
Workgroup: SPRING

Internet-Draft:

draft-ietf-spring-srv6-srh-compression-15

Published: 9 April 2024

Intended Status: Standards Track

Expires: 11 October 2024

Authors: W. Cheng, Ed.

China Mobile

C. Filsfils

Cisco Systems, Inc.

Z. Li

Huawei Technologies

B. Decraene

Orange

F. Clad, Ed.

Cisco Systems, Inc.

Compressed SRv6 Segment List Encoding

Abstract

Segment Routing over IPv6 (SRv6) is the instantiation of Segment

Routing (SR) on the IPv6 dataplane. This document specifies new

flavors for the SR segment endpoint behaviors defined in RFC 8986,

which enable the compression of an SRv6 segment list. Such

compression significantly reduces the size of the SRv6 encapsulation

needed to steer packets over long segment lists.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 October 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Requirements Language

3. Basic Concepts

4. SR Segment Endpoint Flavors

4.1. NEXT-C-SID Flavor

4.1.1. End with NEXT-C-SID

4.1.2. End.X with NEXT-C-SID

4.1.3. End.T with NEXT-C-SID

4.1.4. End.B6.Encaps with NEXT-C-SID

4.1.5. End.B6.Encaps.Red with NEXT-C-SID

4.1.6. End.BM with NEXT-C-SID

4.1.7. Combination with PSP, USP and USD flavors

4.2. REPLACE-C-SID Flavor

4.2.1. End with REPLACE-C-SID

4.2.2. End.X with REPLACE-C-SID

4.2.3. End.T with REPLACE-C-SID

4.2.4. End.B6.Encaps with REPLACE-C-SID

4.2.5. End.B6.Encaps.Red with REPLACE-C-SID

4.2.6. End.BM with REPLACE-C-SID

4.2.7. End.DX and End.DT with REPLACE-C-SID

4.2.8. Combination with PSP, USP, and USD flavors

5. C-SID Allocation

5.1. Global C-SID

5.2. Local C-SID

5.3. GIB/LIB Usage

5.4. Recommended Installation of C-SIDs in FIB

6. SR Source Node

6.1. Segment Validation for Compression

6.2. Segment List Compression

6.3. Rules for segment lists containing NEXT-C-SID flavor SIDs

6.4. Rules for segment lists containing REPLACE-C-SID flavor SIDs

6.5. Upper-Layer Checksums

7. Inter-Domain Compression

7.1. End.PS: Prefix Swap

7.1.1. End.PS with NEXT-C-SID

7.1.2. End.PS with REPLACE-C-SID

7.2. End.XPS: L3 Cross-Connect and Prefix Swap

7.2.1. End.XPS with NEXT-C-SID

7.2.2. End.XPS with REPLACE-C-SID

8. Control Plane

¶

9. Operational Considerations

9.1. Pinging a SID

9.2. ICMP Error Processing

9.3. Upper Layer Checksum Verification on Transit Nodes

10. Implementation Status

10.1. Cisco Systems

10.2. Huawei Technologies

10.3. Nokia

10.4. Arrcus

10.5. Juniper Networks

10.6. Marvell

10.7. Broadcom

10.8. ZTE Corporation

10.9. New H3C Technologies

10.10. Ruijie Network

10.11. Ciena

10.12. Centec

10.13. Open Source

10.14. Interoperability Reports

10.14.1. Bell Canada / Ciena 2023

10.14.2. EANTC 2023

10.14.3. China Mobile 2020

11. Applicability to other SR Segment Endpoint Behaviors

12. Security Considerations

13. IANA Considerations

13.1. SRv6 Endpoint Behaviors

14. Acknowledgements

15. References

15.1. Normative References

15.2. Informative References

Appendix A. Complete pseudocodes

A.1. End with NEXT-C-SID

A.2. End.X with NEXT-C-SID

A.3. End.T with NEXT-C-SID

A.4. End.B6.Encaps with NEXT-C-SID

A.5. End.BM with NEXT-C-SID

A.6. End with REPLACE-C-SID

A.7. End.X with REPLACE-C-SID

A.8. End.T with REPLACE-C-SID

A.9. End.B6.Encaps with REPLACE-C-SID

A.10. End.BM with REPLACE-C-SID

Contributors

Authors' Addresses

1. Introduction

The Segment Routing (SR) architecture [RFC8402] describes two data

plane instantiations of SR: SR over MPLS (SR-MPLS) and SR over IPv6

(SRv6).¶

SRv6 Network Programming [RFC8986] defines a framework to build a

network program with topological and service segments (also referred

to by their Segment Identifier (SID)) carried in a Segment Routing

Header (SRH) [RFC8754].

Some SRv6 applications such as strict path traffic engineering may

require long segment lists. Compressing the encoding of these long

segment lists in the packet header can significantly reduce the

header size. This document specifies new flavors to the SR segment

endpoint behaviors defined in [RFC8986] that enable a compressed

encoding of the SRv6 segment list.

The flavors defined in this document leverage the SRv6 data plane

defined in [RFC8754] and [RFC8986], and are compatible with the SRv6

control plane extensions for IS-IS [RFC9352], OSPF [RFC9513], and

BGP [RFC9252].

2. Terminology

This document leverages the terms defined in [RFC8402], [RFC8754],

and [RFC8986]. The reader is assumed to be familiar with this

terminology.

This document introduces the following new terms:

Locator-Block: The most significant bits of a SID locator that

represent the SRv6 SID block. The Locator-Block is referred to as

"B" in Section 3.1 of [RFC8986].

Locator-Node: The least significant bits of a SID locator that

identify the SR segment endpoint node instantiating the SID. The

Locator-Node is referred to as "N" in Section 3.1 of [RFC8986].

Compressed-SID (C-SID): A compressed encoding of a SID. The C-SID

includes the Locator-Node and Function bits of the SID being

compressed.

C-SID container: A 128-bit container holding a list of one or

more C-SIDs.

C-SID sequence: A group of one or more consecutive segment list

entries carrying the common Locator-Block and at least one C-SID

container.

Uncompressed SID sequence: A group of one or more consecutive

uncompressed SIDs in a segment list.

Compressed segment list encoding: A segment list encoding that

reduces the packet header length thanks to one or more C-SID

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

sequences. A compressed segment list encoding also contains zero,

one, or more uncompressed SID sequences.

Global Identifiers Block (GIB): The pool of C-SID values

available for global allocation.

Local Identifiers Block (LIB): The pool of C-SID values available

for local allocation.

In this document, the length of each constituent part of a SID is

referred to as follows.

LBL is the Locator-Block length of the SID.

LNL is the Locator-Node length of the SID.

FL is the Function length of the SID.

AL is the Argument length of the SID.

In addition, LNFL is the sum of the Locator-Node length and the

Function length of the SID. It is also referred to as the C-SID

length.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Basic Concepts

In an SR domain, all SRv6 SIDs instantiated from the same Locator-

Block share the same most significant bits. In addition, when the

combined length of the SRv6 SID Locator, Function, and Argument is

smaller than 128 bits, the least significant bits of the SID are

padded with zeros. The compressed segment list encoding seeks to

decrease the packet header length by avoiding the repetition of the

same Locator-Block and reducing the use of padding bits.

The compressed segment list encoding is fully compatible with and

builds upon the mechanisms specified in [RFC8754] and [RFC8986]. The

compressed encoding is achieved by combining a compressed segment

list encoding logic on the SR source node (Section 6) with new

flavors of the base SRv6 segment endpoint behaviors that decode this

compressed encoding (Section 4).

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

A segment list can be encoded in the packet header using any

combination of compressed and uncompressed sequences. The C-SID

sequences leverage the flavors defined in this document, while the

uncompressed sequences use behaviors and flavors defined in other

documents, such as [RFC8986]. An SR source node constructs and

compresses the SID-list depending on the SIDs instantiated on each

SR segment endpoint node that the packet should traverse, as well as

its own compression capabilities.

The compressed segment list encoding works with any Locator-Block

allocation. For example, each routing domain within the SR domain

can be allocated a /48 Locator-Block from a global IPv6 block

available to the operator, or from a prefix allocated to SRv6 SIDs

as discussed in Section 5 of [I-D.ietf-6man-sids].

4. SR Segment Endpoint Flavors

This section defines two SR segment endpoint flavors, NEXT-C-SID and

REPLACE-C-SID, for the End, End.X, End.T, End.B6.Encaps,

End.B6.Encaps.Red, and End.BM behaviors of [RFC8986]. This section

also defines a REPLACE-C-SID flavor for the End.DX6, End.DX4,

End.DT6, End.DT4, End.DT46, End.DX2, End.DX2V, End.DT2U, and

End.DT2M behaviors of [RFC8986]. A counterpart NEXT-C-SID flavor is

not defined for these SIDs because they can be included within a C-

SID sequence that uses the NEXT-C-SID flavor without any

modification of the procedure defined in [RFC8986]. Future documents

may extend the applicability of the NEXT-C-SID and REPLACE-C-SID

flavors to other SR segment endpoint behaviors (see Section 11).

The use of these flavors, either individually or in combination,

enables the compressed segment list encoding.

The NEXT-C-SID flavor and the REPLACE-C-SID flavor both leverage the

SID Argument to determine the next segment to be processed, but

employ different segment list compression schemes. With the NEXT-C-

SID flavor, each C-SID container is a fully formed SRv6 SID with the

common Locator-Block for all the C-SIDs in the C-SID container, a

Locator-Node and Function that are those of the first C-SID, and an

Argument carrying the subsequent C-SIDs. With the REPLACE-C-SID

flavor, only the first element in a C-SID sequence is a fully formed

SRv6 SID. It has the common Locator-Block for all the C-SIDs in the

C-SID sequence, and a Locator-Node and Function that are those of

the first C-SID. The remaining elements in the C-SID sequence are C-

SID containers carrying the subsequent C-SIDs without the Locator-

Block.

SRv6 is intended for use in a variety of networks that require

different prefix lengths and SID numbering spaces. Each of the two

flavors introduced in this document comes with its own

¶

¶

¶

¶

¶

recommendations for Locator-Block and C-SID length, as specified in

Section 4.1 and Section 4.2. These flavors are best suited for

different environments, depending on the requirements of the

network. For instance, larger C-SID lengths may be more suitable for

networks requiring ample SID numbering space, while smaller C-SID

lengths are better for compression efficiency. The two compression

flavors allow the compressed segment list encoding to adapt to a

range of requirements, with support for multiple compression levels.

Network operators can choose the flavor that best suits their use

case, deployment design, and network scale.

The SIDs of both flavors can co-exist in the same SR domain, on the

same SR segment endpoint node, and even in the same segment list.

However, it is RECOMMENDED, for ease of operation, that a single

compressed encoding flavor be used in a given routing domain. In a

multi-domain deployment, different flavors may be used in different

routing domains of the SR domain.

In the remainder of this document, the term "a SID of this document"

refers to any End, End.X, End.T, End.B6.Encaps, End.B6.Encaps.Red,

or End.BM SID with the NEXT-C-SID or the REPLACE-C-SID flavor, and

with any combination of Penultimate Segment Pop (PSP), Ultimate

Segment Pop (USP), and Ultimate Segment Decapsulation (USD) flavor,

or any End.DX6, End.DX4, End.DT6, End.DT4, End.DT46, End.DX2,

End.DX2V, End.DT2U, or End.DT2M with the REPLACE-C-SID flavor. All

the SIDs introduced in this document are listed in Table 1.

In the remainder of this document, the terms "NEXT-C-SID flavor SID"

and "REPLACE-C-SID flavor SID" refer to any SID of this document

with the NEXT-C-SID flavor and with the REPLACE-C-SID flavor,

respectively.

4.1. NEXT-C-SID Flavor

A C-SID sequence using the NEXT-C-SID flavor comprises one or more

C-SID containers. Each C-SID container is a fully formed 128-bit SID

structured as shown in Figure 1. It carries a Locator-Block followed

by a series of C-SIDs. The Locator-Node and Function of the C-SID

container are those of the first C-SID, and its Argument is the

contiguous series of subsequent C-SIDs. The second C-SID is encoded

in the most significant bits of the C-SID container Argument, the

third C-SID is encoded in the bits of the Argument that immediately

follow the second C-SID, and so on. When all C-SIDs have the same

length, a C-SID container can carry up to K C-SIDs, where K is

computed as floor((128-LBL)/LNFL) (floor(x) is the greatest integer

less than or equal to x [GKP94]). Each C-SID container for NEXT-C-

SID is independent, such that contiguous C-SID containers in a C-SID

sequence can be considered as separate C-SID sequences.

¶

¶

¶

¶

¶

When a C-SID sequence comprises at least two C-SIDs, the last C-SID

in the sequence is not required to have the NEXT-C-SID flavor. It

can be bound to any behavior and flavor(s), including the REPLACE-C-

SID flavor, as long as the updated destination address resulting

from the processing of the previous C-SID in the sequence is a valid

form for that last SID. Line S12 of the first pseudocode in

Section 6.2 provides sufficient conditions to ensure this property.

Figure 1: Structure of a NEXT-C-SID flavor SID (scaled for a 48-bit

Locator-Block, 16-bit combined Locator-Node and Function, and 64-bit

Argument)

An implementation MUST support a 32-bit Locator-Block length (LBL)

and a 16-bit C-SID length (LNFL) for NEXT-C-SID flavor SIDs, and may

support any other Locator-Block and C-SID length.

A deployment should use a consistent Locator-Block length and C-SID

length for all SIDs of the SR domain. Heterogeneous lengths, while

possible, may impact the compression efficiency.

The Argument length (AL) for NEXT-C-SID flavor SIDs is equal to 128-

LBL-LNFL.

When processing an IPv6 packet that matches a FIB entry locally

instantiated as a SID with the NEXT-C-SID flavor, the SR segment

endpoint node applies the procedure specified in the following

subsection that corresponds to the SID behavior. If the SID also has

the PSP, USP, or USD flavor, the procedure is modified as described

in Section 4.1.7.

An SR segment endpoint node instantiating a SID of this document

with the NEXT-C-SID flavor MUST accept any Argument value for that

SID.

At high level, for any SID with the NEXT-C-SID flavor, the SR

segment endpoint node determines the next SID of the SID list as

follows. If the Argument value of the active SID is non-zero, the SR

segment endpoint node constructs the next SID from the active SID by

copying the entire SID Argument value to the bits that immediately

follow the Locator-Block, thus overwriting the active SID Locator-

Node and Function with those of the next C-SID, and filling the

least significant LNFL bits of the Argument with zeros. Otherwise

(if the Argument value is 0), the SR segment endpoint node copies

¶

+--+

| Locator-Block |Loc-Node| Argument |

| |Function| |

+--+

 <-------- LBL ---------> < LNFL > <------------- AL ------------->

¶

¶

¶

¶

¶

the next 128-bit Segment List entry from the SRH to the Destination

Address field of the IPv6 header.

4.1.1. End with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End SID with the NEXT-C-SID flavor, the procedure

described in Section 4.1 of [RFC8986] is executed with the following

modifications.

The below pseudocode is inserted between lines S01 and S02 of the

SRH processing in Section 4.1 of [RFC8986]. In addition, this

pseudocode is executed before processing any extension header that

is not an SRH, a Hop-by-Hop header or a Destination Option header,

or before processing the upper-layer header, whichever comes first.

Notes:

DA.Argument identifies the value contained in the bits

[(LBL+LNFL)..127] in the Destination Address of the IPv6

header.

The value in the Segments Left field of the SRH is not

modified when DA.Argument in the received packet has a non-

zero value.

A rendering of the complete pseudocode is provided in Appendix A.1.

4.1.2. End.X with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.X SID with the NEXT-C-SID flavor, the

procedure described in Section 4.2 of [RFC8986] is executed with the

following modifications.

¶

¶

¶

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

N09. }

¶

¶

*

¶

*

¶

¶

¶

The pseudocode in Section 4.1.1 of this document is modified by

replacing line N08 as shown below.

Note: the variable J is defined in Section 4.2 of [RFC8986].

The resulting pseudocode is inserted between lines S01 and S02 of

the SRH processing in Section 4.1 of [RFC8986] after applying the

modification described in Section 4.2 of [RFC8986]. In addition,

this pseudocode is executed before processing any extension header

that is not an SRH, a Hop-by-Hop header or a Destination Option

header, or before processing the upper-layer header, whichever comes

first.

A rendering of the complete pseudocode is provided in Appendix A.2.

4.1.3. End.T with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.T SID with the NEXT-C-SID flavor, the

procedure described in Section 4.3 of [RFC8986] is executed with the

following modifications.

The pseudocode in Section 4.1.1 of this document is modified by

replacing line N08 as shown below.

Note: the variable T is defined in Section 4.3 of [RFC8986].

The resulting pseudocode is inserted between lines S01 and S02 of

the SRH processing in Section 4.1 of [RFC8986] after applying the

modification described in Section 4.3 of [RFC8986]. In addition,

this pseudocode is executed before processing any extension header

that is not an SRH, a Hop-by-Hop header or a Destination Option

header, or before processing the upper-layer header, whichever comes

first.

A rendering of the complete pseudocode is provided in Appendix A.3.

4.1.4. End.B6.Encaps with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.B6.Encaps SID with the NEXT-C-SID flavor, the

procedure described in Section 4.13 of [RFC8986] is executed with

the following modifications.

¶

N08. Submit the packet to the IPv6 module for transmission to the

 new destination via a member of J.

¶

¶

¶

¶

¶

¶

N08.1. Set the packet's associated FIB table to T.

N08.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

¶

¶

¶

¶

The pseudocode in Section 4.1.1 of this document is modified by

replacing line N08 as shown below.

Note: the variables A and B, as well as the values of the Payload

Length, Traffic Class, Flow Label, Hop Limit, and Next Header are

defined in Section 4.13 of [RFC8986].

The resulting pseudocode is inserted between lines S01 and S02 of

the SRH processing in Section 4.13 of [RFC8986]. In addition, this

pseudocode is executed before processing any extension header that

is not an SRH, a Hop-by-Hop header or a Destination Option header,

or before processing the upper-layer header, whichever comes first.

A rendering of the complete pseudocode is provided in Appendix A.4.

Similar to the base End.B6.Encaps SID defined in Section 4.13 of

[RFC8986], the NEXT-C-SID flavor variant updates the Destination

Address field of the inner IPv6 header to the next SID in the

original segment list before encapsulating the packet with the

segment list of SR Policy B. At the endpoint of SR Policy B, the

encapsulation is removed and the inner packet is forwarded towards

the exposed destination address, which already contains the next SID

in the original segment list.

4.1.5. End.B6.Encaps.Red with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.B6.Encaps.Red SID with the NEXT-C-SID flavor,

the procedure described in Section 4.14 of [RFC8986] is executed

with the same modifications as in Section 4.1.4 of this document.

4.1.6. End.BM with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.BM SID with the NEXT-C-SID flavor, the

procedure described in Section 4.15 of [RFC8986] is executed with

the following modifications.

The pseudocode in Section 4.1.1 of this document is modified by

replacing line N08 as shown below.

¶

N08.1. Push a new IPv6 header with its own SRH containing B.

N08.2. Set the outer IPv6 SA to A.

N08.3. Set the outer IPv6 DA to the first SID of B.

N08.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

N08.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

¶

¶

¶

¶

¶

¶

¶

¶

Note: the variable B is defined in Section 4.15 of [RFC8986].

The resulting pseudocode is inserted between lines S01 and S02 of

the SRH processing in Section 4.15 of [RFC8986]. In addition, this

pseudocode is executed before processing any extension header that

is not an SRH, a Hop-by-Hop header or a Destination Option header,

or before processing the upper-layer header, whichever comes first.

A rendering of the complete pseudocode is provided in Appendix A.5.

4.1.7. Combination with PSP, USP and USD flavors

PSP: The PSP flavor defined in Section 4.16.1 of [RFC8986] is

unchanged when combined with the NEXT-C-SID flavor.

USP: The USP flavor defined in Section 4.16.2 of [RFC8986] is

unchanged when combined with the NEXT-C-SID flavor.

USD: The USP flavor defined in Section 4.16.3 of [RFC8986] is

unchanged when combined with the NEXT-C-SID flavor.

4.2. REPLACE-C-SID Flavor

A C-SID sequence using the REPLACE-C-SID flavor starts with a C-SID

container in fully formed 128-bit SID format. The Locator-Block of

this SID is the common Locator-Block for all the C-SIDs in the C-SID

sequence, its Locator-Node and Function are those of the first C-

SID, and its Argument carries the index of the current C-SID in the

current C-SID container. The Argument value is initially 0. When

more segments are present in the segment list, the C-SID sequence

continues with one or more C-SID containers in packed format

carrying the subsequent C-SIDs in the sequence. Each container in

packed format is a 128-bit Segment List entry split into K

"positions" of LNFL bits, where K is computed as floor(128/LNFL). If

LNFL does not divide into 128 perfectly, a zero pad is added in the

least significant bits of the C-SID container to fill the bits left

over. The second C-SID in the C-SID sequence is encoded in the least

significant bit position of the first C-SID container in packed

format (position K-1), the third C-SID is encoded in position K-2,

and so on.

The last C-SID in the C-SID sequence is not required to have the

REPLACE-C-SID flavor. It can be bound to any behavior and flavor(s),

including the NEXT-C-SID flavor, as long as it meets the conditions

defined in Section 6.

N08.1. Push the MPLS label stack for B.

N08.2. Submit the packet to the MPLS engine for transmission.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The structure of a SID with the REPLACE-C-SID flavor is shown in

Figure 2. The same structure is also that of the C-SID container for

REPLACE-C-SID in fully formed 128-bit SID format.

Figure 2: Structure of a REPLACE-C-SID flavor SID (scaled for a 48-bit

Locator-Block, 32-bit combined Locator-Node and Function, and 48-bit

Argument)

The structure of a C-SID container for REPLACE-C-SID in packed

format is shown in Figure 3.

Figure 3: Structure of a C-SID container for REPLACE-C-SID using a 32-

bit C-SID length (K = 4)

The REPLACE-C-SID flavor SIDs support any Locator-Block length

(LBL), depending on the needs of the operator, as long as it does

not exceed 128-LNFL-ceiling(log_2(128/LNFL)) (ceiling(x) is the

least integer greater than or equal to x [GKP94]), so that enough

bits remain available for the C-SID and Argument. A Locator-Block

length of 48, 56, 64, 72, or 80 bits is recommended for easier

reading in operation.

This document defines the REPLACE-C-SID flavor for 16-bit and 32-bit

C-SID lengths (LNFL). An implementation MUST support a 32-bit C-SID

length for REPLACE-C-SID flavor SIDs.

A deployment should use a consistent Locator-Block length and C-SID

length for all SIDs of the SR domain. Heterogeneous C-SID lengths,

while possible, may impact the compression efficiency.

The Argument length (AL) for REPLACE-C-SID flavor SIDs is equal to

128-LBL-LNFL. The index value is encoded in the least significant X

bits of the Argument, where X is computed as ceiling(log_2(128/

LNFL)).

¶

+---+

| Locator-Block | Locator-Node | Argument |

| | + Function | |

+---+

 <-------- LBL ---------> <---- LNFL ----> <--------- AL ---------->

¶

+---+

| Fourth C-SID | Third C-SID | Second C-SID | First C-SID |

| (position 0) | (position 1) | (position 2) | (position 3) |

+---+

 <---- LNFL ----> <---- LNFL ----> <---- LNFL ----> <---- LNFL ---->

¶

¶

¶

¶

When processing an IPv6 packet that matches a FIB entry locally

instantiated as a SID with the REPLACE-C-SID flavor, the SR segment

endpoint node applies the procedure specified in the following

subsection that corresponds to the SID behavior. If the SID also has

the PSP, USP, or USD flavor, the procedure is modified as described

in Section 4.2.8.

At high level, at the start of a C-SID sequence using the REPLACE-C-

SID flavor, the first C-SID container in fully formed 128-bit SID

format is copied to the Destination Address of the IPv6 header.

Then, for any SID with the REPLACE-C-SID flavor, the SR segment

endpoint node determines the next SID of the SID list as follows.

When an SRH is present, the SR segment endpoint node decrements the

index value in the Argument of the active SID if the index value is

not 0 or, if it is 0, decrements the Segments Left value in the SRH

and sets the index value in the Argument of the active SID to K-1.

The updated index value indicates the position of the next C-SID

within the C-SID container in packed format at the "Segment List"

index "Segments Left" in the SRH. The SR segment endpoint node then

constructs the next SID by copying this next C-SID to the bits that

immediately follow the Locator-Block in the Destination Address

field of the IPv6 header, thus overwriting the active SID Locator-

Node and Function with those of the next C-SID. If no SRH is

present, the SR segment endpoint node ignores the index value in the

SID Argument (except End.DT2M, see Section 4.2.7) and processes the

upper-layer header as per [RFC8986]. The C-SID sequence ends with a

last C-SID in the last C-SID container that does not have the

REPLACE-C-SID flavor, or with the special C-SID value 0, or when

reaching the end of the segment list, whichever comes first.

4.2.1. End with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End SID with the REPLACE-C-SID flavor, the SRH

processing described in Section 4.1 of [RFC8986] is executed with

the following modifications.

Line S02 of SRH processing in Section 4.1 of [RFC8986] is replaced

as follows.

Lines S09 to S15 are replaced by the following pseudo code.

¶

¶

¶

¶

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

¶

¶

Notes:

DA.Arg.Index identifies the value contained in the bits [(128-

ceiling(log_2(128/LNFL)))..127] in the Destination Address of

the IPv6 header.

Segment List[Segments Left][DA.Arg.Index] identifies the value

contained in the bits [DA.Arg.Index*LNFL..

(DA.Arg.Index+1)*LNFL-1] in the SRH Segment List entry at

index Segments Left.

The upper-layer header processing described in Section 4.1.1 of

[RFC8986] is unchanged.

A rendering of the complete pseudocode is provided in Appendix A.6.

R01. If (DA.Arg.Index != 0) {

R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {

R03. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R04. }

R05. Decrement DA.Arg.Index by 1.

R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {

R07. Decrement Segments Left by 1.

R08. Decrement IPv6 Hop Limit by 1.

R09. Update IPv6 DA with Segment List[Segments Left]

R10. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

R11. }

R12. } Else {

R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){

R14. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R15. }

R16. Decrement Segments Left by 1.

R17. Set DA.Arg.Index to (floor(128/LNFL) - 1).

R18. }

R19. Decrement IPv6 Hop Limit by 1.

R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6

 header.

R21. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

¶

*

¶

*

¶

¶

¶

4.2.2. End.X with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.X SID with the REPLACE-C-SID flavor, the

procedure described in Section 4.2 of [RFC8986] is executed with the

following modifications.

The pseudocode in Section 4.2.1 of this document is modified by

replacing lines R10 and R21 as shown below.

Note: the variable J is defined in Section 4.2 of [RFC8986].

The SRH processing in Section 4.2 of [RFC8986] is replaced with the

resulting pseudocode. The upper-layer header processing is

unchanged.

A rendering of the complete pseudocode is provided in Appendix A.7.

4.2.3. End.T with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.T SID with the REPLACE-C-SID flavor, the

procedure described in Section 4.3 of [RFC8986] is executed with the

following modifications.

The pseudocode in Section 4.2.1 of this document is modified by

replacing lines R10 and R21 as shown below.

Note: the variable T is defined in Section 4.3 of [RFC8986].

The SRH processing in Section 4.3 of [RFC8986] is replaced with the

resulting pseudocode. The upper-layer header processing is

unchanged.

A rendering of the complete pseudocode is provided in Appendix A.8.

¶

¶

R10. Submit the packet to the IPv6 module for transmission to the

 new destination via a member of J.

¶

R21. Submit the packet to the IPv6 module for transmission to the

 new destination via a member of J.

¶

¶

¶

¶

¶

¶

R10.1. Set the packet's associated FIB table to T.

R10.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

R21.1. Set the packet's associated FIB table to T.

R21.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

¶

¶

¶

4.2.4. End.B6.Encaps with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.B6.Encaps SID with the REPLACE-C-SID flavor,

the procedure described in Section 4.13 of [RFC8986] is executed

with the following modifications.

The pseudocode in Section 4.2.1 of this document is modified by

replacing lines R10 and R21 as shown below.

Note: the variables A and B, as well as the values of the Payload

Length, Traffic Class, Flow Label, Hop Limit, and Next Header are

defined in Section 4.13 of [RFC8986].

The SRH processing in Section 4.13 of [RFC8986] is replaced with the

resulting pseudocode. The upper-layer header processing is

unchanged.

A rendering of the complete pseudocode is provided in Appendix A.9.

4.2.5. End.B6.Encaps.Red with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.B6.Encaps.Red SID with the REPLACE-C-SID

flavor, the procedure described in Section 4.14 of [RFC8986] is

executed with the same modifications as in Section 4.2.4 of this

document.

4.2.6. End.BM with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.BM SID with the REPLACE-C-SID flavor, the

procedure described in Section 4.15 of [RFC8986] is executed with

the following modifications.

¶

¶

R10.1. Push a new IPv6 header with its own SRH containing B.

R10.2. Set the outer IPv6 SA to A.

R10.3. Set the outer IPv6 DA to the first SID of B.

R10.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

R10.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

¶

R21.1. Push a new IPv6 header with its own SRH containing B.

R21.2. Set the outer IPv6 SA to A.

R21.3. Set the outer IPv6 DA to the first SID of B.

R21.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

R21.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

¶

¶

¶

¶

¶

¶

The pseudocode in Section 4.2.1 of this document is modified by

replacing lines R10 and R21 as shown below.

Note: the variable B is defined in Section 4.15 of [RFC8986].

The SRH processing in Section 4.15 of [RFC8986] is replaced with the

resulting pseudocode. The upper-layer header processing is

unchanged.

A rendering of the complete pseudocode is provided in Appendix A.10.

4.2.7. End.DX and End.DT with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.DX6, End.DX4, End.DT6, End.DT4, End.DT46,

End.DX2, End.DX2V, or End.DT2U SID with the REPLACE-C-SID flavor,

the corresponding procedure described in Sections 4.4 through 4.11

of [RFC8986] is executed.

These SIDs differ from those defined in [RFC8986] by the presence of

an Argument as part of the SID structure. The Argument value is

ignored by the SR segment endpoint node.

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.DT2M SID with the REPLACE-C-SID flavor, the

procedure described in Section 4.12 of [RFC8986] is executed with

the following modification.

For any End.DT2M SID with the REPLACE-C-SID flavor, the value of

Arg.FE2 is 16-bit long. The SR segment endpoint node obtains the

value Arg.FE2 from the 16 most significant bits of DA.Argument if

DA.Arg.Index is zero, or from the 16 least significant bits of the

next position in the current C-SID container (Segment List[Segments

Left][DA.Arg.Index-1]) otherwise (DA.Arg.Index is non-zero).

4.2.8. Combination with PSP, USP, and USD flavors

PSP: When combined with the REPLACE-C-SID flavor, the additional PSP

flavor instructions defined in Section 4.16.1.2 of [RFC8986] are

inserted after lines R09 and R20 of the pseudocode in Section 4.2.1,

and the first line of the inserted instructions after R20 is

modified as follows.

¶

R10.1. Push the MPLS label stack for B.

R10.2. Submit the packet to the MPLS engine for transmission.

¶

R21.1. Push the MPLS label stack for B.

R21.2. Submit the packet to the MPLS engine for transmission.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note: Segment List[Segments Left][DA.Arg.Index-1] identifies the

value contained in the bits

[(DA.Arg.Index-1)*LNFL..DA.Arg.Index*LNFL-1] in the SRH Segment List

entry at index Segments Left.

USP: When combined with the REPLACE-C-SID flavor, the line S03 of

the pseudocode in Section 4.2.1 are substituted by the USP flavor

instructions S03.1 to S03.4 defined in Section 4.16.2 of [RFC8986].

Note that S03 is shown in the complete pseudocode in Appendix A.6.

USD: The USD flavor defined in Section 4.16.3 of [RFC8986] is

unchanged when combined with the REPLACE-C-SID flavor.

5. C-SID Allocation

The C-SID value of 0 is reserved. It is used to indicate the end of

a C-SID container.

In order to efficiently manage the C-SID numbering space, a

deployment may divide it into two non-overlapping sub-spaces: a

Global Identifiers Block (GIB) and a Local Identifiers Block (LIB).

The C-SID values that are allocated from the GIB have a global

semantic within the Locator-Block, while those that are allocated

from the LIB have a local semantic on an SR segment endpoint node

and within the scope of the Locator-Block.

The concept of LIB is applicable to SRv6 and specifically to its

NEXT-C-SID and REPLACE-C-SID flavors. The shorter the C-SID, the

more benefit the LIB brings.

The opportunity to use these sub-spaces, their size, and their C-SID

allocation policy depends on the C-SID length relative to the size

of the network (e.g., number of nodes, links, service routes). Some

guidelines for a typical deployment scenario are provided in the

below subsections.

5.1. Global C-SID

A global C-SID is a C-SID allocated from the GIB.

A global C-SID identifies a segment defined at the Locator-Block

level. The tuple (Locator-Block, C-SID) identifies the same segment

across all nodes of the SR domain. A typical example is a prefix

segment bound to the End behavior.

R20.1. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A node can have multiple global C-SIDs under the same Locator-Block

(e.g., one per IGP flexible algorithm ([RFC9350])). Multiple nodes

may share the same global C-SID (e.g., anycast).

5.2. Local C-SID

A local C-SID is a C-SID allocated from the LIB.

A local C-SID identifies a segment defined at the node level and

within the scope of a particular Locator-Block. The tuple (Locator-

Block, C-SID) identifies a different segment on each node of the SR

domain. A typical example is a non-routed Adjacency segment bound to

the End.X behavior.

Let N1 and N2 be two different physical nodes of the SR domain and I

a local C-SID value, N1 may allocate value I to SID S1 and N2 may

allocate the same value I to SID S2.

5.3. GIB/LIB Usage

GIB and LIB usage is a local implementation and/or configuration

decision, however, some guidelines for determining usage for

specific SID behaviors and recommendations are provided.

The GIB number space is shared among all SR segment endpoint nodes

using SRv6 locators under a Locator-Block space. The more SIDs

assigned from this space, per node, the faster it is exhausted.

Therefore its use is prioritized for global segments, such as SIDs

that identify a node.

The LIB number space is unique per node. Each node is able to fully

utilize the entire LIB number space without consideration of

assignments at other nodes. Therefore its use is prioritized for

local segments, such as SIDs that identify services (of which there

may be many) at nodes, cross-connects, or adjacencies.

While a longer C-SID length permits more flexibility in which SID

behaviors may be assigned from the GIB, it also reduces the

compression efficiency.

Given the previous Locator-Block and C-SID length recommendations,

the following GIB/LIB usage is recommended:

NEXT-C-SID:

GIB: End

LIB: End.X, End.T, End.DT4/6/46/2U/2M, End.DX4/6/2/2V

(including large-scale pseudowire), End.B6.Encaps,

End.B6.Encaps.Red, End.BM

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

- ¶

-

¶

REPLACE-C-SID:

GIB: End, End.X, End.T, End.DT4/6/46/2U/2M, End.DX4/6/2/2V,

End.B6.Encaps, End.B6.Encaps.Red, End.BM

LIB: End.DX2/2V for large-scale pseudowire

Any other allocation is possible but may lead to a suboptimal use of

the C-SID numbering space.

5.4. Recommended Installation of C-SIDs in FIB

Section 4.3 of [RFC8754] defines how an SR segment endpoint node

identifies a locally instantiated SRv6 SID. To ensure that any valid

argument value is accepted, an SR segment endpoint node

instantiating a NEXT-C-SID or REPLACE-C-SID flavor SID should

install a corresponding FIB entry that matches only the Locator and

Function parts of the SID (i.e., with a prefix length of LBL + LNL +

FL).

In addition, an SR segment endpoint node instantiating NEXT-C-SID

flavor SIDs from both GIB and LIB may install combined "Global +

Local" FIB entries to match a sequence of global and local C-SIDs in

a single longest prefix match (LPM) lookup.

For example, let us consider an SR segment endpoint node 10

instantiating the following two NEXT-C-SID flavor SIDs according to

the C-SID length, Locator-Block length, and GIB/LIB recommendations

in this section.

2001:db8:b1:10:: bound to the End behavior with the NEXT-C-SID

flavor is instantiated from GIB with

Locator-Block length (LBL) = 48 (Locator-Block value

0x20010db800b1),

Locator-Node length (LNL) = 16 (Locator-Node value 0x0010),

Function length (FL) = 0, and

Argument length (AL) = 64.

2001:db8:b1:f123:: bound to the End.X behavior for its local IGP

adjacency 123 with the NEXT-C-SID flavor is instantiated from LIB

with

Locator-Block length (LBL) = 48 (Locator-Block value

0x20010db800b1),

Locator-Node length (LNL) = 0,

* ¶

-

¶

- ¶

¶

¶

¶

¶

*

¶

-

¶

- ¶

- ¶

- ¶

*

¶

-

¶

- ¶

Function length (FL) = 16 (Function value 0xf123), and

Argument length (AL) = 64.

For SID 2001:db8:b1:10::, Node 10 would install the FIB entry

2001:db8:b1:10::/64 bound the End SID with the NEXT-C-SID flavor.

For SID 2001:db8:b1:f123::, Node 10 would install the FIB entry

2001:db8:b1:f123::/64 bound the End.X SID for adjacency 123 with the

NEXT-C-SID flavor.

In addition, Node 10 may also install the combined FIB entry

2001:db8:b1:10:f123::/80 bound the End.X SID for adjacency 123 with

the NEXT-C-SID flavor.

As another example, let us consider an SR segment endpoint node 20

instantiating the following two REPLACE-C-SID flavor SIDs according

to the C-SID length, Locator-Block length, and GIB/LIB

recommendations in this section.

2001:db8:b2:20:1:: from GIB with Locator-Block length (LBL) = 48,

Locator-Node length (LNL) = 16, Function length (FL) = 16,

Argument length (AL) = 48, and bound to the End behavior with the

REPLACE-C-SID flavor.

2001:db8:b2:20:123:: from GIB with Locator-Block length (LBL) =

48, Locator-Node length (LNL) = 16, Function length (FL) = 16,

Argument length (AL) = 48, and bound to the End.X behavior for

its local IGP adjacency 123 with the REPLACE-C-SID flavor.

For SID 2001:db8:b2:20:1::, Node 20 would install the FIB entry

2001:db8:b2:20:1::/80 bound the End SID with the REPLACE-C-SID

flavor.

For SID 2001:db8:b2:20:123::, Node 20 would install the FIB entry

2001:db8:b2:20:123::/80 bound the End.X SID for adjacency 123 with

the REPLACE-C-SID flavor.

6. SR Source Node

An SR source node may learn from a control plane protocol (see

Section 8) or local configuration the SIDs that it can use in a

segment list, along with their respective SR segment endpoint

behavior, flavors, structure, and any other relevant attribute

(e.g., the set of L3 adjacencies associated with an End.X SID).

6.1. Segment Validation for Compression

As part of the compression process or as a preliminary step, the SR

source node MUST validate the SID structure, if known, of each SID

- ¶

- ¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

of this document in the segment list. The SR source node does so

regardless of whether the segment list is explicitly configured,

locally computed, or advertised by a controller (e.g., via BGP

[I-D.ietf-idr-sr-policy-safi] or PCEP

[I-D.ietf-pce-segment-routing-ipv6]).

A SID structure is valid for compression if it meets all the

following conditions.

The Locator-Block length is not 0.

The sum of the Locator-Node length and Function length is not 0.

The Argument length is equal to 128-LBL-LNL-FL.

When compressing a segment list, the SR source node MUST treat an

invalid SID structure as unknown, and treats the SID as

incompressible.

Section 8 discusses how the SIDs of this document and their

structure can be advertised to the SR source node through various

control plane protocols.

6.2. Segment List Compression

An SR source node MAY compress a segment list when it includes NEXT-

C-SID and/or REPLACE-C-SID flavor SIDs in order to reduce the packet

header length.

It is out of the scope of this document to describe the mechanism

through which an uncompressed segment list is derived. As a general

guidance for implementation or future specification, such a

mechanism should aim to select the combination of SIDs that would

result in the shortest compressed segment list. For example, by

selecting a C-SID flavor SID over an equivalent non-C-SID flavor SID

or by consistently selecting SIDs of the same C-SID flavor within

each routing domain.

The segment list that the SR source node pushes onto the packet MUST

comply with the rules in Section 6.3 and Section 6.4 and result in

the same set of possible forwarding paths as the original segment

list.

If an SR source node chooses to compress the segment list, one

method is described below for illustrative purposes. Any other

method producing a compressed segment list of equal or shorter

length than the uncompressed segment list is compliant.

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

This method walks the uncompressed segment list and compresses each

series of consecutive NEXT-C-SID flavor SIDs and each series of

consecutive REPLACE-C-SID flavor SIDs.

When the compression method encounters a series of one or more

consecutive compressible NEXT-C-SID flavor SIDs, it compresses

the series as follows. A SID with the NEXT-C-SID flavor is

compressible if its structure is known to the SR source node and

its Argument value is 0.

When the compression method encounters a series of REPLACE-C-SID

flavor SIDs of the same C-SID length in the uncompressed segment

list, it compresses the series as per the following high-level

pseudo code. A compression checking function ComCheck(F, S) is

defined to check if two SIDs F and S share the same SID structure

and Locator-Block value, and if S has either no Argument or an

¶

*

¶

S01. Initialize a C-SID container equal to the first SID in the

 series, and initialize the remaining capacity of the C-SID

 container to the AL of that SID

S02. For each subsequent SID in the series {

S03. If the current SID Locator-Block matches that of the C-SID

 container and the current SID LNFL is lower than or equal to

 the remaining capacity of the C-SID container {

S04. Copy the current SID Locator-Node and Function to the most

 significant remaining Argument bits of the C-SID container

 and decrement the remaining capacity by LNFL

S05. } Else {

S06. Push the C-SID container onto the compressed segment list

S07. Initialize a new C-SID container equal to the current SID in

 the series, and initialize the remaining capacity of the

 C-SID container to the AL of that SID

S08. } // End If

S09. } // End For

S10. If at least one SID remains in the uncompressed segment list

 (following the series of compressible NEXT-C-SID flavor SIDs){

S11. Set S to the next SID in the uncompressed segment list

S12. If S is advertised with a SID structure, and the Locator-Block

 of S matches that of the C-SID container, and the sum of the

 Locator-Node, Function, and Argument length of S is lower

 than or equal to the remaining capacity of the C-SID

 container {

S13. Copy the Locator-Node, Function, and Argument of S to the

 most significant remaining Argument bits of the C-SID

 container

S14. } // End If

S15. } // End If

S16. Push the C-SID container onto the compressed segment list

¶

*

Argument with value 0. If the check passes, then ComCheck(F,S)

returns true.

Note: When the last C-SID is an End.DT2M SID with the REPLACE-C-SID

flavor, if there is 0 or at least two C-SID positions left in the

current C-SID container, the C-SID is encoded as described above and

the value of the Arg.FE2 argument is placed in the 16 least

significant bits of the next C-SID position. Otherwise (if there is

only one C-SID position left in the current C-SID container), the

current C-SID container is pushed onto the segment list (the value

of the C-SID position 0 remains zero) and the End.DT2M SID with the

REPLACE-C-SID flavor is encoded in full SID format with the value of

the Arg.FE2 argument in the 16 most significant bits of the SID

Argument.

In all remaining cases (i.e., when the compression method

encounters a SID in the uncompressed segment list that is not

handled by any of the previous subroutines), it pushes this SID

as is onto the compressed segment list.

¶

S01. Initialize the first C-SID container in full SID format equal to

 the first SID in the series

S02. Initialize the second C-SID container in packed format if there

 are more than one SIDs, and initialize the remaining capacity

 of the C-SID container to 128 bits

S03. For each subsequent SID in the uncompressed segment list {

S04. Set S to the current SID in the uncompressed segment list

S05. If ComCheck(First SID, S) {

S06. If the LNFL of S is lower than or equal to

 the remaining capacity of the C-SID container {

S07. Copy the Locator-Node and Function of S to the least

 significant remaining bits of the C-SID container

 and decrement the remaining capacity by LNFL // Note

S08. } Else {

S09. Push the C-SID container onto the compressed segment list

S10. Initialize a new C-SID container in packed format with all

 bits set to 0

S11 Copy the Locator-Node and Function of S to the least

 significant remaining bits of the C-SID container

 and decrement the remaining capacity by LNFL // Note

S12. }

S13. If S is not a REPLACE-C-SID flavor SID, then break

S14. } Else {

S15. Break

S16. } // End If

S17. } // End For

S18. Push the C-SID container (if it is not empty) onto the

 compressed segment list

¶

¶

*

¶

Regardless of how a compressed segment list is produced, the SR

source node writes it in the IPv6 packet as described in Sections

4.1 and 4.1.1 of [RFC8754]. The text is reproduced below for

reference.

A source node steers a packet into an SR Policy. If the SR Policy

results in a Segment List containing a single segment, and there is

no need to add information to the SRH flag or add TLV; the DA is set

to the single Segment List entry, and the SRH MAY be omitted.

When needed, the SRH is created as follows:

The Next Header and Hdr Ext Len fields are set as specified in

[RFC8200].

The Routing Type field is set to 4.

The DA of the packet is set with the value of the first segment.

The first element of the SRH Segment List is the ultimate segment.

The second element is the penultimate segment, and so on.

The Segments Left field is set to n-1, where n is the number of

elements in the SR Policy.

The Last Entry field is set to n-1, where n is the number of

elements in the SR Policy.

TLVs (including HMAC) may be set according to their specification.

The packet is forwarded toward the packet's Destination Address (the

first segment).

When a source does not require the entire SID list to be preserved

in the SRH, a reduced SRH may be used.

A reduced SRH does not contain the first segment of the related SR

Policy (the first segment is the one already in the DA of the IPv6

header), and the Last Entry field is set to n-2, where n is the

number of elements in the SR Policy.

6.3. Rules for segment lists containing NEXT-C-SID flavor SIDs

If a Destination Option header would follow an SRH with a

segment list of more than one segment compressed as a single

NEXT-C-SID container, the SR source node MUST NOT omit the SRH.

When the last Segment List entry (index 0) in the SRH is a C-

SID container representing more than one segment, the PSP

operation is performed at the segment preceding the first

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

segment of this C-SID container in the segment list. If the PSP

behavior should instead be performed at the penultimate segment

along the path, the SR source node MUST NOT compress the

ultimate segment of the segment list into a C-SID container.

If a Destination Option header would follow an SRH with a last

Segment List entry being a NEXT-C-SID container representing

more than one segment, the SR source node MUST ensure that the

PSP operation is not performed before the penultimate SR

segment endpoint node along the path.

6.4. Rules for segment lists containing REPLACE-C-SID flavor SIDs

All SIDs compressed in a REPLACE-C-SID sequence MUST share the

same Locator-Block and the same compression scheme.

All SIDs except the last one in a C-SID sequence for REPLACE-C-

SID MUST have the REPLACE-C-SID flavor. If the last C-SID

container is fully filled (i.e., the last C-SID is at position

0 in the C-SID container) and the last SID in the C-SID

sequence is not the last segment in the segment list, the last

SID in the C-SID sequence MUST NOT have the REPLACE-C-SID

flavor.

When a REPLACE-C-SID flavor C-SID is present as the last SID in

a container that is not the last Segment List entry (index 0)

in the SRH, the next element in the segment list MUST be a

REPLACE-C-SID container in packed format carrying at least one

C-SID.

The SR source node determines the compression scheme of REPLACE-C-

SID flavor SIDs as follows.

When receiving a SID advertisement for a REPLACE-C-SID flavor SID

with LNL=16, FL=0, AL=128-LBL-NL-FL, and the value of the Argument

is all 0, the SR source node marks both the SID and its locator as

using 16-bit compression. All other SIDs allocated from this locator

with LNL=16, FL=16, AL=128-LBL-NL-FL, and the value of the Argument

is all 0 are also marked as using 16-bit compression. When receiving

a SID advertisement for a REPLACE-C-SID flavor SID with LNFL=32,

AL=128-LBL-NL-FL, and the value of the Argument is all 0, the SR

source node marks both the SID and its locator as using 32-bit

compression.

6.5. Upper-Layer Checksums

The Destination Address used in the IPv6 pseudo-header (Section 8.1

of [RFC8200]) is that of the ultimate destination.

¶

3.

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

At the originating node, that address will be the Destination

Address as it is expected to be received by the ultimate

destination. When the last element in the compressed segment list is

a C-SID container, this address can be obtained from the last

element in the uncompressed segment list or by repeatedly applying

the segment behavior as described in Section 9.2. This applies

regardless of whether an SRH is present in the IPv6 packet or

omitted.

At the recipient(s), that address will be in the Destination Address

field of the IPv6 header.

7. Inter-Domain Compression

Some SRv6 traffic may need to cross multiple routing domains, such

as different Autonomous Systems (ASes) or different routing areas

within an SR domain. Different routing domains may use different

addressing schema and Locator-Blocks.

A property of a C-SID sequence is that all C-SIDs in the sequence

share the same Locator-Block. Therefore, a segment list that spans

across multiple routing domains using different Locator-Blocks may

need a separate C-SID sequence for each domain.

This section defines an OPTIONAL solution to improve the efficiency

of C-SID compression in multi-domain environments by enabling a C-

SID sequence to combine C-SIDs having different Locator-Blocks.

The solution leverages two new SR segment endpoint behaviors,

"Endpoint with SRv6 Prefix Swap" ("End.PS" for short) and "Endpoint

with L3 cross-connect and SRv6 Prefix Swap" ("End.XPS" for short),

that enable modifying the Locator-Block for the next C-SID in the C-

SID sequence at the routing domain boundary.

7.1. End.PS: Prefix Swap

The End.PS behavior is a variant of the End behavior that modifies

the Locator-Block of the active C-SID sequence. This document

defines the End.PS behavior with the NEXT-C-SID flavor and the

End.PS behavior with the REPLACE-C-SID flavor.

An End.PS SID is used to transition to a new Locator-Block when the

routing domain boundary is on the SR segment endpoint node.

Each instance of an End.PS SID is associated with a target Locator-

Block B2/m, where B2 is an IPv6 address prefix and m is the

associated prefix length. The target Locator-Block is a local

property of the End.PS SID on the SR segment endpoint node.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note: a local SID property is an attribute associated with the SID

when it is instantiated on the SR segment endpoint node. When the SR

segment endpoint node identifies the destination address of a

received packet as a locally instantiated SID, it also retrieves any

local property associated with this SID. Other examples of local SID

properties include the set of L3 adjacencies of an End.X SID

(Section 4.2 of [RFC8986]) and the lookup table of an End.DT6 SID

(Section 4.6 of [RFC8986]).

The means by which an SR source node learns the target Locator-Block

associated with an End.PS SID are outside the scope of this

document. As examples, it could be learnt via configuration or

signaled by a controller.

7.1.1. End.PS with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.PS SID with the NEXT-C-SID flavor and

associated with the target Locator-Block B2/m, the SR segment

endpoint node applies the procedure specified in Section 4.1.1 with

the lines N05 to N06 replaced as follows.

7.1.2. End.PS with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.PS SID with the REPLACE-C-SID flavor and

associated with the target Locator-Block B2/m, the SR segment

endpoint node applies the procedure specified in Section 4.2.1 with

the line R20 replaced as follows.

7.2. End.XPS: L3 Cross-Connect and Prefix Swap

The End.XPS behavior is a variant of the End.X behavior that

modifies the Locator-Block of the active C-SID sequence. This

document defines the End.XPS behavior with the NEXT-C-SID flavor and

the End.XPS behavior with the REPLACE-C-SID flavor.

An End.XPS SID is used to transition to a new Locator-Block when the

routing domain boundary is on a link adjacent to the SR segment

endpoint node.

¶

¶

¶

N05.1. Initialize an IPv6 address A equal to B2.

N05.2. Copy DA.Argument into the bits [m..(m+AL-1)] of A.

N06. Copy A to the Destination Address of the IPv6 header.

¶

¶

R20.1. Initialize an IPv6 address A equal to B2.

R20.2. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [m..m+LNFL-1] of the Destination Address of the IPv6 header.

R20.3. Copy A to the Destination Address of the IPv6 header.

¶

¶

¶

Each instance of an End.XPS SID is associated with a target Locator-

Block B2/m and a set, J, of one or more L3 adjacencies. The target

Locator-Block and set of adjacencies are local properties of the

End.XPS SID on the SR segment endpoint node.

The means by which an SR source node learns the target Locator-Block

associated with an End.XPS SID are outside the scope of this

document. As examples, it could be learnt via configuration or

signaled by a controller.

7.2.1. End.XPS with NEXT-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.XPS SID with the NEXT-C-SID flavor and

associated with the target Locator-Block B2/m, the SR segment

endpoint node applies the procedure specified in Section 4.1.2 with

the lines N05 to N06 (of the pseudocode in Section 4.1.1) replaced

as follows.

7.2.2. End.XPS with REPLACE-C-SID

When processing an IPv6 packet that matches a FIB entry locally

instantiated as an End.XPS SID with the REPLACE-C-SID flavor and

associated with the target Locator-Block B2/m, the SR segment

endpoint node applies the procedure specified in Section 4.2.2 with

the line R20 (of the pseudocode in Section 4.2.1) replaced as

follows.

8. Control Plane

This document does not require any new extensions to routing

protocols.

Section 8 of [RFC8986] provides an overview of the control plane

protocols used for signaling of the SRv6 SIDs introduced by that

document. The SRv6 SIDs introduced by this document are advertised

using the same SRv6 extensions for various routing protocols, such

as

IS-IS [RFC9352]

¶

¶

¶

N05.1. Initialize an IPv6 address A equal to B2.

N05.2. Copy DA.Argument into the bits [m..(m+AL-1)] of A.

N06. Copy A to the Destination Address of the IPv6 header.

¶

¶

R20.1. Initialize an IPv6 address A equal to B2.

R20.2. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [m..m+LNFL-1] of the Destination Address of the IPv6 header.

R20.3. Copy A to the Destination Address of the IPv6 header.

¶

¶

¶

* ¶

OSPFv3 [RFC9513]

BGP [RFC9252], [RFC9514], [I-D.ietf-idr-sr-policy-safi]

BGP-LS [I-D.ietf-idr-bgp-ls-sr-policy]

PCEP [I-D.ietf-pce-segment-routing-ipv6]

The SR segment endpoint node MUST set the SID Argument bits to 0

when advertising a locally instantiated SID of this document in the

routing protocol (e.g., IS-IS [RFC9352], OSPF [RFC9513], or BGP-LS

[RFC9514]).

Signaling the SRv6 SID Structure is REQUIRED for all the SIDs

introduced in this document. It is used by an SR source node to

compress a segment list as described in Section 6. The node

initiating the SID advertisement MUST set the length values in the

SRv6 SID Structure to match the format of the SID on the SR segment

endpoint node. For example, for a SID of this document instantiated

from a /48 SRv6 SID block and a /64 Locator, and having a 16-bit

Function, the SRv6 SID Structure advertisement carries the following

values.

Locator-Block length: 48

Locator-Node length: 16

Function length: 16

Argument length: 48 (= 128-48-16-16)

A local C-SID may be advertised in the control plane individually

and/or in combination with a global C-SID instantiated on the same

SR segment endpoint node, with the End behavior, and the same

Locator-Block and flavor as the local C-SID. A combined global and

local C-SID is advertised as follows.

The SID Locator-Block is that shared by the global and local C-

SIDs

The SID Locator-Node is that of global C-SID

The SID Function is that of the local C-SID

The SID Argument length is equal to 128-LBL-LNL-FL and the SID

Argument value is 0

All other attributes of the SID (e.g., endpoint behavior or

algorithm) are those of the local C-SID

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

* ¶

*

¶

*

¶

The local C-SID combined advertisement is needed in particular for

control plane protocols mandating that the SID is a subnet of a

locator advertised in the same protocol (e.g., Section 8 of

[RFC9352] and Section 9 of [RFC9513] for advertising Adjacency SIDs

in IS-IS and OSPFv3, respectively).

For a segment list computed by a controller and signaled to an SR

source node (e.g., via BGP [I-D.ietf-idr-sr-policy-safi] or PCEP

[I-D.ietf-pce-segment-routing-ipv6]), the controller provides the

ordered segment list comprising the uncompressed SIDs, with their

respective behavior and structure, to the SR source node. The SR

source node may then compress the segment list as described in

Section 6.

When a node that does not support this specification receives an

advertisement of a SID of this document, it handles it as described

in the corresponding control plane specification (e.g., Sections

7.2, 8.1, and 8.2 of [RFC9352], Sections 8, 9.1, and 9.2 of

[RFC9513], and Section 3.1 of [RFC9252]).

9. Operational Considerations

9.1. Pinging a SID

An SR source node may ping an SRv6 SID by sending an ICMPv6 echo

request packet destined to the SRv6 SID, with or without a segment

list. This operation is illustrated in Appendix A.1.2 of [RFC9259].

When pinging a SID of this document without a segment list, the SR

source node places the SID in the destination address of the ICMPv6

echo request and MUST set the Argument of the SID to 0. The Argument

value 0 allows the SID SR segment endpoint node (Section 4) to

identify itself as the ultimate destination of the packet and

process the ICMPv6 payload. If the SR source node sets a non-zero

Argument value, the SR segment endpoint node would instead attempt

to determine the next destination of the packet.

When pinging a SID of this document via a segment list, the SR

source node MUST construct the IPv6 packet as described in Section 6

and compute the ICMPv6 checksum as described in Section 6.5.

9.2. ICMP Error Processing

When an IPv6 node encounters an error while processing a packet, it

may report that error by sending an IPv6 error message to the packet

source with an enclosed copy of the invoking packet. For the source

of an invoking packet to process the ICMP error message, the

ultimate destination address of the IPv6 header may be required.

¶

¶

¶

¶

¶

¶

¶

Section 5.4 of [RFC8754] defines the logic that an SR source node

follows to determine the ultimate destination of an invoking packet

containing an SRH.

For an SR source node that supports the compressed segment list

encoding defined in this document, the logic to determine the

ultimate destination is generalized as follows.

If the destination address of the invoking IPv6 packet matches a

known SRv6 SID, modify the invoking IPv6 packet by applying the

SID behavior associated with the matched SRv6 SID;

Repeat until the application of the SID behavior would result in

the processing of the upper-layer header.

The destination address of the resulting IPv6 packet may be used as

the ultimate destination of the invoking IPv6 packet.

Since the SR source node that needs to determine the ultimate

destination is the same node that originally built the segment list

in the invoking packet, it is able to perform this operation for all

the SIDs in the packet.

9.3. Upper Layer Checksum Verification on Transit Nodes

Upper layer checksums are computed by the originator of an IPv6

packet and verified by the ultimate destination(s) as it processes

the upper layer protocol.

Middleboxes such as packet sniffers, if deployed inside the SR

domain, may fail to verify the upper layer checksum of transit SRv6

traffic. Making these middleboxes SRv6 aware in general or C-SID

aware in particular is out of the scope of this document.

10. Implementation Status

This section is to be removed before publishing as an RFC.

RFC-Editor: Please clean up the references cited by this section

before publication.

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

This section is provided in compliance with the SPRING working group

policies ([SPRING-WG-POLICIES]).

10.1. Cisco Systems

Cisco Systems reported the following implementations of the SR

segment endpoint node NEXT-C-SID flavor (Section 4.1) and the SR

source node efficient SID-list encoding (Section 6) for NEXT-C-SID

flavor SIDs. These are used as part of its SRv6 TI-LFA, micro-loop

avoidance, and traffic engineering functionalities.

Cisco NCS 540 Series routers running IOS XR 7.3.x or above

[IMPL-CISCO-NCS540]

Cisco NCS 560 Series routers running IOS XR 7.6.x or above

[IMPL-CISCO-NCS560]

Cisco NCS 5500 Series routers running IOS XR 7.3.x or above

[IMPL-CISCO-NCS5500]

Cisco NCS 5700 Series routers running IOS XR 7.5.x or above

[IMPL-CISCO-NCS5700]

Cisco 8000 Series routers running IOS XR 7.5.x or above

[IMPL-CISCO-8000]

Cisco ASR 9000 Series routers running IOS XR 7.5.x or above

[IMPL-CISCO-ASR9000]

At the time of this report, all the implementations listed above are

in production and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

NEXT-C-SID flavor.

This report was last updated on January 11, 2023.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

10.2. Huawei Technologies

Huawei Technologies reported the following implementations of the SR

segment endpoint node REPLACE-C-SID flavor (Section 4.2). These are

used as part of its SRv6 TI-LFA, micro-loop avoidance, and traffic

engineering functionalities.

Huawei ATN8XX,ATN910C,ATN980B routers running VRPV800R021C00 or

above.

Huawei CX600-M2 routers running VRPV800R021C00 or above.

Huawei NE40E,ME60-X1X2,ME60-X3X8X16 routers running

VRPV800R021C00 or above.

Huawei NE5000E,NE9000 routers running VRPV800R021C00 or above.

Huawei NCE-IP Controller running V1R21C00 or above.

At the time of this report, all the implementations listed above are

in production and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

REPLACE-C-SID flavor.

This report was last updated on January 11, 2023.

10.3. Nokia

Nokia reported the following implementations ([IMPL-NOKIA-20.10]) of

the SR segment endpoint node NEXT-C-SID flavor (Section 4.1). These

are used as part of its shortest path forwarding (in algorithm 0 and

Flex-Algo), remote and TI-LFA repair tunnel, and Traffic Engineering

functionalities.

Nokia 7950 XRS 20/20e routers running SROS Release 22.10 or above

Nokia 7750 SR-12e routers running SROS Release 22.10 or above

Nokia 7750 SR-7/12 routers running SROS Release 22.10 or above

Nokia 7750 SR-7s/14s routers running SROS Release 22.10 or above

Nokia 7750 SR-1/1s/2s routers running SROS Release 22.10 or above

At the time of this report, all the implementations listed above are

in production and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

NEXT-C-SID flavor.

This report was last updated on February 3, 2023.

¶

*

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

10.4. Arrcus

Arrcus reported the following implementations of the SR segment

endpoint node NEXT-C-SID flavor (Section 4.1). These are used as

part of its SRv6 shortest path forwarding (in algorithm 0 and Flex-

Algo), TI-LFA, micro-loop avoidance and Traffic Engineering

functionalities.

Arrcus running on Ufi Space routers S9510-28DC, S9710-76D,

S9600-30DX and S9700-23D with ArcOS v5.2.1 or above

Arrcus running n Ufi Space routers S9600-72XC and S9700-53DX with

ArcOS v5.1.1D or above

Arrcus running on Quanta router IXA and IXAE with ArcOS v5.1.1D

or above

At the time of this report, all the implementations listed above are

in production and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

NEXT-C-SID flavor.

This report was last updated on March 11, 2023.

10.5. Juniper Networks

Juniper Networks reported the following implementations of the SR

segment endpoint node NEXT-C-SID flavor (Section 4.1). These are

used as part of its SRv6 shortest path forwarding (in algorithm 0

and Flex-Algo), TI-LFA, micro-loop avoidance, and Traffic

Engineering functionalities.

Juniper release 23.3 onwards supports this functionality.

At the time of this report, all the implementations listed above are

in development and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

NEXT-C-SID flavor.

This report was last updated on May 30, 2023.

10.6. Marvell

Marvell reported support in the Marvell Prestera Packet Processor

for the SR segment endpoint node NEXT-C-SID flavor (Section 4.1) and

REPLACE-C-SID flavor (Section 4.2).

This report was last updated on February 15, 2023.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

10.7. Broadcom

Broadcom reported the following implementations of the SR segment

endpoint node NEXT-C-SID flavor (Section 4.1) and REPLACE-C-SID

flavor (Section 4.2). These are used as part of its SRv6 TI-LFA,

micro-loop avoidance, and traffic engineering functionalities. All

implementation of the following list is in general availability for

customers using BCM SDK 6.5.26 or above.

88850 (Jericho2c+) series

88690 (Jericho2) series

88800 (Jericho2c) series

88480 (Qunran2a) series

88280 (Qunran2u) series

88295 (Qunran2n) series

88830 (Jericho2x) series

At the time of this report, all the implementations listed above are

in production and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

NEXT-C-SID and REPLACE-C-SID flavors.

For 78900 (Tomahawk) series-related support, please contact the

Broadcom team.

This report was last updated on February 21, 2023.

10.8. ZTE Corporation

ZTE Corporation reported the following implementations of the SR

segment endpoint node REPLACE-C-SID flavor (Section 4.2). These are

used as part of its SRv6 TI-LFA, micro-loop avoidance, and traffic

engineering functionalities.

ZTE M6000-18S(BRAS), M6000-8S Plus(BRAS) routers running

V5.00.10.09 or above.

ZTE M6000-18S(SR), M6000-8S Plus(SR) routers running V5.00.10.80

or above.

ZTE T8000-18 routers running V5.00.10.07 or above.

This report was last updated on March 29, 2023.

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

10.9. New H3C Technologies

New H3C Technologies reported the following implementations of the

SR segment endpoint node REPLACE-C-SID flavor (Section 4.2). These

are used as part of its SRv6 TI-LFA, micro-loop avoidance, and

traffic engineering functionalities.

H3C CR16000-F, SR8800-X routers running Version 7.1.075 or above.

H3C CR18000, CR19000 routers running Version 7.1.071 or above.

This report was last updated on March 29, 2023.

10.10. Ruijie Network

Ruijie Network reported the following implementations of the SR

segment endpoint node REPLACE-C-SID flavor (Section 4.2). These are

used as part of its SRv6 TI-LFA, micro-loop avoidance, and traffic

engineering functionalities.

RUIJIE RG-N8018-R, RG-N8010-R routers running N8000-R_RGOS

12.8(3)B0801 or above.

This report was last updated on March 29, 2023.

10.11. Ciena

Ciena reported the following implementations of the SR segment

endpoint node NEXT-C-SID flavor (Section 4.1). These are used as

part of its shortest path forwarding (in algorithm 0 and Flex-Algo),

remote and TI-LFA repair tunnel, and Traffic Engineering

functionalities.

The following platforms support implementation of the above.

Ciena 5162, 5164, 5166, 5168 routers running SAOS 10.10 or above

Ciena 8110, 8112, 8190 routers running SAOS 10.10 or above

At the time of this report, all the implementations listed above are

in production and follow the specification in the latest version of

this document, including all the "MUST" and "SHOULD" clauses for the

NEXT-C-SID flavor.

This report was last updated on February 6, 2024.

10.12. Centec

Centec reported the following implementations of the SR segment

endpoint node REPLACE-C-SID flavor (Section 4.2). These are used as

¶

* ¶

* ¶

¶

¶

*

¶

¶

¶

¶

* ¶

* ¶

¶

¶

part of its SRv6 TI-LFA, micro-loop avoidance, and traffic

engineering functionalities. All implementation of the following

list is in general availability for customers using Centec SDK 5.6.8

or above.

CTC7132 (TsingMa) Series

CTC8180 (TsingMa.MX) Series

This report was last updated on February 14, 2024.

10.13. Open Source

The authors found the following open source implementations of the

SR segment endpoint node NEXT-C-SID flavor (Section 4.1).

The Linux kernel, version 6.1 [IMPL-OSS-LINUX]

The Software for Open Networking in the Cloud (SONiC), version

202212 [IMPL-OSS-SONIC], and Switch Abstraction Interface (SAI),

version 1.9.0 [IMPL-OSS-SAI]

The Vector Packet Processor (VPP), version 20.05 [IMPL-OSS-VPP]

A generic P4 implementation [IMPL-OSS-P4]

The authors found the following open source implementations of the

SR segment endpoint node REPLACE-C-SID flavor (Section 4.2).

ONOS and P4 Programmable Switch based [IMPL-OSS-ONOS]

Open SRv6 Project [IMPL-OSS-OPEN-SRV6]

This section was last updated on January 11, 2023.

10.14. Interoperability Reports

10.14.1. Bell Canada / Ciena 2023

Bell Canada is currently evaluating interoperability between Ciena

and Cisco implementations of the NEXT-C-SID flavor defined in this

document. Further information will be added to this section when the

evaluation is complete.

10.14.2. EANTC 2023

In April 2023, the European Advanced Networking Test Center (EANTC)

successfully validated multiple implementations of SRv6 NEXT-C-SID

flavor (a.k.a., SRv6 uSID) [EANTC-23].

¶

* ¶

* ¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

¶

¶

The participating vendors included Arista, Arrcus, Cisco, Huawei,

Juniper, Keysight, Nokia, and Spirent.

10.14.3. China Mobile 2020

In November 2020, China Mobile successfully validated multiple

interoperable implementations of the NEXT-C-SID and REPLACE-C-SID

flavors defined in this document.

This testing covered two different implementations of the SRv6

endpoint flavors defined in this document:

Hardware implementation in Cisco ASR 9000 running IOS XR

Software implementation in Cisco IOS XRv9000 virtual appliance

Hardware implementation in Huawei NE40E and NE5000E running VRP

The interoperability testing consisted of a packet flow sent by an

SR source node N0 via an SR traffic engineering policy with a

segment list <S1, S2, S3, S4, S5, S6, S7>, where S1..S7 are SIDs

instantiated on SR segment endpoint nodes N1..N7, respectively.

N0 is a generic packet generator.

N1, N2, and N3 are Huawei routers.

N4, N5, and N6 are Cisco routers.

N7 is a generic traffic generator acting as a packet receiver.

The SR source node N0 steers the packets onto the SR policy by

setting the IPv6 destination address and creating an SRH (as

described in Section 4.1 of [RFC8754]) using a compressed segment

list encoding. The length of the compressed segment list encoding

varies for each scenario.

All SR segment endpoint nodes execute a variant of the End behavior:

regular End behavior (as defined in Section 4.1 of [RFC8986]), End

behavior with NEXT-C-SID flavor, and End behavior with REPLACE-C-SID

flavor. The variant being used at each SR segment endpoint node

varies for each scenario.

The interoperability was validated for the following scenarios:

¶

¶

¶

* ¶

* ¶

* ¶

¶

N0 --- N1 --- N2 --- N3 --- N4 --- N5 --- N6 --- N7

 (S1) (S2) (S3) (S4) (S5) (S6) (S7)

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

Scenario 1:

S1 and S2 are associated with the End behavior with the REPLACE-

C-SID flavor

S3 is associated with the regular End behavior (no flavor)

S4, S5, and S6 are associated with the End behavior with the

NEXT-C-SID flavor

The SR source node imposes a compressed segment list encoding of

3 SIDs.

Scenario 2:

S1, S2..., S6 are associated with the End behavior with the NEXT-

C-SID flavor

The SR source node imposes a compressed segment list encoding of

2 SIDs.

Scenario 3:

S1, S2..., S6 are associated with the End behavior with the

REPLACE-C-SID flavor

The SR source node imposes a compressed segment list encoding of

3 SIDs.

11. Applicability to other SR Segment Endpoint Behaviors

Future documents may extend the applicability of the NEXT-C-SID and

REPLACE-C-SID flavors to other SR segment endpoint behaviors.

For an SR segment endpoint behavior that can be used before the last

position of a segment list, a C-SID flavor is defined by reproducing

the same logic as described in Section 4.1 and Section 4.2 of this

document to determine the next segment in the segment list.

12. Security Considerations

Section 8 of [RFC8402] discusses the security considerations for

Segment Routing.

Section 5 of [RFC8754] describes the intra-SR-domain deployment

model and how to secure it. Section 7 of [RFC8754] describes the

threats applicable to SRv6 and how to mitigate them.

Section 9 of [RFC8986] discusses the security considerations

applicable to the SRv6 network programming framework, as well as the

¶

*

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

¶

SR source node and SR segment endpoint node behaviors that it

defines.

This document introduces two new flavors for some of the SR segment

endpoint behaviors defined in [RFC8986] and a method by which an SR

source node may leverage the SIDs of these flavors to produce a

compressed segment list.

An SR source node constructs an IPv6 packet with a compressed

segment list as defined in Sections 3.1 and 4.1 of [RFC8754] and

Section 5 of [RFC8986]. The paths that an SR source node may enforce

using a compressed segment list are the same, from a topology and

service perspective, as those that an SR source node could enforce

using the SIDs of [RFC8986].

An SR segment endpoint node processes an IPv6 packet matching a

locally instantiated SID as defined in [RFC8986], with the

pseudocode modifications in Section 4 of this document. These

modifications change how the SR segment endpoint node determines the

next SID in the packet, but not the semantic of either the active or

the next SID. For example, an adjacency segment instantiated with

the End.X behavior remains an adjacency segment regardless of

whether it uses the unflavored End.X behavior defined in Section 4.2

of [RFC8986] or a C-SID flavor of that behavior. This document does

not introduce any new SID semantic.

Any other transit node processes the packet as described in Section

4.2 of [RFC8754].

This document defines a new method of encoding the SIDs inside a

segment list at the SR source node and decoding them at the SR

segment endpoint node, but it does not change how the segment list

itself is encoded in the IPv6 packet nor the semantic of any segment

that it comprises. Therefore, this document is subject to the same

security considerations that are discussed in [RFC8402], [RFC8754],

and [RFC8986].

13. IANA Considerations

13.1. SRv6 Endpoint Behaviors

This I-D. requests the IANA to update the reference of the following

registrations from the "SRv6 Endpoint Behaviors" registry under the

top-level "Segment Routing" registry-group (https://www.iana.org/

assignments/segment-routing/) with the RFC number of this document

once it is published, and transfer change control to the IETF.

Value Description Reference

43 End with NEXT-CSID This I-D.

¶

¶

¶

¶

¶

¶

¶

Value Description Reference

44 End with NEXT-CSID & PSP This I-D.

45 End with NEXT-CSID & USP This I-D.

46 End with NEXT-CSID, PSP & USP This I-D.

47 End with NEXT-CSID & USD This I-D.

48 End with NEXT-CSID, PSP & USD This I-D.

49 End with NEXT-CSID, USP & USD This I-D.

50 End with NEXT-CSID, PSP, USP & USD This I-D.

52 End.X with NEXT-CSID This I-D.

53 End.X with NEXT-CSID & PSP This I-D.

54 End.X with NEXT-CSID & USP This I-D.

55 End.X with NEXT-CSID, PSP & USP This I-D.

56 End.X with NEXT-CSID & USD This I-D.

57 End.X with NEXT-CSID, PSP & USD This I-D.

58 End.X with NEXT-CSID, USP & USD This I-D.

59 End.X with NEXT-CSID, PSP, USP & USD This I-D.

85 End.T with NEXT-CSID This I-D.

86 End.T with NEXT-CSID & PSP This I-D.

87 End.T with NEXT-CSID & USP This I-D.

88 End.T with NEXT-CSID, PSP & USP This I-D.

89 End.T with NEXT-CSID & USD This I-D.

90 End.T with NEXT-CSID, PSP & USD This I-D.

91 End.T with NEXT-CSID, USP & USD This I-D.

92 End.T with NEXT-CSID, PSP, USP & USD This I-D.

93 End.B6.Encaps with NEXT-CSID This I-D.

94 End.B6.Encaps.Red with NEXT-CSID This I-D.

95 End.BM with NEXT-CSID This I-D.

96 End.PS with NEXT-CSID This I-D.

97 End.XPS with NEXT-CSID This I-D.

101 End with REPLACE-CSID This I-D.

102 End with REPLACE-CSID & PSP This I-D.

103 End with REPLACE-CSID & USP This I-D.

104 End with REPLACE-CSID, PSP & USP This I-D.

105 End.X with REPLACE-CSID This I-D.

106 End.X with REPLACE-CSID & PSP This I-D.

107 End.X with REPLACE-CSID & USP This I-D.

108 End.X with REPLACE-CSID, PSP & USP This I-D.

109 End.T with REPLACE-CSID This I-D.

110 End.T with REPLACE-CSID & PSP This I-D.

111 End.T with REPLACE-CSID & USP This I-D.

112 End.T with REPLACE-CSID, PSP & USP This I-D.

114 End.B6.Encaps with REPLACE-CSID This I-D.

115 End.BM with REPLACE-CSID This I-D.

116 End.DX6 with REPLACE-CSID This I-D.

117 End.DX4 with REPLACE-CSID This I-D.

118 End.DT6 with REPLACE-CSID This I-D.

[RFC2119]

Value Description Reference

119 End.DT4 with REPLACE-CSID This I-D.

120 End.DT46 with REPLACE-CSID This I-D.

121 End.DX2 with REPLACE-CSID This I-D.

122 End.DX2V with REPLACE-CSID This I-D.

123 End.DT2U with REPLACE-CSID This I-D.

124 End.DT2M with REPLACE-CSID This I-D.

127 End.B6.Encaps.Red with REPLACE-CSID This I-D.

128 End with REPLACE-CSID & USD This I-D.

129 End with REPLACE-CSID, PSP & USD This I-D.

130 End with REPLACE-CSID, USP & USD This I-D.

131 End with REPLACE-CSID, PSP, USP & USD This I-D.

132 End.X with REPLACE-CSID & USD This I-D.

133 End.X with REPLACE-CSID, PSP & USD This I-D.

134 End.X with REPLACE-CSID, USP & USD This I-D.

135 End.X with REPLACE-CSID, PSP, USP & USD This I-D.

136 End.T with REPLACE-CSID & USD This I-D.

137 End.T with REPLACE-CSID, PSP & USD This I-D.

138 End.T with REPLACE-CSID, USP & USD This I-D.

139 End.T with REPLACE-CSID, PSP, USP & USD This I-D.

140 End.PS with REPLACE-CSID This I-D.

141 End.XPS with REPLACE-CSID This I-D.

Table 1: Registration List

14. Acknowledgements

The authors would like to thank Kamran Raza, Xing Jiang, YuanChao

Su, Han Li, Yisong Liu, Martin Vigoureux, Joel Halpern, and Tal

Mizrahi for their insightful feedback and suggestions.

The authors would also like to thank Andrew Alston, Linda Dunbar,

Adrian Farrel, Boris Hassanov, and Alvaro Retana for their thorough

review of this document.

15. References

15.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

[RFC8174]

[RFC8200]

[RFC8402]

[RFC8754]

[RFC8986]

[EANTC-23]

[GKP94]

[I-D.ietf-6man-sids]

[I-D.ietf-idr-bgp-ls-sr-policy]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/info/rfc8402>.

Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy,

J., Matsushima, S., and D. Voyer, "IPv6 Segment Routing

Header (SRH)", RFC 8754, DOI 10.17487/RFC8754, March

2020, <https://www.rfc-editor.org/info/rfc8754>.

Filsfils, C., Ed., Camarillo, P., Ed., Leddy, J., Voyer,

D., Matsushima, S., and Z. Li, "Segment Routing over IPv6

(SRv6) Network Programming", RFC 8986, DOI 10.17487/

RFC8986, February 2021, <https://www.rfc-editor.org/info/

rfc8986>.

15.2. Informative References

European Advanced Networking Test Center (EANTC), "Multi-

Vendor MPLS SDN Interoperability Test Report", 18 April

2023, <https://eantc.de/fileadmin/eantc/downloads/events/

2023/EANTC-InteropTest2023-TestReport.pdf>.

Graham, R., Knuth, D., and O. Patashnik, "Concrete

Mathematics: A Foundation for Computer Science", ISBN

9780201558029, 1994.

Krishnan, S., "SRv6 Segment Identifiers in the

IPv6 Addressing Architecture", Work in Progress,

Internet-Draft, draft-ietf-6man-sids-06, 15 February

2024, <https://datatracker.ietf.org/doc/html/draft-

ietf-6man-sids-06>.

Previdi, S., Talaulikar, K., Dong,

J., Gredler, H., and J. Tantsura, "Advertisement of

Segment Routing Policies using BGP Link-State", Work in

Progress, Internet-Draft, draft-ietf-idr-bgp-ls-sr-

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8402
https://www.rfc-editor.org/info/rfc8754
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986
https://eantc.de/fileadmin/eantc/downloads/events/2023/EANTC-InteropTest2023-TestReport.pdf
https://eantc.de/fileadmin/eantc/downloads/events/2023/EANTC-InteropTest2023-TestReport.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-6man-sids-06
https://datatracker.ietf.org/doc/html/draft-ietf-6man-sids-06

[I-D.ietf-idr-sr-policy-safi]

[I-D.ietf-pce-segment-routing-ipv6]

[IMPL-CISCO-8000]

[IMPL-CISCO-ASR9000]

[IMPL-CISCO-NCS540]

[IMPL-CISCO-NCS5500]

[IMPL-CISCO-NCS560]

policy-04, 20 March 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-idr-bgp-ls-sr-policy-04>.

Previdi, S., Filsfils, C., Talaulikar, K., Mattes, P.,

and D. Jain, "Advertising Segment Routing Policies in

BGP", Work in Progress, Internet-Draft, draft-ietf-idr-

sr-policy-safi-02, 16 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-idr-sr-policy-

safi-02>.

Li, C., Kaladharan, P., Sivabalan, S., Koldychev, M.,

and Y. Zhu, "Path Computation Element Communication

Protocol (PCEP) Extensions for IPv6 Segment Routing",

Work in Progress, Internet-Draft, draft-ietf-pce-segment-

routing-ipv6-25, 4 April 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-pce-segment-

routing-ipv6-25>.

Cisco Systems, "Segment Routing Configuration

Guide for Cisco 8000 Series Routers", 4 November 2022,

<https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/

segment-routing/75x/b-segment-routing-cg-cisco8000-75x/

configuring-segment-routing-over-ipv6-srv6-micro-

sids.html>.

Cisco Systems, "Segment Routing Configuration

Guide for Cisco ASR 9000 Series Routers", 6 November

2022, <https://www.cisco.com/c/en/us/td/docs/routers/

asr9000/software/asr9k-r7-5/segment-routing/

configuration/guide/b-segment-routing-cg-asr9000-75x/

configure-srv6-micro-sid.html>.

Cisco Systems, "Segment Routing Configuration

Guide for Cisco NCS 540 Series Routers", 2 November 2022,

<https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/

segment-routing/73x/b-segment-routing-cg-73x-ncs540/

configure-srv6.html>.

Cisco Systems, "Segment Routing Configuration

Guide for Cisco NCS 5500 Series Routers", 6 November

2022, <https://www.cisco.com/c/en/us/td/docs/iosxr/

ncs5500/segment-routing/73x/b-segment-routing-cg-

ncs5500-73x/configure-srv6-micro-sid.html>.

Cisco Systems, "Segment Routing Configuration

Guide for Cisco NCS 560 Series Routers", 14 October 2022,

<https://www.cisco.com/c/en/us/td/docs/iosxr/ncs560/

https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-sr-policy-04
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-ls-sr-policy-04
https://datatracker.ietf.org/doc/html/draft-ietf-idr-sr-policy-safi-02
https://datatracker.ietf.org/doc/html/draft-ietf-idr-sr-policy-safi-02
https://datatracker.ietf.org/doc/html/draft-ietf-idr-sr-policy-safi-02
https://datatracker.ietf.org/doc/html/draft-ietf-pce-segment-routing-ipv6-25
https://datatracker.ietf.org/doc/html/draft-ietf-pce-segment-routing-ipv6-25
https://datatracker.ietf.org/doc/html/draft-ietf-pce-segment-routing-ipv6-25
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/segment-routing/75x/b-segment-routing-cg-cisco8000-75x/configuring-segment-routing-over-ipv6-srv6-micro-sids.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/segment-routing/75x/b-segment-routing-cg-cisco8000-75x/configuring-segment-routing-over-ipv6-srv6-micro-sids.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/segment-routing/75x/b-segment-routing-cg-cisco8000-75x/configuring-segment-routing-over-ipv6-srv6-micro-sids.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/segment-routing/75x/b-segment-routing-cg-cisco8000-75x/configuring-segment-routing-over-ipv6-srv6-micro-sids.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-5/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-75x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-5/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-75x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-5/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-75x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-5/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-75x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/segment-routing/73x/b-segment-routing-cg-73x-ncs540/configure-srv6.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/segment-routing/73x/b-segment-routing-cg-73x-ncs540/configure-srv6.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/segment-routing/73x/b-segment-routing-cg-73x-ncs540/configure-srv6.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/73x/b-segment-routing-cg-ncs5500-73x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/73x/b-segment-routing-cg-ncs5500-73x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/73x/b-segment-routing-cg-ncs5500-73x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs560/segment-routing/76x/b-segment-routing-cg-76x-ncs560/m-configure-srv6-usid-ncs5xx.html

[IMPL-CISCO-NCS5700]

[IMPL-NOKIA-20.10]

[IMPL-OSS-LINUX]

[IMPL-OSS-ONOS]

[IMPL-OSS-OPEN-SRV6]

[IMPL-OSS-P4]

[IMPL-OSS-SAI]

[IMPL-OSS-SONIC]

[IMPL-OSS-VPP]

[RFC7942]

segment-routing/76x/b-segment-routing-cg-76x-ncs560/m-

configure-srv6-usid-ncs5xx.html>.

Cisco Systems, "Segment Routing Configuration

Guide for Cisco NCS 5700 Series Routers", 6 November

2022, <https://www.cisco.com/c/en/us/td/docs/iosxr/

ncs5500/segment-routing/75x/b-segment-routing-cg-

ncs5500-75x/configure-srv6-micro-sid.html>.

Nokia, "Segment Routing and PCE User Guide",

December 2022, <https://documentation.nokia.com/sr/22-10/

books/Segment%20Routing%20and%20PCE%20User%20Guide/

segment-rout-with-ipv6-data-plane-srv6.html>.

Abeni, P., "Add NEXT-C-SID support for SRv6 End

behavior", 20 September 2022, <https://git.kernel.org/

pub/scm/linux/kernel/git/netdev/net-next.git/commit/?

id=cec9d59e89362809f17f2d854faf52966216da13>.

Open Networking Foundation, "Stratum CMCC G-SRv6

Project", 24 March 2021, <https://

wiki.opennetworking.org/display/COM/Stratum+CMCC+G-

SRv6+Project>.

"Open SRv6 Project", n.d., <http://

opensrv6.org.cn/en/srv6-2/>.

Salsano, S. and A. Tulumello, "SRv6 uSID (micro SID)

implementation on P4", 3 January 2021, <https://

github.com/netgroup/p4-srv6-usid>.

Agrawal, A., "Added new behaviors to support uSID

instruction", 8 June 2021, <https://github.com/

opencomputeproject/SAI/pull/1231/commits/

02e58d95ad966ca9efc24eb9e0c0fa10b21de2a4>.

Shah, S. and R. Sudarshan, "SONiC uSID", 21 August

2022, <https://github.com/sonic-net/SONiC/blob/master/

doc/srv6/SRv6_uSID.md>.

FD.io, "Srv6 cli reference", n.d., <https://s3-

docs.fd.io/vpp/23.02/cli-reference/clis/

clicmd_src_vnet_srv6.html>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs560/segment-routing/76x/b-segment-routing-cg-76x-ncs560/m-configure-srv6-usid-ncs5xx.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs560/segment-routing/76x/b-segment-routing-cg-76x-ncs560/m-configure-srv6-usid-ncs5xx.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/75x/b-segment-routing-cg-ncs5500-75x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/75x/b-segment-routing-cg-ncs5500-75x/configure-srv6-micro-sid.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/75x/b-segment-routing-cg-ncs5500-75x/configure-srv6-micro-sid.html
https://documentation.nokia.com/sr/22-10/books/Segment%20Routing%20and%20PCE%20User%20Guide/segment-rout-with-ipv6-data-plane-srv6.html
https://documentation.nokia.com/sr/22-10/books/Segment%20Routing%20and%20PCE%20User%20Guide/segment-rout-with-ipv6-data-plane-srv6.html
https://documentation.nokia.com/sr/22-10/books/Segment%20Routing%20and%20PCE%20User%20Guide/segment-rout-with-ipv6-data-plane-srv6.html
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=cec9d59e89362809f17f2d854faf52966216da13
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=cec9d59e89362809f17f2d854faf52966216da13
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=cec9d59e89362809f17f2d854faf52966216da13
https://wiki.opennetworking.org/display/COM/Stratum+CMCC+G-SRv6+Project
https://wiki.opennetworking.org/display/COM/Stratum+CMCC+G-SRv6+Project
https://wiki.opennetworking.org/display/COM/Stratum+CMCC+G-SRv6+Project
http://opensrv6.org.cn/en/srv6-2/
http://opensrv6.org.cn/en/srv6-2/
https://github.com/netgroup/p4-srv6-usid
https://github.com/netgroup/p4-srv6-usid
https://github.com/opencomputeproject/SAI/pull/1231/commits/02e58d95ad966ca9efc24eb9e0c0fa10b21de2a4
https://github.com/opencomputeproject/SAI/pull/1231/commits/02e58d95ad966ca9efc24eb9e0c0fa10b21de2a4
https://github.com/opencomputeproject/SAI/pull/1231/commits/02e58d95ad966ca9efc24eb9e0c0fa10b21de2a4
https://github.com/sonic-net/SONiC/blob/master/doc/srv6/SRv6_uSID.md
https://github.com/sonic-net/SONiC/blob/master/doc/srv6/SRv6_uSID.md
https://s3-docs.fd.io/vpp/23.02/cli-reference/clis/clicmd_src_vnet_srv6.html
https://s3-docs.fd.io/vpp/23.02/cli-reference/clis/clicmd_src_vnet_srv6.html
https://s3-docs.fd.io/vpp/23.02/cli-reference/clis/clicmd_src_vnet_srv6.html

[RFC9252]

[RFC9259]

[RFC9350]

[RFC9352]

[RFC9513]

[RFC9514]

[SPRING-WG-POLICIES]

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Dawra, G., Ed., Talaulikar, K., Ed., Raszuk, R.,

Decraene, B., Zhuang, S., and J. Rabadan, "BGP Overlay

Services Based on Segment Routing over IPv6 (SRv6)", RFC

9252, DOI 10.17487/RFC9252, July 2022, <https://www.rfc-

editor.org/info/rfc9252>.

Ali, Z., Filsfils, C., Matsushima, S., Voyer, D., and M.

Chen, "Operations, Administration, and Maintenance (OAM)

in Segment Routing over IPv6 (SRv6)", RFC 9259, DOI

10.17487/RFC9259, June 2022, <https://www.rfc-editor.org/

info/rfc9259>.

Psenak, P., Ed., Hegde, S., Filsfils, C., Talaulikar, K.,

and A. Gulko, "IGP Flexible Algorithm", RFC 9350, DOI

10.17487/RFC9350, February 2023, <https://www.rfc-

editor.org/info/rfc9350>.

Psenak, P., Ed., Filsfils, C., Bashandy, A., Decraene,

B., and Z. Hu, "IS-IS Extensions to Support Segment

Routing over the IPv6 Data Plane", RFC 9352, DOI

10.17487/RFC9352, February 2023, <https://www.rfc-

editor.org/info/rfc9352>.

Li, Z., Hu, Z., Talaulikar, K., Ed., and P. Psenak,

"OSPFv3 Extensions for Segment Routing over IPv6 (SRv6)",

RFC 9513, DOI 10.17487/RFC9513, December 2023, <https://

www.rfc-editor.org/info/rfc9513>.

Dawra, G., Filsfils, C., Talaulikar, K., Ed., Chen, M.,

Bernier, D., and B. Decraene, "Border Gateway Protocol -

Link State (BGP-LS) Extensions for Segment Routing over

IPv6 (SRv6)", RFC 9514, DOI 10.17487/RFC9514, December

2023, <https://www.rfc-editor.org/info/rfc9514>.

SPRING Working Group Chairs, "SPRING Working

Group Policies", 14 October 2022, <https://wiki.ietf.org/

en/group/spring/WG_Policies>.

Appendix A. Complete pseudocodes

The content of this section is purely informative rendering of the

pseudocodes of [RFC8986] with the modifications in this document.

This rendering may not be used as a reference.¶

https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc9252
https://www.rfc-editor.org/info/rfc9252
https://www.rfc-editor.org/info/rfc9259
https://www.rfc-editor.org/info/rfc9259
https://www.rfc-editor.org/info/rfc9350
https://www.rfc-editor.org/info/rfc9350
https://www.rfc-editor.org/info/rfc9352
https://www.rfc-editor.org/info/rfc9352
https://www.rfc-editor.org/info/rfc9513
https://www.rfc-editor.org/info/rfc9513
https://www.rfc-editor.org/info/rfc9514
https://wiki.ietf.org/en/group/spring/WG_Policies
https://wiki.ietf.org/en/group/spring/WG_Policies

A.1. End with NEXT-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End SID with the NEXT-C-SID flavor:

Before processing the Upper-Layer header or any IPv6 extension

header other than Hop-by-Hop or Destination Option of a packet

matching a FIB entry locally instantiated as an End SID with the

NEXT-C-SID flavor:

¶

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

N09. }

S02. If (Segments Left == 0) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {

S10. Send an ICMP Parameter Problem to the Source Address

 with Code 0 (Erroneous header field encountered)

 and Pointer set to the Segments Left field,

 interrupt packet processing, and discard the packet.

S11. }

S12. Decrement IPv6 Hop Limit by 1.

S13. Decrement Segments Left by 1.

S14. Update IPv6 DA with Segment List[Segments Left].

S15. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End SID with the NEXT-C-SID flavor:

A.2. End.X with NEXT-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.X SID with the NEXT-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

N09. }

¶

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

Before processing the Upper-Layer header or any IPv6 extension

header other than Hop-by-Hop or Destination Option of a packet

matching a FIB entry locally instantiated as an End.X SID with the

NEXT-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08. Submit the packet to the IPv6 module for transmission to the

 new destination via a member of J.

N09. }

S02. If (Segments Left == 0) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {

S10. Send an ICMP Parameter Problem to the Source Address

 with Code 0 (Erroneous header field encountered)

 and Pointer set to the Segments Left field,

 interrupt packet processing, and discard the packet.

S11. }

S12. Decrement IPv6 Hop Limit by 1.

S13. Decrement Segments Left by 1.

S14. Update IPv6 DA with Segment List[Segments Left].

S15. Submit the packet to the IPv6 module for transmission

 to the new destination via a member of J.

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.X SID with the NEXT-C-SID

flavor:

A.3. End.T with NEXT-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.T SID with the NEXT-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08. Submit the packet to the IPv6 module for transmission to the

 new destination via a member of J.

N09. }

¶

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

Before processing the Upper-Layer header or any IPv6 extension

header other than Hop-by-Hop or Destination Option of a packet

matching a FIB entry locally instantiated as an End.T SID with the

NEXT-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08.1. Set the packet's associated FIB table to T.

N08.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

N09. }

S02. If (Segments Left == 0) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {

S10. Send an ICMP Parameter Problem to the Source Address

 with Code 0 (Erroneous header field encountered)

 and Pointer set to the Segments Left field,

 interrupt packet processing, and discard the packet.

S11. }

S12. Decrement IPv6 Hop Limit by 1.

S13. Decrement Segments Left by 1.

S14. Update IPv6 DA with Segment List[Segments Left].

S15.1. Set the packet's associated FIB table to T.

S15.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.T SID with the NEXT-C-SID

flavor:

A.4. End.B6.Encaps with NEXT-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.B6.Encaps SID with the NEXT-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08.1. Set the packet's associated FIB table to T.

N08.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

N09. }

¶

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

Before processing the Upper-Layer header or any IPv6 extension

header other than Hop-by-Hop or Destination Option of a packet

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08.1. Push a new IPv6 header with its own SRH containing B.

N08.2. Set the outer IPv6 SA to A.

N08.3. Set the outer IPv6 DA to the first SID of B.

N08.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

N08.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

N09. }

S02. If (Segments Left == 0) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {

S10. Send an ICMP Parameter Problem to the Source Address

 with Code 0 (Erroneous header field encountered)

 and Pointer set to the Segments Left field,

 interrupt packet processing, and discard the packet.

S11. }

S12. Decrement IPv6 Hop Limit by 1.

S13. Decrement Segments Left by 1.

S14. Update IPv6 DA with Segment List[Segments Left].

S15. Push a new IPv6 header with its own SRH containing B.

S16. Set the outer IPv6 SA to A.

S17. Set the outer IPv6 DA to the first SID of B.

S18. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

S19. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

¶

matching a FIB entry locally instantiated as an End.B6.Encaps SID

with the NEXT-C-SID flavor:

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.B6.Encaps SID with the NEXT-C-

SID flavor:

A.5. End.BM with NEXT-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.BM SID with the NEXT-C-SID flavor:

¶

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08.1. Push a new IPv6 header with its own SRH containing B.

N08.2. Set the outer IPv6 SA to A.

N08.3. Set the outer IPv6 DA to the first SID of B.

N08.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

N08.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

N09. }

¶

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

Before processing the Upper-Layer header or any IPv6 extension

header other than Hop-by-Hop or Destination Option of a packet

matching a FIB entry locally instantiated as an End.BM SID with the

NEXT-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08.1. Push the MPLS label stack for B.

N08.2. Submit the packet to the MPLS engine for transmission.

N09. }

S02. If (Segments Left == 0) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address

 with Code 0 (Hop limit exceeded in transit),

 interrupt packet processing, and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {

S10. Send an ICMP Parameter Problem to the Source Address

 with Code 0 (Erroneous header field encountered)

 and Pointer set to the Segments Left field,

 interrupt packet processing, and discard the packet.

S11. }

S12. Decrement IPv6 Hop Limit by 1.

S13. Decrement Segments Left by 1.

S14. Update IPv6 DA with Segment List[Segments Left].

S15. Push the MPLS label stack for B.

S16. Submit the packet to the MPLS engine for transmission.

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.BM SID with the NEXT-C-SID

flavor:

A.6. End with REPLACE-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End SID with the REPLACE-C-SID flavor:

N01. If (DA.Argument != 0) {

N02. If (IPv6 Hop Limit <= 1) {

N03. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

N04. }

N05. Copy DA.Argument into the bits [LBL..(LBL+AL-1)] of the

 Destination Address.

N06. Set the bits [(LBL+AL)..127] of the Destination Address to

 zero.

N07. Decrement IPv6 Hop Limit by 1.

N08.1. Push the MPLS label stack for B.

N08.2. Submit the packet to the MPLS engine for transmission.

N09. }

¶

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End SID with the REPLACE-C-SID

flavor:

S01. When an SRH is processed {

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

R01. If (DA.Arg.Index != 0) {

R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {

R03. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R04. }

R05. Decrement DA.Arg.Index by 1.

R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {

R07. Decrement Segments Left by 1.

R08. Decrement IPv6 Hop Limit by 1.

R09. Update IPv6 DA with Segment List[Segments Left]

R10. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

R11. }

R12. } Else {

R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){

R14. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R15. }

R16. Decrement Segments Left by 1.

R17. Set DA.Arg.Index to (128/LNFL - 1).

R18. }

R19. Decrement IPv6 Hop Limit by 1.

R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6

 header.

R21. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

S16. }

¶

¶

A.7. End.X with REPLACE-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.X SID with the REPLACE-C-SID flavor:

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.X SID with the REPLACE-C-SID

flavor:

S01. When an SRH is processed {

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

R01. If (DA.Arg.Index != 0) {

R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {

R03. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R04. }

R05. Decrement DA.Arg.Index by 1.

R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {

R07. Decrement Segments Left by 1.

R08. Decrement IPv6 Hop Limit by 1.

R09. Update IPv6 DA with Segment List[Segments Left]

R10. Submit the packet to the IPv6 module for transmission to

 the new destination via a member of J.

R11. }

R12. } Else {

R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){

R14. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R15. }

R16. Decrement Segments Left by 1.

R17. Set DA.Arg.Index to (128/LNFL - 1).

R18. }

R19. Decrement IPv6 Hop Limit by 1.

R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6

 header.

R21. Submit the packet to the IPv6 module for transmission to the

 new destination via a member of J.

S16. }

¶

¶

A.8. End.T with REPLACE-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.T SID with the REPLACE-C-SID flavor:

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

S01. When an SRH is processed {

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

R01. If (DA.Arg.Index != 0) {

R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {

R03. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R04. }

R05. Decrement DA.Arg.Index by 1.

R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {

R07. Decrement Segments Left by 1.

R08. Decrement IPv6 Hop Limit by 1.

R09. Update IPv6 DA with Segment List[Segments Left]

R10.1. Set the packet's associated FIB table to T.

R10.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

R11. }

R12. } Else {

R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){

R14. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R15. }

R16. Decrement Segments Left by 1.

R17. Set DA.Arg.Index to (128/LNFL - 1).

R18. }

R19. Decrement IPv6 Hop Limit by 1.

R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6

 header.

R21.1. Set the packet's associated FIB table to T.

R21.2. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the new destination.

S16. }

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.T SID with the REPLACE-C-SID

flavor:

A.9. End.B6.Encaps with REPLACE-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.B6.Encaps SID with the REPLACE-C-SID flavor:

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

S01. When an SRH is processed {

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

R01. If (DA.Arg.Index != 0) {

R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {

R03. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R04. }

R05. Decrement DA.Arg.Index by 1.

R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {

R07. Decrement Segments Left by 1.

R08. Decrement IPv6 Hop Limit by 1.

R09. Update IPv6 DA with Segment List[Segments Left]

R10.1. Push a new IPv6 header with its own SRH containing B.

R10.2. Set the outer IPv6 SA to A.

R10.3. Set the outer IPv6 DA to the first SID of B.

R10.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

R10.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

R11. }

R12. } Else {

R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){

R14. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R15. }

R16. Decrement Segments Left by 1.

R17. Set DA.Arg.Index to (128/LNFL - 1).

R18. }

R19. Decrement IPv6 Hop Limit by 1.

R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6

 header.

R21.1. Push a new IPv6 header with its own SRH containing B.

R21.2. Set the outer IPv6 SA to A.

R21.3. Set the outer IPv6 DA to the first SID of B.

R21.4. Set the outer Payload Length, Traffic Class, Flow Label,

 Hop Limit, and Next Header fields.

R21.5. Submit the packet to the egress IPv6 FIB lookup for

 transmission to the next destination.

S16. }

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.B6.Encaps SID with the REPLACE-

C-SID flavor:

A.10. End.BM with REPLACE-C-SID

When processing the SRH of a packet matching a FIB entry locally

instantiated as an End.BM SID with the REPLACE-C-SID flavor:

¶

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

¶

When processing the Upper-Layer header of a packet matching a FIB

entry locally instantiated as an End.BM SID with the REPLACE-C-SID

flavor:

S01. When an SRH is processed {

S02. If (Segments Left == 0 and (DA.Arg.Index == 0 or

 Segment List[0][DA.Arg.Index-1] == 0)) {

S03. Stop processing the SRH, and proceed to process the next

 header in the packet, whose type is identified by

 the Next Header field in the routing header.

S04. }

S05. If (IPv6 Hop Limit <= 1) {

S06. Send an ICMP Time Exceeded message to the Source Address,

 Code 0 (Hop limit exceeded in transit),

 interrupt packet processing and discard the packet.

S07. }

S08. max_LE = (Hdr Ext Len / 2) - 1

R01. If (DA.Arg.Index != 0) {

R02. If ((Last Entry > max_LE) or (Segments Left > Last Entry)) {

R03. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R04. }

R05. Decrement DA.Arg.Index by 1.

R06. If (Segment List[Segments Left][DA.Arg.Index] == 0) {

R07. Decrement Segments Left by 1.

R08. Decrement IPv6 Hop Limit by 1.

R09. Update IPv6 DA with Segment List[Segments Left]

R10.1. Push the MPLS label stack for B.

R10.2. Submit the packet to the MPLS engine for transmission.

R11. }

R12. } Else {

R13. If((Last Entry > max_LE) or (Segments Left > Last Entry+1)){

R14. Send an ICMP Parameter Problem to the Source Address,

 Code 0 (Erroneous header field encountered),

 Pointer set to the Segments Left field,

 interrupt packet processing and discard the packet.

R15. }

R16. Decrement Segments Left by 1.

R17. Set DA.Arg.Index to (128/LNFL - 1).

R18. }

R19. Decrement IPv6 Hop Limit by 1.

R20. Write Segment List[Segments Left][DA.Arg.Index] into the bits

 [LBL..LBL+LNFL-1] of the Destination Address of the IPv6

 header.

R21.1. Push the MPLS label stack for B.

R21.2. Submit the packet to the MPLS engine for transmission.

S16. }

¶

¶

Contributors

Liu Aihua

ZTE Corporation

China

Email: liu.aihua@zte.com.cn

Dennis Cai

Alibaba

United States of America

Email: d.cai@alibaba-inc.com

Darren Dukes

Cisco Systems, Inc.

Canada

Email: ddukes@cisco.com

James N Guichard

Futurewei Technologies Ltd.

United States of America

Email: james.n.guichard@futurewei.com

Cheng Li

Huawei Technologies

China

Email: c.l@huawei.com

Robert Raszuk

NTT Network Innovations

United States of America

Email: robert@raszuk.net

Ketan Talaulikar

Cisco Systems, Inc.

India

S01. If (Upper-Layer header type is allowed by local configuration) {

S02. Proceed to process the Upper-Layer header

S03. } Else {

S04. Send an ICMP Parameter Problem to the Source Address

 with Code 4 (SR Upper-layer Header Error)

 and Pointer set to the offset of the Upper-Layer header,

 interrupt packet processing, and discard the packet.

S05. }

¶

mailto:liu.aihua@zte.com.cn
mailto:d.cai@alibaba-inc.com
mailto:ddukes@cisco.com
mailto:james.n.guichard@futurewei.com
mailto:c.l@huawei.com
mailto:robert@raszuk.net

Email: ketant.ietf@gmail.com

Daniel Voyer

Bell Canada

Canada

Email: daniel.voyer@bell.ca

Shay Zadok

Broadcom

Israel

Email: shay.zadok@broadcom.com

Authors' Addresses

Weiqiang Cheng (editor)

China Mobile

China

Email: chengweiqiang@chinamobile.com

Clarence Filsfils

Cisco Systems, Inc.

Belgium

Email: cf@cisco.com

Zhenbin Li

Huawei Technologies

China

Email: lizhenbin@huawei.com

Bruno Decraene

Orange

France

Email: bruno.decraene@orange.com

Francois Clad (editor)

Cisco Systems, Inc.

France

Email: fclad.ietf@gmail.com

mailto:ketant.ietf@gmail.com
mailto:daniel.voyer@bell.ca
mailto:shay.zadok@broadcom.com
mailto:chengweiqiang@chinamobile.com
mailto:cf@cisco.com
mailto:lizhenbin@huawei.com
mailto:bruno.decraene@orange.com
mailto:fclad.ietf@gmail.com

	Compressed SRv6 Segment List Encoding
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Requirements Language

	3. Basic Concepts
	4. SR Segment Endpoint Flavors
	4.1. NEXT-C-SID Flavor
	4.1.1. End with NEXT-C-SID
	4.1.2. End.X with NEXT-C-SID
	4.1.3. End.T with NEXT-C-SID
	4.1.4. End.B6.Encaps with NEXT-C-SID
	4.1.5. End.B6.Encaps.Red with NEXT-C-SID
	4.1.6. End.BM with NEXT-C-SID
	4.1.7. Combination with PSP, USP and USD flavors

	4.2. REPLACE-C-SID Flavor
	4.2.1. End with REPLACE-C-SID
	4.2.2. End.X with REPLACE-C-SID
	4.2.3. End.T with REPLACE-C-SID
	4.2.4. End.B6.Encaps with REPLACE-C-SID
	4.2.5. End.B6.Encaps.Red with REPLACE-C-SID
	4.2.6. End.BM with REPLACE-C-SID
	4.2.7. End.DX and End.DT with REPLACE-C-SID
	4.2.8. Combination with PSP, USP, and USD flavors

	5. C-SID Allocation
	5.1. Global C-SID
	5.2. Local C-SID
	5.3. GIB/LIB Usage
	5.4. Recommended Installation of C-SIDs in FIB

	6. SR Source Node
	6.1. Segment Validation for Compression
	6.2. Segment List Compression
	6.3. Rules for segment lists containing NEXT-C-SID flavor SIDs
	6.4. Rules for segment lists containing REPLACE-C-SID flavor SIDs
	6.5. Upper-Layer Checksums

	7. Inter-Domain Compression
	7.1. End.PS: Prefix Swap
	7.1.1. End.PS with NEXT-C-SID
	7.1.2. End.PS with REPLACE-C-SID

	7.2. End.XPS: L3 Cross-Connect and Prefix Swap
	7.2.1. End.XPS with NEXT-C-SID
	7.2.2. End.XPS with REPLACE-C-SID

	8. Control Plane
	9. Operational Considerations
	9.1. Pinging a SID
	9.2. ICMP Error Processing
	9.3. Upper Layer Checksum Verification on Transit Nodes

	10. Implementation Status
	10.1. Cisco Systems
	10.2. Huawei Technologies
	10.3. Nokia
	10.4. Arrcus
	10.5. Juniper Networks
	10.6. Marvell
	10.7. Broadcom
	10.8. ZTE Corporation
	10.9. New H3C Technologies
	10.10. Ruijie Network
	10.11. Ciena
	10.12. Centec
	10.13. Open Source
	10.14. Interoperability Reports
	10.14.1. Bell Canada / Ciena 2023
	10.14.2. EANTC 2023
	10.14.3. China Mobile 2020

	11. Applicability to other SR Segment Endpoint Behaviors
	12. Security Considerations
	13. IANA Considerations
	13.1. SRv6 Endpoint Behaviors

	14. Acknowledgements
	15. References
	15.1. Normative References
	15.2. Informative References

	Appendix A. Complete pseudocodes
	A.1. End with NEXT-C-SID
	A.2. End.X with NEXT-C-SID
	A.3. End.T with NEXT-C-SID
	A.4. End.B6.Encaps with NEXT-C-SID
	A.5. End.BM with NEXT-C-SID
	A.6. End with REPLACE-C-SID
	A.7. End.X with REPLACE-C-SID
	A.8. End.T with REPLACE-C-SID
	A.9. End.B6.Encaps with REPLACE-C-SID
	A.10. End.BM with REPLACE-C-SID

	Contributors
	Authors' Addresses

