
ST Working Group L. Delgrossi
Internet-Draft October 1994
File: draft-ietf-st2-spec-00.txt Expires: January 1995

Internet Stream Protocol Version 2 (ST2)

 Protocol Specification - Version ST2Plus

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months. Internet-Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet-
 Drafts as reference material or to cite them other than as "work in
 progress".

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

 Abstract:

 This memo contains a revised specification of the Internet STream
 Protocol Version 2 (ST2). ST2 is a resource reservation protocol
 intended to provide end-to-end real-time guarantees over an internet.
 It allows its applications to build multi-destination simplex data
 streams with a desired quality of service. The revised version of ST2
 specified in this memo is called ST2Plus.

 Editor's Note:

 This memo is available both in ASCII format (file: draft-ietf-st2-
spec-00.txt) and in PostScript (file: draft-ietf-st2-spec-00.ps). The

 PostScript version contains some additional pictures that help to
 clarify the text, and it is therefore recommended.

L. Delgrossi (ed.) [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-st2-spec-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-st2-spec-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-st2-spec-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-st2-spec-00

INTERNET DRAFT October 1994

 Introduction 6

 1 What is ST2? 6

 1.1 Protocol History 6

 1.2 Streams 7

 1.3 Data Transmission 8

 1.4 Flow Specifications 9

 1.5 ST2 and IP 9

 1.6 Outline of This Document 10

 2 ST User Service Description 11

 2.1 Stream Operations and Primitive Functions 11

 2.2 State Diagrams 12

 2.3 State Transition Tables 15

 SCMP Functional Description 16

 3 Stream Setup 17

 3.1 Initial Setup at the Origin 17

 3.1.1 Invoking the Routing Function 17

 3.1.2 Reserving Resources 17

 3.2 Sending CONNECT Messages 18

 3.2.1 Empty Target List 18

 3.2.2 Long Target Lists 19

 3.3 Processing CONNECT Messages 19

 3.3.1 CONNECT Processing by an Intermediate Agent 19

 3.3.2 Setup at the Targets 19

 3.4 Processing ACCEPT Messages 20

L. Delgrossi (ed.) [Page 2]

INTERNET DRAFT October 1994

 3.4.1 ACCEPT Processing by an Intermediate Agent 20

 3.4.2 ACCEPT Processing by the Origin 20

 3.5 Processing REFUSE Messages 20

 3.5.1 REFUSE Processing by the Intermediate Agent 20

 3.5.2 REFUSE Processing by the Origin 21

 4 Stream Options 21

 4.1 No Recovery 21

 4.2 Join Authorization 21

 5 Data Transfer 21

 6 Modifying an Existing Stream 22

 6.1 The Origin Adding New Targets 23

 6.2 A Target Joining a Stream 23

 6.2.1 FlowSpec 24

 6.2.2 Router as Origin 24

 6.3 The Origin Removing Targets 24

 6.4 A Target Deleting Itself 25

 6.5 Changing a Stream's FlowSpec 25

 7 Stream Tear Down 26

 8 Exceptional Cases 27

 8.1 Setup Failures 27

 8.1.1 Setup Failure due to CONNECT Timeout 27

 8.1.2 Setup Failure due to ACCEPT Timeout 27

 8.1.3 Setup Failure due to Routing Failures 27

 8.2 Further Issues 28

L. Delgrossi (ed.) [Page 3]

INTERNET DRAFT October 1994

 8.2.1 Problems due to Routing Inconsistency 28

 8.2.2 Path Convergence 29

 8.2.3 Problems in Reserving Resources 29

 8.2.4 Problems Caused by CHANGE Messages 30

 9 Failure Detection and Recovery 31

 9.1 Failure Detection 31

 9.1.1 Network Failures 31

 9.1.2 Detecting ST Agents Failures 31

 9.2 Failure Recovery 33

 9.2.1 Problems in Stream Recovery 34

 9.3 Stream Preemption 35

 10 A Group of Streams 36

 10.1 Group Name Generator 36

 10.2 Basic ST Relationships 37

 10.2.1 Bandwidth Sharing 37

 10.2.2 Fate Sharing 37

 10.2.3 Route Sharing 38

 10.2.4 Subnet Resources Sharing 38

 10.3 Relationships Orthogonality 38

 11 Ancillary Functions 39

 11.1 Stream IDs Generation 39

 11.2 SCMP Reliability 39

 11.3 IP Encapsulation of ST 39

 11.4 IP Multicasting 40

L. Delgrossi (ed.) [Page 4]

INTERNET DRAFT October 1994

 11.5 Routing 40

 11.6 Security 40

 12 FlowSpec 40

 12.1 FlowSpec Versions 41

 12.2 The Null FlowSpec (#0) 41

 12.3 The ST Current FlowSpec (#7) 41

 12.3.1 Qos Classes 42

 12.3.2 Maximum Message Size 42

 12.3.3 Rate or Throughput 42

 12.3.4 Maximum Delay and Delay Jitter 42

 13 ST State Machines 43

 ST Protocol Data Units 44

 14 ST Data Packets 45

 14.1 Stream ID 45

 15 SCMP Protocol Data Units 45

 15.1 ST Control Messages 46

 15.2 Common SCMP Elements 47

 15.2.1 ErroredPDU 48

 15.2.2 FlowSpec 48

 15.2.3 Group 49

 15.2.4 MulticastAddress 49

 15.2.5 NextHopIPAddress 50

 15.2.6 Origin 50

 15.2.7 RecordRoute 51

L. Delgrossi (ed.) [Page 5]

INTERNET DRAFT October 1994

 15.2.8 Target and TargetList 51

 15.2.9 UserData 52

 16 ST Control Message PDUs 53

 16.1 ACCEPT 53

 16.2 ACK 54

 16.3 CHANGE 54

 16.4 CONNECT 55

 16.5 DISCONNECT 56

 16.6 ERROR 57

 16.7 HELLO 58

 16.8 JOIN-REQUEST 59

 16.9 NOTIFY 59

 16.10 REFUSE 60

 16.11 STATUS 61

 16.12 STATUS-RESPONSE 62

 17 Suggested Protocol Constants 63

 17.1 SCMP Messages 63

 17.2 SCMP Parameters 63

 17.3 ReasonCode 64

 17.4 IP Multicast Addresses 64

 18 Notation 64

 19 Further Study 64

 20 References 64

 Introduction

L. Delgrossi (ed.) [Page 6]

INTERNET DRAFT October 1994

 1 What is ST2?

 The Internet Stream Protocol, Version 2 (ST2) is a connection-
 oriented internetworking protocol that operates at the same layer as
 connectionless IP. It has been developed to support the efficient
 delivery of data streams to single or multiple destinations in
 applications that require guaranteed data throughput and controlled
 delay characteristics. The main application area of the protocol is
 the real-time transport of digital audio and video packet streams
 across internets.

 ST2 can be used to reserve bandwidth for multimedia streams across
 network routes. This reservation, together with appropriate network
 access and packet scheduling mechanisms in all nodes running the
 protocol, guarantees a well-defined quality of service to ST2
 applications. It ensures that each multimedia packet is delivered
 within its deadline, that is, at the time where it needs to be
 presented. This facilitates a smooth playout of digital audio and
 video that is essential for this time-critical data, but can
 typically not be provided by best-effort IP communication.

 Just like IP, ST2 actually consists of two protocols: ST for the data
 transport and SCMP, the Stream Control Message Protocol, for all
 control functions, mainly those for resource reservation. ST is
 simple and contains only one PDU that is designed for fast and
 efficient data forwarding in order to achieve low communication
 delays. SCMP, however, is quite complex. As with ICMP and IP, SCMP
 packets are transferred within ST packets as shown in Figure 1.

 1.1 Protocol History

 The first version of ST was published in the late 1970's and was used
 throughout the 1980's for experimental voice and video transmission.
 The experience gained in these applications led to the development of
 the revised protocol version ST2. The revision extends the original
 protocol to make it more complete and more applicable to emerging
 multimedia environments. The specification of this protocol version
 is contained in Internet RFC 1190 which was published in October 1990
 [RFC1190].

 With more and more developments of commercial distributed multimedia
 applications underway and with a growing dissatisfaction at the
 transmission quality for audio and video over IP in the MBONE,
 interest in ST2 has grown over the last years. Companies such as BBN
 have products available incorporating the protocol. The BERKOM
 project of the German PTT uses ST2 as its core protocol for the
 provision of multimedia teleservices such as conferencing and
 mailing. Among others, Digital, HP, IBM, and Siemens-Nixdorf

https://datatracker.ietf.org/doc/html/rfc1190
https://datatracker.ietf.org/doc/html/rfc1190

L. Delgrossi (ed.) [Page 7]

INTERNET DRAFT October 1994

 participate in this project. In addition, implementations of ST2 for
 Sun, Silicon Graphics, Macintosh, NeXT, and PC platforms are
 available.

 In 1993, the IETF has started a new working group on ST2. Its mission
 is to clean up the current protocol specification to ensure better
 interoperability between the existing and emerging implementations.
 It shall also reflect the experiences gained with the current ST2
 implementations and applications. This has led to the specification
 of the ST2Plus version contained in this document.

 1.2 Streams

 Streams form the core concepts of ST2. They are established between a
 sending origin and one or more receiving targets in the form of a
 routing tree. Nodes in the tree represent so-called ST agents,
 entities executing the ST2 protocol; links in the tree are called
 hops.

 Figure 2 illustrates a stream from an origin to four targets, where
 the ST agent on Target 2 also functions as a router. Let us use this
 Target 2/Router node to explain some basic ST2 terminology: the
 direction of the stream from this node to Target 3 and 4 is called
 downstream, the direction towards the Origin node upstream. ST agents
 that are one hop away from a given node are called previous-hops in
 the upstream, and next-hops in the downstream direction.

 Streams are maintained using SCMP messages. Typical SCMP messages are
 CONNECT and ACCEPT to build a stream, DISCONNECT and REFUSE to close
 a stream, or CHANGE to modify the stream characteristics, for example
 the set of targets or the quality of service.

 Each ST agent maintains state information describing the streams
 flowing through it. It can actively gather and distribute such
 information. If, for example, an intermediate ST agent fails, the
 neighboring agents can recognize this via HELLO messages that are
 periodically exchanged between ST agents that share streams. STATUS
 packets can be used to ask other ST agents about a particular stream.
 These agents then send back a STATUS-RESPONSE message. NOTIFY
 messages serve to inform ST agents of changes such as a route change.

 ST2 offers a wealth of functionalities for stream management. Streams
 can be grouped together to minimize allocated resources or to process
 them in the same way in case of failures. During audio conferences,
 for example, only one person should speak at a time. Using the group
 mechanism, resources for only one audio stream of the group need to
 be reserved. Using the same concept, an entire group of related audio
 and video streams can be dropped if one of them fails.

L. Delgrossi (ed.) [Page 8]

INTERNET DRAFT October 1994

 1.3 Data Transmission

 Data transfer in ST2 is simplex in the downstream direction. Data
 transport through streams is very efficient. ST2 puts only a small
 header in front of the user data. The header contains a protocol
 identification that distinguishes ST2 from IP packets, an ST2 version
 number, a priority field (specifying a relative importance of streams
 in cases of conflict), a length counter, a stream identification, and
 a checksum. These elements form an 8-byte header which can be
 extended by an optional 8-byte timestamp.

 Efficiency is also achieved by avoiding fragmentation and reassembly
 on router nodes. Negotiations at stream establishment time yield a
 maximum transmission unit (MTU) for data packets on a stream. This
 MTU is communicated to the upper layers, so that they provide data
 packets of suitable size to ST2.

 Communication with multiple next-hops can be made even more efficient
 using MAC Layer multicast. If a subnet supports multicast, a single
 multicast packet is sufficient to reach all next- hops connected to
 this subnet. This leads to a significant reduction of the bandwidth
 requirements of a stream. If multicast is not provided, separate
 packets need to be sent to each next-hop.

 As ST2 relies on reservation, it does not contain error correction
 mechanisms features for data exchange such as retransmission known
 from TCP. It is assumed that digital audio and video require
 partially correct delivery only. In many cases, retransmitted packets
 would arrive too late to meet their real-time delivery requirements.
 On the other hand, depending on the data encoding and the particular
 application, a small number of errors in audio and video streams are
 acceptable. In any case, reliability can be provided by layers on top
 of ST2 if needed.

 1.4 Flow Specifications

 As part of establishing a connection, SCMP negotiates quality-of-
 service parameters for a stream. In ST2 terminology, these parameters
 form a flow specification (FlowSpec, for short) which is associated
 with the stream. Different versions of FlowSpecs exist and can be
 distinguished by a version number. Typically, they contain parameters
 such as average and maximum throughput, end-to-end delay, and delay
 variance of a stream.

 Three kinds of entities participate in the quality-of-service
 negotiation: application entities on the origin and target sites as
 the service users, ST agents, and local resource managers (LRM). The
 origin application supplies the initial FlowSpec requesting a

L. Delgrossi (ed.) [Page 9]

INTERNET DRAFT October 1994

 particular service quality. Each ST agent which obtains the
 specification as part of a connection establishment message initiates
 the reservation of local resources by the corresponding resource
 manager. These resource managers control the usage of CPU capacity
 for protocol processing, buffer space for storing messages, and
 bandwidth in the outgoing network. ST2 does not determine how
 resource managers make reservations and how resources are scheduled
 according to these reservations; ST2, however, assumes these
 mechanisms as its basis.

 The FlowSpec negotiation procedure is illustrated in Figure 3.
 Depending on the success of its local reservations, an ST agent
 updates the FlowSpec while the connection establishment message
 passes downstream (for example, keeping track of accumulated delay).
 The final FlowSpec is communicated to the target application which
 may base its accept/reject decision for establishing the connection
 on it and may finally also modify the FlowSpec. If a target accepts
 the connection, the (possibly modified) FlowSpec is propagated back
 to the origin which can then calculate an overall service quality for
 all targets. If all targets in a particular ST2 connection need to
 adhere to the same FlowSpec, the origin may - during a second phase
 of connection establishment - issue a CHANGE request to adjust
 reservations.

 1.5 ST2 and IP

 ST2 is designed to coexist with IP on each node. A typical
 distributed multimedia application would use both protocols: IP for
 the transfer of traditional data and control information, and ST2 for
 the transfer of digital audio and video. Whereas IP typically will be
 accessed from TCP or UDP, ST2 will have new multimedia end-to-end
 protocols on top of it.

 Both ST2 and IP apply the same addressing schemes to identify
 different hosts and use ARP for address resolution. ST2 can easily be
 modified to include the longer host addresses of the next generation
 IP. ST2 uses the same Layer 2 SAPs as IP. ST2 and IP packets differ
 in the first four bits, containing the internetwork protocol version
 number: number 5 is reserved for ST2 (IP itself has version number
 4). An ST agent receives a packet over the IP SAP using the first 4
 bits of the frame to select ST2 packets.

 As a special function, ST2 messages can be encapsulated in IP
 packets. This allows them to pass through routers which do not run
 ST2. Resource management is typically not available for these IP
 route segments. IP encapsulation is, therefore, suggested only for
 portions of the network which do not constitute a system bottleneck.

L. Delgrossi (ed.) [Page 10]

INTERNET DRAFT October 1994

 1.6 Outline of This Document

 This document contains the specification for the ST2Plus version of
 the ST2 protocol. In the rest of the document, whenever the terms
 "ST" or "ST2" are used, they refer to ST2Plus.

 The document is organized as follows: Section 2 describes the ST user
 service; Section 3 through Section 7 describe stream setup,
 modification, and tear down; exceptional cases are handled in Section

8; failure detection and groups of streams respectively in Section 9
 and Section 10; the FlowSpec is presented in Section 12; finally, the
 formats of the different protocol elements and PDUs are defined by

Section 14 through Section 20. Figure 1: ST2 Data and Control Path
 Figure 2: The Stream Concept Figure 3: Quality-of-Service Negotiation
 with FlowSpecs

 Figure 6: ST Service at the Target Figure 4: Primitives for the OPEN
 Stream Operation Figure 5: ST Service at the Origin

 2 ST User Service Description

 This section describes the ST user service from the high-level point
 of view of an application. It defines the ST stream operations and
 primitive functions. It specifies which operations on streams can be
 invoked by the applications built on top of ST and when the ST
 primitive functions can be legally executed. Note that the ST
 primitives do not form an API. They are used here with the only
 purpose of illustrating the service model for ST.

 2.1 Stream Operations and Primitive Functions

 An ST application at the origin may create, expand, reduce, change,
 send data to, and delete a stream. When a stream is expanded, new
 targets are added to the stream; when a stream is reduced, some of
 the current targets are dropped from it. When a stream is changed,
 the associated quality of service is modified.

 An ST application at the target may join, receive data from, and
 leave a stream.

 This translates into the following stream operations:

 o OPEN: create new stream [origin], CLOSE: delete stream
 [origin],

 o ADD: expand stream, i.e. add new targets to it [origin],

 o DROP: reduce stream, i.e. drop targets from it [origin],

L. Delgrossi (ed.) [Page 11]

INTERNET DRAFT October 1994

 o JOIN: join a stream [target], LEAVE: leave a stream [target],

 o DATA: send data through stream [origin],

 o CHG: change a stream's qos [origin],

 Each stream operation may require the execution of several primitive
 functions to be completed. For instance, to open a new stream, a
 request is first issued by the sender and an indication is generated
 at the receiver; then, the receiver may accept or refuse the request
 and the correspondent indication is generated at the sender. This is
 shown in Figure 4 below.

 Table 1 defines the ST service primitive functions associated to each
 stream operation. The column labelled "O/T" indicates whether the
 primitive is executed at the origin or at the target.

 2.2 State Diagrams

 It is not sufficient to define the set of ST stream operations. It is
 also necessary to specify when the operations can be legally
 executed. For this reason, a set of states are now introduced and the
 transitions from one state to the others are specified. States are
 defined with respect to a single stream. The previously defined
 stream operations can be legally executed only from an appropriate
 state.

 An ST agent may, with respect to an ST stream, be in one of the
 following states:

 o IDLE: the stream has not been created yet.

 o PENDING: the stream is in the process of being established.

 o ACTIVE: the stream is established and active.

 o ADDING: the stream is established. A stream expansion is
 underway.

 o CHGING: the stream is established. A stream change is
 underway.

 Previous experience with ST suggested to impose limits on the stream
 operations that can be executed at the same time. These restrictions
 are:

 1. A single ADD or CHG operation can be processed at one time.
 If another ADD or CHG is already underway, further requests are

L. Delgrossi (ed.) [Page 12]

INTERNET DRAFT October 1994

 queued by the ST agent and handled only after the previous operation
 has been completed. It also applies to two subsequent requests of the
 same kind, e.g. two ADD or two CHG operations. The second operation
 is not executed until the first one has been completed.

 2. Deleting a stream, leaving a stream, or dropping targets from
 a stream is possible only after stream establishment has been
 completed. A stream is considerate to be established when all the
 next-hops of the origin have either accepted or refused the stream.
 Note that stream refuse is automatically forced after timeout if no
 reply comes from a next-hop.

 3. An ST agent forwards data only along already established
 paths to the targets. A path is con- sidered to be established when
 the next-hop on the path has explicitly accepted the stream. This
 implies that the target and all other intermediate ST agents are
 ready to handle the incoming data packets. In no cases an ST agent
 will forward data to a next-hop agent that has not explicitly
 accepted the stream. To be sure that all targets receive the data, an
 application should send the data only after all paths have been
 established, i.e. the stream is established.

 4. It is allowed to send data from the CHGING and ADDING states.
 When sending data from the CHGING state the quality of service to the
 targets affected by the change is undefined. When sending data from
 the ADDING state the targets that receive the data include at least
 all the targets that were already part of the stream at the time the
 ADD operation was invoked.

 The rules introduced above require ST agents to queue incoming
 requests when the current state does not allow to process them
 immediately. In order to preserve the semantics, ST agents have to
 maintain the order of the requests, i.e. implement FIFO queuing.
 Exceptionally, the CLOSE request at the origin and the LEAVE request
 at the target may be immediately processed: in this cases, the queue
 is deleted and it is possible that requests in the queue are not
 processed.

 The following state diagrams define the ST service. Separate diagrams
 are presented for the origin and the targets. To keep the figure
 simple, only the primitives that cause state transitions are
 represented.

 The symbol (a/r)* indicates that all targets in the target list have
 explicitly accepted or refused the stream, or refuse has been forced
 after timeout. If the target list is empty, i.e. it contains no
 targets, the (a/r)* condition is immediately satisfied, so the empty
 stream is created and state ESTBL is entered.

L. Delgrossi (ed.) [Page 13]

INTERNET DRAFT October 1994

 2.3 State Transition Tables

 Table 2 and Table 3 define which primitives can be processed from
 which states and the possible state transitions.

 Figure 7: Sample Topology for an ST Stream

 SCMP Functional Description

 ST agents create and manage streams using the ST Control Message
 Protocol (SCMP). Conceptually, SCMP resides immediately above ST (as
 does ICMP above IP). SCMP follows a request-response model. SCMP
 messages are made reliable through the use of retransmission after
 timeout, cf. Section 11.2.

 This section contains a functional description of SCMP. To help
 clarify the SCMP exchanges used to setup and maintain ST streams, we
 include an example of a simple network topology, represented in
 Figure 7. The topology is used to illustrate the protocol
 interactions during the execution of stream operations. For instance,
 an ST application may:

 o Create a stream from A to the peers at B, C and D,

 o Add a peer at E,

 o Drop peers B and C, and

 o Let F join the stream

 o Delete the stream.

 We begin with a description of stream setup, see Section 3; stream
 option are presented in Section 4; data transfer in Section 5;

Section 6 illustrates stream modification including stream expansion,
 reduction, changes of the quality of service associated to a stream.
 Finally, stream deletion is handled in Section 7.

 3 Stream Setup

 This section presents a description of stream setup. For simplicity,
 we assume that everything succeeds, e.g. any required resources are
 available, and the routing is correct. Possible failures in the setup
 phase are handled in Section 8.1.

 3.1 Initial Setup at the Origin

 Before stream setup can be started, the application has to collect

L. Delgrossi (ed.) [Page 14]

INTERNET DRAFT October 1994

 the necessary information to determine the structure of the
 communication. This includes identifying the participants and
 selecting the characteristics of the data flow. Such information is
 passed to the ST agent at the stream's origin. The ST agent performs
 the following operations:

 o allocates a stream ID (SID) for the stream, cf. Section 11.1,

 o invokes the routing function to determine the set of next-
 hops for the stream, cf. Section 3.1.1,

 o invokes the Local Resource Manager (LRM), cf. Section 3.1.2,
 to reserve local and network resources

 o creates local database entries to store information on the
 new stream,

 o propagates the stream creation request to the next-hops
 determined by the routing function, see Section 3.2.

 3.1.1 Invoking the Routing Function

 An ST agent that is setting up a stream invokes the routing function
 to find a path to reach each of the targets specified by the target
 list provided by the application. This is similar to the routing
 decision in IP. However, in this case the route is to a multitude of
 targets rather than to a single destination. The routing function is
 not part of the ST protocol and therefore it is not specified by this
 document.

 The result of the routing function is a set of next-hop ST agents.
 The set of next-hops selected by the routing function is not
 necessarily the same as the set of next-hops that IP would select
 given a number of independent IP datagrams to the same destinations.
 The routing algorithm may attempt to optimize parameters other than
 the number of hops that the packets will take, such as delay, local
 network bandwidth consumption, or total internet bandwidth
 consumption.

 3.1.2 Reserving Resources

 An ST agent helps reserving both local and network resources. Local
 resources may include CPU processing time and buffer space at the
 local host. Network resources may comprise bandwidth over the
 outgoing links to the next-hops determined by the routing function.
 Resource reservation is not part of the ST protocol and therefore it
 is not specified by this document. ST invokes at every host the Local
 Resource Manager (LRM) to perform the appropriate reservations.

L. Delgrossi (ed.) [Page 15]

INTERNET DRAFT October 1994

 Functions as resource scheduling and reservation enforcement are part
 of the LRM's tasks and not of an ST agent's.

 The ST FlowSpec contains all the information needed to allocate the
 necessary resources. The information contained in the FlowSpec is
 passed to the LRM as parameter of the reservation functions. The LRM
 updates the FlowSpec information before it passes it back to the ST
 agent. Further information on the ST FlowSpec can be found in Section

12.

 Note that if the data has to be sent across a network to a single
 next-hop, then only the point-to- point bandwidth needs to be
 reserved. If the data has to be sent to multiple next-hop agents
 across a single network and network layer multicasting is not
 available, the ST agent replicates the data to each next-hop agent
 and therefore bandwidth has to be reserved by the LRM for all the
 next-hops. If network layer multicast is supported, its use reduces
 the bandwidth required since one single copy of the data is received
 by all next-hop agents. The membership of a stream in a Group may
 also affect the amount of resources that have to be allocated by the
 LRM, cf. Section 10.

 Effects similar to reservation of the necessary resources may be
 obtained even when the network cannot provide direct support for the
 reservation. Certainly if total reservations are a small fraction of
 the overall resources, such as packet switch processing bandwidth,
 buffer space, or network bandwidth, then the desired performance can
 be honoured if the degree of confidence is consistent with the
 requirements as stated in the FlowSpec. Other solutions can be
 designed for specific networks.

 3.2 Sending CONNECT Messages

 The ST agent sends a CONNECT message to each of the next-hop ST
 agents identified by the routing function. Each CONNECT message
 contains the SID, an updated FlowSpec, and a TargetList. In general,
 the FlowSpec and TargetList depend on both the next-hop and the
 intervening network. Each TargetList is a subset of the original
 TargetList, identifying the targets that are to be reached through
 the next-hop to which the CONNECT message is being sent.

 The TargetList may be empty, see Section 3.2.1.; if the TargetList
 causes a too long CONNECT message to be generated, the CONNECT
 message is partitioned as explained in Section 3.2.2. If multiple
 next-hops are to be reached through a network that supports network
 level multicast, a different CONNECT message must nevertheless be
 sent to each next-hop since each will have a different TargetList.

L. Delgrossi (ed.) [Page 16]

INTERNET DRAFT October 1994

 Let us consider the network topology in Figure 7 on page 16. Suppose
 that the original TargetList contains targets B, C, and D. The
 routing function invoked at A returns that B is reachable via Router
 1 and C and D are reachable via Router 2. Thus, A generates two
 CONNECT messages, one for Router 1 and one for Router 2. The CONNECT
 message for Router 1 contains a TargetList including target B only;
 the CONNECT message for Router 2 contains a TargetList including
 targets C and D.

 3.2.1 Empty Target List

 An application at the origin may request the local ST agent to create
 empty streams. It does so by passing an empty TargetList to the local
 ST agent during the initial stream setup. When the local ST agent
 receives request to create an empty stream, it allocates the stream
 ID (SID), updates its local database entries to store information on
 the new stream and notifies the application that stream setup is
 complete. The local ST agent does not generate any CONNECT message
 for streams with an empty TargetList.

 3.2.2 Long Target Lists

 Each ST agent knows the MTU of the networks to which it is connected,
 and those MTUs restrict the size of the SCMP message it can send.
 SCMP messages with long TargetList can cause the size of the SCMP
 message to exceed the network MTU. The ST agent which receives an
 SCMP message bigger than its MTU must break the original message into
 multiple fragments, each carrying part of the TargetList. The effect
 of this partition is to compromise the performance but still carry
 out the function of the SCMP message. If the original SCMP message
 contains any Userdata parameters, these parameters are replicated in
 each fragment for delivery to all targets. Applications that support
 a large number of receivers may avoid using long target lists by
 exploiting the stream joining functions, cf. Section 6.2.

 3.3 Processing CONNECT Messages

 3.3.1 CONNECT Processing by an Intermediate Agent

 An ST agent receiving a CONNECT message, assuming no errors, responds
 to the previous-hop with an ACK. The ACK message must identify the
 CONNECT to which it corresponds by including the reference number
 indicated by the Reference field of the CONNECT message. The
 intermediate ST agent invokes the routing function, reserves
 resources via the LRM, and then propagates the CONNECT messages to
 its next-hops, as described in the previous section.

 3.3.2 Setup at the Targets

L. Delgrossi (ed.) [Page 17]

INTERNET DRAFT October 1994

 An ST agent that is the target of a CONNECT message, assuming no
 errors, responds to the previous-hop with an ACK. The ST agent
 reserves local resources and inquires from the specified application
 process whether or not it is willing to accept the connection.

 In particular, the application must be presented with parameters from
 the CONNECT, such as the SID, FlowSpec, Options, and Group, to be
 used as a basis for its decision. The application is identified by a
 combination of the NextPcol field and the SAP field included in the
 correspondent (usually single remaining) Target of the TargetList.
 The contents of the SAP field may specify the port or other local
 identifier for use by the protocol layer above the host ST layer.
 Subsequently received data packets will carry the SID, that can be
 mapped into this information and be used for their delivery.

 Finally, based on the application's decision, the ST agent sends to
 the previous-hop from which the CONNECT was received an ACCEPT or
 REFUSE message. Since the ACCEPT (or REFUSE) message has to be
 acknowledged by the previous-hop, it is assigned a new Reference
 number that will be returned in the ACK. The CONNECT to which the
 ACCEPT (or REFUSE) is a reply is identified by placing the CONNECT's
 Reference number in the LnkReference field of the ACCEPT (or REFUSE).
 The ACCEPT message contains the FlowSpec as accepted by the
 application at the target.

 3.4 Processing ACCEPT Messages

 3.4.1 ACCEPT Processing by an Intermediate Agent

 When an intermediate ST agent receives an ACCEPT, it first verifies
 that the message is a response to an earlier CONNECT. If not, it
 responds to the next-hop ST agent with an ERROR message, with
 ReasonCode (LnkRefUnknown). Otherwise, it responds to the next-hop ST
 agent with an ACK, and propagates the ACCEPT message to the
 previous-hop along the same path traced by the CONNECT but in the
 reverse direction toward the origin.

 The FlowSpec is included in the ACCEPT message so that the origin and
 intermediate ST agents can gain access to the information that was
 accumulated as the CONNECT traversed the internet. Note that the
 resources, as specified in the FlowSpec in the ACCEPT message, may
 differ from the resources that were reserved by the agent when the
 CONNECT was originally processed. However, the agent does not adjust
 the reservation in response to the ACCEPT. It is expected that any
 excess resource allocation will be released for use by other stream
 or datagram traffic through an explicit CHANGE message initiated by
 the application at the origin if it does not wish to be charged for
 any excess resource allocations.

L. Delgrossi (ed.) [Page 18]

INTERNET DRAFT October 1994

 3.4.2 ACCEPT Processing by the Origin

 The origin will eventually receive an ACCEPT (or REFUSE) message from
 each of the targets. As each ACCEPT is received, the application is
 notified of the target and the resources that were successfully
 allocated along the path to it, as specified in the FlowSpec
 contained in the ACCEPT message. The application may then use the
 information to either adopt or terminate the portion of the stream to
 each target. When ACCEPT (or REFUSE) from all targets have been
 received at the origin, the application is notified that stream setup
 is complete. For problems due to CONNECT timeout, please refer to

Section 8.1.1.

 When an ACCEPT is received by the origin, the path to the target is
 considered to be established and the ST agent is allowed to forward
 the data along this path as explained in Section 5 and in the ST user
 service description in Section 2.

 3.5 Processing REFUSE Messages

 3.5.1 REFUSE Processing by the Intermediate Agent

 If an application at a target does not wish to participate in the
 stream, it sends a REFUSE message back to the origin with ReasonCode
 (ApplDisconnect). An intermediate ST agent that receives a REFUSE
 message with ReasonCode (ApplDisconnect) acknowledges it by sending
 an ACK to the next-hop, considers which resources are to be released,
 deletes the target entry from the internal database, and propagates
 the REFUSE message back to the previous-hop ST agent.

 If, after deleting the specified target, the next-hop has no
 remaining targets, then those resources associated with that next-hop
 agent may be released. Note that network resources may not actually
 be released if network multicasting is being used since they may
 still be required for traffic to other next-hops in the multicast
 group.

 3.5.2 REFUSE Processing by the Origin

 When the REFUSE reaches the origin, the origin sends an ACK and
 notifies the application that the target is no longer part of the
 stream and also if the stream has no remaining targets. If there are
 no remaining targets, the application may wish to terminate the
 stream or keep the stream active to allow stream joining as described
 in Section 6.2.

 4 Stream Options

L. Delgrossi (ed.) [Page 19]

INTERNET DRAFT October 1994

 An application may select among some stream options. The desired
 options are indicated to the ST agent at the origin when a new stream
 is created. Options apply to single streams and are valid during the
 whole stream's lifetime. The options chosen by the application at the
 origin are included into the initial CONNECT message(s). When a
 CONNECT message reaches a target, the application at the target is
 notified of the stream options that have been selected.

 4.1 No Recovery

 The NoRecovery option is used to indicate that ST agents should not
 attempt recovery in case of network or component failure. If a
 failure occurs, the origin will be notified via a REFUSE message and
 the targets via a DISCONNECT, with an appropriate ReasonCode
 indicating the reason of the failure. The application at the origin
 may decide whether to rebuild the deleted portion of the stream by
 sending a CONNECT message. The NoRecovery option is specified by
 setting the S-bit in the CONNECT message, see Section 16.4.

 4.2 Join Authorization

 To Be Written

 5 Data Transfer

 An application is not guaranteed that the data reaches its
 destinations: ST is unreliable and it does not make any attempt to
 recover from packet loss, e.g. due to the underlying network. In case
 the data reaches its destination, it does it accordingly to the
 negotiated quality of service.

 An ST agent forwards the data only along already established paths to
 targets. A path is considered to be established when the ST next-hop
 agent on the path sends an ACCEPT message. This implies that the
 target and all other intermediate ST agents on the path to the target
 are ready to handle the incoming data packets. In no cases an ST
 agent will forward data to a next-hop agent that has not explicitly
 accepted the stream.

 To be fairly sure that all targets receive the data with the desired
 quality of service, an application should send the data only after
 the whole stream has been established. Depending on the local API, an
 application may not be prevented to send data before the completion
 of stream setup, but it should be aware that the data could be lost
 or not reach all the intended targets.

 At the end of the connection setup phase, the origin, each target,
 and each intermediate ST agent has a database entry that allows it to

L. Delgrossi (ed.) [Page 20]

INTERNET DRAFT October 1994

 forward the data packets from the origin to the targets and to
 recover from failures of the intermediate agents or networks. The
 database should be optimized to make the packet forwarding task most
 efficient. The time critical operation is an intermediate agent
 receiving a packet from the previous-hop agent and forwarding it to
 the next- hop agents. The database entry must also contain the
 FlowSpec, utilization information, the address of the origin and
 previous-hop, and the addresses of the targets and next-hops, so it
 can perform enforcement and recover from failures.

 An ST agent receives data packets encapsulated by an ST header. A
 data packet received by an ST agent contains the SID. This SID was
 selected at the origin so that it is globally unique and thus can be
 used as an index into the database, to obtain quickly the necessary
 replication and forwarding information.

 The forwarding information will be network and implementation
 specific, but must identify the next-hop agents. It is suggested that
 the cached information for a next-hop agent include the local network
 address of the next- hop. If the data packet must be forwarded to
 multiple next- hops across a single network that supports multicast,
 the database may specify the next-hops by a (local network) multicast
 address. If the network does not support multicast, or the next-hops
 are on different networks, multiple copies of the data packet must be
 sent.

 No data fragmentation is supported during the data transfer phase.
 The application is expected to segment its PDUs according to the
 minimum MTU over all paths in the stream. The application receives
 information on the MTUs relative to the paths to the targets as part
 of the FlowSpec contained in the ACCEPT message, see also Section 12.
 The minimum MTU over all paths has to be calculated from the MTUs
 relative to the single paths. If the application at the origin sends
 a too large data packet, the ST agent at the origin generates an
 error and it does not forward the data.

 6 Modifying an Existing Stream

 Some applications may wish to modify a stream after it has been
 created. Possible changes include expanding a stream, reducing it,
 and changing its FlowSpec. In ST, changes to a stream may be
 initiated both by the origin and the targets. Targets may be added by
 the origin as described in Section 6.1 or they may request to join
 the stream as described in Section 6.2. The origin can reduce a
 stream by dropping some or all of its targets. This is described in

Section 6.3. Targets may spontaneously decide to leave a stream as
 described in Section 6.4. Section 6.5 explains how to change a
 stream's FlowSpec.

L. Delgrossi (ed.) [Page 21]

INTERNET DRAFT October 1994

 As defined by the ST service model, see Section 2, an ST agent can
 handle only one stream modification at a time. If a stream
 modification operation is already underway, further requests are
 queued and handled when the previous operation has been completed.
 This also applies to two subsequent requests of the same kind, e.g.
 two subsequent changes to the FlowSpec.

 6.1 The Origin Adding New Targets

 It is possible for an application at the origin to add new targets to
 an existing stream any time after the stream has been established.
 Before new targets are added, the application has to collect the
 necessary information on the new targets. Such information is passed
 to the ST agent at the origin.

 The ST agent at the origin issues a CONNECT message that contains the
 SID, the FlowSpec, and the TargetList specifying the new targets.
 This is similar to sending a CONNECT message during stream
 establishment, with the following exceptions: the origin checks that
 a) the SID is valid, b) the targets are not already members of the
 stream, c) the FlowSpec of the new target, if present, matches the
 FlowSpec of the existing stream, i.e it requires an equal or smaller
 amount of resources to be allocated. If the FlowSpec of the new
 target does not match the FlowSpec of the existing stream, it is
 simply ignored.

 An intermediate ST agent that is already a node in the stream looks
 at the SID and verifies that the stream is the same. It then checks
 if the intersection of the TargetList and the targets of the
 established stream is empty. If this is not the case, it responds
 with an ERROR message with the appropriate ReasonCode (RouteLoop)
 that contains a TargetList of those targets that were duplicates.

 For each new target in the TargetList, processing is much the same as
 for the original CONNECT. The CONNECT is acknowledged, propagated,
 and network resources are reserved. However, it may be possible to
 route to the new targets using previously allocated paths or an
 existing multicast group. In that case, additional resources do not
 need to be reserved but more next-hops might have to be added to an
 existing multicast group.

 Intermediate or target ST agents that are not already nodes in the
 stream behave as in case of stream setup (see Section 3.3.1 and

Section 3.3.2).

 6.2 A Target Joining a Stream

 An application may request to join an existing stream. It has to

L. Delgrossi (ed.) [Page 22]

INTERNET DRAFT October 1994

 collect information on the stream including the stream ID (SID) and
 the IP address of the stream's origin. This can be done out-of- band,
 e.g. via regular IP. The information is then passed to the local ST
 agent together with the FlowSpec. The ST agent generates a JOIN
 message containing the application's request to join the stream and
 sends it toward the stream origin.

 An ST agent receiving a JOIN message, assuming no errors, responds
 with an ACK. The ACK message must identify the JOIN message to which
 it corresponds by including the Reference number indicated by the
 Reference field of the Join message. If the ST agent is not traversed
 by the stream that has to be joined, it propagates the JOIN message
 toward the stream's origin. Eventually, an ST agent traversed by the
 stream or the stream's origin itself is reached. This ST agent
 responds to the join request based on the join authorization level
 associated with the stream, cf. Section 4.2.:

 o level 0 (refuse join)

 It is not allowed to join the stream. No further actions are taken.

 o level 1 (ask origin)

 The JOIN message is propagated back until the origin is reached. At
 the origin, the appli- cation is requested to either grant or deny
 the permission to join the stream. If the permis- sion is denied, no
 further actions are taken. Otherwise, the origin issues a CONNECT
 message with a TargetList including the target that requested to join
 the stream. The target is then added as in normal stream setup.

 o level 2 (ok, notify origin)

 The ST agent sends a CONNECT message with a TargetList including the
 target that requested to join the stream. This results in adding the
 target to the stream. When the ST agent which is already part in the
 stream receives the ACCEPT message indicating that the new target has
 been added, it does not propagate the ACCEPT message backwards.
 Instead, it issues a NOTIFY message with ReasonCode(TargetJoined) to
 inform the origin of the new target.

 o level 3 (ok)

 The ST agent sends a CONNECT message with a TargetList including the
 target that requested to join the stream. This results in adding the
 target to the stream. When the ST agent which is already part in the
 stream receives the ACCEPT message indicating that the new target has
 been added, it does not propagate the ACCEPT message backwards, nor
 it notifies the origin.

L. Delgrossi (ed.) [Page 23]

INTERNET DRAFT October 1994

 6.2.1 FlowSpec

 To Be Written

 6.2.2 Router as Origin

 To Be Written

 6.3 The Origin Removing Targets

 The application at the origin specifies a set of targets that are to
 be removed from the stream and an appropriate ReasonCode
 (ApplDisconnect). The targets are partitioned into multiple
 DISCONNECT messages based on the next-hop to the individual targets.
 If the TargetList is too long to fit into one DISCONNECT message, it
 is partitioned as described in Section 3.2.2.

 An ST agent that receives a DISCONNECT message acknowledges it by
 sending an ACK back to the previous-hop. The DISCONNECT is also
 propagated to the relevant next-hop ST agents. Before propagating the
 message, the TargetList is partitioned based on next-hop ST agents.

 If, after deleting the specified targets, any next-hop has no
 remaining targets, then those resources associated with that next-hop
 agent may be released. Note that network resources may not actually
 be released if network multicasting is being used since they may
 still be required for traffic to other next-hops in the multicast
 group.

 When the DISCONNECT reaches a target, the target sends an ACK and
 notifies the application that it is no longer part of the stream and
 for which reason. The ST agent at the target deletes the stream from
 its database after performing any necessary management and accounting
 functions. Note that the stream is not deleted if the ST agent is
 also a router for the stream and there are remaining downstream
 targets.

 6.4 A Target Deleting Itself

 The application at the target may inform ST that it wants to be
 removed from the stream and the appropriate ReasonCode
 (ApplDisconnect). The agent then forms a REFUSE message with itself
 as the only entry in the TargetList. The REFUSE is sent back to the
 origin via the previous-hop. If a stream has multiple targets and one
 target leaves the stream using this REFUSE mechanism, the stream to
 the other targets is not affected; the stream continues to exist.

 An ST agent that receives such a REFUSE message acknowledges it by

L. Delgrossi (ed.) [Page 24]

INTERNET DRAFT October 1994

 sending an ACK to the next-hop. The target is deleted and, if the
 next-hop has no remaining targets, then the resources associated with
 that next-hop agent may be released. Note that network resources may
 not actually be released if network multicasting is being used since
 they may still be required for traffic to other next-hops in the
 multicast group. The REFUSE is also propagated back to the previous-
 hop ST agent.

 When the REFUSE reaches the origin, the origin sends an ACK and
 notifies the application that the target is no longer part of the
 stream.

 6.5 Changing a Stream's FlowSpec

 The application at the sender may wish to change the FlowSpec of an
 established stream. To do so, it informs the ST agent at the origin
 of the new FlowSpec and of the list of targets relative to the
 change. The origin then issues one CHANGE message with the new
 FlowSpec per next-hop and sends it to the relevant next-hop agents.
 CHANGE messages are structured and processed similarly to CONNECT
 messages.

 A next-hop agent that is an intermediate agent and receives a CHANGE
 message similarly determines if it can implement the new FlowSpec
 along the hop to each of its next-hop agents, and if so, it
 propagates the CHANGE messages along the established paths. If this
 process succeeds, the CHANGE messages will eventually reach the
 targets, which will each respond with an ACCEPT (or REFUSE) message
 that is propagated back to the origin.

 If the change to the FlowSpec is in a direction that makes fewer
 demands of the involved networks, then the change has a high
 probability of success along the path of the established stream. Each
 ST agent receiving the CHANGE message makes the necessary requested
 changes to the network resource allocations, and if successful,
 propagates the CHANGE message along the established paths. If the
 change cannot be made then the ST agent must recover using DISCONNECT
 and REFUSE messages as in the case of a network failure, see Section

9.2. Note that a failure to change the resources requested for
 specific targets should not cause other targets in the stream to be
 deleted.

 7 Stream Tear Down

 A stream is usually terminated by the origin when it has no further
 data to send, but may also be partially torn down by the individual
 targets. These cases will not be further discussed since they have
 already been described above.

L. Delgrossi (ed.) [Page 25]

INTERNET DRAFT October 1994

 A stream is also torn down if the application should terminate
 abnormally. Processing in this case is identical to the previous
 descriptions except that the ReasonCode (ApplAbort) is different.

 When all targets have left a stream, the origin notifies the
 application of that fact, and the application then is responsible for
 terminating the stream. Note, however, that the application may
 decide to add targets to the stream instead of terminating it.

 8 Exceptional Cases

 The previous descriptions covered the simple cases where everything
 worked. We now discuss what happens when things do not succeed.
 Included are situations where messages are lost, the requested
 resources are not available, the routing fails or is inconsistent.

 8.1 Setup Failures

 8.1.1 Setup Failure due to CONNECT Timeout

 When sending a CONNECT message, an ST agent expects an ACK from the
 next hop ST agent. If the CONNECT fails due to timeout (see Section

11.2), the ST agent sends a REFUSE message back in the direction of
 the origin with the appropriate ReasonCode (ConnectTimeout).

 8.1.2 Setup Failure due to ACCEPT Timeout

 An ST agent that propagates an ACCEPT message backward toward the
 origin expects an ACK from the previous hop ST agent. If the ACCEPT
 fails due to timeout (see Section 11.2), the ST agent replaces the
 ACCEPT with a REFUSE and sends a DISCONNECT in the direction toward
 the target. Both REFUSE and DISCONNECT must identify the affected
 targets and specify the appropriate ReasonCode (AcceptTimeout).

 8.1.3 Setup Failure due to Routing Failures

 It is possible for an agent to receive a CONNECT message that
 contains a known SID, but from an agent other than the previous-hop
 agent of the stream with that SID. This may be:

 1. that two branches of the tree forming the stream have joined
 back together,

 2. the result of an attempted recovery of a partially failed
 stream, or

 3. an erroneous routing loop.

L. Delgrossi (ed.) [Page 26]

INTERNET DRAFT October 1994

 The TargetList contained in the CONNECT is used to distinguish the
 different cases by comparing each newly received target with those of
 the previously existing stream:

 o if the IP address of the targets differ, it is case 1;

 o if the target matches a target in the existing stream, it may
 be case #2 or #3.

 Case #1 is handled in Section 8.2.2 on path convergence. The
 remaining cases requiring recovery, a partially failed stream and an
 erroneous routing loop, are not easily distinguishable. In attempting
 recovery of a failed stream, an agent may issue new CONNECT messages
 to the affected targets. Such a CONNECT may reach an agent downstream
 of the failure before that agent has received a DISCONNECT from the
 neighbourhood of the failure. Until that agent receives the
 DISCONNECT, it cannot distinguish between a failure recovery and an
 erroneous routing loop. That agent must therefore respond to the
 CONNECT with a REFUSE message with the affected targets specified in
 the TargetList and an appropriate ReasonCode (StreamExists).

 The agent immediately preceding that point, i.e., the latest agent to
 send the CONNECT message, will receive the REFUSE message. It must
 release any resources reserved exclusively for traffic to the listed
 targets. If this agent was not the one attempting the stream
 recovery, then it cannot distinguish between a failure recovery and
 an erroneous routing loop. It should repeat the CONNECT after a
 ToConnect timeout, cf. Section 11.2 and Section 8.1.1. If after
 NConnect retransmissions it continues to receive REFUSE messages, it
 should propagate the REFUSE message toward the origin, with the
 TargetList that specifies the affected targets, but with a different
 error code (RouteLoop).

 The REFUSE message with this error code (RouteLoop) is propagated by
 each ST agent without retransmitting any CONNECT messages. At each
 agent, it causes any resources reserved exclusively for the listed
 targets to be released. The REFUSE will be propagated to the origin
 in the case of an erroneous routing loop. In the case of stream
 recovery, it will be propagated to the ST agent that is attempting
 the recovery, which may be an intermediate agent or the origin
 itself. In the case of a stream recovery, the agent attempting the
 recovery may issue new CONNECT messages to the same or to different
 next-hops.

 If an agent receives both a REFUSE message and a DISCONNECT message
 with a target in common then it can release the relevant resources
 and propagate neither the REFUSE nor the DISCONNECT.

L. Delgrossi (ed.) [Page 27]

INTERNET DRAFT October 1994

 If the origin receives such a REFUSE message, it should attempt to
 send a new CONNECT to all the affected targets. Since routing errors
 in an internet are assumed to be temporary, the new CONNECTs will
 eventually find acceptable routes to the targets, if one exists. If
 no further routes exist after NRetryRoute tries, the application
 should be informed so that it may take whatever action it seems
 necessary.

 8.2 Further Issues

 8.2.1 Problems due to Routing Inconsistency

 When an intermediate agent receives a CONNECT, it invokes the routing
 algorithm to select the next-hop agents based on the TargetList and
 the networks to which it is connected. If the resulting next-hop to
 any of the targets is across the same network from which it received
 the CONNECT (but not the previous-hop itself), there may be a routing
 problem. However, the routing algorithm at the previous-hop may be
 optimizing differently than the local algorithm would in the same
 situation. Since the local ST agent cannot distinguish the two cases,
 it should permit the setup but send back to the previous-hop agent an
 informative NOTIFY message with the appropriate ReasonCode
 (RouteBack), pertinent TargetList, and in the NextHopIPAddress
 element the address of the next-hop ST agent returned by its routing
 algorithm.

 The agent that receives such a NOTIFY should ACK it. If the agent is
 using an algorithm that would produce such behaviour, no further
 action is taken; if not, the agent should send a DISCONNECT to the
 next-hop agent to correct the problem.

 Alternatively, if the next-hop returned by the routing function is in
 fact the previous-hop, a routing inconsistency has been detected. In
 this case, a REFUSE is sent back to the previous- hop agent
 containing an appropriate ReasonCode (RouteInconsist), pertinent
 TargetList, and in the NextHopIPAddress element the address of the
 previous-hop. When the previous-hop receives the REFUSE, it will
 recompute the next-hop for the affected targets. If there is a
 difference in the routing databases in the two agents, they may
 exchange CONNECT and REFUSE messages again. Since such routing errors
 in the internet are assumed to be temporary, the situation should
 eventually stabilize.

 8.2.2 Path Convergence

 It is possible for an agent to receive a CONNECT message that
 contains a known SID, but from an agent other than the previous hop
 agent of the stream with that SID. This might be the result of two

L. Delgrossi (ed.) [Page 28]

INTERNET DRAFT October 1994

 branches of the tree forming the stream have joined back together.
 Other cases are discussed in Section 8.1.3.

 This version of ST does not allow streams which have converged path,
 i.e streams are always tree-shaped and not graph-like. The ST agent
 which detects this condition informs the previous hop ST agent (the
 latest ST agent to send the CONNECT message) by sending a NOTIFY
 message with ReasonCode(PathConverge). Upon receipt of the NOTIFY
 message, the previous hop ST agent will find alternate route to the
 listed targets with a different next hop ST agent. If there is no
 next hop ST-agent other than the one it receives the NOTIFY message
 from, the ST agent must release any resources reserved for the listed
 targets and send a REFUSE message with ReasonCode(PathConverge) to
 its previous hop ST agent. In the same way, the REFUSE message is
 possibly propagated back by each ST agent. At each agent, it causes
 any resources reserved exclusively for the listed targets to be
 released. When the REFUSE reaches the origin, the ST agent at the
 origin should attempt to send a CONNECT with the listed targets to a
 different route. If no route exists, or after NRetryRoute tries, the
 application should be informed so that it may take whatever actions
 it seems necessary.

 8.2.3 Problems in Reserving Resources

 If the local or network resources are not available, an ST agent may:

 o try alternative paths to the targets: the ST agent calls the
 routing function to find a different path to the targets. If an
 alternative path is found, stream connection setup continues in the
 usual way, as described in Section 3.

 o preempt one or more of the already established streams: this
 way, the ST agent attempts to free enough resources to allow for the
 new stream to be established. Stream preemption is discussed in

Section 9.3.

 o refuse to establish the stream along this path: the origin ST
 agent informs the application of the stream setup failure; an ST
 agent at a router or target issues a REFUSE message (as described in

Section 3.5) with ReasonCode (CantGetResrc).

 It depends on the local implementations whether an ST agent tries
 alternative paths or preempts other streams. Also, the order of the
 actions taken is not defined here. In any case, if enough resources
 cannot be found over different paths or as a consequence of stream
 preemption, the agent has to explicitly refuse to establish the
 stream.

L. Delgrossi (ed.) [Page 29]

INTERNET DRAFT October 1994

 8.2.4 Problems Caused by CHANGE Messages

 A CHANGE might fail for several reasons, including:

 o the request may be for a larger amount of network resources
 when those resources are not available;

 o it might be required that all the former resources are
 released before the new ones are requested and, due to unlucky
 timing, an unrelated request for network resources might be processed
 between the time the resources are released and the time the new
 resources are requested, so that the former resources are no longer
 available.

 If the attempt to change the FlowSpec fails then the ST agent where
 the failure occurs must intentionally break the affected portion of
 the stream. This is done by sending REFUSE and DISCONNECT messages
 with ReasonCode (ChgFailed).

 9 Failure Detection and Recovery

 9.1 Failure Detection

 The ST failure detection mechanism is based on two assumptions:

 1. If a neighbor of an ST agent is up, and has been up without a
 disruption, and has not notified the ST agent of a problem with
 streams that pass through both, then the ST agent can assume that
 there has not been any problem with those streams.

 2. A network through which an ST agent has routed a stream will
 notify the ST agent if there is a problem that affects the stream
 data packets but does not affect the control packets.

 The purpose of the robustness protocol defined here is for ST agents
 to determine that the streams through a neighbor have been broken by
 the failure of the neighbor or the intervening network. This protocol
 should detect the overwhelming majority of failures that can occur.
 Once a failure is detected, the recovery procedures described in

Section 9.2 are initiated by the ST agents.

 9.1.1 Network Failures

 An ST agent can detect network failures by two mechanisms:

 o the network can report a failure, or

 o the ST agent can discover a failure by itself.

L. Delgrossi (ed.) [Page 30]

INTERNET DRAFT October 1994

 They differ in the amount of information that an ST agent has
 available to it in order to make a recovery decision. For example, a
 network may be able to report that reserved bandwidth has been lost
 and the reason for the loss and may also report that connectivity to
 the neighboring ST agent remains intact. In this case, the ST agent
 may request the network to allocate bandwidth anew. On the other
 hand, an ST agent may discover that communication with a neighboring
 ST agent has ceased because it has not received any traffic from that
 neighbor in some time period. If an ST agent detects a failure, it
 may not be able to determine if the failure was in the network while
 the neighbor remains available, or the neighbor has failed while the
 network remains intact.

 9.1.2 Detecting ST Agents Failures

 Each ST agent periodically sends each neighbour with which it shares
 one or more streams a HELLO message. This message exchange is between
 ST agents, not entities representing streams or applications. That
 is, an ST agent need only send a single HELLO message to a neighbour
 regardless of the number of streams that flow between them. All ST
 agents (host as well as intermediate) must participate in this
 exchange. However, only agents that share active streams need to
 participate in this exchange and it is an error to send a HELLO
 message to a neighbour ST agent with no streams in common, e.g. to
 check whether it is active. Note that STATUS messages can be used to
 poll neighbour ST agents.

 A HELLO message is ACKed if the Reference field is non-zero. As well
 as identifying the sender, the HELLO message has two fields:

 o a HelloTimer field that is in units of milliseconds modulo
 the maximum for the field size, and

 o a Restarted-bit specifying that the ST agent has been
 restarted recently.

 The HelloTimer must appear to be incremented every millisecond
 whether a HELLO message is sent or not, but it is allowable for an ST
 agent to create a new HelloTimer only when it sends a HELLO message.
 The HelloTimer wraps around to zero after reaching the maximum value.
 Whenever an ST agent suffers a catastrophic event that may result in
 it losing ST state information, it must reset its HelloTimer to zero
 and must set the Restarted-bit for the following HelloTimerHoldDown
 seconds.

 Each ST stream has a RecoveryTimeout value associated with it. This
 value is assigned by the origin and carried into the CONNECT message,
 see Section 16.4.

L. Delgrossi (ed.) [Page 31]

INTERNET DRAFT October 1994

 An ST agent must send HELLO messages to its neighbour with a period
 shorter than the smallest RecoveryTimeout of all the active streams
 that pass between the two agents, regardless of direction. This
 period must be smaller by a factor, called HelloLossFactor, which is
 at least as large as the greatest number of consecutive HELLO
 messages that could credibly be lost while the communication between
 the two ST agents is still viable.

 An ST agent may send simultaneous HELLO messages to all its neighbors
 at the rate necessary to support the smallest RecoveryTimeout of any
 active stream. Alternately, it may send HELLO messages to different
 neighbors independently at different rates corresponding to
 RecoveryTimeouts of individual streams.

 The agent that receives a HELLO message expects to receive at least
 one new HELLO message from a neighbor during the RecoveryTimeout of
 every active stream through that neighbor. It can detect duplicate or
 delayed HELLO messages by saving the HelloTimer field of the most
 recent valid HELLO message from that neighbor and comparing it with
 the HelloTimer field of incoming HELLO messages. It will only accept
 an incoming HELLO message from that neighbor if it has a HelloTimer
 field that is greater than the most recent valid HELLO message by the
 time elapsed since that message was received plus twice the maximum
 likely delay variance from that neighbor. If the ST agent does not
 receive a valid HELLO message within the RecoveryTimeout of a stream,
 it must assume that the neighboring ST agent or the communication
 link between the two has failed and it must initiate stream recovery
 activity.

 Furthermore, if an ST agent receives a HELLO message that contains
 the Restarted-bit set, it must assume that the sending ST agent has
 lost its ST state. If it shares streams with that neighbor, it must
 initiate stream recovery activity. If it does not share streams with
 that neighbor, it should not attempt to create one until that bit is
 no longer set. If an ST agent receives a CONNECT message from a
 neighbor whose Restarted-bit is still set, it must respond with ERROR
 with the appropriate ReasonCode (RemoteRestart). If it receives a
 CONNECT message while its own Restarted-bit is set, it must respond
 with ERROR with the appropriate ReasonCode (RestartLocal).

 9.2 Failure Recovery

 If an intermediate agent fails or a network or part of a network
 fails, the previous-hop agent and the various next-hop agents will
 discover the fact by the failure detection mechanism described in

Section 9.1.

 The recovery of an ST stream is a relatively complex and time

L. Delgrossi (ed.) [Page 32]

INTERNET DRAFT October 1994

 consuming effort because it is designed in a general manner to
 operate across a large number of networks with diverse
 characteristics. Therefore, it may require information to be
 distributed widely, and may require relatively long timers. On the
 other hand, since a network is a homogeneous system, failure recovery
 in the network may be a relatively faster and simpler operation.
 Therefore an ST agent that detects a failure should attempt to fix
 the network failure before attempting recovery of the ST stream. If
 the stream that existed between two ST agents before the failure
 cannot be reconstructed by network recovery mechanisms alone, then
 the ST stream recovery mechanism must be invoked.

 If stream recovery is necessary, the different ST agents may need to
 perform different functions, depending on their relation to the
 failure:

 o An agent that is a next-hop of a failure should first verify
 that there was a failure. It can do this using STATUS messages to
 query its upstream neighbor. If it cannot communicate with that
 neighbor, then it should first send a REFUSE message with the
 appropriate ReasonCode ("failure") to the neighbor to speed up the
 failure recovery in case the hop is unidirectional, i.e., the
 neighbor can hear the agent but the agent cannot hear the neighbor.
 The ST agent detecting the failure must then send DISCONNECT messages
 with the same ReasonCode toward the targets.

 The intermediate agents process this DISCONNECT message just like the
 DISCON- NECT that tears down the stream. However, a target ST agent
 that receives a DISCONNECT message with the appropriate ReasonCode
 ("failure") will maintain the stream state and notify the next higher
 protocol of the failure. In effect, these DISCONNECT messages tear
 down the stream from the point of the failure to the targets, but
 inform the targets that the stream may be fixed shortly.

 o An agent that is the previous-hop before the failed component
 first verifies that there was a failure by querying the downstream
 neighbor using STATUS messages. If the neighbor has lost its state
 but is available, then the ST agent may reconstruct the stream if the
 NoRecovery option is not selected. If it cannot communicate with the
 next-hop, then the agent detecting the failure releases any resources
 that are dedicated exclusively to sending data on the broken branch
 and sends a DISCONNECT message with the appropriate ReasonCode
 ("failure") toward the affected targets. It does so to speed up
 failure recovery in case the communication may be unidirectional and
 this message might be delivered successfully.

 The agent that is the previous-hop before the failed component can
 attempt to recover the streams for which the NoRecovery option is not

L. Delgrossi (ed.) [Page 33]

INTERNET DRAFT October 1994

 selected:

 o If the NoRecovery option is selected, then the ST agent sends
 a REFUSE message with the appropriate ReasonCode ("failure") to the
 previous-hop. The TargetList in these messages contains all the
 targets that were reached through the broken branch. Multiple REFUSE
 mes- sages may be required if the PDU is too long for the MTU of the
 intervening network. The REFUSE message is propagated all the way to
 the origin, which can attempt recovery of the stream by sending a new
 CONNECT to the affected targets. The new CONNECT will be treated by
 intermediate ST agents as an addition of new targets into the
 established stream.

 o If the NoRecovery option is not selected, the ST agent can
 attempt recovery of the stream. It does so by issuing a new CONNECT
 message to the affected targets. If the ST agent can- not find new
 routes to some targets, or if the only route to some targets is
 through the previ- ous-hop, then it sends one or more REFUSE messages
 to the previous-hop with the appropriate ReasonCode ("failure")
 specifying the affected targets in the TargetList. The pre- vious-hop
 can then attempt recovery of the stream by issuing a CONNECT to those
 targets. If it cannot find an appropriate route, it will propagate
 the REFUSE message toward the ori- gin.

 Regardless of which agent attempts recovery of a damaged stream, it
 will issue one or more CONNECT messages to the affected targets.
 These CONNECT messages are treated by intermediate ST agents as
 additions of new targets into the established stream. The FlowSpecs
 of the new CONNECT messages are the same as the ones contained in the
 most recent CONNECT or CHANGE messages that the ST agent had sent
 toward the affected targets when the stream was operational.

 9.2.1 Problems in Stream Recovery

 The reconstruction of a broken stream may not proceed smoothly. Since
 there may be some delay while the information concerning the failure
 is propagated throughout an internet, routing errors may occur for
 some time after a failure. As a result, the ST agent attempting the
 recovery may receive ERROR messages for the new CONNECTs that are
 caused by internet routing errors. The ST agent attempting the
 recovery should be prepared to resend CONNECTs before it succeeds in
 reconstructing the stream. If the failure partitions the internet and
 a new set of routes cannot be found to the targets, the REFUSE
 messages will eventually be propagated to the origin, which can then
 inform the application so it can decide whether to terminate or to
 continue to attempt recovery of the stream.

 The new CONNECT may at some point reach an ST agent downstream of the

L. Delgrossi (ed.) [Page 34]

INTERNET DRAFT October 1994

 failure before the DISCONNECT does. In this case, the agent that
 receives the CONNECT is not yet aware that the stream has suffered a
 failure, and will interpret the new CONNECT as resulting from a
 routing failure. It will respond with an ERROR message with the
 appropriate ReasonCode (StreamExists). Since the timeout that the ST
 agents immediately preceding the failure and immediately following
 the failure are approximately the same, it is very likely that the
 remnants of the broken stream will soon be torn down by a DISCONNECT
 message with the appropriate ReasonCode ("failure"). Therefore, the
 ST agent that receives the ERROR message with ReasonCode
 (StreamExists) should retransmit the CONNECT message after the
 ToConnect timeout expires. If this fails again, the request will be
 retried for NConnect times. Only if it still fails will the ST agent
 send a REFUSE message with the appropriate ReasonCode (RouteLoop) to
 its previous-hop. This message will be propagated back to the ST
 agent that is attempting recovery of the damaged stream. That ST
 agent can issue a new CONNECT message if it so chooses. The REFUSE is
 matched to a CONNECT message created by a recovery operation through
 the LnkReference field in the CONNECT.

 ST agents that have propagated a CONNECT message and have received a
 REFUSE message should maintain this information for some period of
 time. If an agent receives a second CONNECT message for a target that
 recently resulted in a REFUSE, that agent may respond with a REFUSE
 immediately rather than attempting to propagate the CONNECT. This has
 the effect of pruning the tree that is formed by the propagation of
 CONNECT messages to a target that is not reachable by the routes that
 are selected first. The tree will pass through any given ST agent
 only once, and the stream setup phase will be completed faster.

 If a CONNECT message reaches a target, the target should as
 efficiently as possible use the state that it has saved from before
 the stream failed during recovery of the stream. It will then issue
 an ACCEPT message toward the origin. The ACCEPT message will be
 intercepted by the ST agent that is attempting recovery of the
 damaged stream, if not the origin. If the FlowSpec contained in the
 ACCEPT specifies the same selection of parameters as were in effect
 before the failure, then the ST agent that is attempting recovery
 will not propagate the ACCEPT. If the selections of the parameters
 are different, then the agent that is attempting recovery will send
 the origin a NOTIFY message with the appropriate ReasonCode
 (FailureRecovery) that contains a FlowSpec that specifies the new
 parameter values. The origin may then have to change its data
 generation characteristics and the stream's parameters with a CHANGE
 message to use the newly recovered subtree.

 9.3 Stream Preemption

L. Delgrossi (ed.) [Page 35]

INTERNET DRAFT October 1994

 An intermediate ST agent may decide to break a stream intentionally.
 This is called stream preemption. Usually streams are preempted in
 order to free resources for a new stream which has a higher priority.
 ST does not define when stream preemption should be used but it
 provides the means to implement it.

 If an ST agent decides that it is necessary to preempt one or more of
 the stream traversing it, the decision on which streams have to be
 preempted has to be made. ST provides two ways of optimizing such
 decision:

 1. Streams can be assigned an StreamImportance value from 0
 (most important) to 7 (least important). This value is carried in the
 CONNECT message when the stream is setup, see Section 16.4.

 2. An application may specify that a set of streams are related
 to each other and that they are all candidate for preemption if one
 of them gets preempted. It can be done by using the fate- sharing
 relationship defined in Section 10. This helps making a good choice
 when more than one stream have to be preempted, because it leads to
 breaking a single application as oppo- site to as many applications
 as the number of preempted streams.

 Stream preemption requires the following actions from the ST agents:

 o An intermediate agent that breaks the stream intentionally
 sends DISCONNECT mes- sages with the appropriate ReasonCode
 (StreamPreempted) toward the affected targets. It sends a REFUSE
 message with the appropriate ReasonCode (StreamPreempted) to the
 previ- ous-hop.

 o A previous-hop agent of the preempted stream acts as in case
 of failure recovery, cf. Sec- tion 9.2. If the NoRecovery option is
 set, is propagates the REFUSE message back to the ori- gin. If the
 NoRecovery option is not set, it attempts to rebuild the deleted
 paths and, in case this does not work, it propagates the REFUSE
 message to the previous-hop.

 o A target or next-hop agent of the preempted stream acts as in
 case of failure recovery, cf. Section 9.2. It releases resources that
 are allocated to the stream, but it maintains the internal state
 information describing the stream for some time in case the stream is
 quickly fixed.

 Note that, as opposite to failure recovery, there is no need to
 verify that the failure actually occurred, because this is explicitly
 indicated by the ReasonCode (StreamPreempted).

L. Delgrossi (ed.) [Page 36]

INTERNET DRAFT October 1994

 10 A Group of Streams

 There may be need to associate related streams. The group mechanism
 is simply an association technique that allows ST agents to identify
 the different streams that are to be associated.

 A group consists of a set of streams and a relationship. The set of
 streams may be empty. The relationship applies to all group members.
 Each group is identified by a group name. The group name is unique
 across the Internet.

 Streams belong to the same group if they have the same GroupName in
 the GroupName field of the Group parameter. The relationship is
 defined by the Relationship field. Group membership must be specified
 at stream creation time and persists for the whole stream lifetime. A
 single stream may belong to multiple groups.

 The ST agent that creates a new group is called group initiator. Any
 ST agent can be a group initiator. The initiator allocates the
 GroupName and the Relationship among group members. The initiator may
 or may not be the origin of a stream belonging to the group. The
 group name has to be generated as described in Section 10.1.
 Relationships defined by this version of the protocol are listed in

Section 10.2.

 10.1 Group Name Generator

 The GroupName includes a 16-bit unique identifier, a 32-bit IP
 address, and a 32-bit creation timestamp. It is defined in Section

10.3. An ST implementation has to provide a group name generator
 facility, so that an application or higher layer protocol can obtain
 a unique GroupName from the ST layer. This is a mechanism for the
 application to request the allocation of a GroupName that is
 independent of the request to create a stream. The GroupName is used
 by the application or higher layer protocol when creating the streams
 that are to be part of the group.

 For instance, the following two functions could be made available:

 o AllocateGroupName() -> result, GroupName

 o ReleaseGroupName() -> result

 10.2 Basic ST Relationships

 This version of ST defines four basic relationships. An ST2PLus
 implementation must support all four basic relationships. The basic
 relationships are described in detail below in Section 10.2.1 -

L. Delgrossi (ed.) [Page 37]

INTERNET DRAFT October 1994

Section 10.2.4.

 ST provides the means to define new relationships as the need for
 them becomes clear in the future. This can be done by assigning one
 of the unused bits of the Relationship field of the Group parameter.

 The next sections describe the four basic relationships.

 10.2.1 Bandwidth Sharing

 Streams belonging to this group share the same network bandwidth.
 This is intended to support applications as audio conferences where,
 of all participants, only some at a time are allowed to speak. In
 such a scenario, global bandwidth utilization can be optimized, e.g.
 it is sufficient to reserve bandwidth for a small set of audio
 streams.

 The N parameter indicates for how many streams at the same time
 bandwidth should be allocated. An ST agent allocates N times the
 bandwidth required by the most demanding stream in the group, say
 Bmax. If the application intends for instance to allow three
 participants to speak at the same time, N has a value of three and
 the ST agent will allocate for the group an amount of bandwidth equal
 to 3*Bmax.

 This mechanism does not always allocate an optimal amount of
 bandwidth (as when a stream requires 4 Mbits/s and all the other
 streams in the same group require 1 Mbits/s only: N=3 causes the
 allocation of 12 Mbits/s). However, it is simple to implement and it
 works well with streams that have homogeneous requirements. An
 alternative would be to keep track of the single streams requirements
 and allocate the exact amount of bandwidth.

 An ST agent always attempts to reserve N*Bmax bandwidth. If less
 bandwidth than N*Bmax is available, the new stream is not built. If
 bandwidth for the group has already been allocated and a new stream
 with a bandwidth demand inferior to Bmax is being established, the ST
 agent, depending on the local implementation, may not need to contact
 the local resource manager and it can proceed directly with the
 stream setup.

 Note that ST agents become aware of a group's requirements only when
 the streams belonging to the group are created. In case of the
 bandwidth sharing relationship, an application should attempt to
 establish the most demanding streams first to minimize stream setup
 efforts. If on the contrary the less demanding streams are built
 first, it will be always necessary to allocate additional bandwidth
 in consecutive steps as the most demanding streams are built.

L. Delgrossi (ed.) [Page 38]

INTERNET DRAFT October 1994

 10.2.2 Fate Sharing

 Streams belonging to this group share the same fate. If a stream is
 deleted, the other members of the group are also deleted. This is
 intended to support stream preemption by indicating which streams are
 mutually related. If preemption of multiple streams is necessary,
 this information can be used to delete a set of related streams, e.g.
 with impact on a single application, instead of making a random
 choice with the possible effect of interrupting several different
 applications.

 This relationship provides a hint on which streams should be
 preempted. Still, the entity responsible for the preemption is not
 forced to behave accordingly, and other streams could be preempted
 first based on different criteria.

 10.2.3 Route Sharing

 Streams belonging to this group share the same paths. This can be
 desirable for several reasons, e.g. to exploit the same allocated
 resources or in the attempt to maintain the transmission order. An ST
 agent attempts to select the same path although the way this is
 implemented depends heavily on the routing algorithm which is used.

 If the routing algorithm is sophisticated enough, an ST agent can
 suggest that a stream is routed over an already established path.
 Otherwise, it can ask the routing algorithm for a set of legal routes
 to the destination and check whether the desired path is included in
 those feasible.

 Route sharing is a hint to the routing algorithm used by ST. Failing
 to route a stream through the shared path does not normally cause the
 deletion of the stream: the stream is built over an alternative path
 whenever possible.

 10.2.4 Subnet Resources Sharing

 Streams belonging to this group share the same MAC layer subnetwork
 addresses. As an example, the same MAC layer multicast address can be
 used for all the streams in a given group. This mechanism allows for
 a better utilization of MAC layer multicast addresses and it is
 especially useful when used with network adapters that offer a very
 small number of MAC layer multicast addresses.

 This relationship provides a hint to the data link layer functions.

 10.3 Relationships Orthogonality

L. Delgrossi (ed.) [Page 39]

INTERNET DRAFT October 1994

 The four basic relationships, as they have been defined, are
 orthogonal. This means, any combinations of the basic relationships
 are allowed. For instance, let's consider an application that
 requires full-duplex service for a stream with multiple targets.
 Also, let's suppose that only N targets are allowed to send data back
 to the origin at the same time. In this scenario, all the reverse
 streams could belong to the same group. They could be sharing both
 the paths and the bandwidth. The Path&Bandwidth sharing relationship
 is obtained from the basic set of relationships. This example is
 important because it shows how full-duplex service can be obtained in
 ST.

 As new relationships are defined, it should be indicated whether they
 are or not orthogonal with respect to the previously defined ones.
 This will be reflected by illegal values for the Relationship field
 of the Group parameter (see Section 15.2.3).

 11 Ancillary Functions

 11.1 Stream IDs Generation

 To Be Written

 11.2 SCMP Reliability

 The ST Control Message Protocol is made reliable through the use of
 retransmission when response is not received in a timely manner. In
 general, when sending a SCMP messages which requires an ACK back, the
 sending ST agent needs to set the Toxxxx timer (where xxxx is the
 SCMP message type, e.g. ToConnect). If it does not receive an ACK
 back before the Toxxxx timer expires, the ST agent should retransmit
 the SCMP message. If no ACK has been received within Nxxxx
 retransmissions, then a SCMP timeout condition occurs and the ST
 agent enters its SCMP timeout recovery state. The actions performed
 by the ST agent as the result of the SCMP timeout condition differ
 for different SCMP message. In some cases (CONNECT,ACCEPT) the ST
 agent handles the timeout by sending additional SCMP message
 (REFUSE/DISCONNECT) to its neighbour ST agents (see Section 8.1.1 &

Section 8.1.2), while in other cases (REFUSE, DISCONNECT) it simply
 gives up sine there is nothing else it can do.

 For some SCMP messages (CONNECT,CHANGE) the sending ST agent also
 expects a response back (ACCEPT/REFUSE) after ACK has been received.
 For these cases, the ST agent needs to set the Rtoxxxx timer after it
 receives the ACK. If it does not receive the appropriate response
 back when Rtoxxxx expires, the ST agent updates its state data and
 perform appropriate recovery action as described in other sections.

L. Delgrossi (ed.) [Page 40]

INTERNET DRAFT October 1994

 Timeout and retransmission algorithm is implementation dependent and
 it is outside the scope of this document. However, it must be
 reasonable enough not to cause excessive retransmission of SCMP
 message while maintain the robustness of the protocol. Algorithms on
 this subject are described in [RFC1122], [Jaco88], [KaPa87].

 11.3 IP Encapsulation of ST

 ST packets may be encapsulated in IP to allow them to pass through
 routers that don't support the ST Protocol. Of course, ST resource
 management is precluded over such a path, and packet overhead is
 increased by encapsulation, but if the performance is reasonably
 predictable this may be better than not communicating at all.

 IP-encapsulated ST packets begin with a normal IP header. Most fields
 of the IP header should be filled in according to the same rules that
 apply to any other IP packet. Three fields of special interest are:

 o Protocol is 5 to indicate an ST packet is enclosed, as
 opposed to TCP or UDP, for example. The assignment of protocol 5 to
 ST is an arranged coincidence with the assignment of IP Version 5 to
 ST [RFC1190].

 o Destination Address is that of the next-hop ST agent. This
 may or may not be the target of the ST stream. There may be an
 intermediate ST agent to which the packet should be routed to take
 advantage of service guarantees on the path past that agent. Such an
 intermediate agent would not be on a directly-connected network (or
 else IP encapsulation wouldn't be needed), so it would probably not
 be listed in the normal routing table. Additional routing mechanisms,
 not defined here, will be required to learn about such agents.

 o Type-of-Service may be set to an appropriate value for the
 service being requested (usually low delay, high throughput, normal
 reliability). This feature is not implemented uniformly in the
 Internet, so its use can't be precisely defined here.

 IP encapsulation adds little difficulty for the ST agent that
 receives the packet. However, when IP encapsulation is performed it
 must be done in both directions. To process the encapsulated IP
 message, the ST agents simply remove the IP header and proceed with
 ST header as usual.

 The more difficult part is during setup, when the ST agent must
 decide whether or not to encapsulate. If the next-hop ST agent is on
 a remote network and the route to that network is through a router
 that supports IP but not ST, then encapsulation is required. The ST
 agents make encapsulation decision based on information provided by

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1190

L. Delgrossi (ed.) [Page 41]

INTERNET DRAFT October 1994

 routing function to indicate whether the routers in the path support
 ST. It is outside the scope of this document to address routing
 function and therefore neither its algorithm nor implementation is
 specified here. ST assumes that appropriate routing algorithm exists
 to which ST has access.

 On forwarding, the (mostly constant) IP Header must be inserted and
 the IP checksum appropriately updated.

 11.4 IP Multicasting

 To Be Written

 11.5 Routing

 To Be Written

 11.6 Security

 To Be Written

 12 FlowSpec

 The FlowSpec is used to convey stream service requirements end-to-
 end. The contents of the FlowSpec are transparent to the ST agents.
 An ST agent extracts the FlowSpec from the correspondent incoming
 SCMP message and passes it to the LRM as required. The LRM updates
 the FlowSpec values based on the amount of resources that it has
 allocated to the stream.

 12.1 FlowSpec Versions

 ST is not dependent on a particular FlowSpec format and it is
 expected that other versions of the FlowSpec than those introduced
 below in this section will be needed in the future. Different
 FlowSpec formats are distinguished by the value of the Version field.
 The following values are reserved:

 0 - Null FlowSpec /* mandatory */

 1 - ST Version 1

 2 - ST Vesrion 1.5

 3 - RFC 1190 FlowSpec

 4 - HeiTS FlowSpec

https://datatracker.ietf.org/doc/html/rfc1190

L. Delgrossi (ed.) [Page 42]

INTERNET DRAFT October 1994

 5 - BerKom FlowSpec

 6 - RFC 1363 FlowSpec

 7 - ST2Plus FlowSpec /* mandatory */

 A single stream is always associated to a single FlowSpec format.
 Changes to the FlowSpec are also relative to the same FlowSpec
 format, i.e. the value of the Version field cannot be changed during
 the lifetime of the stream.

 12.2 The Null FlowSpec (#0)

 The FlowSpec identified by a value of 0 for its Version field is
 called the "Null FlowSpec". An ST agent that receives the Null
 FlowSpec always assumes that sufficient resources for the stream are
 available. The Null FlowSpec fields values are never updated. Stream
 setup takes place in the usual way, but no resources are actually
 reserved.

 The main purpose of the Null FlowSpec is that of facilitating
 interoperability tests by allowing streams to be built without
 actually allocating the correspondent amount of resources. The Null
 FlowSpec may also be used for testing and debugging purposes.

 The complete format is specified in Section 15.2.2.

 12.3 The ST Current FlowSpec (#7)

 FlowSpec #7 is the FlowSpec to be used by the current version of ST.
 It contains values for 3 basic QoS parameters: message size,
 throughput, and delay. Also, it is possible to specify a QoS class,
 e.g. guaranteed. Each parameter has to be expressed via a set of
 values:

 o the "desired" values are assigned by the application and
 never changed by the LRM

 o the "limit" values are assigned by the application and never
 changed by the LRM

 o the "actual" values indicate the guarantees that the system
 is able to provide. They are updated by the LRM at each node. The
 "actual" values are always bounded by the "limit" values.

 12.3.1 Qos Classes

 We also define two QoS classes:

https://datatracker.ietf.org/doc/html/rfc1363

L. Delgrossi (ed.) [Page 43]

INTERNET DRAFT October 1994

 1. QOS_GUARANTEED

 2. QOS_PREDICTIVE

 o The QOS_GUARANTEED service class implies that the negotiated
 QoS for the stream is never violated during the data transfer. For
 instance, the desired rate is the peak rate for the transmission.
 This may sometimes lead to overbooking of resources, but it provides
 strict real-time guarantees.

 o The QOS_PREDICTIVE service class implies that the negotiated
 QoS may be violated for short time intervals. Reservations are done
 for the average case as opposite to the peak case required by the
 QOS_GUARANTEED service class.

 If a LRM that doesn't support class QOS_PREDICTIVE (QOS_GUARANTEED)
 receives a FlowSpec containing a QOS_PREDICTIVE (QOS_GUARANTEED)
 class, it informs the local ST agent. The ST agent may try different
 paths or delete the correspondent portion of the stream with
 ReasonCode (QoSClassUnknown).

 12.3.2 Maximum Message Size

 This parameter is expressed in bytes. It represents the maximum size
 allowed for messages sent as part of the stream. The LRM first checks
 whether it is possible to get the value desired by the application
 (DesMaxSize). If not, it updates the actual value (ActMaxSize) with
 the available size unless this value is inferior to the minimum
 allowed by the application (LimitMaxSize), in which case it informs
 the local ST agent that it is not possible to build the stream along
 this path.

 12.3.3 Rate or Throughput

 This parameter is expressed in bytes/seconds. It represents the
 transmission rate for the stream. The LRM first checks whether it is
 possible to get the value desired by the application (DesRate). If
 not, it updates the actual value (ActRate) with the available rate
 unless this value is inferior to the minimum allowed by the
 application (LimitRate), in which case it informs the local ST agent
 that it is not possible to build the stream along this path.

 12.3.4 Maximum Delay and Delay Jitter

 This parameter is expressed in milliseconds. It represents the
 maximum end-to-end for the stream. The LRM first checks whether it is
 possible to get the value desired by the application (DesMaxDelay).
 If not, it updates the actual value (ActMaxDelay) with the available

L. Delgrossi (ed.) [Page 44]

INTERNET DRAFT October 1994

 rate unless this value is greater than the maximum delay allowed by
 the application (LimitMaxDelay), in which case it informs the local
 ST agent that it is not possible to build the stream along this path.

 The LRM also updates the MinDelay field by adding the minimum
 possible delay to the next- hop. Information on the minimum possible
 delay allows to calculate another important QoS parameter, the delay
 jitter.

 The complete format is specified in Section 15.2.2.

 13 ST State Machines

 To Be Written

 ST Protocol Data Units

 The ST PDUs sent between ST agents consist of an ST Header
 encapsulating either a higher layer PDU or an ST Control Message.
 Since ST operates as an extension of IP, the packet arrives at the
 same network service access point that IP uses to receive IP
 datagrams, e.g., ST would use the same ethertype (0x800) as does IP.
 The two types of packets are distinguished by the IP Version Number
 field (the first four bits of the packet); IP currently uses a value
 of 4, while ST has been assigned the value 5 (see [RFC791]). There is
 no requirement for compatibility between IP and ST packet headers
 beyond the first four bits.

 The ST Header also includes an ST Version Number, a total length
 field, a header checksum, a unique id, and the origin IP address as
 shown in Figure 8. See Section 18 for an explanation of the notation.

 Figure 8: ST Header

 o ST is the IP Version Number assigned to identify ST packets.
 The value for ST is 5.

 o Ver is the ST Version Number. This document defines ST
 Version 3.

 o ??? (TBD)

 o D (bit 8) is set to 1 in all ST data packets and to 0 in all
 SCMP control messages.

 o TotalBytes is the length, in bytes, of the entire ST packet,
 it includes the ST Header but does not include any local network
 headers or trailers. In general, all length fields in the ST Proto-

https://datatracker.ietf.org/doc/html/rfc791

L. Delgrossi (ed.) [Page 45]

INTERNET DRAFT October 1994

 col are in units of bytes.

 o HeaderChecksum covers only the ST Header (12 bytes). The ST
 Protocol uses 16-bit checksums here in the ST Header and in each
 Control Message. The standard Internet check- sum algorithm is used:
 "The checksum field is the 16-bit one's complement of the one's com-
 plement sum of all 16-bit words in the header. For purposes of
 computing the checksum, the value of the checksum field is zero (0)."
 See [RFC1071], [RFC1141], and [RFC791] for sug- gestions for
 efficient checksum algorithms.

 o UniqueID is the first element of the stream id (SID). It is
 locally unique at the origin.

 o OriginIPAddress is the second element of the SID. It is the
 IP address of the origin.

 14 ST Data Packets

 ST packets whose D-bit is non-zero are data packets. Their
 interpretation is a matter for the higher layer protocols and
 consequently is not specified here. The data packets are not
 protected by an ST checksum and will be delivered to the higher layer
 protocol even with errors. ST agents will not pass data packets over
 a new hop whose setup is not complete.

 14.1 Stream ID

 The UniqueID and OriginIPAddress fields form the Stream ID (SID),
 which is used by the ST agents to identify which stream the data
 packet belongs to. The same SID is used in data packets and control
 messages.

 In certain situations, e.g. usually due to a crash and subsequent
 reboot, it is possible that an ST agent receives a data packet
 belonging to a stream of which the agent has lost state information.
 In this case, the agent is not able to forward the packet and has to
 discard it. SIDs include the IP address of the origin. This allows to
 request the origin that the unidentified data flow is stopped.

 15 SCMP Protocol Data Units

 ST Control Messages are between a previous-hop agent and its next-hop
 agents using a D-bit of zero (0). The control protocol follows a
 request-response model with all requests expecting responses.
 Retransmission after timeout (see Section 11.2) is used to allow for
 lost or ignored messages. Control messages do not extend across
 packet boundaries; if a control message is too large for the MTU of a

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc791

L. Delgrossi (ed.) [Page 46]

INTERNET DRAFT October 1994

 hop, its information is partitioned and a control message per
 partition is sent (see Section 3.2.2). All control messages have the
 following format:

 Figure 9: ST Control Message Format

 o OpCode identifies the type of control message. Each is
 described in detail in following sec- tions.

 o Options is used to convey OpCode-specific variations for a
 control message.

 o TotalBytes is the length of the control message, in bytes,
 including all OpCode specific fields and optional parameters. The
 value is always divisible by four (4).

 o Reference is a transaction number. Each sender of a request
 control message assigns a Refer- ence number to the message that is
 unique with respect to the stream. The Reference number is used by
 the receiver to detect and discard duplicates. Each acknowledgment
 carries the Reference number of the request being acknowledged.
 Reference zero (0) is never used, and Reference numbers are assumed
 to be monotonically increasing with wraparound so that the older-than
 and more-recent-than relations are well defined.

 o LnkReference contains the Reference field of the request
 control message that caused this request control message to be
 created. It is used in situations where a single request leads to
 multiple responses from the same ST agent. Examples are CONNECT and
 CHANGE mes- sages that are first acknowledged hop-by-hop and then
 lead to an ACCEPT or REFUSE response from each target.

 o SenderIPAddress is the 32-bit IP address of the network
 interface that the ST agent used to send the control message. This
 value changes each time the packet is forwarded by an ST agent (hop-
 by-hop).

 o Checksum is the checksum of the control message. Because the
 control messages are sent in packets that may be delivered with bits
 in error, each control message must be checked before it is acted
 upon.

 o ReasonCode is set to zero (0 = NoError) in most SCMP
 messages. Otherwise, it can be set to an appropriate value to
 indicate an error situation as defined in Section 17.3.

 o OpCode Specific Data contains any additional information that
 is associated with the con- trol message. It depends on the specific

L. Delgrossi (ed.) [Page 47]

INTERNET DRAFT October 1994

 control message and is explained further below. In some response
 control messages, fields of zero (0) are included to allow the format
 to match that of the corresponding request message. The OpCode
 Specific Data may also contain any of the optional Parameters defined
 in Section 15.2.

 15.1 ST Control Messages

 The CONNECT message is used to establish a stream. It is an end-to-
 end message created by the origin. It propagates all the way to the
 targets, and require an ACK in response. It causes the targets to
 issue ACCEPT or REFUSE messages. The CONNECT message is also used to
 add one or more targets to an existing stream and during recovery of
 a broken stream.

 The CHANGE message is used to change the characteristics of an
 established stream. It is processed similarly to the CONNECT message,
 but it propagates along an already established stream.

 The ACCEPT message is an end-to-end message generated by a target and
 is used to signify the successful completion of the setup of a stream
 or part of a stream, or the change of the FlowSpec. There are no
 other messages that are similar to it.

 The REFUSE message is sent by a target to refuse the setup of a
 stream or the change of the FlowSpec. In these cases, it is an end-
 to-end message. An intermediate ST agent issues a REFUSE if it cannot
 find a route to a target, can only find a route to a target through
 the previous-hop, preempts a stream, or detects a failure in a next-
 hop ST agent or network. In all cases a REFUSE propagates in the
 direction toward the origin.

 The JOIN-REQUEST message is used to request to join an already
 established stream. It propagates in the upstream direction until
 either the origin is hit or a router that is traversed by the stream.
 As a consequence of this message, a CONNECT will be delivered to the
 target that requested to join. An authorization scheme prevents
 undesired destinations to join the stream.

 The DISCONNECT message is used to tear down streams or parts of
 streams. It propagates in the direction from the origin toward the
 targets. It is either used as an end-to-end message generated by the
 origin that is used to completely tear down a stream, or is generated
 by an intermediate ST agent that preempts a stream or detects the
 failure of its previous-hop agent or network in the stream. In the
 latter case, it is used to tear down the part of the stream from the
 failure to the targets, thus the message propagates all the way to
 the targets.

L. Delgrossi (ed.) [Page 48]

INTERNET DRAFT October 1994

 Usually, SCMP messages are acknowledged by the receiver. This is done
 via the ACK message. If an SCMP message contains errors and it cannot
 be identified or interpreted, an ERROR message is issued. Other SCMP
 messages include HELLO, NOTIFY, STATUS, and STATUS- RESPONSE.

 The following sections contain descriptions of common fields and
 parameters, followed by descriptions of the individual control
 messages, both listed in alphabetical order. A brief description of
 the use of the control message is given. The packet format is shown
 graphically.

 15.2 Common SCMP Elements

 Several fields and parameters (referred to generically as elements)
 are common to two or more PDUs. They are described in detail here
 instead of repeating their description several times. In many cases,
 the presence of a parameter is optional. To permit the parameters to
 be easily defined and parsed, each is identified with a PCode byte
 that is followed by a PBytes byte indicating the length of the
 parameter in bytes (including the PCode, PByte, and any padding
 bytes). If the length of the information is not a multiple of 4
 bytes, the parameter is padded with one to three zero (0) bytes.
 PBytes is thus always a multiple of four (4). Parameters can be
 present in any order.

 15.2.1 ErroredPDU

 The ErroredPDU parameter (PCode = 1) is used for diagnostic purposes
 to encapsulate a received ST PDU that contained an error. It may be
 optionally included in the ERROR message. Its use is primarily
 diagnostic.

 Figure 10: ErroredPDU

 o PDUBytes indicates how many bytes of the PDUInError are
 actually present.

 o PDUInError is the PDU in error, beginning with the ST Header.

 15.2.2 FlowSpec

 The FlowSpec is used to convey stream service requirements end-to-
 end. We expect that other versions of FlowSpec will be needed in the
 future, which may or may not be subsets or supersets of the version
 described here. PBytes will allow new constraints to be added to the
 end without having to simultaneously update all implementations in
 the field.

L. Delgrossi (ed.) [Page 49]

INTERNET DRAFT October 1994

 The FlowSpec parameter (PCode = 2) is used in several messages to
 convey the FlowSpec. The format of the FlowSpec field depends on the
 FlowSpec version. For details on the current Flowspec version, see

Section 12.

 Figure 11: FlowSpec

 15.2.3 Group

 The Group parameter (PCode = 3) is an optional argument used to
 indicate that the stream is a member of the specified group.

 Figure 12: Group Parameter

 o GroupUniqueID, GroupInitiatorIPAddress, and GroupCreationTime
 are allocated by the group name generator functions (see Section

10.1). These three fields together form the GroupName field.

 o Relationship has the following format:

 Figure 13: Relationship Field

 The B, F, P, S bits correspond to Bandwidth, Fate, Path, and Subnet
 resources sharing. A value of 1 indicates that the relationship
 exists. All combinations of these four bits are allowed because the
 four basic relationships are orthogonal. Bits 0-11 of the
 Relationship field are reserved for future use and must be set to 0.

 N contains a legal value only if the B-bit is set. It is the value of
 the N parameter to be used as explained in Section 10.2.1.

 15.2.4 MulticastAddress

 The MulticastAddress parameter (PCode = 4) is an optional parameter
 that is used when setting up a network level multicast group, to
 communicate an IP and/or local network multicast address to the
 next-hop agents that should become members of the group.

 Figure 14: MulticastAddress

 o LocalNetBytes is the length of the Local Net Multicast
 Address.

 o IPMulticastAddress is described in [RFC1112]. This field is
 zero (0) if no IP multicast address is known or is applicable. The
 block of addresses 224.1.0.0 - 224.1.255.255 has been allocated for
 use by ST, see Section 17.4.

https://datatracker.ietf.org/doc/html/rfc1112

L. Delgrossi (ed.) [Page 50]

INTERNET DRAFT October 1994

 o Local Net Multicast Address is the multicast address to be
 used on the local network. It cor- responds to the IPMulticastAddress
 when the latter is non-zero.

 15.2.5 NextHopIPAddress

 The NextHopIPAddress parameter (PCode = 5) is an optional parameter
 of NOTIFY or REFUSE and contains the IP address of a suggested next-
 hop ST agent.

 Figure 15: NextHopIPAddress

 15.2.6 Origin

 The Origin parameter (PCode = 6) is used to identify the next higher
 protocol, and the SAP being used in conjunction with that protocol.

 Figure 16: Origin

 o NextPcol is an 8-bit field used in demultiplexing operations
 to identify the protocol to be used above ST. The values of NextPcol
 are in the same number space as the IP Header's Pro- tocol field and
 are consequently defined in the Assigned Numbers RFC [RFC791].

 o OriginSAPBytes specifies the length of the OriginSAP,
 exclusive of any padding required to maintain 32-bit alignment.

 o OriginSAP identifies the origin's SAP associated with the
 NextPcol protocol.

 Note that the IP address of the origin is not included in this
 parameter because it is always available as part of the ST header.

 15.2.7 RecordRoute

 The RecordRoute parameter (PCode = 7) may be used to request that the
 route between the origin and a target be recorded and returned to the
 origin. It is included in the CONNECT and ACCEPT messages.

 Figure 17: RecordRoute

 o FreeOffset is the offset to the position where the next
 next-hop IP address should be inserted. It is initialized to four (4)
 and incremented by four each time an agent inserts its IP address.

 15.2.8 Target and TargetList

 Several control messages use a parameter called TargetList (PCode =

https://datatracker.ietf.org/doc/html/rfc791

L. Delgrossi (ed.) [Page 51]

INTERNET DRAFT October 1994

 13), which contains information about the targets to which the
 message pertains. For each Target in the TargetList, the information
 includes the IP address of the target, the SAP applicable to the next
 higher layer protocol, and the length of the SAP (SAPBytes).
 Consequently, a Target structure can be of variable length. Each
 entry has the format shown in Figure 18.

 Figure 18: Target

 o TargetIPAddress is the IP Address of the Target.

 o TargetBytes is the length of the Target structure, beginning
 with the TargetIPAddress and including any SrcRoute parameters.

 o SAPBytes is the length of the SAP, excluding any padding
 required to maintain 32-bit align- ment.

 o SAP may be longer than 2 bytes and it includes a padding when
 required. There would be no padding required for SAPs with lengths of
 2, 6, 10, etc., bytes.

 Figure 19: TargetList

 15.2.9 UserData

 The UserData parameter (PCode = 14) is an optional parameter that may
 be used by the next higher protocol or an application to convey
 arbitrary information to its peers. Note that since the size of
 control messages is limited by the smallest MTU in the path to the
 targets, the maximum size of this parameter cannot be specified a
 priori. If the parameter is too large for some network's MTU, a
 UserDataSize error will occur. The parameter must be padded to a
 multiple of 32 bits.

 Figure 20: UserData

 o UserBytes specifies the number of valid UserInformation
 bytes.

 o UserInformation is arbitrary data meaningful to the next
 higher protocol layer or applica- tion.

 16 ST Control Message PDUs

 Each control message is described in a following section. See Section
18 for an explanation of the notation.

L. Delgrossi (ed.) [Page 52]

INTERNET DRAFT October 1994

 16.1 ACCEPT

 ACCEPT (OpCode = 1) is issued by a target as a positive response to a
 CONNECT message. It implies that the target is prepared to accept
 data from the origin along the stream that was established by the
 CONNECT. ACCEPT is also issued as a positive response to a CHANGE
 message. It implies that the target accepts the proposed stream
 modification.

 The ACCEPT includes the FlowSpec that contains the cumulative
 information that was calculated by the intervening ST agents as the
 CONNECT (or CHANGE) made its way from the origin to the target, as
 well as any modifications made by the application at the target. The
 FlowSpec is not modified on this trip from the target back to the
 origin.

 The ACCEPT is relayed by the ST agents from the target to the origin
 along the path established by the CONNECT (or CHANGE) but in the
 reverse direction. The ACCEPT must be acknowledged with an ACK at
 each hop.

 Since the cumulative FlowSpec information can be different for
 different targets, no attempt is made to combine the ACCEPTs from the
 various targets. The TargetList included in each ACCEPT contains the
 IP address of a single target, i.e. the one that issued the ACCEPT.

 Figure 21: ACCEPT Control Message

 Reference contains a number assigned by the agent sending the ACCEPT
 for use in the acknowledging ACK.

 LnkReference is the Reference number from the corresponding CONNECT
 (or CHANGE).

 16.2 ACK

 ACK (OpCode = 2) is used to acknowledge a request. The ACK message is
 not propagated beyond the previous-hop or next-hop agent.

 Reference is the Reference number of the control message being
 acknowledged.

 ReasonCode is usually NoError, but other possibilities exist, e.g.,
 DuplicateIgn.

 Figure 22: ACK Control Message

 16.3 CHANGE

L. Delgrossi (ed.) [Page 53]

INTERNET DRAFT October 1994

 CHANGE (OpCode = 3) is used to change the FlowSpec of an established
 stream. The CHANGE message is processed similarly to the CONNECT
 message, except that it travels along the path of an established
 stream. The CHANGE must be propagated until it reaches all the
 stream's targets. It must be ACKed at every hop.

 G (bit 8) is used to request a global, stream-wide change; the
 TargetList parameter may be omitted when the G bit is specified.

 Figure 23: CHANGE Control Message

 16.4 CONNECT

 CONNECT (OpCode = 5) requests the setup of a new stream or an
 addition to or recovery of an existing stream. Only the origin can
 issue the initial set of CONNECTs to setup a stream, and the first
 CONNECT to each next-hop is used to convey the SID.

 The CONNECT message must fit within the maximum allowable packet size
 (MTU) for the intervening network. If a CONNECT message is too large,
 it must be fragmented into multiple CONNECT messages by partitioning
 the TargetList (see Section 3.2.2). Any UserData parameter will be
 replicated in each fragment for delivery to all targets.

 The next-hop initially responds with an ACK, which implies that the
 CONNECT was valid and is being processed. The next-hop will later
 relay back either an ACCEPT or REFUSE from each target.

 An intermediate ST agent that receives a CONNECT selects the next-hop
 ST agents, partitions the TargetList accordingly, reserves network
 resources in the direction toward the next-hop, updates the FlowSpec
 accordingly, and sends the resulting CONNECTs.

 If the intermediate ST agent that is processing a CONNECT fails to
 find a route to a target, it responds with a REFUSE with the
 appropriate reason code, e.g., NoRouteToDest. If the next- hop to a
 target is by way of the network from which it received the CONNECT,
 then it sends a NOTIFY with the appropriate reason code, e.g.,
 RouteBack. In either case, the TargetList specifies the affected
 targets. The intermediate ST agent will only route to and propagate a
 CONNECT to the targets for which it does not issue a REFUSE.

 If a received CONNECT contains a new SID, a new stream should be
 created. If the SID is known, there are four cases

 TargetList is the list of IP addresses of the target processes. It is
 of arbitrary size up to the maximum allowed for packets travelling
 across the specific network.

L. Delgrossi (ed.) [Page 54]

INTERNET DRAFT October 1994

 Figure 24: CONNECT Control Message

 16.5 DISCONNECT

 DISCONNECT (OpCode = 6) is used by an origin to tear down an
 established stream or part of a stream, or by an intermediate agent
 that detects a failure between itself and its previous-hop, as
 distinguished by the ReasonCode. The DISCONNECT message specifies the
 list of targets that are to be disconnected. An ACK is required in
 response to a DISCONNECT message. The DISCONNECT message is
 propagated all the way to the specified targets. The targets are
 expected to terminate their participation in the stream.

 Note that in the case of a failure it may be advantageous to retain
 state information as the stream should be repaired shortly, see

Section 9.2.

 G (bit 8) is used to request a DISCONNECT of all the stream's
 targets; the TargetList parameter may be omitted when the G bit is
 set (1).

 Figure 25: DISCONNECT Control Message

 16.6 ERROR

 ERROR (OpCode = 7) is sent in acknowledgment to a request in which an
 error is detected. No action is taken on the erroneous request. No
 ACK is expected. The ERROR message is not propagated beyond the
 previous-hop or next-hop agent.

 An ERROR is never sent in response to another ERROR. The receiver of
 an ERROR is encouraged to try again without waiting for a
 retransmission timeout.

 Reference is the Reference number of the erroneous request.

 Figure 26: ERROR Control Message

 16.7 HELLO

 HELLO (OpCode = 8) is used as part of the ST failure detection
 mechanism, see Section 9.1.

 R (bit 8) is used for the Restarted-bit.

 Reference is non-zero to inform the receiver that an ACK should be
 promptly sent so that the sender can update its round-trip time
 estimates. If the Reference is zero, no ACK should be sent.

L. Delgrossi (ed.) [Page 55]

INTERNET DRAFT October 1994

 TBD: HelloTimer

 Figure 27: HELLO Control Message

 16.8 JOIN-REQUEST

 TBD

 Figure 28: JOIN-REQUEST Control Message

 16.9 NOTIFY

 NOTIFY (OpCode = 10) is issued by an agent to inform other agents,
 the origin, or targets of events that may be significant. The action
 taken by the receiver of a NOTIFY depends on the ReasonCode. Possible
 events are suspected routing problems or resource allocation changes
 that occur after a stream has been established. These changes occur
 when network components fail and when competing streams preempt
 resources previously reserved by a lower precedence stream. We also
 anticipate that NOTIFY can be used in the future when additional
 resources become available, as is the case when network components
 recover or when higher precedence streams are deleted.

 NOTIFY may contain a FlowSpec that reflects that revised guarantee
 that can be promised to the stream. NOTIFY may also identify those
 targets that are affected by the change. In this way, NOTIFY is
 similar to ACCEPT.

 When NOTIFY is received at the origin, the application should be
 notified of the target and the change in resources allocated along
 the path to it, as specified in the FlowSpec contained in the NOTIFY
 message. The application may then use the information to either
 adjust or terminate the portion of the stream to each affected
 target.

 The NOTIFY may be propagated beyond the previous-hop or next-hop
 agent; it must be acknowledged with an ACK.

 Reference contains a number assigned by the agent sending the NOTIFY
 for use in the acknowledging ACK.

 ReasonCode identifies the reason for the notification.

 LnkReference, when non-zero, is the Reference number from a command
 that is the subject of the notification.

 NextHopIPAddress is an optional parameter and contains the IP address
 of a suggested next- hop ST agent.

L. Delgrossi (ed.) [Page 56]

INTERNET DRAFT October 1994

 TargetList is present when the notification is related to one or more
 targets.

 Figure 29: NOTIFY Control Message

 16.10 REFUSE

 REFUSE (OpCode = 11) is issued by a target that either does not wish
 to accept a CONNECT message or wishes to remove itself from an
 established stream. It might also be issued by an intermediate agent
 in response to a CONNECT or CHANGE either to terminate a routing
 loop, or when a satisfactory next-hop to a target cannot be found. It
 may also be a separate command when an existing stream has been
 preempted by a higher precedence stream or an agent detects the
 failure of a previous-hop, next-hop, or the network between them. In
 all cases, the TargetList specifies the targets that are affected by
 the condition. Each REFUSE must be acknowledged by an ACK.

 The REFUSE is relayed back by the agents to the origin (or
 intermediate agent that created the CONNECT or CHANGE) along the path
 traced by the CONNECT. The agent receiving the REFUSE will process it
 differently depending on the condition that caused it, as specified
 in the ReasonCode field. In some cases, such as if a next-hop cannot
 obtain resources, the agent can release any resources reserved
 exclusively for transmissions in the stream in question to the target
 specified in the TargetList, and the previous-hop can attempt to find
 an alternate route. In some cases, such as a routing failure, the
 previous-hop cannot determine where the failure occurred, and it
 propagates the REFUSE back to the origin, which can attempt recovery
 of the stream by issuing a new CONNECT.

 No special effort is made to combine multiple REFUSE messages since
 it is considered most unlikely that separate REFUSEs will happen to
 both pass through an agent at the same time and be easily combined,
 e.g., have identical ReasonCodes and parameters.

 Reference contains a number assigned by the agent sending the REFUSE
 for use in the acknowledging ACK.

 LnkReference is either the Reference number from the corresponding
 CONNECT or CHANGE, if it is the result of such a message, or zero
 when the REFUSE was originated as a separate command.

 Figure 30: REFUSE Control Message

 16.11 STATUS

 STATUS (OpCode = 12) is used to inquire about the existence of a

L. Delgrossi (ed.) [Page 57]

INTERNET DRAFT October 1994

 particular stream identified by the SID.

 Use of STATUS is intended for diagnostic purposes and to assist in
 stream cleanup operations. It is possible in cases of multiple
 failures or network partitioning for an ST agent to have information
 about a stream after the stream has either ceased to exist or has
 been rerouted around the agent. When an agent concludes that a stream
 has not been used for a period of time and might no longer be valid,
 it can probe the stream's previous-hop or next-hops to see if they
 believe that the stream still exists through the interrogating agent.

 When a stream has been identified, a STATUS-RESPONSE is returned that
 will contain no optional parameters if the specified stream is
 unknown, or will otherwise contain the current FlowSpec, TargetList,
 and possibly Groups of the stream.

 Q (bit 9) is set to one (1) for remote diagnostic purposes when the
 receiving agent should return a stream's parameters, whether or not
 the source of the message is believed to be a previous-hop or next-
 hop in the specified stream. Note that this use has potential for
 disclosure of sensitive information.

 Figure 31: STATUS Control Message

 16.12 STATUS-RESPONSE

 STATUS-RESPONSE (OpCode = 13) is the reply to a STATUS message. If
 the stream specified in the STATUS message is not known, the STATUS-
 RESPONSE will contain the specified SID but no other parameters. It
 will otherwise contain the current SID, FlowSpec, TargetList, and
 possibly Groups of the stream.

 Figure 32: STATUS-RESPONSE Control Message

 17 Suggested Protocol Constants

 The ST Protocol uses several fields that must have specific values
 for the protocol to work, and also several values that an
 implementation must select. This section specifies the required
 values and suggests initial values for others. It is recommended that
 the latter be implemented as variables so that they may be easily
 changed when experience indicates better values. Eventually, they
 should be managed via the normal network management facilities.

 ST uses IP Version Number 5.

 When encapsulated in IP, ST uses IP Protocol Number 5.

L. Delgrossi (ed.) [Page 58]

INTERNET DRAFT October 1994

 17.1 SCMP Messages

 1. ACCEPT

 2. ACK

 3. CHANGE

 4. CONNECT

 5. DISCONNECT

 6. ERROR

 7. HELLO

 8. JOIN

 9. NOTIFY

 10. REFUSE

 11. STATUS

 12. STATUS-RESPONSE

 17.2 SCMP Parameters

 1. ErroredPDU

 2. FlowSpec

 3. Group

 4. MulticastAddress

 5. NextHopIPAddress

 6. Origin

 7. RecordRoute

 8. TargetList

 9. UserData

 17.3 ReasonCode

L. Delgrossi (ed.) [Page 59]

INTERNET DRAFT October 1994

 Several errors may occur during protocol processing. All ST error
 codes are taken from a single number space. The currently defined
 values and their meaning is presented in the list below. Note that
 new error codes may be defined from time to time. All implementations
 are expected to handle new codes in a graceful manner. If an unknown
 ReasonCode is encountered, it should be assumed to be fatal. The
 ReasonCode is an 8-bit field. Following values are defined:

 To Be Written

 17.4 IP Multicast Addresses

 The following permanent IP multicast addresses have been assigned to
 ST:

 224.0.0.7 All ST routers

 224.0.0.8 All ST hosts

 In addition, a block of transient IP multicast addresses, 224.1.0.0 -
 224.1.255.255, has been allocated for ST multicast groups. Note that
 in the case of Ethernet, an ST Multicast address of 224.1.cc.dd maps
 to an Ethernet Multicast address of 01:00:5E:01:cc:dd, see [RFC1112].

 18 Notation

 To Be Written

 19 Further Study

 To Be Written

 20 References

 [RFC1071]

 Braden, Borman, Partridge: Computing the Internet Checksum, RFC 1071,
 USC/Information Sciences Institute, Cray Research, BBN Laboratories,
 Sep- tember 1988.

 [RFC1112]

 Deering, S.: Host Extensions for IP multicasting, RFC 1112, Stanford
 Univer- sity, August 1989.

 [RFC1122]

 Braden, R.: Requirements for Internet Hosts -- Communication Layers,

https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1112

L. Delgrossi (ed.) [Page 60]

INTERNET DRAFT October 1994

RFC 1122, USC/Information Sciences Institute, October 1989.

 [Jaco88]

 Jacobson, V.: Congestion Avoidance and Control, ACM SIGCOMM-88,
 August 1988.

 [KaPa87]

 Karn, P. and C. Partridge: Round Trip Time Estimation, ACM SIGCOMM-
 87, August 1987.

 [RFC1141]

 Mallory, T. and A. Kullberg: Incremental Updating of the Internet
 Checksum, RFC 1141, BBN, January 1990.

 [RFC 1363]

 C. Partridge: A Proposal Flow Specification, RFC 1363.

 [RFC791]

 Postel: Internet Protocol, RFC 791, DARPA, September 1981.

 [RFC1060]

 Reynolds, Postel: Assigned Numbers, RFC 1060, USC/ISI, March 1990.

 [RFC1190]

 Topolcic C.: Internet Stream Protocol Version 2 (ST2), October 1990.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1363
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1060

L. Delgrossi (ed.) [Page 61]

