
SPRING F. Clad, Ed.
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track X. Xu, Ed.
Expires: September 11, 2021 Alibaba
 C. Filsfils
 Cisco Systems, Inc.
 D. Bernier
 Bell Canada
 C. Li
 Huawei
 B. Decraene
 Orange
 S. Ma
 Mellanox
 C. Yadlapalli
 AT&T
 W. Henderickx
 Nokia
 S. Salsano
 Universita di Roma "Tor Vergata"
 March 10, 2021

Service Programming with Segment Routing
draft-ietf-spring-sr-service-programming-04

Abstract

 This document defines data plane functionality required to implement
 service segments and achieve service programming in SR-enabled MPLS
 and IPv6 networks, as described in the Segment Routing architecture.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2021.

Clad, et al. Expires September 11, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Service Programming with Segment Routing March 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Classification and Steering 4
4. Service Segments . 5
4.1. SR-Aware Services . 5
4.2. SR-Unaware Services 6

5. SR Service Policies . 7
5.1. SR-MPLS Data Plane 8
5.2. SRv6 Data Plane . 10

6. SR Proxy Behaviors . 11
6.1. Static SR Proxy . 14
6.1.1. SR-MPLS Pseudocode 16
6.1.2. SRv6 Pseudocode 17

6.2. Dynamic SR Proxy . 23
6.2.1. SR-MPLS Pseudocode 24
6.2.2. SRv6 Pseudocode 24

6.3. Shared Memory SR Proxy 25
6.4. Masquerading SR Proxy 25
6.4.1. SRv6 Masquerading Proxy Pseudocode 27
6.4.2. Destination NAT Flavor 28
6.4.3. Caching Flavor 28

7. Metadata . 29
7.1. MPLS Data Plane . 29
7.2. IPv6 Data Plane . 30
7.2.1. SRH TLV Objects 30
7.2.2. SRH Tag . 31

8. Implementation Status . 31
8.1. SR-Aware Services . 32
8.2. Proxy Behaviors . 32

9. Related Works . 32
10. IANA Considerations . 33

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Clad, et al. Expires September 11, 2021 [Page 2]

Internet-Draft Service Programming with Segment Routing March 2021

10.1. SRv6 Endpoint Behaviors 33
10.2. Segment Routing Header TLVs 33

11. Security Considerations 33
12. Acknowledgements . 34
13. Contributors . 34
14. References . 35
14.1. Normative References 35
14.2. Informative References 36

 Authors' Addresses . 37

1. Introduction

 Segment Routing (SR) [RFC8402] is an architecture based on the source
 routing paradigm that seeks the right balance between distributed
 intelligence and centralized programmability. SR can be used with an
 MPLS or an IPv6 data plane to steer packets through an ordered list
 of instructions, called segments. These segments may encode simple
 routing instructions for forwarding packets along a specific network
 path, but also steer them through Virtual Network Functions (VNFs) or
 physical service appliances available in the network.

 In an SR network, each of these services, running either on a
 physical appliance or in a virtual environment, are associated with a
 segment identifier (SID). These service SIDs are then leveraged as
 part of a SID-list to steer packets through the corresponding
 services. Service SIDs may be combined together in a SID-list to
 achieve service programming, but also with other types of segments as
 defined in [RFC8402]. SR thus provides a fully integrated solution
 for overlay, underlay and service programming. Furthermore, the IPv6
 instantiation of SR (SRv6) [RFC8986] supports metadata transportation
 in the Segment Routing Header [RFC8754], either natively in the tag
 field or with extensions such as TLVs.

 This document describes how a service can be associated with a SID,
 including legacy services with no SR capabilities, and how these
 service SIDs are integrated within an SR policy. The definition of
 an SR Policy and the traffic steering mechanisms are covered in
 [I-D.ietf-spring-segment-routing-policy] and hence outside the scope
 of this document.

 The definition of control plane components, such as service segment
 discovery, is outside the scope of this data plane document. For
 reference, the option of using BGP extensions to support SR service
 programming is proposed in [I-D.dawra-idr-bgp-sr-service-chaining].

https://datatracker.ietf.org/doc/html/rfc8402
https://datatracker.ietf.org/doc/html/rfc8402
https://datatracker.ietf.org/doc/html/rfc8986
https://datatracker.ietf.org/doc/html/rfc8754

Clad, et al. Expires September 11, 2021 [Page 3]

Internet-Draft Service Programming with Segment Routing March 2021

2. Terminology

 This document leverages the terminology proposed in [RFC8402],
 [RFC8660], [RFC8754], [RFC8986] and
 [I-D.ietf-spring-segment-routing-policy]. It also introduces the
 following new terms.

 Service segment: A segment associated with a service. The service
 may either run on a physical appliance or in a virtual environment
 such as a virtual machine or container.

 SR-aware service: A service that is fully capable of processing SR
 traffic. An SR-aware service can be directly associated with a
 service segment.

 SR-unaware service: A service that is unable to process SR traffic or
 may behave incorrectly due to presence of SR information in the
 packet headers. An SR-unaware service can be associated with a
 service segment through an SR proxy function.

3. Classification and Steering

 Classification and steering mechanisms are defined in section 8 of
 [I-D.ietf-spring-segment-routing-policy] and are independent from the
 purpose of the SR policy. From the perspective of a headend node
 classifying and steering traffic into an SR policy, there is no
 difference whether this policy contains IGP, BGP, peering, VPN or
 service segments, or any combination of these.

 As documented in the above reference, traffic is classified when
 entering an SR domain. The SR policy headend may, depending on its
 capabilities, classify the packets on a per-destination basis, via
 simple FIB entries, or apply more complex policy routing rules
 requiring to look deeper into the packet. These rules are expected
 to support basic policy routing such as 5-tuple matching. In
 addition, the IPv6 SRH tag field defined in [RFC8754] can be used to
 identify and classify packets sharing the same set of properties.
 Classified traffic is then steered into the appropriate SR policy and
 forwarded as per the SID-list(s) of the active candidate path.

 SR traffic can be re-classified by an SR endpoint along the original
 SR policy (e.g., DPI service) or a transit node intercepting the
 traffic. This node is the head-end of a new SR policy that is
 imposed onto the packet, either as a stack of MPLS labels or as an
 IPv6 SRH.

https://datatracker.ietf.org/doc/html/rfc8402
https://datatracker.ietf.org/doc/html/rfc8660
https://datatracker.ietf.org/doc/html/rfc8754
https://datatracker.ietf.org/doc/html/rfc8986
https://datatracker.ietf.org/doc/html/rfc8754

Clad, et al. Expires September 11, 2021 [Page 4]

Internet-Draft Service Programming with Segment Routing March 2021

4. Service Segments

 In the context of this document, the term service refers to a
 physical appliance running on dedicated hardware, a virtualized
 service inside an isolated environment such as a Virtual Machine
 (VM), container or namespace, or any process running on a compute
 element. A service may also comprise multiple sub-components running
 in different processes or containers. Unless otherwise stated, this
 document does not make any assumption on the type or execution
 environment of a service.

 The execution of a service can be integrated as part of an SR policy
 by assigning a segment identifier, or SID, to the service and
 including this service SID in the SR policy SID-list. Such a service
 SID may be of local or global significance. In the former case,
 other segments, such as prefix or adjacency segments, can be used to
 steer the traffic up to the node where the service segment is
 instantiated. In the latter case, the service is directly reachable
 from anywhere in the routing domain. This is realized with SR-MPLS
 by assigning a SID from the global label block ([RFC8660]), or with
 SRv6 by advertising the SID locator in the routing protocol
 ([RFC8986]). It is up to the network operator to define the scope
 and reachability of each service SID. This decision can be based on
 various considerations such as infrastructure dynamicity, available
 control plane or orchestration system capabilities.

 This document categorizes services in two types, depending on whether
 they are able to behave properly in the presence of SR information or
 not. These are respectively named SR-aware and SR-unaware services.

4.1. SR-Aware Services

 An SR-aware service can process the SR information in the packets it
 receives. This means being able to identify the active segment as a
 local instruction and move forward in the segment list, but also that
 the service's own behavior is not hindered due to the presence of SR
 information. For example, an SR-aware firewall filtering SRv6
 traffic based on its final destination must retrieve that information
 from the last entry in the SRH rather than the Destination Address
 field of the IPv6 header.

 An SR-aware service is associated with a locally instantiated service
 segment, which is used to steer traffic through it.

 If the service is configured to intercept all the packets passing
 through the appliance, the underlying routing system only has to
 implement a default SR endpoint behavior (e.g., SR-MPLS node segment

https://datatracker.ietf.org/doc/html/rfc8660
https://datatracker.ietf.org/doc/html/rfc8986

Clad, et al. Expires September 11, 2021 [Page 5]

Internet-Draft Service Programming with Segment Routing March 2021

 or SRv6 End behavior), and the corresponding SID will be used to
 steer traffic through the service.

 If the service requires the packets to be directed to a specific
 virtual interface, networking queue or process, a dedicated SR
 behavior may be required to steer the packets to the appropriate
 location. The definition of such service-specific functions is out
 of the scope of this document.

 SR-aware services also enable advanced network programming
 functionalities such as conditional branching and jumping to
 arbitrary SIDs in the segment list. In addition, SRv6 provides
 several ways of passing and exchanging information between services
 (e.g., SID arguments, tag field and TLVs). An example scenario
 involving these features is described in [IFIP18], which discusses
 the implementation of an SR-aware Intrusion Detection System.

 Examples of SR-aware services are provided in section Section 8.1.

4.2. SR-Unaware Services

 Any service that does not meet the above criteria for SR-awareness is
 considered as SR-unaware.

 An SR-unaware service is not able to process the SR information in
 the traffic that it receives. It may either drop the traffic or take
 erroneous decisions due to the unrecognized routing information. In
 order to include such services in an SR policy, it is thus required
 to remove the SR information as well as any other encapsulation
 header before the service receives the packet, or to alter it in such
 a way that the service can correctly process the packet.

 In this document, we define the concept of an SR proxy as an entity,
 separate from the service, that performs these modifications and
 handle the SR processing on behalf of a service. The SR proxy can
 run as a separate process on the service appliance, on a virtual
 switch or router on the compute node or on a different host.

 An SR-unaware service is associated with a service segment
 instantiated on the SR proxy, which is used to steer traffic through
 the service. Section 6 describes several SR proxy behaviors to
 handle the encapsulation headers and SR information under various
 circumstances.

Clad, et al. Expires September 11, 2021 [Page 6]

Internet-Draft Service Programming with Segment Routing March 2021

5. SR Service Policies

 An SR service policy is an SR policy, as defined in
 [I-D.ietf-spring-segment-routing-policy], that includes at least one
 service. This service is represented in the SID-list by its
 associated service SID. In case the policy should include several
 services, the service traversal order is indicated by the relative
 position of each service SID in the SID-list. Using the mechanisms
 described in [I-D.ietf-spring-segment-routing-policy], it is possible
 to load balance the traffic over several services, or instances of
 the same service, by associating with the SR service policy a
 weighted set of SID-lists, each containing a possible sequence of
 service SIDs to be traversed. Similarly, several candidate paths can
 be specified for the SR service policy, each with its own set of SID-
 lists, for resiliency purposes.

 Furthermore, binding SIDs (BSIDs) [RFC8402] can be leveraged in the
 context of service policies to reduce the number of SIDs imposed by
 the headend, provide opacity between domains and improve scalability.
 For example, a network operator may want a policy in its core domain
 to include services that are running in one of its datacenters. One
 option is to define an SR policy at ingress edge of the core domain
 that explicitly includes all the SIDs needed to steer the traffic
 through the core and in the DC, but that may result in a long SID-
 list and requires to update the ingress edge configuration every time
 the DC part of the policy is modified. Alternatively, a separate
 policy can be defined at the ingress edge of the datacenter with only
 the SIDs that needs to be executed there and its BSID included in the
 core domain policy. That BSID remains stable when the DC policy is
 modified and can even be shared among several core domain policies
 that would require the same type of processing in the DC.

 This section describes how services can be integrated within an SR-
 MPLS or SRv6 service policy.

 +--+
 | SR network |
 | |
 +----+----+ +---------+ +----+-----+
 | H +----------+ S +-----------+ E |
 |(headend)| |(service)| |(endpoint)|
 +----+----+ +---------+ +----+-----+
 | =====================================> |
 | P1(H,E,C) |
 +--+

 Figure 1: SR service policy

https://datatracker.ietf.org/doc/html/rfc8402

Clad, et al. Expires September 11, 2021 [Page 7]

Internet-Draft Service Programming with Segment Routing March 2021

 Figure 1 illustrates a basic SR service policy instantiated on a
 headend node H towards an endpoint E and traversing a service S. The
 SR policy may also include additional requirements, such as traffic
 engineering or VPN. On the head-end H, the SR policy P1 is created
 with a color C and endpoint E and associated with an SR path that can
 either be explicitly configured, dynamically computed on H or
 provisioned by a network controller.

 In its most basic form, the SR policy P1 would be resolved into the
 SID-list < SID(S), SID(E) >. This is assuming that SID(S) and SID(E)
 are directly reachable from H and S, respectively, and that the
 forwarding path meets the policy requirement. However, depending on
 the dataplane and the segments available in the network, additional
 SIDs may be required to enforce the SR policy.

 This model applies regardless of the SR-awareness of the service. If
 it is SR-unaware, then S simply represents the proxy that takes care
 of transmitting the packet to the actual service.

 Traffic can then be steered into this policy using any of the
 mechanisms described in [I-D.ietf-spring-segment-routing-policy].

 The following subsections describe the specificities of each SR
 dataplane.

5.1. SR-MPLS Data Plane

Clad, et al. Expires September 11, 2021 [Page 8]

Internet-Draft Service Programming with Segment Routing March 2021

 +---+
 | SR-MPLS network |
 | |
 +----+----+ ------> +---------+ ------> +----+-----+
 | H +-------------+ S +-------------+ E |
 |(headend)| |(service)| |(endpoint)|
 +----+----+ +---------+ +----+-----+
 | (1) (2) (3) (4) |
 |+---------+ +---------+ +---------+ +---------+|
 || ... | | L(S) | | ... | | L(E) ||
 |+---------+ +---------+ +---------+ +---------+|
 || L(S) | | ... | | L(E) | |Inner pkt||
 |+---------+ +---------+ +---------+ +---------+|
 || ... | | L(E) | |Inner pkt| |
 |+---------+ +---------+ +---------+ |
 || L(E) | |Inner pkt| |
 |+---------+ +---------+ |
 ||Inner pkt| |
 |+---------+ |
 +---+

 Figure 2: Packet walk in an SR-MPLS network

 In an SR-MPLS network, the SR policy SID-list is encoded as a stack
 of MPLS labels [RFC8660] and pushed on top of the packet.

 In the example shown on Figure 2, the SR policy should steer the
 traffic from the head-end H to the endpoint E via a service S. This
 translates into an MPLS label stack that includes at least a label
 L(S) associated to service S and a label L(E) associated to the
 endpoint E. The label stack may also include additional intermediate
 SIDs if these are required for traffic engineering (e.g., to encode a
 low latency path between H and S and / or between S and E) or simply
 for reachability purposes. Indeed, the service SID L(S) may be taken
 from the global or local SID block of node S and, in the latter case,
 one or more SIDs might be needed before L(S) in order for the packet
 to reach node S (e.g., a prefix-SID of S), where L(S) can be
 interpreted. The same applies for the SID L(E) at the SR policy
 endpoint.

 Special consideration must be taken into account when using Local
 SIDs for service identification due to increased label stack depth
 and the associated impacts.

 When the packet arrives at S, this node determines the MPLS payload
 type and the appropriate behavior for processing the packet based on
 the semantic locally associated to the top label L(S). If S is an
 SR-aware service, the SID L(S) may provide additional context or

https://datatracker.ietf.org/doc/html/rfc8660

Clad, et al. Expires September 11, 2021 [Page 9]

Internet-Draft Service Programming with Segment Routing March 2021

 indication on how to process the packet (e.g., a firewall SID may
 indicate which rule set should be applied onto the packet). If S is
 a proxy in front of an SR-unaware service, L(S) indicates how and to
 which service attached to this proxy the packet should be
 transmitted. At some point in the process, L(S) is also popped from
 the label stack in order to expose the next SID, which may be L(E) or
 another intermediate SID.

5.2. SRv6 Data Plane

 +---+
 | SRv6 network |
 | |
 +----+----+ ------> +---------+ ------> +----+-----+
 | H +-------------+ S +-------------+ E |
 |(headend)| |(service)| |(endpoint)|
 +----+----+ +---------+ +----+-----+
 | (1) (2) (3) (4) |
 |+---------+ +---------+ +---------+ +---------+|
 ||IP6(H,..)| |IP6(H, S)| |IP6(H,..)| |IP6(H, E)||
 |+---------+ +---------+ +---------+ +---------+|
 ||SRH(E,..,| |SRH(E,..,| |SRH(E,..,| |SRH(E,..,||
 || S,..;| | S,..;| | S,..;| | S,..;||
 || SL=i)| | SL=j)| | SL=k)| | SL=0)||
 |+---------+ +---------+ +---------+ +---------+|
 ||Inner pkt| |Inner pkt| |Inner pkt| |Inner pkt||
 |+---------+ +---------+ +---------+ +---------+|
 +---+

 Figure 3: Packet walk in an SRv6 network

 In an SRv6 network, the SR Policy is encoded into the packet as an
 IPv6 header possibly followed by a Segment Routing Header (SRH)
 [RFC8754].

 In the example shown on Figure 3, the SR policy should steer the
 traffic from the head-end H to the endpoint E via a service S. This
 translates into Segment-List that includes at least a segment SID(S)
 to the service, or service proxy, S and a segment SID(E) to the
 endpoint E. The Segment-List may also include additional
 intermediate SIDs if these are required for traffic engineering
 (e.g., the encode a low latency path between H and S and / or between
 S and E) or simply for reachability purposes. Indeed, the service
 SID locator may or may not be advertised in the routing protocol and,
 in the latter case, one or more SIDs might be needed before SID(S) in
 order to bring the packet up to node S, where SID(S) can be
 interpreted. The same applies for the segment SID(E) at the SR
 policy endpoint.

https://datatracker.ietf.org/doc/html/rfc8754

Clad, et al. Expires September 11, 2021 [Page 10]

Internet-Draft Service Programming with Segment Routing March 2021

 When the packet arrives at S, this node determines how to process the
 packet based on the semantic locally associated to the active segment
 SID(S). If S is an SR-aware service, then SID(S) may provide
 additional context or indication on how to process the packet (e.g.,
 a firewall SID may indicate which rule set should be applied onto the
 packet). If S is a proxy in front of an SR-unaware service, SID(S)
 indicates how and to which service attached to this proxy the packet
 should be transmitted. At some point in the process, the SRv6 End
 function is also applied in order to make the next SID, which may be
 SID(E) or another intermediate SID, active.

 The "Inner pkt" on Figure 3 represents the SRv6 payload, which may be
 an encapsulated IP packet, an Ethernet frame or a transport-layer
 payload, for example.

6. SR Proxy Behaviors

 This section describes several SR proxy behaviors designed to enable
 SR service programming through SR-unaware services. A system
 implementing one of these behaviors may handle the SR processing on
 behalf of an SR-unaware service and allows the service to properly
 process the traffic that is steered through it.

 A service may be located at any hop in an SR policy, including the
 last segment. However, the SR proxy behaviors defined in this
 section are dedicated to supporting SR-unaware services at
 intermediate hops in the segment list. In case an SR-unaware service
 is at the last segment, it is sufficient to ensure that the SR
 information is ignored (IPv6 routing extension header with Segments
 Left equal to 0) or removed before the packet reaches the service
 (MPLS PHP, SRv6 decapsulation behavior or PSP flavor).

 As illustrated on Figure 4, the generic behavior of an SR proxy has
 two parts. The first part is in charge of passing traffic from the
 network to the service. It intercepts the SR traffic destined for
 the service via a locally instantiated service segment, modifies it
 in such a way that it appears as non-SR traffic to the service, then
 sends it out on a given interface, IFACE-OUT, connected to the
 service. The second part receives the traffic coming back from the
 service on IFACE-IN, restores the SR information and forwards it
 according to the next segment in the list. IFACE-OUT and IFACE-IN
 are respectively the proxy interface used for sending traffic to the
 service and the proxy interface that receives the traffic coming back
 from the service. These can be physical interfaces or sub-interfaces
 (VLANs) and, unless otherwise stated, IFACE-OUT and IFACE-IN can
 represent the same interface.

Clad, et al. Expires September 11, 2021 [Page 11]

Internet-Draft Service Programming with Segment Routing March 2021

 +----------------------------+
 | |
 | Service |
 | |
 +----------------------------+
 ^ Non SR |
 | traffic |
 | v
 +-----------+----------+
 +--| IFACE OUT | IFACE IN |--+
 SR traffic | +-----------+----------+ | SR traffic
 ---------->| SR proxy |---------->
 | |
 +----------------------------+

 Figure 4: Generic SR proxy

 In the next subsections, the following SR proxy mechanisms are
 defined:

 o Static proxy

 o Dynamic proxy

 o Shared-memory proxy

 o Masquerading proxy

 Each mechanism has its own characteristics and constraints, which are
 summarized in the below table. It is up to the operator to select
 the best one based on the proxy node capabilities, the service
 behavior and the traffic type. It is also possible to use different
 proxy mechanisms within the same service policy.

Clad, et al. Expires September 11, 2021 [Page 12]

Internet-Draft Service Programming with Segment Routing March 2021

 +-----+-----+-----+-----+
 | | | | M |
 | | | S | a |
 | | | h | s |
 | | | a | q |
 | | | r | u |
 | | D | e | e |
 | S | y | d | r |
 | t | n | | a |
 | a | a | m | d |
 | t | m | e | i |
 | i | i | m | n |
 | c | c | . | g |
 +---------------------------------------+-----+-----+-----+-----+
	SR-MPLS	Y	Y	Y	-
SR flavors	Inline SRv6	P	P	P	Y
	SRv6 encapsulation	Y	Y	Y	-
+----------------+----------------------+-----+-----+-----+-----+					
Chain agnostic configuration	N	N	Y	Y	
+---------------------------------------+-----+-----+-----+-----+					
Transparent to chain changes	N	Y	Y	Y	
+----------------+----------------------+-----+-----+-----+-----+					
	DA modification	Y	Y	Y	NAT
	Payload modification	Y	Y	Y	Y
Service support	Packet generation	Y	Y	cache	cache
	Packet deletion	Y	Y	Y	Y
	Packet re-ordering	Y	Y	Y	Y
	Transport endpoint	Y	Y	cache	cache
+----------------+----------------------+-----+-----+-----+-----+					
	Ethernet	Y	Y	Y	-
Supported					
traffic	IPv4	Y	Y	Y	-
	IPv6	Y	Y	Y	Y
 +----------------+----------------------+-----+-----+-----+-----+

 Figure 5: SR proxy summary

 Note: The use of a shared memory proxy requires both the service
 (VNF) and the proxy to be running on the same node.

Clad, et al. Expires September 11, 2021 [Page 13]

Internet-Draft Service Programming with Segment Routing March 2021

6.1. Static SR Proxy

 The static proxy is an SR endpoint behavior for processing SR-MPLS or
 SRv6 encapsulated traffic on behalf of an SR-unaware service. This
 proxy thus receives SR traffic that is formed of an MPLS label stack
 or an IPv6 header on top of an inner packet, which can be Ethernet,
 IPv4 or IPv6.

 A static SR proxy segment is associated with the following mandatory
 parameters

 o INNER-TYPE: Inner packet type

 o NH-ADDR: Next hop Ethernet address (only for inner type IPv4 and
 IPv6)

 o IFACE-OUT: Local interface for sending traffic towards the service

 o IFACE-IN: Local interface receiving the traffic coming back from
 the service

 o CACHE: SR information to be attached on the traffic coming back
 from the service, including at least

 * CACHE.SA: IPv6 source address (SRv6 only)

 * CACHE.LIST: Segment list expressed as MPLS labels or IPv6
 address

 A static SR proxy segment is thus defined for a specific service,
 inner packet type and cached SR information. It is also bound to a
 pair of directed interfaces on the proxy. These may be both
 directions of a single interface, or opposite directions of two
 different interfaces. The latter is recommended in case the service
 is to be used as part of a bi-directional SR service policy. If the
 proxy and the service both support 802.1Q, IFACE-OUT and IFACE-IN can
 also represent sub-interfaces.

 The first part of this behavior is triggered when the proxy node
 receives a packet whose active segment matches a segment associated
 with the static proxy behavior. It removes the SR information from
 the packet then sends it on a specific interface towards the
 associated service. This SR information corresponds to the full
 label stack for SR-MPLS or to the encapsulation IPv6 header with any
 attached extension header in the case of SRv6.

 The second part is an inbound policy attached to the proxy interface
 receiving the traffic returning from the service, IFACE-IN. This

Clad, et al. Expires September 11, 2021 [Page 14]

Internet-Draft Service Programming with Segment Routing March 2021

 policy attaches to the incoming traffic the cached SR information
 associated with the SR proxy segment. If the proxy segment uses the
 SR-MPLS data plane, CACHE contains a stack of labels to be pushed on
 top of the packets. With the SRv6 data plane, CACHE is defined as a
 source address, an active segment and an optional SRH (tag, segments
 left, segment list and metadata). The proxy encapsulates the packets
 with an IPv6 header that has the source address, the active segment
 as destination address and the SRH as a routing extension header.
 After the SR information has been attached, the packets are forwarded
 according to the active segment, which is represented by the top MPLS
 label or the IPv6 Destination Address. An MPLS TTL or IPv6 Hop Limit
 value may also be configured in CACHE. If it is not, the proxy
 should set these values according to the node's default setting for
 MPLS or IPv6 encapsulation.

 In this scenario, there are no restrictions on the operations that
 can be performed by the service on the stream of packets. It may
 operate at all protocol layers, terminate transport layer
 connections, generate new packets and initiate transport layer
 connections. This behavior may also be used to integrate an
 IPv4-only service into an SRv6 policy. However, a static SR proxy
 segment can be used in only one service policy at a time. As opposed
 to most other segment types, a static SR proxy segment is bound to a
 unique list of segments, which represents a directed SR service
 policy. This is due to the cached SR information being defined in
 the segment configuration. This limitation only prevents multiple
 segment lists from using the same static SR proxy segment at the same
 time, but a single segment list can be shared by any number of
 traffic flows. Besides, since the returning traffic from the service
 is re-classified based on the incoming interface, an interface can be
 used as receiving interface (IFACE-IN) only for a single SR proxy
 segment at a time. In the case of a bi-directional SR service
 policy, a different SR proxy segment and receiving interface are
 required for the return direction.

 The static proxy behavior may also be used for sending traffic
 through "bump in the wire" services that are transparent to the IP
 and Ethernet layers. This type of processing is assumed when the
 inner traffic type is Ethernet, since the original destination
 address of the Ethernet frame is preserved when the packet is steered
 into the SR Policy and likely associated with a node downstream of
 the policy tail-end. In case the inner type is IP (IPv4 or IPv6),
 the NH-ADDR parameter may be set to a dummy or broadcast Ethernet
 address, or simply to the address of the proxy receiving interface
 (IFACE-IN).

Clad, et al. Expires September 11, 2021 [Page 15]

Internet-Draft Service Programming with Segment Routing March 2021

6.1.1. SR-MPLS Pseudocode

6.1.1.1. Static Proxy for Inner Type Ethernet

 When processing an MPLS packet whose top label matches a locally
 instantiated MPLS static proxy SID for Ethernet traffic, the
 following pseudocode is executed.

 S01. POP all labels in the MPLS label stack.
 S02. Submit the frame to the Ethernet module for transmission via
 interface IFACE-OUT.

 Figure 6: SID processing for MPLS static proxy (Ethernet)

 When processing an Ethernet frame received on the interface IFACE-IN
 and with a destination MAC address that is neither a broadcast
 address nor matches the address of IFACE-IN, the following pseudocode
 is executed.

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. Remove the preamble or Frame Check Sequence (FCS).
 S04. PUSH all labels from the retrieved CACHE entry.
 S05. Submit the packet to the MPLS module for transmission as per
 the top label in the MPLS label stack.
 S06. }

 Figure 7: Inbound policy for MPLS static proxy (Ethernet)

6.1.1.2. Static Proxy for Inner Type IPv4

 When processing an MPLS packet whose top label matches a locally
 instantiated MPLS static proxy SID for IPv4 traffic, the following
 pseudocode is executed.

 S01. POP all labels in the MPLS label stack.
 S02. Submit the packet to the IPv4 module for transmission on
 interface IFACE-OUT via NH-ADDR.

 Figure 8: SID processing for MPLS static proxy (IPv4)

 When processing an IPv4 packet received on the interface IFACE-IN and
 with a destination address that does not match any address of IFACE-
 IN, the following pseudocode is executed.

Clad, et al. Expires September 11, 2021 [Page 16]

Internet-Draft Service Programming with Segment Routing March 2021

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. Decrement the TTL and adjust the checksum accordingly.
 S04. PUSH all labels from the retrieved CACHE entry.
 S05. Submit the packet to the MPLS module for transmission as per
 the top label in the MPLS label stack.
 S06. }

 Figure 9: Inbound policy for MPLS static proxy (IPv4)

6.1.1.3. Static Proxy for Inner Type IPv6

 When processing an MPLS packet whose top label matches a locally
 instantiated MPLS static proxy SID for IPv6 traffic, the following
 pseudocode is executed.

 S01. POP all labels in the MPLS label stack.
 S02. Submit the packet to the IPv6 module for transmission on
 interface IFACE-OUT via NH-ADDR.

 Figure 10: SID processing for MPLS static proxy (IPv6)

 When processing an IPv6 packet received on the interface IFACE-IN and
 with a destination address that does not match any address of IFACE-
 IN, the following pseudocode is executed.

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. Decrement the Hop Limit.
 S04. PUSH all labels from the retrieved CACHE entry.
 S05. Submit the packet to the MPLS module for transmission as per
 the top label in the MPLS label stack.
 S06. }

 Figure 11: Inbound policy for MPLS static proxy (IPv6)

6.1.2. SRv6 Pseudocode

6.1.2.1. Static Proxy for Inner Type Ethernet

 When processing an IPv6 packet matching a FIB entry locally
 instantiated as an SRv6 static proxy SID for Ethernet traffic, the
 following pseudocode is executed.

Clad, et al. Expires September 11, 2021 [Page 17]

Internet-Draft Service Programming with Segment Routing March 2021

 S01. When an SRH is processed {
 S02. If (Segments Left == 0) {
 S03. Proceed to process the next header in the packet.
 S04. }
 S05. If (IPv6 Hop Limit <= 1) {
 S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (hop limit exceeded in transit),
 Interrupt packet processing and discard the packet.
 S07. }
 S08. max_last_entry = (Hdr Ext Len / 2) - 1
 S09. If ((Last Entry > max_last_entry) or
 (Segments Left > (Last Entry + 1))) {
 S10. Send an ICMP Parameter Problem message to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 Interrupt packet processing and discard the packet.
 S11. }
 S12. Decrement Hop Limit by 1.
 S13. Decrement Segments Left by 1.
 S14. Copy Segment List[Segments Left] from the SRH to the
 Destination Address of the IPv6 header.
 S15. If (Upper-layer header type != 143 (Ethernet)) {
 S16. Resubmit the packet to the IPv6 module for transmission to
 the new destination.
 S17. }
 S18. Perform IPv6 decapsulation.
 S19. Submit the frame to the Ethernet module for transmission via
 interface IFACE-OUT.
 S20. }

 Figure 12: SID processing for SRv6 static proxy (Ethernet)

 S15: 143 (Ethernet) refers to the value assigned by IANA for
 "Ethernet" in the "Internet Protocol Numbers" registry.

 When processing the Upper-layer header of a packet matching a FIB
 entry locally instantiated as an SRv6 static proxy SID for Ethernet
 traffic, the following pseudocode is executed.

 S01. If (Upper-layer header type != 143 (Ethernet)) {
 S02. Process as per [RFC8986] Section 4.1.1
 S03. }
 S04. Perform IPv6 decapsulation.
 S05. Submit the frame to the Ethernet module for transmission via
 interface IFACE-OUT.

 Figure 13: Upper-layer header processing for SRv6 static proxy
 (Ethernet)

https://datatracker.ietf.org/doc/html/rfc8986#section-4.1.1

Clad, et al. Expires September 11, 2021 [Page 18]

Internet-Draft Service Programming with Segment Routing March 2021

 When processing an Ethernet frame received on the interface IFACE-IN
 and with a destination MAC address that is neither a broadcast
 address nor matches the address of IFACE-IN, the following pseudocode
 is executed.

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. Remove the preamble or Frame Check Sequence (FCS).
 S04. Perform IPv6 encapsulation with an SRH
 Source Address of the IPv6 header is set to CACHE.SA,
 Destination Address of the IPv6 header is set to
 CACHE.LIST[0],
 Next Header of the SRH is set to 143 (Ethernet),
 Segment List of the SRH is set to CACHE.LIST.
 S05. Submit the packet to the IPv6 module for transmission to the
 next destination.
 S06. }

 Figure 14: Inbound policy for SRv6 static proxy (Ethernet)

 S04: CACHE.LIST[0] represents the first entry in CACHE.LIST. Unless
 a local configuration indicates otherwise, the SIDs in CACHE.LIST
 should be encoded in the Segment List field in reversed order, the
 Segment Left and Last Entry values should be set of the length of
 CACHE.LIST minus 1. If CACHE.LIST contains a single entry, the SRH
 can be omitted and the Next Header field of the IPv6 header set to
 143 (Ethernet).

6.1.2.2. Static Proxy for Inner Type IPv4

 When processing an IPv6 packet matching a FIB entry locally
 instantiated as an SRv6 static proxy SID for IPv4 traffic, the
 following pseudocode is executed.

Clad, et al. Expires September 11, 2021 [Page 19]

Internet-Draft Service Programming with Segment Routing March 2021

 S01. When an SRH is processed {
 S02. If (Segments Left == 0) {
 S03. Proceed to process the next header in the packet.
 S04. }
 S05. If (IPv6 Hop Limit <= 1) {
 S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (hop limit exceeded in transit),
 Interrupt packet processing and discard the packet.
 S07. }
 S08. max_last_entry = (Hdr Ext Len / 2) - 1
 S09. If ((Last Entry > max_last_entry) or
 (Segments Left > (Last Entry + 1))) {
 S10. Send an ICMP Parameter Problem message to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 Interrupt packet processing and discard the packet.
 S11. }
 S12. Decrement Hop Limit by 1.
 S13. Decrement Segments Left by 1.
 S14. Copy Segment List[Segments Left] from the SRH to the
 Destination Address of the IPv6 header.
 S15. If (Upper-layer header type != 4 (IPv4)) {
 S16. Resubmit the packet to the IPv6 module for transmission to
 the new destination.
 S17. }
 S18. Perform IPv6 decapsulation.
 S19. Submit the packet to the IPv4 module for transmission on
 interface IFACE-OUT via NH-ADDR.
 S20. }

 Figure 15: SID processing for SRv6 static proxy (IPv4)

 When processing the Upper-layer header of a packet matching a FIB
 entry locally instantiated as an SRv6 static proxy SID for IPv4
 traffic, the following pseudocode is executed.

 S01. If (Upper-layer header type != 4 (IPv4)) {
 S02. Process as per [RFC8986] Section 4.1.1
 S03. }
 S04. Perform IPv6 decapsulation.
 S05. Submit the packet to the IPv4 module for transmission on
 interface IFACE-OUT via NH-ADDR.

 Figure 16: Upper-layer header processing for SRv6 static proxy (IPv4)

 When processing an IPv4 packet received on the interface IFACE-IN and
 with a destination address that does not match any address of IFACE-
 IN, the following pseudocode is executed.

https://datatracker.ietf.org/doc/html/rfc8986#section-4.1.1

Clad, et al. Expires September 11, 2021 [Page 20]

Internet-Draft Service Programming with Segment Routing March 2021

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. Decrement the TTL and adjust the checksum accordingly.
 S04. Perform IPv6 encapsulation with an SRH
 Source Address of the IPv6 header is set to CACHE.SA,
 Destination Address of the IPv6 header is set to
 CACHE.LIST[0],
 Next Header of the SRH is set to 4 (IPv4),
 Segment List of the SRH is set to CACHE.LIST.
 S05. Submit the packet to the IPv6 module for transmission to the
 next destination.
 S06. }

 Figure 17: Inbound policy for SRv6 static proxy (IPv4)

 S04: CACHE.LIST[0] represents the first entry in CACHE.LIST. Unless
 a local configuration indicates otherwise, the SIDs in CACHE.LIST
 should be encoded in the Segment List field in reversed order, the
 Segment Left and Last Entry values should be set of the length of
 CACHE.LIST minus 1. If CACHE.LIST contains a single entry, the SRH
 can be omitted and the Next Header field of the IPv6 header set to 4
 (IPv4).

6.1.2.3. Static Proxy for Inner Type IPv6

 When processing an IPv6 packet matching a FIB entry locally
 instantiated as an SRv6 static proxy SID for IPv6 traffic, the
 following pseudocode is executed.

Clad, et al. Expires September 11, 2021 [Page 21]

Internet-Draft Service Programming with Segment Routing March 2021

 S01. When an SRH is processed {
 S02. If (Segments Left == 0) {
 S03. Proceed to process the next header in the packet.
 S04. }
 S05. If (IPv6 Hop Limit <= 1) {
 S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (hop limit exceeded in transit),
 Interrupt packet processing and discard the packet.
 S07. }
 S08. max_last_entry = (Hdr Ext Len / 2) - 1
 S09. If ((Last Entry > max_last_entry) or
 (Segments Left > (Last Entry + 1))) {
 S10. Send an ICMP Parameter Problem message to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 Interrupt packet processing and discard the packet.
 S11. }
 S12. Decrement Hop Limit by 1.
 S13. Decrement Segments Left by 1.
 S14. Copy Segment List[Segments Left] from the SRH to the
 Destination Address of the IPv6 header.
 S15. If (Upper-layer header type != 41 (IPv6)) {
 S16. Resubmit the packet to the IPv6 module for transmission to
 the new destination.
 S17. }
 S18. Perform IPv6 decapsulation.
 S19. Submit the packet to the IPv6 module for transmission on
 interface IFACE-OUT via NH-ADDR.
 S20. }

 Figure 18: SID processing for SRv6 static proxy (IPv6)

 When processing the Upper-layer header of a packet matching a FIB
 entry locally instantiated as an SRv6 static proxy SID for IPv6
 traffic, the following pseudocode is executed.

 S01. If (Upper-layer header type != 41 (IPv6)) {
 S02. Process as per [RFC8986] Section 4.1.1
 S03. }
 S04. Perform IPv6 decapsulation.
 S05. Submit the packet to the IPv6 module for transmission on
 interface IFACE-OUT via NH-ADDR.

 Figure 19: Upper-layer header processing for SRv6 static proxy (IPv6)

 When processing an IPv6 packet received on the interface IFACE-IN and
 with a destination address that does not match any address of IFACE-
 IN, the following pseudocode is executed.

https://datatracker.ietf.org/doc/html/rfc8986#section-4.1.1

Clad, et al. Expires September 11, 2021 [Page 22]

Internet-Draft Service Programming with Segment Routing March 2021

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. Decrement the Hop Limit.
 S04. Perform IPv6 encapsulation with an SRH
 Source Address of the IPv6 header is set to CACHE.SA,
 Destination Address of the IPv6 header is set to
 CACHE.LIST[0],
 Next Header of the SRH is set to 41 (IPv6),
 Segment List of the SRH is set to CACHE.LIST.
 S05. Submit the packet to the IPv6 module for transmission to the
 next destination.
 S06. }

 Figure 20: Inbound policy for SRv6 static proxy (IPv6)

 S04: CACHE.LIST[0] represents the first entry in CACHE.LIST. Unless
 a local configuration indicates otherwise, the SIDs in CACHE.LIST
 should be encoded in the Segment List field in reversed order, the
 Segment Left and Last Entry values should be set of the length of
 CACHE.LIST minus 1. If CACHE.LIST contains a single entry, the SRH
 can be omitted and the Next Header field of the (outer) IPv6 header
 set to 41 (IPv6).

6.2. Dynamic SR Proxy

 The dynamic proxy is an improvement over the static proxy that
 dynamically learns the SR information before removing it from the
 incoming traffic. The same information can then be re-attached to
 the traffic returning from the service. As opposed to the static SR
 proxy, no CACHE information needs to be configured. Instead, the
 dynamic SR proxy relies on a local caching mechanism on the node
 instantiating this segment.

 Upon receiving a packet whose active segment matches a dynamic SR
 proxy function, the proxy node pops the top MPLS label or applies the
 SRv6 End behavior, then compares the updated SR information with the
 cache entry for the current segment. If the cache is empty or
 different, it is updated with the new SR information. The SR
 information is then removed and the inner packet is sent towards the
 service.

 The cache entry is not mapped to any particular packet, but instead
 to an SR service policy identified by the receiving interface (IFACE-
 IN). Any non-link-local IP packet or non-local Ethernet frame
 received on that interface will be re-encapsulated with the cached
 headers as described in Section 6.1. The service may thus drop,
 modify or generate new packets without affecting the proxy.

Clad, et al. Expires September 11, 2021 [Page 23]

Internet-Draft Service Programming with Segment Routing March 2021

6.2.1. SR-MPLS Pseudocode

 The dynamic proxy SR-MPLS pseudocode is obtained by inserting the
 following instructions at the beginning of the static SR-MPLS
 pseudocode (Section 6.1.1).

 S01. If the top label S bit is different from 0 {
 S02. Discard the packet.
 S03. }
 S04. POP the top label.
 S05. Copy the MPLS label stack in a CACHE entry associated with the
 interface IFACE-IN.

 Figure 21: SID processing for MPLS dynamic proxy

 S01: As mentioned at the beginning of Section 6, an SR proxy is not
 needed to include an SR-unaware service at the end of an SR policy.

 S05: An implementation may optimize the caching procedure by copying
 information into the cache only if it is different from the current
 content of the cache entry. Furthermore, a TTL margin can be
 configured for the top label stack entry to prevent constant cache
 updates when multiple equal-cost paths with different hop counts are
 used towards the SR proxy node. In that case, a TTL difference
 smaller than the configured margin should not trigger a cache update
 (provided that the labels are the same).

 When processing an Ethernet frame, an IPv4 packet or an IPv6 packet
 received on the interface IFACE-IN and with a destination address
 that does not match any address of IFACE-IN, the pseudocode reported
 in Figure 7, Figure 9 or Figure 11, respectively, is executed.

6.2.2. SRv6 Pseudocode

 When processing an IPv6 packet matching a FIB entry locally
 instantiated as an SRv6 dynamic proxy SID, the same pseudocode as
 described in Figure 12, Figure 15 and Figure 18, respectively for
 Ethernet, IPv4 and IPv6 traffic, is executed with the following
 addition between lines S17 and S18.

 (... S17. })
 S17.1. Copy the IPv6 encapsulation in a CACHE entry associated with
 the interface IFACE-IN.
 (S18. Perform IPv6 decapsulation...)

 Figure 22: SID processing for SRv6 dynamic proxy

Clad, et al. Expires September 11, 2021 [Page 24]

Internet-Draft Service Programming with Segment Routing March 2021

 An implementation may optimize the caching procedure by copying
 information into the cache only if it is different from the current
 content of the cache entry. A Hop Limit margin can be configured to
 prevent constant cache updates when multiple equal-cost paths with
 different hop counts are used towards the SR proxy node. In that
 case, a Hop Limit difference smaller than the configured margin
 should not trigger a cache update. Similarly, the Flow Label value
 can be ignored when comparing the current packet IPv6 header with the
 cache entry. In this case, the Flow Label should be re-computed by
 the proxy node when it restores the IPv6 encapsulation from the cache
 entry.

 When processing the Upper-layer header of a packet matching a FIB
 entry locally instantiated as an SRv6 dynamic proxy SID, process the
 packet as per [RFC8986] Section 4.1.1.

 When processing an Ethernet frame, an IPv4 packet or an IPv6 packet
 received on the interface IFACE-IN and with a destination address
 that does not match any address of IFACE-IN, the same pseudocode as
 in Figure 14, Figure 17 or Figure 20, respectively, is executed.

6.3. Shared Memory SR Proxy

 The shared memory proxy is an SR endpoint behavior for processing SR-
 MPLS or SRv6 encapsulated traffic on behalf of an SR-unaware service.
 This proxy behavior leverages a shared-memory interface with a
 virtualized service (VNF) in order to hide the SR information from an
 SR-unaware service while keeping it attached to the packet. We
 assume in this case that the proxy and the VNF are running on the
 same compute node. A typical scenario is an SR-capable vrouter
 running on a container host and forwarding traffic to VNFs isolated
 within their respective container.

6.4. Masquerading SR Proxy

 The masquerading proxy is an SR endpoint behavior for processing SRv6
 traffic on behalf of an SR-unaware service. This proxy thus receives
 SR traffic that is formed of an IPv6 header and an SRH on top of an
 inner payload. The masquerading behavior is independent from the
 inner payload type. Hence, the inner payload can be of any type but
 it is usually expected to be a transport layer packet, such as TCP or
 UDP.

 A masquerading SR proxy segment is associated with the following
 mandatory parameters:

 o NH-ADDR: Next hop Ethernet address

https://datatracker.ietf.org/doc/html/rfc8986#section-4.1.1

Clad, et al. Expires September 11, 2021 [Page 25]

Internet-Draft Service Programming with Segment Routing March 2021

 o IFACE-OUT: Local interface for sending traffic towards the service

 o IFACE-IN: Local interface receiving the traffic coming back from
 the service

 A masquerading SR proxy segment is thus defined for a specific
 service and bound to a pair of directed interfaces or sub-interfaces
 on the proxy. As opposed to the static and dynamic SR proxies, a
 masquerading segment can be present at the same time in any number of
 SR service policies and the same interfaces can be bound to multiple
 masquerading proxy segments. The only restriction is that a
 masquerading proxy segment cannot be the last segment in an SR
 service policy.

 The first part of the masquerading behavior is triggered when the
 proxy node receives an IPv6 packet whose Destination Address matches
 a masquerading proxy SID. The proxy inspects the IPv6 extension
 headers and substitutes the Destination Address with the last SID in
 the SRH attached to the IPv6 header, which represents the final
 destination of the IPv6 packet. The packet is then sent out towards
 the service.

 The service receives an IPv6 packet whose source and destination
 addresses are respectively the original source and final destination.
 It does not attempt to inspect the SRH, as RFC8200 specifies that
 routing extension headers are not examined or processed by transit
 nodes. Instead, the service simply forwards the packet based on its
 current Destination Address. In this scenario, we assume that the
 service can only inspect, drop or perform limited changes to the
 packets. For example, Intrusion Detection Systems, Deep Packet
 Inspectors and non-NAT Firewalls are among the services that can be
 supported by a masquerading SR proxy. Flavors of the masquerading
 behavior are defined in Section 6.4.2 and Section 6.4.3 to support a
 wider range of services.

 The second part of the masquerading behavior, also called de-
 masquerading, is an inbound policy attached to the proxy interface
 receiving the traffic returning from the service, IFACE-IN. This
 policy inspects the incoming traffic and triggers a regular SRv6
 endpoint processing (End) on any IPv6 packet that contains an SRH.
 This processing occurs before any lookup on the packet Destination
 Address is performed and it is sufficient to restore the right active
 SID as the Destination Address of the IPv6 packet.

https://datatracker.ietf.org/doc/html/rfc8200

Clad, et al. Expires September 11, 2021 [Page 26]

Internet-Draft Service Programming with Segment Routing March 2021

6.4.1. SRv6 Masquerading Proxy Pseudocode

 Masquerading: When processing an IPv6 packet matching a FIB entry
 locally instantiated as an SRv6 masquerading proxy SID, the following
 pseudocode is executed.

 S01. When an SRH is processed {
 S02. If (Segments Left == 0) {
 S03. Proceed to process the next header in the packet.
 S04. }
 S05. If (IPv6 Hop Limit <= 1) {
 S06. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (hop limit exceeded in transit),
 Interrupt packet processing and discard the packet.
 S07. }
 S08. max_last_entry = (Hdr Ext Len / 2) - 1
 S09. If ((Last Entry > max_last_entry) or
 (Segments Left > (Last Entry + 1))) {
 S10. Send an ICMP Parameter Problem message to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 Interrupt packet processing and discard the packet.
 S11. }
 S12. Decrement Hop Limit by 1.
 S13. Decrement Segments Left by 1.
 S14. Copy Segment List[0] from the SRH to the Destination Address
 of the IPv6 header.
 S15. Submit the packet to the IPv6 module for transmission on
 interface IFACE-OUT via NH-ADDR.
 S16. }

 Figure 23: SID processing for SRv6 masquerading proxy

 When processing the Upper-layer header of a packet matching a FIB
 entry locally instantiated as an SRv6 masquerading proxy SID, process
 the packet as per [RFC8986] Section 4.1.1.

 De-masquerading: When processing an IPv6 packet received on the
 interface IFACE-IN and with a destination address that does not match
 any address of IFACE-IN, the following pseudocode is executed.

https://datatracker.ietf.org/doc/html/rfc8986#section-4.1.1

Clad, et al. Expires September 11, 2021 [Page 27]

Internet-Draft Service Programming with Segment Routing March 2021

S01. When an SRH is processed {
S02. If (IPv6 Hop Limit <= 1) {
S03. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (hop limit exceeded in transit),
 Interrupt packet processing and discard the packet.
S04. }
S05. If (Segments Left != 0) {
S06. max_last_entry = (Hdr Ext Len / 2) - 1
S07. If ((Last Entry > max_last_entry) or
 (Segments Left > Last Entry)) {
S08. Send an ICMP Parameter Problem message to the Source Address,
 Code 0 (Erroneous header field encountered),
 Pointer set to the Segments Left field,
 Interrupt packet processing and discard the packet.
S09. }
S10. Copy Segment List[Segments Left] from the SRH to the
 Destination Address of the IPv6 header.
S11. }
S12. Decrement Hop Limit by 1.
S13. Submit the packet to the IPv6 module for transmission to the
 next destination.
S14. }

 Figure 24: Inbound policy for SRv6 masquerading proxy

6.4.2. Destination NAT Flavor

 Services modifying the destination address in the packets they
 process, such as NATs, can be supported by reporting the updated
 Destination Address back into the Segment List field of the SRH.

 The Destination NAT flavor of the SRv6 masquerading proxy is enabled
 by adding the following instruction between lines S09 and S10 of the
 de-masquerading pseudocode in Figure 24.

 (... S09. })
 S09.1. Copy the Destination Address of the IPv6 header to the
 Segment List[0] entry of the SRH.
 (S10. Copy Segment List[Segments Left] from the SRH to the
 Destination Address of the IPv6 header...)

6.4.3. Caching Flavor

 Services generating packets or acting as endpoints for transport
 connections can be supported by adding a dynamic caching mechanism
 similar to the one described in Section 6.2.

 The caching flavor of the SRv6 masquerading proxy is enabled by:

Clad, et al. Expires September 11, 2021 [Page 28]

Internet-Draft Service Programming with Segment Routing March 2021

 o Adding the following instruction between lines S14 and S15 of the
 masquerading pseudocode in Figure 23.

 (... S14. Copy Segment List[0] from the SRH to the Destination
 Address of the IPv6 header.
 S14.1. Copy the IPv6 encapsulation in a CACHE entry associated with
 the interface IFACE-IN.
 (S15. Submit the packet to the IPv6 module for transmission on
 interface IFACE-OUT via NH-ADDR.)

 o Updating the de-masquerading pseudocode such that, in addition to
 the SRH processing in Figure 24, the following pseudocode is
 executed when processing an IPv6 packet (received on the interface
 IFACE-IN and with a destination address that does not match any
 address of IFACE-IN) that does not contain an SRH.

 S01. Retrieve the CACHE entry associated with IFACE-IN.
 S02. If the CACHE entry is not empty {
 S03. If (IPv6 Hop Limit <= 1) {
 S04. Send an ICMP Time Exceeded message to the Source Address,
 Code 0 (hop limit exceeded in transit),
 Interrupt packet processing and discard the packet.
 S05. }
 S06. Decrement Hop Limit by 1.
 S07. Update the IPv6 encapsulation according to the retrieved CACHE
 entry.
 S08. Submit the packet to the IPv6 module for transmission to the
 next destination.
 S09. }

7. Metadata

7.1. MPLS Data Plane

 Metadata can be carried for SR-MPLS traffic in a Segment Routing
 Header inserted between the last MPLS label and the MPLS payload.
 When used solely as a metadata container, the SRH does not carry any
 segment but only the mandatory header fields, including the tag and
 flags, and any TLVs that is required for transporting the metadata.

 Since the MPLS encapsulation has no explicit protocol identifier
 field to indicate the protocol type of the MPLS payload, how to
 indicate the presence of metadata in an MPLS packet is a potential
 issue to be addressed. One possible solution is to add the
 indication about the presence of metadata in the semantic of the
 SIDs. Note that only the SIDs whose behavior involves looking at the
 metadata or the MPLS payload would need to include such semantic
 (e.g., service segments). Other segments, such as topological

Clad, et al. Expires September 11, 2021 [Page 29]

Internet-Draft Service Programming with Segment Routing March 2021

 segments, are not affected by the presence of metadata. Another,
 more generic, solution is to introduce a protocol identifier field
 within the MPLS packet as described in
 [I-D.xu-mpls-payload-protocol-identifier].

7.2. IPv6 Data Plane

7.2.1. SRH TLV Objects

 The IPv6 SRH TLV objects are designed to carry all sorts of metadata.
 TLV objects can be imposed by the ingress edge router that steers the
 traffic into the SR service policy.

 An SR-aware service may impose, modify or remove any TLV object
 attached to the first SRH, either by directly modifying the packet
 headers or via a control channel between the service and its
 forwarding plane.

 An SR-aware service that re-classifies the traffic and steers it into
 a new SR service policy (e.g. DPI) may attach any TLV object to the
 new SRH.

 Metadata imposition and handling will be further discussed in a
 future version of this document.

7.2.1.1. Opaque Metadata TLV

 This document defines an SRv6 TLV called Opaque Metadata TLV. This
 is a fixed-length container to carry any type of Service Metadata.
 No assumption is made by this document on the structure or the
 content of the carried metadata. The Opaque Metadata TLV has the
 following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | Service Metadata |
 | |
 +-+

 where:

 o Type: to be assigned by IANA.

 o Length: 14.

Clad, et al. Expires September 11, 2021 [Page 30]

Internet-Draft Service Programming with Segment Routing March 2021

 o Service Metadata: 14 octets of opaque data.

7.2.1.2. NSH Carrier TLV

 This document defines an SRv6 TLV called NSH Carrier TLV. It is a
 container to carry Service Metadata in the form of Variable-Length
 Metadata as defined in [RFC8300] for NSH MD Type 2. The NSH Carrier
 TLV has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Flags |
 +-+
 // Service Metadata //
 +-+

 where:

 o Type: to be assigned by IANA.

 o Length: the total length of the TLV.

 o Flags: 8 bits. No flags are defined in this document. SHOULD be
 set to 0 on transmission and MUST be ignored on receipt.

 o Service Metadata: a list of Service Metadata TLV as defined in
 [RFC8300] for NSH MD Type 2.

7.2.2. SRH Tag

 The SRH tag identifies a packet as part of a group or class of
 packets [RFC8754].

 In the context of service programming, this field can be used to
 encode basic metadata in the SRH. An example use-case is to leverage
 the SRH tag to encode a policy ID. This policy ID can then be used
 by an SR-aware function to identify a particular processing policy to
 be applied on that packet.

8. Implementation Status

 This section is to be removed prior to publishing as an RFC.

https://datatracker.ietf.org/doc/html/rfc8300
https://datatracker.ietf.org/doc/html/rfc8300
https://datatracker.ietf.org/doc/html/rfc8754

Clad, et al. Expires September 11, 2021 [Page 31]

Internet-Draft Service Programming with Segment Routing March 2021

8.1. SR-Aware Services

 Specific SRv6 support has been implemented for the below open-source
 services:

 o Iptables (1.6.2 and later) [IPTABLES]

 o Nftables (0.8.4 and later) [NFTABLES]

 o Snort [SNORT]

 In addition, any service relying on the Linux kernel, version 4.10
 and later, or FD.io VPP for packet forwarding can be considered as
 SR-aware.

8.2. Proxy Behaviors

 The static SR proxy is available for SR-MPLS and SRv6 on various
 Cisco hardware and software platforms. Furthermore, the following
 proxies are available on open-source software.

 +-------------+-------------+
 | VPP | Linux |
 +---+-----------------------------------+-------------+-------------+
M	Static proxy	Available	In progress
P			
L	Dynamic proxy	In progress	In progress
S			
	Shared memory proxy	In progress	In progress
+---+-----------------------------------+-------------+-------------+			
	Static proxy	Available	In progress
S			
R	Dynamic proxy	Available	Available
v			
6	Shared memory proxy	In progress	In progress
	Masquerading proxy	Available	Available
 +---+-----------------------------------+-------------+-------------+

 Figure 25: Open-source implementation status table

9. Related Works

 The Segment Routing solution addresses a wide problem that covers
 both topological and service policies. The topological and service
 instructions can be either deployed in isolation or in combination.
 SR has thus a wider applicability than the architecture defined in
 [RFC7665]. Furthermore, the inherent property of SR is a stateless

https://datatracker.ietf.org/doc/html/rfc7665

Clad, et al. Expires September 11, 2021 [Page 32]

Internet-Draft Service Programming with Segment Routing March 2021

 network fabric. In SR, there is no state within the fabric to
 recognize a flow and associate it with a policy. State is only
 present at the ingress edge of the SR domain, where the policy is
 encoded into the packets. This is completely different from other
 proposals such as [RFC8300] and the MPLS label swapping mechanism
 described in [RFC8595], which rely on state configured at every hop
 of the service chain.

10. IANA Considerations

10.1. SRv6 Endpoint Behaviors

 This I-D requests the IANA to allocate, within the "SRv6 Endpoint
 Behaviors" sub-registry belonging to the top-level "Segment-routing
 with IPv6 dataplane (SRv6) Parameters" registry, the following
 allocations:

 Value Description Reference
 --
 TBA1-1 End.AN - SR-aware function (native) [This.ID]
 TBA1-2 End.AS - Static proxy [This.ID]
 TBA1-3 End.AD - Dynamic proxy [This.ID]
 TBA1-4 End.AM - Masquerading proxy [This.ID]
 TBA1-5 End.AM - Masquerading proxy with NAT [This.ID]
 TBA1-6 End.AM - Masquerading proxy with Caching [This.ID]
 TBA1-7 End.AM - Masquerading proxy with NAT & [This.ID]
 Caching

10.2. Segment Routing Header TLVs

 This I-D requests the IANA to allocate, within the "Segment Routing
 Header TLVs" registry, the following allocations:

 Value Description Reference
 --
 TBA2-1 Opaque Metadata TLV [This.ID]
 TBA2-2 NSH Carrier TLV [This.ID]

11. Security Considerations

 The security requirements and mechanisms described in [RFC8402],
 [RFC8754] and [RFC8986] also apply to this document.

 This document does not introduce any new security vulnerabilities.

https://datatracker.ietf.org/doc/html/rfc8300
https://datatracker.ietf.org/doc/html/rfc8595
https://datatracker.ietf.org/doc/html/rfc8402
https://datatracker.ietf.org/doc/html/rfc8754
https://datatracker.ietf.org/doc/html/rfc8986

Clad, et al. Expires September 11, 2021 [Page 33]

Internet-Draft Service Programming with Segment Routing March 2021

12. Acknowledgements

 The authors would like to thank Thierry Couture, Ketan Talaulikar,
 Loa Andersson, Andrew G. Malis, Adrian Farrel, Alexander Vainshtein
 and Joel M. Halpern for their valuable comments and suggestions on
 the document.

13. Contributors

 The following people have contributed to this document:

 Pablo Camarillo
 Cisco Systems, Inc.
 Spain

 Email: pcamaril@cisco.com

 Bart Peirens
 Proximus
 Belgium

 Email: bart.peirens@proximus.com

 Dirk Steinberg
 Lapishills Consulting Limited
 Cyprus

 Email: dirk@lapishills.com

 Ahmed AbdelSalam
 Cisco Systems, Inc.
 Italy

 Email: ahabdels@cisco.com

 Gaurav Dawra
 LinkedIn
 United States of America

 Email: gdawra@linkedin.com

 Stewart Bryant
 Futurewei Technologies Inc

 Email: stewart.bryant@gmail.com

 Hamid Assarpour
 Broadcom

Clad, et al. Expires September 11, 2021 [Page 34]

Internet-Draft Service Programming with Segment Routing March 2021

 Email: hamid.assarpour@broadcom.com

 Himanshu Shah
 Ciena

 Email: hshah@ciena.com

 Luis M. Contreras
 Telefonica I+D
 Spain

 Email: luismiguel.contrerasmurillo@telefonica.com

 Jeff Tantsura
 Individual

 Email: jefftant@gmail.com

 Martin Vigoureux
 Nokia

 Email: martin.vigoureux@nokia.com

 Jisu Bhattacharya
 Cisco Systems, Inc.
 United States of America

 Email: jisu@cisco.com

14. References

14.1. Normative References

 [I-D.ietf-spring-segment-routing-policy]
 Filsfils, C., Talaulikar, K., Voyer, D., Bogdanov, A., and
 P. Mattes, "Segment Routing Policy Architecture", draft-

ietf-spring-segment-routing-policy-09 (work in progress),
 November 2020.

 [RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-09
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-09
https://datatracker.ietf.org/doc/html/rfc8402
https://www.rfc-editor.org/info/rfc8402

Clad, et al. Expires September 11, 2021 [Page 35]

Internet-Draft Service Programming with Segment Routing March 2021

 [RFC8660] Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing with the MPLS Data Plane", RFC 8660,
 DOI 10.17487/RFC8660, December 2019,
 <https://www.rfc-editor.org/info/rfc8660>.

 [RFC8754] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J.,
 Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
 (SRH)", RFC 8754, DOI 10.17487/RFC8754, March 2020,
 <https://www.rfc-editor.org/info/rfc8754>.

 [RFC8986] Filsfils, C., Ed., Camarillo, P., Ed., Leddy, J., Voyer,
 D., Matsushima, S., and Z. Li, "Segment Routing over IPv6
 (SRv6) Network Programming", RFC 8986,
 DOI 10.17487/RFC8986, February 2021,
 <https://www.rfc-editor.org/info/rfc8986>.

14.2. Informative References

 [I-D.dawra-idr-bgp-sr-service-chaining]
 Dawra, G., Filsfils, C., daniel.bernier@bell.ca, d.,
 Uttaro, J., Decraene, B., Elmalky, H., Xu, X., Clad, F.,
 and K. Talaulikar, "BGP Control Plane Extensions for
 Segment Routing based Service Chaining", draft-dawra-idr-

bgp-sr-service-chaining-02 (work in progress), January
 2018.

 [I-D.xu-mpls-payload-protocol-identifier]
 Xu, X., Assarpour, H., Ma, S., and F. Clad, "MPLS Payload
 Protocol Identifier", draft-xu-mpls-payload-protocol-

identifier-08 (work in progress), December 2020.

 [IFIP18] Abdelsalam, A., Salsano, S., Clad, F., Camarillo, P., and
 C. Filsfils, "SEgment Routing Aware Firewall For Service
 Function Chaining scenarios", IFIP Networking conference ,
 May 2018.

 [IPTABLES]
 "iptables-1.6.2 changes", February 2018,
 <https://netfilter.org/projects/iptables/files/changes-

iptables-1.6.2.txt>.

 [NFTABLES]
 "nftables-0.8.4 changes", May 2018,
 <https://netfilter.org/projects/nftables/files/changes-

nftables-0.8.4.txt>.

https://datatracker.ietf.org/doc/html/rfc8660
https://www.rfc-editor.org/info/rfc8660
https://datatracker.ietf.org/doc/html/rfc8754
https://www.rfc-editor.org/info/rfc8754
https://datatracker.ietf.org/doc/html/rfc8986
https://www.rfc-editor.org/info/rfc8986
https://datatracker.ietf.org/doc/html/draft-dawra-idr-bgp-sr-service-chaining-02
https://datatracker.ietf.org/doc/html/draft-dawra-idr-bgp-sr-service-chaining-02
https://datatracker.ietf.org/doc/html/draft-xu-mpls-payload-protocol-identifier-08
https://datatracker.ietf.org/doc/html/draft-xu-mpls-payload-protocol-identifier-08
https://netfilter.org/projects/iptables/files/changes-iptables-1.6.2.txt
https://netfilter.org/projects/iptables/files/changes-iptables-1.6.2.txt
https://netfilter.org/projects/nftables/files/changes-nftables-0.8.4.txt
https://netfilter.org/projects/nftables/files/changes-nftables-0.8.4.txt

Clad, et al. Expires September 11, 2021 [Page 36]

Internet-Draft Service Programming with Segment Routing March 2021

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC8300] Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
 "Network Service Header (NSH)", RFC 8300,
 DOI 10.17487/RFC8300, January 2018,
 <https://www.rfc-editor.org/info/rfc8300>.

 [RFC8595] Farrel, A., Bryant, S., and J. Drake, "An MPLS-Based
 Forwarding Plane for Service Function Chaining", RFC 8595,
 DOI 10.17487/RFC8595, June 2019,
 <https://www.rfc-editor.org/info/rfc8595>.

 [SNORT] "SR-Snort", March 2018,
 <https://github.com/SRouting/SR-Snort>.

Authors' Addresses

 Francois Clad (editor)
 Cisco Systems, Inc.
 France

 Email: fclad@cisco.com

 Xiaohu Xu (editor)
 Alibaba

 Email: xiaohu.xxh@alibaba-inc.com

 Clarence Filsfils
 Cisco Systems, Inc.
 Belgium

 Email: cf@cisco.com

 Daniel Bernier
 Bell Canada
 Canada

 Email: daniel.bernier@bell.ca

https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://datatracker.ietf.org/doc/html/rfc8300
https://www.rfc-editor.org/info/rfc8300
https://datatracker.ietf.org/doc/html/rfc8595
https://www.rfc-editor.org/info/rfc8595
https://github.com/SRouting/SR-Snort

Clad, et al. Expires September 11, 2021 [Page 37]

Internet-Draft Service Programming with Segment Routing March 2021

 Cheng Li
 Huawei

 Email: chengli13@huawei.com

 Bruno Decraene
 Orange
 France

 Email: bruno.decraene@orange.com

 Shaowen Ma
 Mellanox

 Email: mashaowen@gmail.com

 Chaitanya Yadlapalli
 AT&T
 USA

 Email: cy098d@att.com

 Wim Henderickx
 Nokia
 Belgium

 Email: wim.henderickx@nokia.com

 Stefano Salsano
 Universita di Roma "Tor Vergata"
 Italy

 Email: stefano.salsano@uniroma2.it

Clad, et al. Expires September 11, 2021 [Page 38]

