no more plaintext
 blocks.

 For the very first block, the Initialization Vector is used
 instead of the ciphertext of the previous block.

7.1.1.3 Data Decryption

 Before decryption, the encrypted data length is verified.
 If the length of the octet sequence to be decrypted is not an
 integral multiple of 8 octets, the processing of the octet sequence
 is halted and an appropriate exception noted. When decrypting, the
 padding is ignored.

 The first ciphertext block is decrypted, the decryption output is
 XOR-ed with the Initialization Vector, and the result is the first
 plaintext block.

 For each subsequent block, the ciphertext block is decrypted,
 the decryption output is XOR-ed with the previous ciphertext
 block and the result is the plaintext block.

7.2 Elements of the DES Privacy Protocol

 This section contains definitions required to realize the privacy
 module defined by this memo.

7.2.1. SNMPv3 Users

 Data En/Decryption using this Symmetric Encryption Protocol makes use
 of a defined set of user identities. For any SNMPv3 user on whose
 behalf a message must be en/decrypted at a particular SNMPv3 engine,
 that engine must have knowledge of that user. An SNMPv3 engine that
 wishes to communicate with another SNMPv3 engine must also have
 knowledge of a user known to that engine, including knowledge of the
 applicable attributes of that user.

 A user and its attributes are defined as follows:

 <userName>
 An octet string representing the name of the user.

Blumenthal/Wijnen Expires December 1997 [Page 43]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 <privKey>
 A user's secret key to be used as input for the DES key and IV.

7.2.2. EngineID

 The engineID value contained in an authenticated message specifies
 the authoritative SNMPv3 engine for that particular message.
 (see the definition of engineID in the SNMP Architecture document
 [SNMP-ARCH]).

 The user's (private) privacy key is normally different at
 each authoritative SNMPv3 engine and so the snmpEngineID is used
 to select the proper key for the authentication process.

7.2.3. SNMPv3 Messages Using this Privacy Protocol

 Messages using this privacy protocol carry a privParameters
 field as part of the securityParameters. For this protocol, the
 privParameters field is the serialized octet string representing
 the "salt" that was used to create the IV.

7.2.4 Input and Output of the DES Privacy Module

 This section describes the inputs and outputs that the DES Privacy
 module expects and produces when the User-based Security module
 invokes the DES Privacy module for services.

7.2.4.1 Input and Output when generating an SNMPv3 Message

 This DES privacy protocol assumes that the selection of the
 privKey is done by the caller and that the caller passes
 the secret key to be used. The abstract service interface is:

 encryptMsg(cryptKey, scopedPDU)

 Where:

 cryptKey
 The secret key to be used by the encryption algorithm.
 scopedPDU
 The data to be encrypted.

 Upon completion the privacy module returns information.
 The abstract service interface is:

 returnEncryptedMsg(encryptedPDU, privParameters, statusCode)
 Where:
 encryptedPDU
 The encrypted scopedPDU (encoded as an octet string).

 privParameters
 The privacy parameters (encoded as an octet string) that

Blumenthal/Wijnen Expires December 1997 [Page 44]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 need to be sent in the outgoing message.
 statusCode
 The indicator of whether the PDU was encrypted successfully
 and if not, it indicates what went wrong.

7.2.4.2 Input and Output when receiving an SNMPv3 Message

 This DES privacy protocol assumes that the selection of the
 privKey is done by the caller and that the caller passes
 the secret key to be used. The abstract service interface is:

 decryptMsg(cryptKey, privParameters, encryptedPDU)

 Where:

 cryptKey
 The secret key to be used by the decryption algorithm.
 privParameters
 The "salt" to be used to calculate the IV.
 encryptedPDU
 the data to be decrypted

 Upon completion the privacy module returns information.
 The abstract service interface is:

 returnDecryptedMsg(scopedPDU, statusCode)

 Where:

 scopedPDU
 The decrypted scopedPDU.
 statusCode
 The indicator whether the message was successfully decrypted.

7.3 Elements of Procedure.

 This section describes the procedures for the DES privacy protocol.

7.3.1 Processing an Outgoing Message

 This section describes the procedure followed by an SNMPv3 engine
 whenever it must encrypt part of an outgoing message using the
 imfPrivDESProtocol.

 1) The secret (localized) cryptKey are used to construct the DES
 encryption key, the "salt" and the DES pre-IV (as described in
 7.1.1.1).

 2) The authParameters field is set to the serialization according

 to the rules in [RFC1906] of an octet string representing the
 the "salt" string.

Blumenthal/Wijnen Expires December 1997 [Page 45]

https://datatracker.ietf.org/doc/html/rfc1906

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 2) The scopedPDU is encrypted (as described in 7.1.1.2) and the
 encrypted data is serialized according to the rules in [RFC1906]
 as an octet string.

 3) The the serialized octet string representing the encrypted
 scopedPDU together with the privParameters and a statusCode of
 success is returned to the caller.

7.3.2 Processing an Incoming Message

 This section describes the procedure followed by an SNMPv3 engine
 whenever it must decrypt part of an incoming message using the
 imfPrivDESProtocol.

 1) If the privParameters field is not an 8-byte octet string,
 then an error indication (privacyError) is returned to the
 calling module.

 2) The "salt" is extracted from the privParameters field.

 3) The secret (localized) cryptKey and the "salt" are then used
 to construct the DES decryption key and pre-IV
 (as described in 7.1.1.1).

 4) The encryptedPDU is decrypted (as described in 7.1.1.3).

 5) If the encryptedPDU cannot be decrypted, then an error
 indication (privacyError) is returned to the calling module.

 6) The decrypted scopedPDU and a statusCode of success are returned
 to the calling module.

https://datatracker.ietf.org/doc/html/rfc1906

Blumenthal/Wijnen Expires December 1997 [Page 46]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

8. Editor's Addresses

 Co-editor Uri Blumenthal
 IBM T. J. Watson Research
 postal: 30 Saw Mill River Pkwy,
 Hawthorne, NY 10532
 USA
 email: uri@watson.ibm.com
 phone: +1-914-784-7064

 Co-editor: Bert Wijnen
 IBM T. J. Watson Research
 postal: Schagen 33
 3461 GL Linschoten
 Netherlands
 email: wijnen@vnet.ibm.com
 phone: +31-348-432-794

9. Acknowledgements

This document is based on the recommendations of the SNMP Security and
Administrative Framework Evolution team, comprised of

 David Harrington (Cabletron Systems Inc.)
 Jeff Johnson (Cisco)
 David Levi (SNMP Research Inc.)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (IBM T. J. Watson Research)

Further a lot of "cut and paste" material comes from RFC1910 and from
earlier draft documents from the SNMPv2u and SNMPv2* series.

Further more a special thanks is due to the SNMPv3 WG, specifically:

https://datatracker.ietf.org/doc/html/rfc1910

Blumenthal/Wijnen Expires December 1997 [Page 47]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

10. Security Considerations

10.1. Recommended Practices

 This section describes practices that contribute to the secure,
 effective operation of the mechanisms defined in this memo.

 - A management station must discard SNMPv3 responses for which
 neither the msgID nor the request-id component or the represented
 management information corresponds to any currently outstanding
 request.

 Although it would be typical for a management station to do this
 as a matter of course, when using these security protocols it is
 significant due to the possibility of message duplication
 (malicious or otherwise).

 - A management station must generate unpredictable msgIDs and
 request-ids in authenticated messages in order to protect against
 the possibility of message duplication (malicious or otherwise).
 For example, start operations with msgID and/or request-id 0 is
 not a good idea. Initializing them with a pseudorandom number
 and then incrementing by one would be acceptable.

 - A management station should perform time synchronization using
 authenticated messages in order to protect against the possibility
 of message duplication (malicious or otherwise).

 - When sending state altering messages to a managed agent, a
 management station should delay sending successive messages to the
 managed agent until a positive acknowledgement is received for the
 previous message or until the previous message expires.

 No message ordering is imposed by the SNMPv3. Messages may be
 received in any order relative to their time of generation and
 each will be processed in the ordered received. Note that when an
 authenticated message is sent to a managed agent, it will be valid
 for a period of time of approximately 150 seconds under normal
 circumstances, and is subject to replay during this period.
 Indeed, a management station must cope with the loss and
 re-ordering of messages resulting from anomalies in the network
 as a matter of course.

 However, a managed object, snmpSetSerialNo [RFC1907], is
 specifically defined for use with SNMPv2 set operations in order
 to provide a mechanism to ensure the processing of SNMPv2 messages
 occurs in a specific order.

 - The frequency with which the secrets of an SNMPv3 user should be

https://datatracker.ietf.org/doc/html/rfc1907

 changed is indirectly related to the frequency of their use.

Blumenthal/Wijnen Expires December 1997 [Page 48]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Protecting the secrets from disclosure is critical to the overall
 security of the protocols. Frequent use of a secret provides a
 continued source of data that may be useful to a cryptanalyst in
 exploiting known or perceived weaknesses in an algorithm.
 Frequent changes to the secret avoid this vulnerability.

 Changing a secret after each use is generally regarded as the most
 secure practice, but a significant amount of overhead may be
 associated with that approach.

 Note, too, in a local environment the threat of disclosure may be
 less significant, and as such the changing of secrets may be less
 frequent. However, when public data networks are the
 communication paths, more caution is prudent.

10.2 Defining Users

 The mechanisms defined in this document employ the notion of "users"
 which map into "groups" and such "groups" have access rights.
 How "users" are defined is subject to the security policy of the
 network administration. For example, users could be individuals
 (e.g., "joe" or "jane"), or a particular role (e.g., "operator" or
 "administrator"), or a combination (e.g., "joe-operator",
 "jane-operator" or "joe-admin"). Furthermore, a "user" may be a
 logical entity, such as a manager station application or set
 of manager station applications, acting on behalf of an individual
 or role, or set of individuals, or set of roles, including
 combinations.

Appendix A describes an algorithm for mapping a user "password" to a
 16 octet value for use as either a user's authentication key or
 privacy key (or both). Note however, that using the same password
 (and therefore the same key) for both authentication and privacy is
 very poor security practice and should be strongly discouraged.
 Passwords are often generated, remembered, and input by a human.
 Human-generated passwords may be less than the 16 octets required
 by the authentication and privacy protocols, and brute force
 attacks can be quite easy on a relatively short ASCII character set.
 Therefore, the algorithm is Appendix A performs a transformation on
 the password. If the Appendix A algorithm is used, SNMP
 implementations (and SNMP configuration applications) must ensure
 that passwords are at least 8 characters in length.

 Because the Appendix A algorithm uses such passwords (nearly)
 directly, it is very important that they not be easily guessed. It
 is suggested that they be composed of mixed-case alphanumeric and
 punctuation characters that don't form words or phrases that might
 be found in a dictionary. Longer passwords improve the security of

 the system. Users may wish to input multiword phrases to make their
 password string longer while ensuring that it is memorable.

Blumenthal/Wijnen Expires December 1997 [Page 49]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

 Since it is infeasible for human users to maintain different
 passwords for every engine, but security requirements strongly
 discourage having the same key for more than one engine, SNMPv3
 employs a compromise proposed in [Localized-key].
 It derives the user keys for the SNMPv3 engines from user's password
 in such a way that it is practically impossible to either determine
 the user's password, or user's key for another SNMPv3 engine from
 any combination of user's keys on SNMPv3 engines.

 Note however, that if user's password is disclosed, key localization
 will not help and network security may be compromised in this case.

10.3. Conformance

 To be termed a "Secure SNMPv3 implementation" based on the User-base
 Security model, an SNMPv3 implementation:

 - must implement one or more Authentication Protocol(s). The MD5
 Authentication Protocol defined in this memo is one such protocol.

 - must, to the maximum extent possible, prohibit access to the
 secret(s) of each user about which it maintains information in a
 Local (security) Configuration Database (LCD) under all
 circumstances except as required to generate and/or validate
 SNMPv3 messages with respect to that user.

 - must implement the SNMP USEC MIB.

 In addition, an authoritative SNMPv3 engine must provide initial
 configuration in accordance with Appendix A.1.

 Implementation of a Privacy Protocol (the Symmetric Encryption
 Protocol defined in this memo is one such protocol) is optional.

Blumenthal/Wijnen Expires December 1997 [Page 50]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

11. References

[RFC1902] The SNMPv2 Working Group, Case, J., McCloghrie, K.,
 Rose, M., and S., Waldbusser, "Structure of Management
 Information for Version 2 of the Simple Network Management
 Protocol (SNMPv2)", RFC 1905, January 1996.

[RFC1905] The SNMPv2 Working Group, Case, J., McCloghrie, K.,
 Rose, M., and S., Waldbusser, "Protocol Operations for
 Version 2 of the Simple Network Management Protocol (SNMPv2)",

RFC 1905, January 1996.

[RFC1906] The SNMPv2 Working Group, Case, J., McCloghrie, K.,
 Rose, M., and S. Waldbusser, "Transport Mappings for
 Version 2 of the Simple Network Management Protocol (SNMPv2)",

RFC 1906, January 1996.

[RFC1907] The SNMPv2 Working Group, Case, J., McCloghrie, K.,
 Rose, M., and S. Waldbusser, "Management Information Base for
 Version 2 of the Simple Network Management Protocol (SNMPv2)",

RFC 1907 January 1996.

[RFC1908] The SNMPv2 Working Group, Case, J., McCloghrie, K.,
 Rose, M., and S. Waldbusser, "Coexistence between Version 1
 and Version 2 of the Internet-standard Network Management
 Framework", RFC 1908, January 1996.

[SNMP-ARCH] The SNMPv3 Working Group, Harrington, D., Wijnen, B.,
 "An Architecture for describing Internet Management Frameworks",

draft-ietf-snmpv3-next-gen-arch-02.txt, June 1997.

[SNMPv3-MPC] The SNMPv3 Working Group, Wijnen, B., Harrington, D.,
 "Message Processing and Control Model for version 3 of the Simple
 Network Management Protocol (SNMPv3)",

draft-ietf-snmpv3-mpc-01.txt, June 1997.

[SNMPv3-ACM] The SNMPv3 Working Group, Wijnen, B., Harrington, D.,
 "Access Control Model for Version 3 of the Simple Network
 Management Protocol (SNMPv3)", draft-ietf-snmpv3-acm-00.txt,
 June 1997.

[SNMPv3-USEC] The SNMPv3 Working Group, Blumenthal, U., Wijnen, B.
 "User-Based Security Model for version 3 of the Simple Network
 Management Protocol (SNMPv3)",

draft-ietf-snmpv3-usec-01.txt, June 1997.

[Localized-Key] U. Blumenthal, N. C. Hien, B. Wijnen
 "Key Derivation for Network Management Applications"

https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1905
https://datatracker.ietf.org/doc/html/rfc1906
https://datatracker.ietf.org/doc/html/rfc1907
https://datatracker.ietf.org/doc/html/rfc1908
https://datatracker.ietf.org/doc/html/draft-ietf-snmpv3-next-gen-arch-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-snmpv3-mpc-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-snmpv3-acm-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-snmpv3-usec-01.txt

 IEEE Network Magazine, April/May issue, 1997.

Blumenthal/Wijnen Expires December 1997 [Page 51]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

[KEYED-MD5] Krawczyk, H.,
 "Keyed-MD5 for Message Authentication",
 Work in Progress, IBM, June 1995.

[MD5] Rivest, R.
 "Message Digest Algorithm MD5"

RFC 1321.

[DES-NIST] Data Encryption Standard, National Institute of Standards
 and Technology. Federal Information Processing Standard (FIPS)
 Publication 46-1. Supersedes FIPS Publication 46, (January, 1977;
 reaffirmed January, 1988).

[DES-ANSI] Data Encryption Algorithm, American National Standards
 Institute. ANSI X3.92-1981, (December, 1980).

[DESO-NIST] DES Modes of Operation, National Institute of Standards and
 Technology. Federal Information Processing Standard (FIPS)
 Publication 81, (December, 1980).

[DESO-ANSI] Data Encryption Algorithm - Modes of Operation, American
 National Standards Institute. ANSI X3.106-1983, (May 1983).

[DESG-NIST] Guidelines for Implementing and Using the NBS Data
 Encryption Standard, National Institute of Standards and
 Technology. Federal Information Processing Standard (FIPS)
 Publication 74, (April, 1981).

[DEST-NIST] Validating the Correctness of Hardware Implementations of
 the NBS Data Encryption Standard, National Institute of Standards
 and Technology. Special Publication 500-20.

[DESM-NIST] Maintenance Testing for the Data Encryption Standard,
 National Institute of Standards and Technology.
 Special Publication 500-61, (August, 1980).

https://datatracker.ietf.org/doc/html/rfc1321

Blumenthal/Wijnen Expires December 1997 [Page 52]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

APPENDIX A - Installation

A.1. Engine Installation Parameters

During installation, an SNMPv3 engine acting in an authoritative role
is configured with several parameters. These include:

(1) one or more secrets

 These are the authentication/privacy secrets for the first user
 to be configured.

 One way to accomplish this is to have the installer enter a
 "password" for each required secret. The password is then
 algorithmically converted into the required secret by:

 - forming a string of length 1,048,576 octets by repeating the
 value of the password as often as necessary, truncating
 accordingly, and using the resulting string as the input to
 the MD5 algorithm [MD5]. The resulting digest, termed "digest1",
 is used in the next step.

 - a second string of length 44 octets is formed by concatenating
 digest1, the SNMPv3 engine's snmpEngineID value, and digest1.
 This string is used as input to the MD5 algorithm [MD5].

 The resulting digest is the required secret (see Appendix A.2).

 With these configured parameters, the SNMPv3 engine instantiates
 the following usecUserEntry in the usecUserTable:

 no privacy support privacy support
 ------------------ ---------------
 usecUserEngineID localEngineID localEngineID
 usecUserName "public" "public"
 usecUserMiId "public" "public"
 usecUserGroupName "public" "public"
 usecUserCloseFrom ZeroDotZero ZeroDotZero
 usecUserAuthProtocol imfAuthMD5Protocol imfAuthMD5Protocol
 usecUserAuthKeyChange "" ""
 usecUserAuthPublic "" ""
 usecUserPrivProtocol none imfPrivDESProtocol
 usecUserPrivKeyChange "" ""
 usecUserrivhPublic "" ""
 usecUserStorageType permanent permanent
 usecUserStatus active active

Blumenthal/Wijnen Expires December 1997 [Page 53]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

A.2. Password to Key Algorithm

The following code fragment demonstrates the password to key
algorithm which can be used when mapping a password to an
authentication or privacy key. The calls to MD5 are as
documented in RFC1321 [RFC1321]

void password_to_key(
 u_char *password, /* IN */
 u_int passwordlen, /* IN */
 u_char *engineID, /* IN - ptr to 12 octet long snmpEngineID */
 u_char *key) /* OUT - caller's pointer to 16-byte buffer */
{
 MD5_CTX MD;
 u_char *cp, password_buf[64];
 u_long password_index = 0;
 u_long count = 0, i;

 MD5Init (&MD); /* initialize MD5 */

 /**/
 /* Use while loop until we've done 1 Megabyte */
 /**/
 while (count < 1048576) {
 cp = password_buf;
 for (i = 0; i < 64; i++) {
 /***/
 /* Take the next byte of the password, wrapping */
 /* to the beginning of the password as necessary.*/
 /***/
 *cp++ = password[password_index++ % passwordlen];
 }
 MDupdate (&MD, password_buf, 64);
 count += 64;
 }
 MD5Final (key, &MD); /* tell MD5 we're done */

 /***/
 /* Now localize the key with the engineID and pass */
 /* through MD5 to produce final key */
 /***/
 memcpy(password_buf, key, 16);
 memcpy(password_buf+16, engineID, 12);
 memcpy(password_buf+28, key, 16);

 MD5Init(&MD);
 MDupdate(&MD, password_buf, 44);
 MD5Final(key, &MD);

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321

 return;
}

Blumenthal/Wijnen Expires December 1997 [Page 54]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

A.3. Password to Key Sample

 The following shows a sample output of the password to key algorithm.

 With a password of "maplesyrup" the output of the password to key
 algorithm before the key is localized with the engine's engineID is:

 '9f af 32 83 88 4e 92 83 4e bc 98 47 d8 ed d9 63'H

 After the intermediate key (shown above) is localized with the
 snmpEngineID value of:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

 the final output of the password to key algorithm is:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b'H

Blumenthal/Wijnen Expires December 1997 [Page 55]

Draft User-based Security Model (USEC) for SNMPv3 June 1997

Table of Contents

0.1 Issues 1
0.2 Change Log 2
1. Introduction 3
1.1. Threats 3
1.2. Goals and Constraints 4
1.3. Security Services 5
1.4. Implementation Organization 6
1.4.1. Timeliness Module 6
1.4.2. Authentication Protocol 6
1.4.3. Privacy Protocol 7
1.5 Protection against Message Replay, Delay and Redirection 7
1.5.1 Authoritative SNMP Engine 7
1.5.2 The following mechanisms are used: 7
2. Elements of the Model 10
2.1. SNMPv3 Users 10
2.2. Replay Protection 11
2.2.1. snmpEngineID 11
2.2.2. engineBoots and engineTime 11
 2.3 for (re-)synchronization procedures). Note, however, that the 12
2.2.3. Time Window 12
2.3. Time Synchronization 12
2.4. SNMPv3 Messages Using this Model 13
2.5 Input and Output of the User-based Security Module 14
2.5.1 Input and Output when generating an SNMPv3 Message 14
2.5.2 Input and Output when receiving an SNMPv3 Message 15
3. Elements of Procedure 18
3.1. Processing an Outgoing Message 18
3.2. Processing an Incoming Message 20
 2.4, then the snmpInASNParseErrs counter [RFC1907] is 20
4. Discovery 25
5. Definitions 26
6. MD5 Authentication Protocol 36
6.1 Mechanisms 36
6.1.1. Digest Authentication Protocol 36
6.2 Elements of the Digest Authentication Protocol 37
6.2.1. SNMPv3 Users 37
6.2.2. EngineID 37
6.2.3. SNMPv3 Messages Using this Authentication Protocol 37
6.2.4 Input and Output of the MD5 Authentication Module 37
6.2.4.1 Input and Output when generating an SNMPv3 Message 38
6.2.4.2 Input and Output when receiving an SNMPv3 Message 38
6.3 Elements of Procedure 39
6.3.1 Processing an Outgoing Message 39
6.3.2 Processing an Incoming Message 39
7. DES Privacy Protocol 41
7.1 Mechanisms 41

https://datatracker.ietf.org/doc/html/rfc1907

7.1.1. Symmetric Encryption Protocol 41
7.1.1.1 DES key and Initialization Vector. 42
7.1.1.2 Data Encryption. 42
7.1.1.3 Data Decryption 43
7.2 Elements of the DES Privacy Protocol 43
7.2.1. SNMPv3 Users 43
7.2.2. EngineID 44
7.2.3. SNMPv3 Messages Using this Privacy Protocol 44
7.2.4 Input and Output of the DES Privacy Module 44
7.2.4.1 Input and Output when generating an SNMPv3 Message 44
7.2.4.2 Input and Output when receiving an SNMPv3 Message 45
7.3 Elements of Procedure. 45
7.3.1 Processing an Outgoing Message 45
 7.1.1.1). 45
7.3.2 Processing an Incoming Message 46
8. Editor's Addresses 47
9. Acknowledgements 47
A.1. Engine Installation Parameters 53
A.2. Password to Key Algorithm 54
A.3. Password to Key Sample 55

Blumenthal/Wijnen Expires December 1997 [Page 56]

