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Abstract

This document defines data plane functionality required to implement

service segments and achieve service programming in SR-enabled MPLS

and IPv6 networks, as described in the Segment Routing architecture.
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1. Introduction

Segment Routing (SR) [RFC8402] is an architecture based on the

source routing paradigm that seeks the right balance between

distributed intelligence and centralized programmability. SR can be

used with an MPLS or an IPv6 data plane to steer packets through an

ordered list of instructions, called segments. These segments may

encode simple routing instructions for forwarding packets along a

specific network path, but also steer them through Virtual Network

Functions (VNFs) or physical service appliances available in the

network.

In an SR network, each of these services, running either on a

physical appliance or in a virtual environment, are associated with

a segment identifier (SID). These service SIDs are then leveraged as

part of a SID-list to steer packets through the corresponding

services. Service SIDs may be combined together in a SID-list to

achieve service programming, but also with other types of segments

as defined in [RFC8402]. SR thus provides a fully integrated

solution for overlay, underlay and service programming. Furthermore,

the IPv6 instantiation of SR (SRv6) [RFC8986] supports metadata

transportation in the Segment Routing Header [RFC8754], either

natively in the tag field or with extensions such as TLVs.

This document describes how a service can be associated with a SID,

including legacy services with no SR capabilities, and how these

service SIDs are integrated within an SR policy. The definition of

an SR Policy and the traffic steering mechanisms are covered in [I-

D.ietf-spring-segment-routing-policy] and hence outside the scope of

this document.

The definition of control plane components, such as service segment

discovery, is outside the scope of this data plane document. For

reference, the option of using BGP extensions to support SR service

programming is proposed in [I-D.dawra-idr-bgp-sr-service-chaining].

2. Terminology

This document leverages the terminology proposed in [RFC8402], 

[RFC8660], [RFC8754], [RFC8986] and [I-D.ietf-spring-segment-

routing-policy]. It also introduces the following new terms.

Service segment: A segment associated with a service. The service

may either run on a physical appliance or in a virtual environment

such as a virtual machine or container.

SR-aware service: A service that is fully capable of processing SR

traffic. An SR-aware service can be directly associated with a

service segment.
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SR-unaware service: A service that is unable to process SR traffic

or may behave incorrectly due to presence of SR information in the

packet headers. An SR-unaware service can be associated with a

service segment through an SR proxy function.

3. Classification and Steering

Classification and steering mechanisms are defined in section 8 of 

[I-D.ietf-spring-segment-routing-policy] and are independent from

the purpose of the SR policy. From the perspective of a headend node

classifying and steering traffic into an SR policy, there is no

difference whether this policy contains IGP, BGP, peering, VPN or

service segments, or any combination of these.

As documented in the above reference, traffic is classified when

entering an SR domain. The SR policy headend may, depending on its

capabilities, classify the packets on a per-destination basis, via

simple FIB entries, or apply more complex policy routing rules

requiring to look deeper into the packet. These rules are expected

to support basic policy routing such as 5-tuple matching. In

addition, the IPv6 SRH tag field defined in [RFC8754] can be used to

identify and classify packets sharing the same set of properties.

Classified traffic is then steered into the appropriate SR policy

and forwarded as per the SID-list(s) of the active candidate path.

SR traffic can be re-classified by an SR endpoint along the original

SR policy (e.g., DPI service) or a transit node intercepting the

traffic. This node is the head-end of a new SR policy that is

imposed onto the packet, either as a stack of MPLS labels or as an

IPv6 SRH.

4. Service Segments

In the context of this document, the term service refers to a

physical appliance running on dedicated hardware, a virtualized

service inside an isolated environment such as a Virtual Machine

(VM), container or namespace, or any process running on a compute

element. A service may also comprise multiple sub-components running

in different processes or containers. Unless otherwise stated, this

document does not make any assumption on the type or execution

environment of a service.

The execution of a service can be integrated as part of an SR policy

by assigning a segment identifier, or SID, to the service and

including this service SID in the SR policy SID-list. Such a service

SID may be of local or global significance. In the former case,

other segments, such as prefix or adjacency segments, can be used to

steer the traffic up to the node where the service segment is

instantiated. In the latter case, the service is directly reachable
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from anywhere in the routing domain. This is realized with SR-MPLS

by assigning a SID from the global label block ([RFC8660]), or with

SRv6 by advertising the SID locator in the routing protocol

([RFC8986]). It is up to the network operator to define the scope

and reachability of each service SID. This decision can be based on

various considerations such as infrastructure dynamicity, available

control plane or orchestration system capabilities.

This document categorizes services in two types, depending on

whether they are able to behave properly in the presence of SR

information or not. These are respectively named SR-aware and SR-

unaware services.

4.1. SR-Aware Services

An SR-aware service can process the SR information in the packets it

receives. This means being able to identify the active segment as a

local instruction and move forward in the segment list, but also

that the service's own behavior is not hindered due to the presence

of SR information. For example, an SR-aware firewall filtering SRv6

traffic based on its final destination must retrieve that

information from the last entry in the SRH rather than the

Destination Address field of the IPv6 header.

An SR-aware service is associated with a locally instantiated

service segment, which is used to steer traffic through it.

If the service is configured to intercept all the packets passing

through the appliance, the underlying routing system only has to

implement a default SR endpoint behavior (e.g., SR-MPLS node segment

or SRv6 End behavior), and the corresponding SID will be used to

steer traffic through the service.

If the service requires the packets to be directed to a specific

virtual interface, networking queue or process, a dedicated SR

behavior may be required to steer the packets to the appropriate

location. The definition of such service-specific functions is out

of the scope of this document.

SR-aware services also enable advanced network programming

functionalities such as conditional branching and jumping to

arbitrary SIDs in the segment list. In addition, SRv6 provides

several ways of passing and exchanging information between services

(e.g., SID arguments, tag field and TLVs). An example scenario

involving these features is described in [IFIP18], which discusses

the implementation of an SR-aware Intrusion Detection System.

Examples of SR-aware services are provided in section Section 8.1.
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4.2. SR-Unaware Services

Any service that does not meet the above criteria for SR-awareness

is considered as SR-unaware.

An SR-unaware service is not able to process the SR information in

the traffic that it receives. It may either drop the traffic or take

erroneous decisions due to the unrecognized routing information. In

order to include such services in an SR policy, it is thus required

to remove the SR information as well as any other encapsulation

header before the service receives the packet, or to alter it in

such a way that the service can correctly process the packet.

In this document, we define the concept of an SR proxy as an entity,

separate from the service, that performs these modifications and

handle the SR processing on behalf of a service. The SR proxy can

run as a separate process on the service appliance, on a virtual

switch or router on the compute node or on a different host.

An SR-unaware service is associated with a service segment

instantiated on the SR proxy, which is used to steer traffic through

the service. Section 6 describes several SR proxy behaviors to

handle the encapsulation headers and SR information under various

circumstances.

5. SR Service Policies

An SR service policy is an SR policy, as defined in [I-D.ietf-

spring-segment-routing-policy], that includes at least one service.

This service is represented in the SID-list by its associated

service SID. In case the policy should include several services, the

service traversal order is indicated by the relative position of

each service SID in the SID-list. Using the mechanisms described in 

[I-D.ietf-spring-segment-routing-policy], it is possible to load

balance the traffic over several services, or instances of the same

service, by associating with the SR service policy a weighted set of

SID-lists, each containing a possible sequence of service SIDs to be

traversed. Similarly, several candidate paths can be specified for

the SR service policy, each with its own set of SID-lists, for

resiliency purposes.

Furthermore, binding SIDs (BSIDs) [RFC8402] can be leveraged in the

context of service policies to reduce the number of SIDs imposed by

the headend, provide opacity between domains and improve

scalability. For example, a network operator may want a policy in

its core domain to include services that are running in one of its

datacenters. One option is to define an SR policy at ingress edge of

the core domain that explicitly includes all the SIDs needed to

steer the traffic through the core and in the DC, but that may
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result in a long SID-list and requires to update the ingress edge

configuration every time the DC part of the policy is modified.

Alternatively, a separate policy can be defined at the ingress edge

of the datacenter with only the SIDs that needs to be executed there

and its BSID included in the core domain policy. That BSID remains

stable when the DC policy is modified and can even be shared among

several core domain policies that would require the same type of

processing in the DC.

This section describes how services can be integrated within an SR-

MPLS or SRv6 service policy.

Figure 1: SR service policy

Figure 1 illustrates a basic SR service policy instantiated on a

headend node H towards an endpoint E and traversing a service S. The

SR policy may also include additional requirements, such as traffic

engineering or VPN. On the head-end H, the SR policy P1 is created

with a color C and endpoint E and associated with an SR path that

can either be explicitly configured, dynamically computed on H or

provisioned by a network controller.

In its most basic form, the SR policy P1 would be resolved into the

SID-list < SID(S), SID(E) >. This is assuming that SID(S) and SID(E)

are directly reachable from H and S, respectively, and that the

forwarding path meets the policy requirement. However, depending on

the dataplane and the segments available in the network, additional

SIDs may be required to enforce the SR policy.

This model applies regardless of the SR-awareness of the service. If

it is SR-unaware, then S simply represents the proxy that takes care

of transmitting the packet to the actual service.

Traffic can then be steered into this policy using any of the

mechanisms described in [I-D.ietf-spring-segment-routing-policy].

The following subsections describe the specificities of each SR

dataplane.
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     +------------------------------------------+

     |               SR network                 |

     |                                          |

+----+----+          +---------+           +----+-----+

|    H    +----------+    S    +-----------+    E     |

|(headend)|          |(service)|           |(endpoint)|

+----+----+          +---------+           +----+-----+

     |  =====================================>  |

     |     P1(H,E,C)                            |

     +------------------------------------------+

¶

¶

¶

¶

¶



5.1. SR-MPLS Data Plane

Figure 2: Packet walk in an SR-MPLS network

In an SR-MPLS network, the SR policy SID-list is encoded as a stack

of MPLS labels [RFC8660] and pushed on top of the packet.

In the example shown on Figure 2, the SR policy should steer the

traffic from the head-end H to the endpoint E via a service S. This

translates into an MPLS label stack that includes at least a label

L(S) associated to service S and a label L(E) associated to the

endpoint E. The label stack may also include additional intermediate

SIDs if these are required for traffic engineering (e.g., to encode

a low latency path between H and S and / or between S and E) or

simply for reachability purposes. Indeed, the service SID L(S) may

be taken from the global or local SID block of node S and, in the

latter case, one or more SIDs might be needed before L(S) in order

for the packet to reach node S (e.g., a prefix-SID of S), where L(S)

can be interpreted. The same applies for the SID L(E) at the SR

policy endpoint.

Special consideration must be taken into account when using Local

SIDs for service identification due to increased label stack depth

and the associated impacts.

When the packet arrives at S, this node determines the MPLS payload

type and the appropriate behavior for processing the packet based on

     +-----------------------------------------------+

     |                SR-MPLS network                |

     |                                               |

+----+----+   ------>   +---------+   ------>   +----+-----+

|    H    +-------------+    S    +-------------+    E     |

|(headend)|             |(service)|             |(endpoint)|

+----+----+             +---------+             +----+-----+

     |    (1)         (2)         (3)         (4)    |

     |+---------+ +---------+ +---------+ +---------+|

     ||   ...   | |  L(S)   | |   ...   | |  L(E)   ||

     |+---------+ +---------+ +---------+ +---------+|

     ||  L(S)   | |   ...   | |  L(E)   | |Inner pkt||

     |+---------+ +---------+ +---------+ +---------+|

     ||   ...   | |  L(E)   | |Inner pkt|            |

     |+---------+ +---------+ +---------+            |

     ||  L(E)   | |Inner pkt|                        |

     |+---------+ +---------+                        |

     ||Inner pkt|                                    |

     |+---------+                                    |

     +-----------------------------------------------+
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the semantic locally associated to the top label L(S). If S is an

SR-aware service, the SID L(S) may provide additional context or

indication on how to process the packet (e.g., a firewall SID may

indicate which rule set should be applied onto the packet). If S is

a proxy in front of an SR-unaware service, L(S) indicates how and to

which service attached to this proxy the packet should be

transmitted. At some point in the process, L(S) is also popped from

the label stack in order to expose the next SID, which may be L(E)

or another intermediate SID.

5.2. SRv6 Data Plane

Figure 3: Packet walk in an SRv6 network

In an SRv6 network, the SR Policy is encoded into the packet as an

IPv6 header possibly followed by a Segment Routing Header (SRH) 

[RFC8754].

In the example shown on Figure 3, the SR policy should steer the

traffic from the head-end H to the endpoint E via a service S. This

translates into Segment-List that includes at least a segment SID(S)

to the service, or service proxy, S and a segment SID(E) to the

endpoint E. The Segment-List may also include additional

intermediate SIDs if these are required for traffic engineering

(e.g., the encode a low latency path between H and S and / or

between S and E) or simply for reachability purposes. Indeed, the

service SID locator may or may not be advertised in the routing

protocol and, in the latter case, one or more SIDs might be needed

before SID(S) in order to bring the packet up to node S, where

¶

     +-----------------------------------------------+

     |                 SRv6 network                  |

     |                                               |

+----+----+   ------>   +---------+   ------>   +----+-----+

|    H    +-------------+    S    +-------------+    E     |

|(headend)|             |(service)|             |(endpoint)|

+----+----+             +---------+             +----+-----+

     |    (1)         (2)         (3)         (4)    |

     |+---------+ +---------+ +---------+ +---------+|

     ||IP6(H,..)| |IP6(H, S)| |IP6(H,..)| |IP6(H, E)||

     |+---------+ +---------+ +---------+ +---------+|

     ||SRH(E,..,| |SRH(E,..,| |SRH(E,..,| |SRH(E,..,||

     ||    S,..;| |    S,..;| |    S,..;| |    S,..;||

     ||    SL=i)| |    SL=j)| |    SL=k)| |    SL=0)||

     |+---------+ +---------+ +---------+ +---------+|

     ||Inner pkt| |Inner pkt| |Inner pkt| |Inner pkt||

     |+---------+ +---------+ +---------+ +---------+|

     +-----------------------------------------------+
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SID(S) can be interpreted. The same applies for the segment SID(E)

at the SR policy endpoint.

When the packet arrives at S, this node determines how to process

the packet based on the semantic locally associated to the active

segment SID(S). If S is an SR-aware service, then SID(S) may provide

additional context or indication on how to process the packet (e.g.,

a firewall SID may indicate which rule set should be applied onto

the packet). If S is a proxy in front of an SR-unaware service,

SID(S) indicates how and to which service attached to this proxy the

packet should be transmitted. At some point in the process, the SRv6

End function is also applied in order to make the next SID, which

may be SID(E) or another intermediate SID, active.

The "Inner pkt" on Figure 3 represents the SRv6 payload, which may

be an encapsulated IP packet, an Ethernet frame or a transport-layer

payload, for example.

6. SR Proxy Behaviors

This section describes several SR proxy behaviors designed to enable

SR service programming through SR-unaware services. A system

implementing one of these behaviors may handle the SR processing on

behalf of an SR-unaware service and allows the service to properly

process the traffic that is steered through it.

A service may be located at any hop in an SR policy, including the

last segment. However, the SR proxy behaviors defined in this

section are dedicated to supporting SR-unaware services at

intermediate hops in the segment list. In case an SR-unaware service

is at the last segment, it is sufficient to ensure that the SR

information is ignored (IPv6 routing extension header with Segments

Left equal to 0) or removed before the packet reaches the service

(MPLS PHP, SRv6 decapsulation behavior or PSP flavor).

As illustrated on Figure 4, the generic behavior of an SR proxy has

two parts. The first part is in charge of passing traffic from the

network to the service. It intercepts the SR traffic destined for

the service via a locally instantiated service segment, modifies it

in such a way that it appears as non-SR traffic to the service, then

sends it out on a given interface, IFACE-OUT, connected to the

service. The second part receives the traffic coming back from the

service on IFACE-IN, restores the SR information and forwards it

according to the next segment in the list. IFACE-OUT and IFACE-IN

are respectively the proxy interface used for sending traffic to the

service and the proxy interface that receives the traffic coming

back from the service. These can be physical interfaces or sub-

interfaces (VLANs) and, unless otherwise stated, IFACE-OUT and

IFACE-IN can represent the same interface.
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Figure 4: Generic SR proxy

In the next subsections, the following SR proxy mechanisms are

defined:

Static proxy

Dynamic proxy

Shared-memory proxy

Masquerading proxy

Each mechanism has its own characteristics and constraints, which

are summarized in the below table. It is up to the operator to

select the best one based on the proxy node capabilities, the

service behavior and the traffic type. It is also possible to use

different proxy mechanisms within the same service policy.

           +----------------------------+

           |                            |

           |           Service          |

           |                            |

           +----------------------------+

                    ^  Non SR   |

                    |  traffic  |

                    |           v

              +-----------+----------+

           +--| IFACE OUT | IFACE IN |--+

SR traffic |  +-----------+----------+  | SR traffic

---------->|          SR proxy          |---------->

           |                            |

           +----------------------------+
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Figure 5: SR proxy summary

Note: The use of a shared memory proxy requires both the service

(VNF) and the proxy to be running on the same node.

                                        +-----+-----+-----+-----+

                                        |     |     |     |  M  |

                                        |     |     |  S  |  a  |

                                        |     |     |  h  |  s  |

                                        |     |     |  a  |  q  |

                                        |     |     |  r  |  u  |

                                        |     |  D  |  e  |  e  |

                                        |  S  |  y  |  d  |  r  |

                                        |  t  |  n  |     |  a  |

                                        |  a  |  a  |  m  |  d  |

                                        |  t  |  m  |  e  |  i  |

                                        |  i  |  i  |  m  |  n  |

                                        |  c  |  c  |  .  |  g  |

+---------------------------------------+-----+-----+-----+-----+

|                |       SR-MPLS        |  Y  |  Y  |  Y  |  -  |

|                |                      |     |     |     |     |

|   SR flavors   |     Inline SRv6      |  P  |  P  |  P  |  Y  |

|                |                      |     |     |     |     |

|                |  SRv6 encapsulation  |  Y  |  Y  |  Y  |  -  |

+----------------+----------------------+-----+-----+-----+-----+

|     Chain agnostic configuration      |  N  |  N  |  Y  |  Y  |

+---------------------------------------+-----+-----+-----+-----+

|     Transparent to chain changes      |  N  |  Y  |  Y  |  Y  |

+----------------+----------------------+-----+-----+-----+-----+

|                |   DA modification    |  Y  |  Y  |  Y  | NAT |

|                |                      |     |     |     |     |

|                | Payload modification |  Y  |  Y  |  Y  |  Y  |

|                |                      |     |     |     |     |

|Service support |  Packet generation   |  Y  |  Y  |cache|cache|

|                |                      |     |     |     |     |

|                |   Packet deletion    |  Y  |  Y  |  Y  |  Y  |

|                |                      |     |     |     |     |

|                |  Packet re-ordering  |  Y  |  Y  |  Y  |  Y  |

|                |                      |     |     |     |     |

|                |  Transport endpoint  |  Y  |  Y  |cache|cache|

+----------------+----------------------+-----+-----+-----+-----+

|                |       Ethernet       |  Y  |  Y  |  Y  |  -  |

|   Supported    |                      |     |     |     |     |

|    traffic     |         IPv4         |  Y  |  Y  |  Y  |  -  |

|                |                      |     |     |     |     |

|                |         IPv6         |  Y  |  Y  |  Y  |  Y  |

+----------------+----------------------+-----+-----+-----+-----+
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6.1. Static SR Proxy

The static proxy is an SR endpoint behavior for processing SR-MPLS

or SRv6 encapsulated traffic on behalf of an SR-unaware service.

This proxy thus receives SR traffic that is formed of an MPLS label

stack or an IPv6 header on top of an inner packet, which can be

Ethernet, IPv4 or IPv6.

A static SR proxy segment is associated with the following mandatory

parameters

INNER-TYPE: Inner packet type

NH-ADDR: Next hop Ethernet address (only for inner type IPv4 and

IPv6)

IFACE-OUT: Local interface for sending traffic towards the

service

IFACE-IN: Local interface receiving the traffic coming back from

the service

CACHE: SR information to be attached on the traffic coming back

from the service, including at least

CACHE.SA: IPv6 source address (SRv6 only)

CACHE.LIST: Segment list expressed as MPLS labels or IPv6

address

A static SR proxy segment is thus defined for a specific service,

inner packet type and cached SR information. It is also bound to a

pair of directed interfaces on the proxy. These may be both

directions of a single interface, or opposite directions of two

different interfaces. The latter is recommended in case the service

is to be used as part of a bi-directional SR service policy. If the

proxy and the service both support 802.1Q, IFACE-OUT and IFACE-IN

can also represent sub-interfaces.

The first part of this behavior is triggered when the proxy node

receives a packet whose active segment matches a segment associated

with the static proxy behavior. It removes the SR information from

the packet then sends it on a specific interface towards the

associated service. This SR information corresponds to the full

label stack for SR-MPLS or to the encapsulation IPv6 header with any

attached extension header in the case of SRv6.

The second part is an inbound policy attached to the proxy interface

receiving the traffic returning from the service, IFACE-IN. This

policy attaches to the incoming traffic the cached SR information
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associated with the SR proxy segment. If the proxy segment uses the

SR-MPLS data plane, CACHE contains a stack of labels to be pushed on

top of the packets. With the SRv6 data plane, CACHE is defined as a

source address, an active segment and an optional SRH (tag, segments

left, segment list and metadata). The proxy encapsulates the packets

with an IPv6 header that has the source address, the active segment

as destination address and the SRH as a routing extension header.

After the SR information has been attached, the packets are

forwarded according to the active segment, which is represented by

the top MPLS label or the IPv6 Destination Address. An MPLS TTL or

IPv6 Hop Limit value may also be configured in CACHE. If it is not,

the proxy should set these values according to the node's default

setting for MPLS or IPv6 encapsulation.

In this scenario, there are no restrictions on the operations that

can be performed by the service on the stream of packets. It may

operate at all protocol layers, terminate transport layer

connections, generate new packets and initiate transport layer

connections. This behavior may also be used to integrate an IPv4-

only service into an SRv6 policy. However, a static SR proxy segment

can be used in only one service policy at a time. As opposed to most

other segment types, a static SR proxy segment is bound to a unique

list of segments, which represents a directed SR service policy.

This is due to the cached SR information being defined in the

segment configuration. This limitation only prevents multiple

segment lists from using the same static SR proxy segment at the

same time, but a single segment list can be shared by any number of

traffic flows. Besides, since the returning traffic from the service

is re-classified based on the incoming interface, an interface can

be used as receiving interface (IFACE-IN) only for a single SR proxy

segment at a time. In the case of a bi-directional SR service

policy, a different SR proxy segment and receiving interface are

required for the return direction.

The static proxy behavior may also be used for sending traffic

through "bump in the wire" services that are transparent to the IP

and Ethernet layers. This type of processing is assumed when the

inner traffic type is Ethernet, since the original destination

address of the Ethernet frame is preserved when the packet is

steered into the SR Policy and likely associated with a node

downstream of the policy tail-end. In case the inner type is IP

(IPv4 or IPv6), the NH-ADDR parameter may be set to a dummy or

broadcast Ethernet address, or simply to the address of the proxy

receiving interface (IFACE-IN).

¶

¶

¶



6.1.1. SR-MPLS Pseudocode

6.1.1.1. Static Proxy for Inner Type Ethernet

When processing an MPLS packet whose top label matches a locally

instantiated MPLS static proxy SID for Ethernet traffic, the

following pseudocode is executed.

Figure 6: SID processing for MPLS static proxy (Ethernet)

When processing an Ethernet frame received on the interface IFACE-IN

and with a destination MAC address that is neither a broadcast

address nor matches the address of IFACE-IN, the following

pseudocode is executed.

Figure 7: Inbound policy for MPLS static proxy (Ethernet)

6.1.1.2. Static Proxy for Inner Type IPv4

When processing an MPLS packet whose top label matches a locally

instantiated MPLS static proxy SID for IPv4 traffic, the following

pseudocode is executed.

Figure 8: SID processing for MPLS static proxy (IPv4)

When processing an IPv4 packet received on the interface IFACE-IN

and with a destination address that does not match any address of

IFACE-IN, the following pseudocode is executed.

¶

S01. POP all labels in the MPLS label stack.

S02. Submit the frame to the Ethernet module for transmission via

     interface IFACE-OUT.

¶

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   Remove the preamble or Frame Check Sequence (FCS).

S04.   PUSH all labels from the retrieved CACHE entry.

S05.   Submit the packet to the MPLS module for transmission as per

       the top label in the MPLS label stack.

S06. }

¶

S01. POP all labels in the MPLS label stack.

S02. Submit the packet to the IPv4 module for transmission on

     interface IFACE-OUT via NH-ADDR.

¶



Figure 9: Inbound policy for MPLS static proxy (IPv4)

6.1.1.3. Static Proxy for Inner Type IPv6

When processing an MPLS packet whose top label matches a locally

instantiated MPLS static proxy SID for IPv6 traffic, the following

pseudocode is executed.

Figure 10: SID processing for MPLS static proxy (IPv6)

When processing an IPv6 packet received on the interface IFACE-IN

and with a destination address that does not match any address of

IFACE-IN, the following pseudocode is executed.

Figure 11: Inbound policy for MPLS static proxy (IPv6)

6.1.2. SRv6 Pseudocode

6.1.2.1. Static Proxy for Inner Type Ethernet

When processing an IPv6 packet matching a FIB entry locally

instantiated as an SRv6 static proxy SID for Ethernet traffic, the

following pseudocode is executed.

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   Decrement the TTL and adjust the checksum accordingly.

S04.   PUSH all labels from the retrieved CACHE entry.

S05.   Submit the packet to the MPLS module for transmission as per

       the top label in the MPLS label stack.

S06. }

¶

S01. POP all labels in the MPLS label stack.

S02. Submit the packet to the IPv6 module for transmission on

     interface IFACE-OUT via NH-ADDR.

¶

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   Decrement the Hop Limit.

S04.   PUSH all labels from the retrieved CACHE entry.

S05.   Submit the packet to the MPLS module for transmission as per

       the top label in the MPLS label stack.

S06. }

¶



Figure 12: SID processing for SRv6 static proxy (Ethernet)

S15: 143 (Ethernet) refers to the value assigned by IANA for

"Ethernet" in the "Internet Protocol Numbers" registry.

When processing the Upper-layer header of a packet matching a FIB

entry locally instantiated as an SRv6 static proxy SID for Ethernet

traffic, the following pseudocode is executed.

Figure 13: Upper-layer header processing for SRv6 static proxy

(Ethernet)

S01. When an SRH is processed {

S02.   If (Segments Left == 0) {

S03.     Proceed to process the next header in the packet.

S04.   }

S05.   If (IPv6 Hop Limit <= 1) {

S06.     Send an ICMP Time Exceeded message to the Source Address,

         Code 0 (hop limit exceeded in transit),

         Interrupt packet processing and discard the packet.

S07.   }

S08.   max_last_entry = (Hdr Ext Len / 2) - 1

S09.   If ((Last Entry > max_last_entry) or

           (Segments Left > (Last Entry + 1))) {

S10.     Send an ICMP Parameter Problem message to the Source Address,

         Code 0 (Erroneous header field encountered),

         Pointer set to the Segments Left field,

         Interrupt packet processing and discard the packet.

S11.   }

S12.   Decrement Hop Limit by 1.

S13.   Decrement Segments Left by 1.

S14.   Copy Segment List[Segments Left] from the SRH to the

       Destination Address of the IPv6 header.

S15.   If (Upper-layer header type != 143 (Ethernet)) {

S16.     Resubmit the packet to the IPv6 module for transmission to

         the new destination.

S17.   }

S18.   Perform IPv6 decapsulation.

S19.   Submit the frame to the Ethernet module for transmission via

       interface IFACE-OUT.

S20. }

¶

¶

S01. If (Upper-layer header type != 143 (Ethernet)) {

S02.   Process as per [RFC8986] Section 4.1.1

S03. }

S04. Perform IPv6 decapsulation.

S05. Submit the frame to the Ethernet module for transmission via

     interface IFACE-OUT.



When processing an Ethernet frame received on the interface IFACE-IN

and with a destination MAC address that is neither a broadcast

address nor matches the address of IFACE-IN, the following

pseudocode is executed.

Figure 14: Inbound policy for SRv6 static proxy (Ethernet)

S04: CACHE.LIST[0] represents the first entry in CACHE.LIST. Unless

a local configuration indicates otherwise, the SIDs in CACHE.LIST

should be encoded in the Segment List field in reversed order, the

Segment Left and Last Entry values should be set of the length of

CACHE.LIST minus 1. If CACHE.LIST contains a single entry, the SRH

can be omitted and the Next Header field of the IPv6 header set to

143 (Ethernet).

6.1.2.2. Static Proxy for Inner Type IPv4

When processing an IPv6 packet matching a FIB entry locally

instantiated as an SRv6 static proxy SID for IPv4 traffic, the

following pseudocode is executed.

¶

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   Remove the preamble or Frame Check Sequence (FCS).

S04.   Perform IPv6 encapsulation with an SRH

         Source Address of the IPv6 header is set to CACHE.SA,

         Destination Address of the IPv6 header is set to

         CACHE.LIST[0],

         Next Header of the SRH is set to 143 (Ethernet),

         Segment List of the SRH is set to CACHE.LIST.

S05.   Submit the packet to the IPv6 module for transmission to the

       next destination.

S06. }

¶

¶



Figure 15: SID processing for SRv6 static proxy (IPv4)

When processing the Upper-layer header of a packet matching a FIB

entry locally instantiated as an SRv6 static proxy SID for IPv4

traffic, the following pseudocode is executed.

Figure 16: Upper-layer header processing for SRv6 static proxy (IPv4)

When processing an IPv4 packet received on the interface IFACE-IN

and with a destination address that does not match any address of

IFACE-IN, the following pseudocode is executed.

S01. When an SRH is processed {

S02.   If (Segments Left == 0) {

S03.     Proceed to process the next header in the packet.

S04.   }

S05.   If (IPv6 Hop Limit <= 1) {

S06.     Send an ICMP Time Exceeded message to the Source Address,

         Code 0 (hop limit exceeded in transit),

         Interrupt packet processing and discard the packet.

S07.   }

S08.   max_last_entry = (Hdr Ext Len / 2) - 1

S09.   If ((Last Entry > max_last_entry) or

           (Segments Left > (Last Entry + 1))) {

S10.     Send an ICMP Parameter Problem message to the Source Address,

         Code 0 (Erroneous header field encountered),

         Pointer set to the Segments Left field,

         Interrupt packet processing and discard the packet.

S11.   }

S12.   Decrement Hop Limit by 1.

S13.   Decrement Segments Left by 1.

S14.   Copy Segment List[Segments Left] from the SRH to the

       Destination Address of the IPv6 header.

S15.   If (Upper-layer header type != 4 (IPv4)) {

S16.     Resubmit the packet to the IPv6 module for transmission to

         the new destination.

S17.   }

S18.   Perform IPv6 decapsulation.

S19.   Submit the packet to the IPv4 module for transmission on

       interface IFACE-OUT via NH-ADDR.

S20. }

¶

S01. If (Upper-layer header type != 4 (IPv4)) {

S02.   Process as per [RFC8986] Section 4.1.1

S03. }

S04. Perform IPv6 decapsulation.

S05. Submit the packet to the IPv4 module for transmission on

     interface IFACE-OUT via NH-ADDR.

¶



Figure 17: Inbound policy for SRv6 static proxy (IPv4)

S04: CACHE.LIST[0] represents the first entry in CACHE.LIST. Unless

a local configuration indicates otherwise, the SIDs in CACHE.LIST

should be encoded in the Segment List field in reversed order, the

Segment Left and Last Entry values should be set of the length of

CACHE.LIST minus 1. If CACHE.LIST contains a single entry, the SRH

can be omitted and the Next Header field of the IPv6 header set to 4

(IPv4).

6.1.2.3. Static Proxy for Inner Type IPv6

When processing an IPv6 packet matching a FIB entry locally

instantiated as an SRv6 static proxy SID for IPv6 traffic, the

following pseudocode is executed.

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   Decrement the TTL and adjust the checksum accordingly.

S04.   Perform IPv6 encapsulation with an SRH

         Source Address of the IPv6 header is set to CACHE.SA,

         Destination Address of the IPv6 header is set to

         CACHE.LIST[0],

         Next Header of the SRH is set to 4 (IPv4),

         Segment List of the SRH is set to CACHE.LIST.

S05.   Submit the packet to the IPv6 module for transmission to the

       next destination.

S06. }

¶

¶



Figure 18: SID processing for SRv6 static proxy (IPv6)

When processing the Upper-layer header of a packet matching a FIB

entry locally instantiated as an SRv6 static proxy SID for IPv6

traffic, the following pseudocode is executed.

Figure 19: Upper-layer header processing for SRv6 static proxy (IPv6)

When processing an IPv6 packet received on the interface IFACE-IN

and with a destination address that does not match any address of

IFACE-IN, the following pseudocode is executed.

S01. When an SRH is processed {

S02.   If (Segments Left == 0) {

S03.     Proceed to process the next header in the packet.

S04.   }

S05.   If (IPv6 Hop Limit <= 1) {

S06.     Send an ICMP Time Exceeded message to the Source Address,

         Code 0 (hop limit exceeded in transit),

         Interrupt packet processing and discard the packet.

S07.   }

S08.   max_last_entry = (Hdr Ext Len / 2) - 1

S09.   If ((Last Entry > max_last_entry) or

           (Segments Left > (Last Entry + 1))) {

S10.     Send an ICMP Parameter Problem message to the Source Address,

         Code 0 (Erroneous header field encountered),

         Pointer set to the Segments Left field,

         Interrupt packet processing and discard the packet.

S11.   }

S12.   Decrement Hop Limit by 1.

S13.   Decrement Segments Left by 1.

S14.   Copy Segment List[Segments Left] from the SRH to the

       Destination Address of the IPv6 header.

S15.   If (Upper-layer header type != 41 (IPv6)) {

S16.     Resubmit the packet to the IPv6 module for transmission to

         the new destination.

S17.   }

S18.   Perform IPv6 decapsulation.

S19.   Submit the packet to the IPv6 module for transmission on

       interface IFACE-OUT via NH-ADDR.

S20. }

¶

S01. If (Upper-layer header type != 41 (IPv6)) {

S02.   Process as per [RFC8986] Section 4.1.1

S03. }

S04. Perform IPv6 decapsulation.

S05. Submit the packet to the IPv6 module for transmission on

     interface IFACE-OUT via NH-ADDR.

¶



Figure 20: Inbound policy for SRv6 static proxy (IPv6)

S04: CACHE.LIST[0] represents the first entry in CACHE.LIST. Unless

a local configuration indicates otherwise, the SIDs in CACHE.LIST

should be encoded in the Segment List field in reversed order, the

Segment Left and Last Entry values should be set of the length of

CACHE.LIST minus 1. If CACHE.LIST contains a single entry, the SRH

can be omitted and the Next Header field of the (outer) IPv6 header

set to 41 (IPv6).

6.2. Dynamic SR Proxy

The dynamic proxy is an improvement over the static proxy that

dynamically learns the SR information before removing it from the

incoming traffic. The same information can then be re-attached to

the traffic returning from the service. As opposed to the static SR

proxy, no CACHE information needs to be configured. Instead, the

dynamic SR proxy relies on a local caching mechanism on the node

instantiating this segment.

Upon receiving a packet whose active segment matches a dynamic SR

proxy function, the proxy node pops the top MPLS label or applies

the SRv6 End behavior, then compares the updated SR information with

the cache entry for the current segment. If the cache is empty or

different, it is updated with the new SR information. The SR

information is then removed and the inner packet is sent towards the

service.

The cache entry is not mapped to any particular packet, but instead

to an SR service policy identified by the receiving interface

(IFACE-IN). Any non-link-local IP packet or non-local Ethernet frame

received on that interface will be re-encapsulated with the cached

headers as described in Section 6.1. The service may thus drop,

modify or generate new packets without affecting the proxy.

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   Decrement the Hop Limit.

S04.   Perform IPv6 encapsulation with an SRH

         Source Address of the IPv6 header is set to CACHE.SA,

         Destination Address of the IPv6 header is set to

         CACHE.LIST[0],

         Next Header of the SRH is set to 41 (IPv6),

         Segment List of the SRH is set to CACHE.LIST.

S05.   Submit the packet to the IPv6 module for transmission to the

       next destination.

S06. }

¶

¶

¶

¶



6.2.1. SR-MPLS Pseudocode

The dynamic proxy SR-MPLS pseudocode is obtained by inserting the

following instructions at the beginning of the static SR-MPLS

pseudocode (Section 6.1.1).

Figure 21: SID processing for MPLS dynamic proxy

S01: As mentioned at the beginning of Section 6, an SR proxy is not

needed to include an SR-unaware service at the end of an SR policy.

S05: An implementation may optimize the caching procedure by copying

information into the cache only if it is different from the current

content of the cache entry. Furthermore, a TTL margin can be

configured for the top label stack entry to prevent constant cache

updates when multiple equal-cost paths with different hop counts are

used towards the SR proxy node. In that case, a TTL difference

smaller than the configured margin should not trigger a cache update

(provided that the labels are the same).

When processing an Ethernet frame, an IPv4 packet or an IPv6 packet

received on the interface IFACE-IN and with a destination address

that does not match any address of IFACE-IN, the pseudocode reported

in Figure 7, Figure 9 or Figure 11, respectively, is executed.

6.2.2. SRv6 Pseudocode

When processing an IPv6 packet matching a FIB entry locally

instantiated as an SRv6 dynamic proxy SID, the same pseudocode as

described in Figure 12, Figure 15 and Figure 18, respectively for

Ethernet, IPv4 and IPv6 traffic, is executed with the following

addition between lines S17 and S18.

Figure 22: SID processing for SRv6 dynamic proxy

¶

S01. If the top label S bit is different from 0 {

S02.   Discard the packet.

S03. }

S04. POP the top label.

S05. Copy the MPLS label stack in a CACHE entry associated with the

     interface IFACE-IN.

¶

¶

¶

¶

(... S17.     })

S17.1.   Copy the IPv6 encapsulation in a CACHE entry associated with

         the interface IFACE-IN.

(S18.     Perform IPv6 decapsulation...)



An implementation may optimize the caching procedure by copying

information into the cache only if it is different from the current

content of the cache entry. A Hop Limit margin can be configured to

prevent constant cache updates when multiple equal-cost paths with

different hop counts are used towards the SR proxy node. In that

case, a Hop Limit difference smaller than the configured margin

should not trigger a cache update. Similarly, the Flow Label value

can be ignored when comparing the current packet IPv6 header with

the cache entry. In this case, the Flow Label should be re-computed

by the proxy node when it restores the IPv6 encapsulation from the

cache entry.

When processing the Upper-layer header of a packet matching a FIB

entry locally instantiated as an SRv6 dynamic proxy SID, process the

packet as per [RFC8986] Section 4.1.1.

When processing an Ethernet frame, an IPv4 packet or an IPv6 packet

received on the interface IFACE-IN and with a destination address

that does not match any address of IFACE-IN, the same pseudocode as

in Figure 14, Figure 17 or Figure 20, respectively, is executed.

6.3. Shared Memory SR Proxy

The shared memory proxy is an SR endpoint behavior for processing

SR-MPLS or SRv6 encapsulated traffic on behalf of an SR-unaware

service. This proxy behavior leverages a shared-memory interface

with a virtualized service (VNF) in order to hide the SR information

from an SR-unaware service while keeping it attached to the packet.

We assume in this case that the proxy and the VNF are running on the

same compute node. A typical scenario is an SR-capable vrouter

running on a container host and forwarding traffic to VNFs isolated

within their respective container.

6.4. Masquerading SR Proxy

The masquerading proxy is an SR endpoint behavior for processing

SRv6 traffic on behalf of an SR-unaware service. This proxy thus

receives SR traffic that is formed of an IPv6 header and an SRH on

top of an inner payload. The masquerading behavior is independent

from the inner payload type. Hence, the inner payload can be of any

type but it is usually expected to be a transport layer packet, such

as TCP or UDP.

A masquerading SR proxy segment is associated with the following

mandatory parameters:

NH-ADDR: Next hop Ethernet address

IFACE-OUT: Local interface for sending traffic towards the

service
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IFACE-IN: Local interface receiving the traffic coming back from

the service

A masquerading SR proxy segment is thus defined for a specific

service and bound to a pair of directed interfaces or sub-interfaces

on the proxy. As opposed to the static and dynamic SR proxies, a

masquerading segment can be present at the same time in any number

of SR service policies and the same interfaces can be bound to

multiple masquerading proxy segments. The only restriction is that a

masquerading proxy segment cannot be the last segment in an SR

service policy.

The first part of the masquerading behavior is triggered when the

proxy node receives an IPv6 packet whose Destination Address matches

a masquerading proxy SID. The proxy inspects the IPv6 extension

headers and substitutes the Destination Address with the last SID in

the SRH attached to the IPv6 header, which represents the final

destination of the IPv6 packet. The packet is then sent out towards

the service.

The service receives an IPv6 packet whose source and destination

addresses are respectively the original source and final

destination. It does not attempt to inspect the SRH, as RFC8200

specifies that routing extension headers are not examined or

processed by transit nodes. Instead, the service simply forwards the

packet based on its current Destination Address. In this scenario,

we assume that the service can only inspect, drop or perform limited

changes to the packets. For example, Intrusion Detection Systems,

Deep Packet Inspectors and non-NAT Firewalls are among the services

that can be supported by a masquerading SR proxy. Flavors of the

masquerading behavior are defined in Section 6.4.2 and Section 6.4.3

to support a wider range of services.

The second part of the masquerading behavior, also called de-

masquerading, is an inbound policy attached to the proxy interface

receiving the traffic returning from the service, IFACE-IN. This

policy inspects the incoming traffic and triggers a regular SRv6

endpoint processing (End) on any IPv6 packet that contains an SRH.

This processing occurs before any lookup on the packet Destination

Address is performed and it is sufficient to restore the right

active SID as the Destination Address of the IPv6 packet.

6.4.1. SRv6 Masquerading Proxy Pseudocode

Masquerading: When processing an IPv6 packet matching a FIB entry

locally instantiated as an SRv6 masquerading proxy SID, the

following pseudocode is executed.

*
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Figure 23: SID processing for SRv6 masquerading proxy

When processing the Upper-layer header of a packet matching a FIB

entry locally instantiated as an SRv6 masquerading proxy SID,

process the packet as per [RFC8986] Section 4.1.1.

De-masquerading: When processing an IPv6 packet received on the

interface IFACE-IN and with a destination address that does not

match any address of IFACE-IN, the following pseudocode is executed.

S01. When an SRH is processed {

S02.   If (Segments Left == 0) {

S03.     Proceed to process the next header in the packet.

S04.   }

S05.   If (IPv6 Hop Limit <= 1) {

S06.     Send an ICMP Time Exceeded message to the Source Address,

         Code 0 (hop limit exceeded in transit),

         Interrupt packet processing and discard the packet.

S07.   }

S08.   max_last_entry = (Hdr Ext Len / 2) - 1

S09.   If ((Last Entry > max_last_entry) or

           (Segments Left > (Last Entry + 1))) {

S10.     Send an ICMP Parameter Problem message to the Source Address,

         Code 0 (Erroneous header field encountered),

         Pointer set to the Segments Left field,

         Interrupt packet processing and discard the packet.

S11.   }

S12.   Decrement Hop Limit by 1.

S13.   Decrement Segments Left by 1.

S14.   Copy Segment List[0] from the SRH to the Destination Address

       of the IPv6 header.

S15.   Submit the packet to the IPv6 module for transmission on

       interface IFACE-OUT via NH-ADDR.

S16. }

¶

¶



Figure 24: Inbound policy for SRv6 masquerading proxy

6.4.2. Destination NAT Flavor

Services modifying the destination address in the packets they

process, such as NATs, can be supported by reporting the updated

Destination Address back into the Segment List field of the SRH.

The Destination NAT flavor of the SRv6 masquerading proxy is enabled

by adding the following instruction between lines S09 and S10 of the

de-masquerading pseudocode in Figure 24.

6.4.3. Caching Flavor

Services generating packets or acting as endpoints for transport

connections can be supported by adding a dynamic caching mechanism

similar to the one described in Section 6.2.

S01. When an SRH is processed {

S02.   If (IPv6 Hop Limit <= 1) {

S03.     Send an ICMP Time Exceeded message to the Source Address,

         Code 0 (hop limit exceeded in transit),

         Interrupt packet processing and discard the packet.

S04.   }

S05.   If (Segments Left != 0) {

S06.     max_last_entry = (Hdr Ext Len / 2) - 1

S07.     If ((Last Entry > max_last_entry) or

             (Segments Left > Last Entry)) {

S08.       Send an ICMP Parameter Problem message to the Source Address,

           Code 0 (Erroneous header field encountered),

           Pointer set to the Segments Left field,

           Interrupt packet processing and discard the packet.

S09.     }

S10.     Copy Segment List[Segments Left] from the SRH to the

         Destination Address of the IPv6 header.

S11.   }

S12.   Decrement Hop Limit by 1.

S13.   Submit the packet to the IPv6 module for transmission to the

       next destination.

S14. }

¶

¶

(... S09.     })

S09.1.   Copy the Destination Address of the IPv6 header to the

         Segment List[0] entry of the SRH.

(S10.     Copy Segment List[Segments Left] from the SRH to the

          Destination Address of the IPv6 header...)

¶

¶



The caching flavor of the SRv6 masquerading proxy is enabled by:

Adding the following instruction between lines S14 and S15 of the

masquerading pseudocode in Figure 23.

Updating the de-masquerading pseudocode such that, in addition to

the SRH processing in Figure 24, the following pseudocode is

executed when processing an IPv6 packet (received on the

interface IFACE-IN and with a destination address that does not

match any address of IFACE-IN) that does not contain an SRH.

7. Metadata

7.1. MPLS Data Plane

Metadata can be carried for SR-MPLS traffic in a Segment Routing

Header inserted between the last MPLS label and the MPLS payload.

When used solely as a metadata container, the SRH does not carry any

segment but only the mandatory header fields, including the tag and

flags, and any TLVs that is required for transporting the metadata.

Since the MPLS encapsulation has no explicit protocol identifier

field to indicate the protocol type of the MPLS payload, how to

indicate the presence of metadata in an MPLS packet is a potential

issue to be addressed. One possible solution is to add the

indication about the presence of metadata in the semantic of the

SIDs. Note that only the SIDs whose behavior involves looking at the

metadata or the MPLS payload would need to include such semantic

(e.g., service segments). Other segments, such as topological

¶

*

¶

(... S14.   Copy Segment List[0] from the SRH to the Destination

            Address of the IPv6 header.

S14.1. Copy the IPv6 encapsulation in a CACHE entry associated with

       the interface IFACE-IN.

(S15.   Submit the packet to the IPv6 module for transmission on

        interface IFACE-OUT via NH-ADDR.)

¶

*

¶

S01. Retrieve the CACHE entry associated with IFACE-IN.

S02. If the CACHE entry is not empty {

S03.   If (IPv6 Hop Limit <= 1) {

S04.     Send an ICMP Time Exceeded message to the Source Address,

         Code 0 (hop limit exceeded in transit),

         Interrupt packet processing and discard the packet.

S05.   }

S06.   Decrement Hop Limit by 1.

S07.   Update the IPv6 encapsulation according to the retrieved CACHE

       entry.

S08.   Submit the packet to the IPv6 module for transmission to the

       next destination.

S09. }

¶

¶



segments, are not affected by the presence of metadata. Another,

more generic, solution is to introduce a protocol identifier field

within the MPLS packet as described in [I-D.xu-mpls-payload-

protocol-identifier].

7.2. IPv6 Data Plane

7.2.1. SRH TLV Objects

The IPv6 SRH TLV objects are designed to carry all sorts of

metadata. TLV objects can be imposed by the ingress edge router that

steers the traffic into the SR service policy.

An SR-aware service may impose, modify or remove any TLV object

attached to the first SRH, either by directly modifying the packet

headers or via a control channel between the service and its

forwarding plane.

An SR-aware service that re-classifies the traffic and steers it

into a new SR service policy (e.g. DPI) may attach any TLV object to

the new SRH.

Metadata imposition and handling will be further discussed in a

future version of this document.

7.2.1.1. Opaque Metadata TLV

This document defines an SRv6 TLV called Opaque Metadata TLV. This

is a fixed-length container to carry any type of Service Metadata.

No assumption is made by this document on the structure or the

content of the carried metadata. The Opaque Metadata TLV has the

following format:

where:

Type: to be assigned by IANA.

Length: 14.

Service Metadata: 14 octets of opaque data.

¶

¶

¶

¶

¶

¶

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|      Type     |     Length    |                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |

|                                                               |

|                       Service Metadata                        |

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

* ¶

* ¶

* ¶



7.2.1.2. NSH Carrier TLV

This document defines an SRv6 TLV called NSH Carrier TLV. It is a

container to carry Service Metadata in the form of Variable-Length

Metadata as defined in [RFC8300] for NSH MD Type 2. The NSH Carrier

TLV has the following format:

where:

Type: to be assigned by IANA.

Length: the total length of the TLV.

Flags: 8 bits. No flags are defined in this document. SHOULD be

set to 0 on transmission and MUST be ignored on receipt.

Service Metadata: a list of Service Metadata TLV as defined in 

[RFC8300] for NSH MD Type 2.

7.2.2. SRH Tag

The SRH tag identifies a packet as part of a group or class of

packets [RFC8754].

In the context of service programming, this field can be used to

encode basic metadata in the SRH. An example use-case is to leverage

the SRH tag to encode a policy ID. This policy ID can then be used

by an SR-aware function to identify a particular processing policy

to be applied on that packet.

8. Implementation Status

This section is to be removed prior to publishing as an RFC.

8.1. SR-Aware Services

Specific SRv6 support has been implemented for the below open-source

services:

Iptables (1.6.2 and later) [IPTABLES]

Nftables (0.8.4 and later) [NFTABLES]

¶

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|      Type     |     Length    |     Flags     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

//            Service Metadata                                 //

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

* ¶



Snort [SNORT]

In addition, any service relying on the Linux kernel, version 4.10

and later, or FD.io VPP for packet forwarding can be considered as

SR-aware.

8.2. Proxy Behaviors

The static SR proxy is available for SR-MPLS and SRv6 on various

Cisco hardware and software platforms. Furthermore, the following

proxies are available on open-source software.

Figure 25: Open-source implementation status table

9. Related Works

The Segment Routing solution addresses a wide problem that covers

both topological and service policies. The topological and service

instructions can be either deployed in isolation or in combination.

SR has thus a wider applicability than the architecture defined in 

[RFC7665]. Furthermore, the inherent property of SR is a stateless

network fabric. In SR, there is no state within the fabric to

recognize a flow and associate it with a policy. State is only

present at the ingress edge of the SR domain, where the policy is

encoded into the packets. This is completely different from other

proposals such as [RFC8300] and the MPLS label swapping mechanism

described in [RFC8595], which rely on state configured at every hop

of the service chain.

* ¶

¶

¶

                                        +-------------+-------------+

                                        |     VPP     |    Linux    |

+---+-----------------------------------+-------------+-------------+

| M |           Static proxy            |  Available  | In progress |

| P |                                   |             |             |

| L |           Dynamic proxy           | In progress | In progress |

| S |                                   |             |             |

|   |        Shared memory proxy        | In progress | In progress |

+---+-----------------------------------+-------------+-------------+

|   |           Static proxy            |  Available  | In progress |

| S |                                   |             |             |

| R |           Dynamic proxy           |  Available  |  Available  |

| v |                                   |             |             |

| 6 |        Shared memory proxy        | In progress | In progress |

|   |                                   |             |             |

|   |        Masquerading proxy         |  Available  |  Available  |

+---+-----------------------------------+-------------+-------------+

¶



10. IANA Considerations

10.1. SRv6 Endpoint Behaviors

This I-D requests the IANA to allocate, within the "SRv6 Endpoint

Behaviors" sub-registry belonging to the top-level "Segment-routing

with IPv6 dataplane (SRv6) Parameters" registry, the following

allocations:

10.2. Segment Routing Header TLVs

This I-D requests the IANA to allocate, within the "Segment Routing

Header TLVs" registry, the following allocations:

11. Security Considerations

The security requirements and mechanisms described in [RFC8402], 

[RFC8754] and [RFC8986] also apply to this document.

This document does not introduce any new security vulnerabilities.
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