
 Network Working Group David L. Mills
 Internet Draft University of Delaware
 Document: < draft-ietf-stime-ntpauth-01.txt > April 2001
 Category: Standards Track

Public-Key Cryptography for the Network Time Protocol
Version 1

 Status of this Memorandum

 This document is an Internet-Draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference material
 or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html. This document is an Internet-Draft.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

1. Abstract

 This memorandum describes a scheme for authenticating servers to clients
 in the Network Time Protocol. It extends prior schemes based on
 symmetric-key cryptography to a new scheme based on public-key
 cryptography. The new scheme, called Autokey, is based on the premiss
 that the IPSEC schemes proposed by the IETF cannot be adopted intact,
 since that would preclude stateless servers and severely compromise
 timekeeping accuracy. In addition, the IPSEC model presumes
 authenticated timestamps are always available; however,
 cryptographically verified timestamps require interaction between the
 timekeeping function and authentication function in ways not yet
 considered in the IPSEC model.

 The main body of this memorandum contains a description of the security

https://datatracker.ietf.org/doc/html/draft-ietf-stime-ntpauth-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

 model, approach rationale, protocol design and vulnerability analysis.
 It obsoletes a previous report [11] primarily in the schemes for

 Mills Expires October, 2001 [page 1]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 distributing public keys and related values. A detailed description of
 the protocol states, events and transition functions is included.
 Detailed packet formats and field descriptions are given in the
 appendix. A prototype of the Autokey design based on this memorandum has
 been implemented, tested and documented in the NTP Version 4 software
 distribution for Unix, Windows and VMS at www.ntp.org.

 While not strictly a security function, the Autokey protocol also
 provides means to securely retrieve a table of historic leap seconds
 necessary to convert ordinary civil time (UTC) to atomic time (TAI)
 where needed. The tables can be retrieved either directly from national
 time servers operated by NIST or indirectly through intervening servers.

 Changes Since the Preceeding Draft

 There are a number of changes scattered through this memorandum to
 clarify the presentation and add a few new features. Among the most
 important:

1. An optional parameter negotiation message has been added to the
 protocol state machine. The values it may carry and the interpretation
 of these values are not defined in this memorandum.

2. A preliminary value exchange has been added to begin the protocol
 dance. This is necessary to avoid a vulnerability where unsolicited
 public key responses could clog the victim with needless signature
 cycles.

3. The value exchange, which is piggybacked on the association ID
 message, supports a timestamp-based agreement scheme which floods the
 latest version of the agreement parameters and leapseconds table. Using
 this scheme any one of a clique of trusted primary servers running
 symmetric modes with each other and broadcast or client/server modes
 with the secondary server population can refresh these data at any time
 and the refreshed data will update all older data everywhere in the NTP
 subnet within one day.

4. An optional certificate retrieval operation has been added to the
 protocol state machine. While the operation has been implemented and
 tested, the contents of the certificate itself have not been determined.

5. A couple of subtle livelock problems with symmetric mode and
 broadcast mode were found and fixed. The problem with source addresses
 not yet bound has been fixed in the reference implementation.

6. The protocol descriptions and state diagrams have been updated. Some
 packet formats have been changed in minor ways.

7. Provisions for the use of IPv6 addresses in calculating the autokey

 have been added.

8. Provisions for the use of arbitrary identification values to be used
 in lieu or IP addresses in calculating the autokey have been added.

 Mills Expires October, 2001 [page 2]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

9. A simplified version of the protocol appropriate for SNTP clients is
 proposed; details to follow.

 Introduction

 A distributed network service requires reliable, ubiquitous and
 survivable provisions to prevent accidental or malicious attacks on the
 servers and clients in the network or the values they exchange.
 Reliability requires that clients can determine that received packets
 are authentic; that is, were actually sent by the intended server and
 not manufactured or modified by an intruder. Ubiquity requires that any
 client can verify the authenticity of any server using only public
 information. Survivability requires protection from faulty
 implementations, improper operation and possibly malicious clogging and
 replay attacks with or without data modification. These requirements are
 especially stringent with widely distributed network services, since
 damage due to failures can propagate quickly throughout the network,
 devastating archives, routing databases and monitoring systems and even
 bring down major portions of the network.

 The Network Time Protocol (NTP) contains provisions to cryptographically
 authenticate individual servers as described in the most recent protocol
 specification RFC-1305 [7]; however, that specification does not provide
 a scheme for the distribution of cryptographic keys, nor does it provide
 for the retrieval of cryptographic media that reliably bind the server
 identification credentials with the associated keys and related public
 values. However, conventional key agreement and digital signatures with
 large client populations can cause significant performance degradations,
 especially in time critical applications such as NTP. In addition, there
 are problems unique to NTP in the interaction between the authentication
 and synchronization functions, since each requires the other.

 This memorandum describes a cryptographically sound and efficient
 methodology for use in NTP and similar distributed protocols. As
 demonstrated in the reports and briefings cited in the references at the
 end of this memorandum, there is a place for Public-Key Infrastructure
 (PKI) and related schemes, but none of these schemes alone satisfies the
 requirements of the NTP security model. The various key agreement
 schemes [2, 5, 12] proposed by the IETF require per-association state
 variables, which contradicts the principles of the remote procedure call
 (RPC) paradigm in which servers keep no state for a possibly large
 client population. An evaluation of the PKI model and algorithms as
 implemented in the rsaref2.0 package formerly distributed by RSA
 Laboratories leads to the conclusion that any scheme requiring every NTP
 packet to carry a PKI digital signature would result in unacceptably
 poor timekeeping performance.

https://datatracker.ietf.org/doc/html/rfc1305

 A revised security model and authentication scheme called Autokey was
 proposed in earlier reports [5, 6, 8]. It has been evolved and refined
 since then and implemented in NTP Version 4 for Unix, Windows and VMS
 [11]. It is based on a combination of PKI and a pseudo-random sequence
 generated by repeated hashes of a cryptographic value involving both

 Mills Expires October, 2001 [page 3]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 public and private components. This scheme has been tested and evaluated
 in a local environment and is being deployed now in the CAIRN experiment
 network funded by DARPA. A detailed description of the security model,
 design principles and implementation experience is presented in this
 memorandum.

 Security Model

 NTP security requirements are even more stringent than most other
 distributed services. First, the operation of the authentication
 mechanism and the time synchronization mechanism are inextricably
 intertwined. Reliable time synchronization requires cryptographic keys
 which are valid only over designated time intervals; but, time intervals
 can be enforced only when all servers and clients are reliably
 synchronized to UTC. Second, the NTP subnet is hierarchical by nature,
 so time and trust flow from the primary servers at the root through
 secondary servers to the clients at the leaves. A client can claim
 authentic only if all servers on the path to the primary servers are
 bone-fide authentic. In order to emphasize this requirement, in this
 memorandum, the notion of "authentic" is replaced by "proventic", a noun
 new to English and derived from provenance, as in the provenance of a
 painting. Having abused the language this far, the suffixes fixable to
 the various noun and verb derivatives of authentic will be adopted for
 proventic as well. In NTP each server authenticates the next lower
 stratum servers and proventicates the lowest stratum (primary) servers.

 Over the last several years the IETF has defined and evolved the IPSEC
 infrastructure for privacy protection and source authentication in the
 Internet, The infrastructure includes the Encapsulating Security Payload
 (ESP) [4] and Authentication Header (AH) [3] for IPv4 and IPv6.
 Cryptographic algorithms that use these headers for various purposes
 include those developed for the PKI, including MD5 message digests, RSA
 digital signatures and several variations of Diffie-Hellman key
 agreements. The fundamental assumption in the security model is that
 packets transmitted over the Internet can be intercepted by other than
 the intended receiver, remanufactured in various ways and replayed in
 whole or part. These packets can cause the client to believe or produce
 incorrect information, cause protocol operations to fail, interrupt
 network service or consume processor resources with needless
 cryptographic calculations.

 In the case of NTP, the assumed goal of the intruder is to inject false
 time values, disrupt the protocol or clog the network or servers or
 clients with spurious packets that exhaust resources and deny service to
 legitimate processes. The mission of the algorithms and protocols
 described in this memorandum is to detect and discard spurious packets
 sent by other than the intended sender or sent by the intended sender
 but modified or replayed by an intruder. The cryptographic means of the

 reference implementation are based on the rsaref2.0 algorithms, but
 other algorithms with equivalent functionality could be used as well. It
 is important for distribution and export purposes that the way in which
 these algorithms are used precludes encryption of any data other than
 incidental to the construction of digital signatures.

 Mills Expires October, 2001 [page 4]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 There are a number of defense mechanisms already built in the NTP
 architecture, protocol and algorithms. The fundamental timestamp-
 exchange scheme is inherently resistant to replay attacks. The
 engineered clock filter, selection and clustering algorithms are
 designed to defend against Byzantine traitors and evil cliques. While
 not necessarily designed to defeat determined intruders, these
 algorithms and accompanying sanity checks have functioned well over the
 years to deflect improperly operating but presumably friendly scenarios.

 However, these mechanisms do not securely identify and authenticate
 servers to clients. Without specific further protection, an intruder can
 inject any or all of the following mischiefs. Further discussion on the
 assumed intruder model is given in [9], but beyond the scope of this
 memorandum.

1. An intruder can intercept and archive packets forever and can archive
 all the public values ever generated and transmitted over the net.

2. An intruder can generate packets faster than the server or client can
 process them, especially if they require expensive PKI operations.

3. An intruder can intercept, modify and replay a packet. However, it
 cannot permanently prevent the original packet transmission over the
 net; that is, it cannot break the wire, only congest it.

 The following assumptions are fundamental to the Autokey design. They
 are discussed at some length in the briefing slides and links at
 www.eecis.udel.edu/~mills/ntp.htm and will not be further discussed in
 this memorandum.

1. The running times for public-key algorithms are relatively long and
 highly variable. In general, the performance of the synchronization
 function is badly degraded if these algorithms must be used for every
 NTP packet.

2. In some modes of operation it is not feasible for a server to retain
 cryptographic state variables for every client. It is however feasible
 to regenerated them for a client upon arrival of a packet from that
 client.

3. The lifetime of cryptographic values must be enforced, which requires
 a reliable system clock. However, the sources that synchronize the
 system clock must be cryptographically proventicated. This circular
 interdependence of the timekeeping and proventication functions requires
 special handling.

4. All proventication functions must involve only public values
 transmitted over the net. Private values must never be disclosed beyond

 the machine on which they were created.

5. Public keys and agreement parameters, where necessary, must be
 retrievable directly from servers without requiring secured channels;

 Mills Expires October, 2001 [page 5]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 however, the fundamental security of identification credentials and
 public values bound to those credentials must eventually be a function
 of certificate authorities and/or webs of trust.

 Unlike the ssh security model, where the client must be securely
 identified to the server, in NTP the server must be securely identified
 to the client. In ssh each different interface address can be bound to a
 different name, as returned by a reverse-DNS query. In this design
 separate public/private key pairs may be required for each interface
 address with a distinct name. A perceived advantage of this design is
 that the security compartment can be different for each interface. This
 allows a firewall, for instance, to require some interfaces to
 proventicate the client and others not.

 However, the NTP security model specifically assumes all time values and
 cryptoraphic values are public, so there is no need to associate each
 interface with different cryptoraphic values. In the NTP design the host
 name, as returned by the gethostname() library function, represents all
 interface addresses. Since at least in some host configurations the host
 name may not be identifiable in a DNS query, the name must be either
 configured in advance or obtained directly from the server using the
 Autokey protocol.

 Approach

 The Autokey protocol described in this memorandum is designed to meet
 the following objectives. Again, in-depth discussions on these
 objectives is in the web briefings and will not be elaborated in this
 memorandum. Note that here and elsewhere in this memorandum mention of
 broadcast mode means multicast mode as well, with exceptions as noted.

1. It must interoperate with the existing NTP architecture model and
 protocol design. In particular, it must support the symmetric-key scheme
 described in RFC-1305. As a practical matter, the reference
 implementation must use the same internal key management system,
 including the use of 32-bit key IDs and existing mechanisms to store,
 activate and revoke keys.

2. It must provide for the independent collection of cryptographic
 values and time values. A client is proventicated only when the all
 cryptographic values have been obtained and verified and the NTP
 timestamps have passed all sanity checks.

3. It must not significantly degrade the potential accuracy of the NTP
 synchronization algorithms. In particular, it must not make unreasonable
 demands on the network or host processor and memory resources.

4. It must be resistant to cryptographic attacks, including
 replay/modification and clogging attacks. In particular, it must be

https://datatracker.ietf.org/doc/html/rfc1305

 tolerant of operation or implementation variances, such as packet loss
 or misorder, or suboptimal configuration.

 Mills Expires October, 2001 [page 6]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

5. It must build on a widely available suite of cryptographic
 algorithms, yet be independent of the particular choice. In particular,
 it must not require data encryption other than incidental to signature
 and verification functions.

6. It must function in all the modes supported by NTP, including
 client/server, broadcast and symmetric active/passive modes.

7. It must not require intricate per-client or per-server configuration
 other than the availability of public/private key files and agreement
 parameter files, as required.

8. The reference implementation must contain provisions to generate
 cryptographic key values, including private/public keys and agreement
 parameters specific to each client and server. Eventually, it must
 contain provisions to validate public values using certificate
 authorities and/or webs of trust.

 Autokey Proventication Scheme

 Autokey public-key cryptography is based on the PKI algorithms of the
 rsaref2.0 library, although other libraries with a compatible interface
 could be used as well. The reference implementation uses keyed-MD5
 message digests to detect packet modification, timestamped RSA digital
 signatures to verify the source, and Diffie-Hellman key agreements to
 construct a private shared key from public values. However, there is no
 reason why alternative signature schemes and agreement algorithms could
 be supported. What makes Autokey cryptography unique is the way in which
 these algorithms are used to deflect intruder attacks while maintaining
 the integrity and accuracy of the time synchronization function.

 The NTP Version 3 symmetric-key cryptography uses keyed-MD5 message
 digests with a 128-bit private key and 32-bit key ID. In order to retain
 backward compatibility, the key ID space is partitioned in two subspaces
 at a pivot point of 65536. Symmetric key IDs have given values less than

65536 and indefinite lifetime. Autokey key IDs have pseudo-random values
 equal to or greater than 65536 and are expunged immediately after use.

 There are three Autokey protocol variants corresponding to each of the
 three NTP modes: client/server, broadcast and symmetric active/passive.
 All three variants make use of a specially contrived session key called
 an autokey and a pseudo-random sequence of key IDs called the key list.
 As in the original NTP Version 3 authentication scheme, the Autokey
 protocol operates separately for each association, so there may be
 several key lists operating independently at the same time and with
 distinct associated values and signatures.

 An autokey consists of four fields in network byte order as shown below:

 +-----------+-----------+-----------+-----------+
 | Source IP | Dest IP | Key ID | Cookie |
 +-----------+-----------+-----------+-----------+

 Mills Expires October, 2001 [page 7]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 For use with IPv4, the Source IP and Dest IP fields contain 32 bits; for
 use with IPv6, these fields contain 128 bits. In either case the Key ID
 and Cookie fields contain 32 bits. Thus, an IPv4 autokey has four 32-bit
 words, while an IPv6 autokey has ten 32-bit words. The source and
 destination IP addresses and key ID are public values visible in the
 packet, while the cookie can be a public value or a private value,
 depending on the mode.

 There are some scenarios where the use of endpoint IP addresses when
 calculating the autokey may be difficult or impossible. These include
 configurations where Network Address Translation (NAT) devices are in
 use or when addresses are changed during an association lifetime due to
 mobility constraints. As described below, NTP associations are
 identified by the endpoint IP addresses, so the natural approach is to
 authenticate associations using these values. For scenarios where this
 is not possible, an optional identification value can be used instead of
 the endpoint IP addresses. The Parameter Negotiation message contains an
 option to specify these data; however, the format, encoding and use of
 this option are not specified in this memorandum. For the purposes of
 this memorandum, the endpoint IP addresses will be assumed.

 The NTP packet format has been augmented to include one or more
 extension fields piggybacked between the original NTP header and the
 message authenticator code (MAC) at the end of the packet. For packets
 without extension fields, the cookie is a private value computed by an
 agreement algorithm. For packets with extension fields, the cookie has a
 default public value of zero, since these packets can be validated
 independently using signed data in the extension fields. The four values
 are hashed by the message digest algorithm to produce the actual key
 value, which is stored along with the key ID in a cache used for
 symmetric keys as well as autokeys. Keys are retrieved from the cache by
 key ID using hash tables and a fast algorithm.

 The key list consists of a sequence of key IDs starting with a random
 value and each pointing to the next. To generate the next autokey on the
 key list, the next key ID is the first 32 bits in network byte order of
 the previous key value. It may happen that a newly generated key ID is
 less than 65536 or collides with another one already generated (birthday
 event). When this happens, which should occur only rarely, the key list
 is terminated at that point. The lifetime of each key is set to expire
 one poll interval after its scheduled use. In the reference
 implementation, the list is terminated when the maximum key lifetime is
 about one hour.

 The index of the last key ID in the list is saved along with the next
 key ID of that entry, collectively called the autokey values. The list
 is used in reverse order, so that the first key ID used is the last one
 generated. The Autokey protocol includes a message to retrieve the

 autokey values and signature, so that subsequent packets can be
 authenticated using one or more hashes that eventually match the first
 key ID (valid) or exceed the index (invalid). This is called the autokey
 test in the following and is done for every packet, including those with
 and without extension fields. In the reference implementation the most

 Mills Expires October, 2001 [page 8]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 recent key ID received is saved for comparison with the first 32 bits in
 network byte order of the next following key value. This minimizes the
 number of hash operations in case a packet is lost.

 The scheme used in client/server mode was suggested by Steve Kent over
 lunch. The server keeps no state for each client, but uses a fast
 algorithm and a private value to regenerate the cookie upon arrival of a
 client packet. The cookie is calculated in a manner similar to the
 autokey, but the key ID field is zero and the cookie field is the
 private value. The first 32 bits of the hash is the cookie used for the
 actual autokey calculation and is returned to the client on request. It
 is thus specific to each client separately and of no use to other
 clients or an intruder. A client obtains the cookie and signature using
 the Autokey protocol and saves it for later use.

 In client/server mode the cookie is a relatively weak function of the IP
 addresses and a server private value. The client uses the cookie and
 each key ID on the key list in turn to calculate the MAC for the next
 NTP packet. The server calculates these values and checks the MAC, then
 generates the MAC for the response using the same values, but with the
 IP source and destination addresses exchanged. The client calculates and
 checks the MAC and verifies the key ID matches the one sent. In this
 mode the sequential structure of the key list is not exploited, but
 doing it this way simplifies and regularizes the implementation.

 In broadcast mode, clients normally do not send packets to the server,
 except when first starting up to calibrate the propagation delay in
 client/server mode. At the same time the client temporarily
 authenticates as in that mode. After obtaining and verifying the cookie,
 the client continues to obtain and verify the autokey values. To obtain
 these values, the client must provide the ID of the particular server
 association, since there can be more than one operating in the same
 machine. For this purpose, the broadcast server includes the association
 ID in every packet sent, except when sending the first packet after
 generating a new key list, when it sends the autokey values instead.

 In symmetric mode each peer keeps state variables related to the other,
 so that a private cookie can be computed by a strong agreement
 algorithm. The cookie itself is the first 32 bits of the agreed key. The
 key list for each direction is generated separately by each peer and
 used independently, but each is generated with the same cookie.

 The server proventic bit is set only when the cookie or autokey values,
 depending on mode, and the associated timestamp and signature are all
 valid. If the bit is set, the client processes NTP time values; if the
 bit is not set, extension field messages are processed in order to run
 the Autokey protocol, but the NTP time values are ignored. Packets with
 old timestamps are discarded immediately while avoiding expensive

 cryptographic algorithms. Bogus packets with newer timestamps must pass
 the MAC and autokey tests, which is highly unlikely.

 Once the proventic bit has been set, the Autokey protocol is normally
 dormant. In all modes except broadcast server, packets are normally sent

 Mills Expires October, 2001 [page 9]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 without an extension field, unless the packet is the first one sent
 after generating a new key list or unless the client has requested the
 cookie or autokey values. If for some reason the client clock is
 stepped, rather than slewed, all cryptographic and time values for all
 associations are purged and the Autokey protocol restarted from scratch.
 This insures that stale values never propagate beyond a clock step.

 Public-Key Signatures

 Since public-key signatures provide strong protection against
 misrepresentation of sources, probably the most obvious intruder
 strategy is to deny or restrict service by replaying old packets with
 signed cryptographic values in a cut-and-paste attack. The basis values
 on which the cryptographic operations depend are changed often to
 deflect brute force cryptanalysis, so the client must be prepared to
 abandon an old key in favor of a refreshed one. This invites the
 opportunity for an intruder to clog the client or server by replaying
 old Autokey messages or to invent bogus new ones. A client receiving
 such messages might be forced to refresh the correct value from the
 legitimate server and consume significant processor resources.

 In order to foil such attacks, every extension field carries a timestamp
 in the form of the NTP seconds at the signature time. The signature
 includes the timestamp itself together with optional additional data. If
 the Autokey protocol has verified a proventic source and the NTP
 algorithms have validated the time values, the system clock is
 synchronized and signatures carry a nonzero (valid) timestamp. Otherwise
 the system clock is unsynchronized and signatures carry a zero (invalid)
 timestamp. Extension fields with invalid or old timestamps are discarded
 before any values are used or signatures verified.

 There are three signature types and six values to be signed:

1. The public value is signed at the time of generation, which occurs
 when the system clock is first synchronized and about once per day after
 that in the reference implementation. Besides the public value, the
 public key/host name, agreement parameters and leapseconds table are all
 signed as well, even if their values have not changed. All four of these
 values carry the same timestamp. On request, each of these values and
 associated signatures and timestamps are returned in an extension field.

2. The cookie value is computed and signed upon arrival of a cookie
 request message. The response message contains the cookie, signature and
 timestamp in an extension field.

3. The autokey values are signed when a new key list is generated, which
 occurs about once per hour in the reference implementation. On request,
 the autokey values, signature and timestamp are returned in an extension

 field.

 The most recent timestamp for each of the six values is saved for
 comparison. Once a signature with valid timestamp has been received,
 packets carrying extension fields with invalid timestamps or older valid

 Mills Expires October, 2001 [page 10]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 timestamps for the same value are discarded before the signature is
 verified. For packets containing signed extension fields, the timestamp
 deflects replays that otherwise might consume significant processor
 resources; for other packets the Autokey protocol deflects message
 modification and replay. In addition, the NTP protocol itself is
 inherently resistant to replays and consumes only minimal processor
 resources.

 All cryptographic values used by the protocol are time sensitive and are
 regularly refreshed. In particular, files containing cryptographic basis
 values used by signature and agreement algorithms are regenerated from
 time to time. It is the intent that file regeneration and loading of
 these values occur without specific warning and without requiring
 distribution in advance. While files carrying cryptographic data are not
 specifically signed, the file names have extensions called filestamps
 which reliably determine the time of generation. The filestamp for a
 file is a string of decimal digits representing the NTP seconds at the
 time the file was created.

 As the data are forwarded from server to client, the filestamps are
 preserved, including those for the public key/host name, agreement
 parameters and leapseconds table. Packets with older filestamps are
 discarded befor the signature is verified. Filestamps can in principle
 be used as a total ordering function to verify that the data are
 consistent and represent the latest available generation. For this
 reason, the files should always be generated on a machine when the
 system clock is valid.

 When a client or server initializes, it reads its own public and private
 key files, which are required for continued operation. Optionally, it
 reads the agreement parameters file and constructs the public and
 private values to be used later in the agreement algorithm. Also
 optionally, it reads the leapseconds table file. When reading these
 files it checks the filestamps for validity; for instance, all
 filestamps must be later than the time the UTC timescale was established
 in 1972.

 When the client first validates a proventic source and when the clock is
 stepped and when new cryptographic values are loaded from a server, the
 client recomputes all signatures and checks the filestamps for validity
 and consistency with the signature timestmaps:

1. If the system clock if valid, all timestamps and filestamps must be
 earlier than the current clock time.

2. All signature timestamps must be later than the public key timestamp.

3. In broadcast client mode, the cookie timestamp must be later than the

 autokey timestamp.

4. In symmetric modes the autokey timestamp must be later than the
 public value timestamp.

 Mills Expires October, 2001 [page 11]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

5. Timestamps for each cryptographic data type must be later than the
 filestamps for that type.

 In the above constraints, note that timestamps and filestamps have a
 granularity of one second, so that a difference of zero seconds is
 ambiguous. Furthermore, timestamps and filestamps can be in error as
 much as the value of the synchronization distance; that is, the sum of
 the root dispersion plus one-half the root delay. However, the NTP
 protocol normally operates with polling intervals much longer than one
 second, so that successive timestamps for the same data type are
 nonambiguous. On most machines, the processor time to generate a
 complete set of key files is longer than one second, so it is not
 possible to generate two generations in the same second.

 However, it may happen that agreement parameters files may be generated
 on two machines with the same filestamps, which creates an ordering
 ambiguity. The filestamps for leapseconds files should also be
 nonambiguous, since these files are created by NIST not more often than
 twice per year. While filestamp collisions should be so rare as to be
 safely ignored, a good management approach might require that these
 files be generated only on a schedule that guarantees that no more than
 one client or server generates a new key file set on any one day.

 Certificates

 PKI principles call for the use of certificates to reliably bind the
 server distinguished name (host name), public key and related values to
 each other. The certificate includes these values together with the
 distinguished name of the certificate atuthority (CA) and other values
 such as serial number and valid lifetime. These values are then signed
 by the CA using its private key. The Autokey protocol includes
 provisions to obtain the certificate, but at the present time does
 nothing with the values. A future version of the protocol is to include
 provisions to validate the binding using procedures established by the
 IETF.

 Packet Processing Rules

 Exhaustive examination of possible vulnerabilities at the various
 processing steps of the NTP protocol as specified in RFC-1305 have
 resulted in a revised list of packet sanity tests. These tests have been
 formulated to harden the protocol against defective header and data
 values. These are summarized below, since they are an integral component
 of the NTP cryptograhic defense mechanism. There are eleven tests,
 called TEST1 through TEST11 in the reference implementation, which are
 performed in a specific order designed to gain maximum diagnostic
 information while protecting against accidental or malicious errors.

https://datatracker.ietf.org/doc/html/rfc1305

 The tests are divided into three groups. The first group is designed to
 deflect access control and authentication violations. While access
 control and message digest violations always result immediate discard,
 it is necessary when first mobilizing an association to disable the

 Mills Expires October, 2001 [page 12]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 autokey test and certain timestamp tests. However, after the proventic
 bit is set, all tests are enforced.

 The second group of tests is designed to deflect packets from broken or
 unsynchronized servers and replays. In order to synchronize an
 association in symmetric modes, it is necessary to save the originate
 and receive timestamps in order to send them at a later time. This
 happens for the first packet that arrives, even if it violates the
 autokey test. In the normal case, the second packet to arrive will be
 accepted and the association marked reachable. However, an agressive
 intruder could replay old packets that could disrupt the saved
 timestamps. This could not result in incorrect time values, but could
 prevent a legitimate client from synchronizing the association.

 The third group of tests is designed to deflect packets with invalid
 header fields or time values with excessive errors. However, these tests
 do not directly affect cryptographic source proventication or
 vulnerability, so are beyond the scope of discussion in this document.

 For packets containing signed extension fields additional tests apply,
 depending on request type. There are the usual tests for valid extension
 field format, length and values. An instantiated variable, such as the
 public key/host name, agreement paramaters, public value, cookie or
 autokey values, is valid when the accompaning timestamp and filestamp
 are valid. The public key must be instantiated before any signatures can
 be verified. In symmetric modes the agreement parameters must be
 instantiated before the public and private agreement values can be
 determined; the public agreement value must be instantiated before the
 agreement algorithm can be run to determine the cookie. In all modes the
 cookie value must be determined before the key list can be generated.

 The object of the Autokey dances described below is to set the proventic
 bit. In client/server mode this bit is set when the cookie is validated.
 In other modes this bit is set when the autokey values are validated.
 The bit is cleared initially and when the autokey test fails. If once
 the bit is set and then cleared, the protocol will send an autokey
 request message at the next poll opportunity and continue to send this
 message until receiving valid autokey values or a general reset occurs.

 This behavior is a compromise between protocol responsiveness, where the
 current association can be maintained without interruption, and protocol
 vulnerability, where an intruder can repeatedly clog the receiver with
 replays that cause the client to needlessly poll the server and refresh
 the values.

 Error Recovery

 The protocol state machine which drives the various Autokey functions

 includes provisions for various kinds of error conditions that can arise
 due to missing files, corrupted data, protocol violation and packet loss
 or misorder, not to mention hostile intrusion. There are two mechanisms
 which maintain the liveness state of the protocol, the reachability

 Mills Expires October, 2001 [page 13]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 register defined in RFC-1305 and the watchdog timer, which is new in NTP
 Version 4.

 The reachability register is an 8-bit register that shifts left with
 zero replacing the rightmost bit. A shift occurs for every poll
 interval, whether or not a poll is actually sent. If an arriving packet
 passes all authentication and sanity checks, the rightmost bit is set to
 one. If any bit in this register is one, the server is reachable,
 otherwise it is unreachable. If the server was once reachable and then
 becomes unreachable, a general reset is performed. A general reset
 reinitializes all association variables to the state when first
 mobilized and returns all acquired resources to the system. In addition,
 if the association is not configured, it is demobilized until the next
 packet is received.

 The watchdog timer increments for every poll interval, whether or not a
 poll is actually sent and regardless of the reachability state. The
 counter is set to zero upon arrival of a packet from a proventicated
 source, as determined by the Autokey protocol. In the reference
 implementation, if the counter reaches 16 a general reset is performed.
 In addition, if the association is configured, the poll interval is
 doubled. This reduces the network load for packets that are unlikely to
 elicit a response.

 At each state in the protocol the client expects a particular response
 from the server. A request is included in the NTP message sent at every
 poll interval until the authentic response is received or a general
 reset occurs, in which case the protocol restarts from the beginning.
 While this behavior might be considered rather conservative, the
 advantage is that old cryptographic and time values can never persist
 from one mobilization to the next.

 There are a number of situations where some action on an association
 causes the remaining autokeys on the key list to become invalid. When
 one of these situations happens, the key list and associated keys in the
 key cache are purged. A new key list, signature and timestamp are
 generated when the next NTP message is sent, assuming there is one.
 Following is a list of these situations.

1. When the cookie value changes for any reason.

2. When a client switches from client/server mode to broadcast client
 mode. There is no further need for the key list, since the client will
 not transmit again.

3. When the poll interval is changed. In this case the calculated
 expiration times for the keys become invalid.

4. When a general reset is performed.

https://datatracker.ietf.org/doc/html/rfc1305

5. If a problem is detected when an entry is fetched from the key list.
 This could happen if the key was marked non-trusted or timed out, either
 of which implies a software bug.

 Mills Expires October, 2001 [page 14]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

6. When the cryptographic values are refreshed, the key lists for all
 associations are regenerated.

7. When the client is first proventicated or the system clock is
 stepped, the key lists for all associations are regenerated.

 Autokey Protocols

 This section describes the Autokey protocols supporting
 cryptographically secure server proventication. There are three
 subprotocols, called dances, corresponding to the NTP client/server,
 broadcast and symmetric active/passive modes. While Autokey messages are
 piggybacked in NTP packets, the NTP protocol assumes clients poll
 servers at a relatively low rate, such as once per minute, and where
 possible avoids large packets. In particular, it is assumed that a
 request sent at one poll opportunity will normally result in a response
 before the next poll opportunity.

 It is important to observe that, while the Autokey dances are obtaining
 and validating cryptographic values, the underlying NTP protocol
 continues to operate. Most packets used during the dances contain
 signatures, so the values can be believed even before the dance has
 concluded. Since signatures are valid once the certificate has been
 validated during the initial steps of the dance, by the time the Autokey
 values are validated the clock is usually already set. In this way the
 sometimes intricate Autokey dance interactions do not delay the
 accumulation of time values that will eventually set the clock. Each
 autokey dance is designed to be nonintrusive and to require no
 additional packets other than for regular NTP operations. Therefore, the
 phrase "some time later" in the descriptions applies to the next poll
 opportunity.

 The Autokey protocol data unit is the extension field, one or more of
 which can be piggybacked in the NTP packet. An extension field contains
 either a request with optional data or a response with data. To avoid
 deadlocks, any number of responses can be included in a packet, but only
 one request. Some requests and most responses are protected by
 timestamped signatures. The signature covers the data, timestamp and
 filestamp, where applicable. The timestamp is set to the default (zero)
 when the sender is not proventicated; otherwise, it is set to the NTP
 seconds when the signature was generated. The following rules are
 designed to detect invalid header or data fields and to deflect clogging
 attacks. Each extension field is validated in the following order and
 discarded if:

1. The request or response code is invalid or the data field has
 incorrect length.

2. The signature field is either missing or has incorrect length.

3. The public key is missing or has incorrect length.

 Mills Expires October, 2001 [page 15]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

4. In the case of the agreement algorithm, the agreement parameterss are
 missing or have incorrect lengths.

5. The signature timestamp is earlier than the last received timestamp
 of the same type or the two timestamps are equal and the proventic bit
 is set..

6. Where applicable, the filestamp is earlier than the last received
 filiestamp of the same type.

 Only if the extension field passes all the above tests is the signature
 verified using PKI algorithms. Otherwise and in general, a response is
 generated for every request, even if the requestor is not proventicated.
 However, some responses may have truncated data or signature fields
 under certain conditions. If these fields are present and have correct
 length, signatures are present and verifiable.

 In the Autokey protocol every transmitted packet is associated with an
 autokey previously computed and stored in the key list. When the last
 entry in the list is used, a new list is constructed as described above.
 This requires knowledge of the cookie value. If for some reason the
 cookie value is changed, the remaining entries in the key list are
 purged and a new one constructed. However, if an extension field is
 present, the current autokey is discarded and the autokey reconstructed
 using a cookie value of zero.

 A timestamp-based agreement protocol is used to manage the distribution
 of the certificate, agreement parameters and leapseconds table. The
 association ID request and response messages include the certificate,
 agreement and leapseconds bits from the system status word. one or more
 of these bits are set when the associated data are present, either
 loaded from local files or retrieved from another server at some earlier
 time. If any of these bits are set in the association ID response to a
 client in client/server mode or a peer in symmetric mode, the data are
 requested from the server or peer and, once obtained, the bits are
 reset. However, the response data are stored only if more recent than
 the data already stored.

 In the descriptions below, it is assumed that the client and server have
 loaded their own private key and public key, as well as certificate,
 agreement parameters and leapseconds table, where available. Public keys
 for other servers, as well as the agreement parameters and leapseconds
 table, can be loaded from local files or retrieved from any server.
 Further information on generating and managing these files is in
 Appendix B.

 Preliminaries

 The first thing the server needs to do is obtain the system status word,

 which reveals which cryptographic values the server is prepared to
 offer, and then the public key and certificate. These steps are
 independent of which mode the server is operating in - client/server,
 broadcast or symmetric modes.

 Mills Expires October, 2001 [page 16]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 The following pseudo-code describes the client state machine operations.
 Note that the packet can one request and one or more responses. The
 machine requires the association ID, public key and optional
 certificate, in that order. While not further specified in this
 memorandum, an optional parameter request message can be used to
 negotiate algorithm identifiers, parameters and alternate identification
 values. Note that the association ID response message also contains the
 system status word, which contains the certificate bit.

 if (response_pending)
 send_response;
 if (!parameters)
 request_parameters;
 if (!association_ID)
 request_association_ID;
 else if (!public_key)
 request_public_key;
 else if (certificate_bit)
 request_certificate;

 The following diagram shows the preliminary protocol dance. In this and
 following diagrams the NTP packet type is shown above the arrow and the
 extension field(s) message type shown below. Note that in the
 client/server mode the server responds immediately to the request, but
 in the symmetric modes the response may be delayed for a period up to
 the current poll interval. The following cryptographic values are
 instantiated by the dance:

 public key server public key
 host name server host name
 CA name certificate authority host name (optional)
 filestamp generation time of public key file
 secure bit set when the public key is stored and validated

 server client
 | |
 | NTP client |
 1 |<-----------------| mobilize client association; generate key list
 | assoc ID req | with default cookie; send status word
 | |
 | NTP server |
 2 |----------------->| store status word
 | assoc ID rsp |
 | |
 | NTP client |
 3 |<-----------------| request public key and host name
 | key/name req |

 | |
 | NTP server |
 4 |----------------->| store public key, host name, filestamp and
 | key/name rsp | timestamp
 | ... |

 Mills Expires October, 2001 [page 17]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 | |
 | NTP client |
 5 |<-----------------| request certificate
 | certif req |
 | |
 | NTP server |
 6 |----------------->| store certificate; verify credentials; set
 | certif rsp | secure bit
 | ... |

 The dance begins when the client (or symmetric-active peer) on the right
 mobilizes an association, generates a key list using the default cookie
 and sends an association ID request message (1) to the server (or
 symmetric-passive peer) on the left. The server responds with an
 association ID response message (2) including the server association ID
 and status word. To protect against a clogging attack, the transmit
 timestamp in the NTP header in the request must be identical to the
 originate timestamp in the response. The client retransmits request (1)
 at every poll opportunity until receiving a valid response (2) or
 association timeout.

 Some time later the client sends a public key/host name request (3) to
 the server. The server responds with the requested data and associated
 timestamp and filestamp (4). The client checks the timestamp and
 filestamp, verifies the signature and initializes the public key and
 host name. If the certificate bit in the status word is zero, indicating
 the server is not prepared to send one, and if the client concurs, the
 secure bit is set at this time and the certificate exchange is bypassed.
 The client retransmits request (3) at every poll opportunity until
 receiving a valid response (4) or association timeout.

 The public key/host name message can be interpreted as a poor-man's
 certificate, since it is signed and timestamped. However, strong
 security requires a CA sign the host name and public key values and
 establish a period of validity for the signature. As an optional
 feature, the client sends a certificate request (5) to the server. The
 server responds with the requested data and assciated timestamp and
 filestamp (6). The response is signed by the CA's public key, so a
 further step may be necessary to obtain the CA's certificate, which
 contains its public key. The details for these additional steps are for
 further study.

 Since (4) is the first signed message received, the timestamp and
 filestamp have only marginal utility, but do serve to avoid messages
 from unsynchronized servers and deflect replays. The interesting
 question is whether to provide automatic update when the server makes a
 new key generation, since the new generation would have a later
 filestamp and instantly deprecate all cryptographic values with earlier

 timestamps. This brings up the question of a distributed greeting
 protocol, which may be a topic for future study. Meanwhile, the
 reference implementation accepts only the first message received and
 discards all others.

 Mills Expires October, 2001 [page 18]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 When the secure bit is set, data in packets with signatures are valid
 and the NTP protocol continues in parallel with the Autokey protocol.

 Client/Server Modes (3/4)

 In client/server modes the server keeps no state variables specific to
 each of possibly very many clients and mobilizes no associations. The
 server regenerates a cookie for each packet received from the client.
 For this purpose, the server hashes the cookie from the IP addresses and
 private value with the key ID field set to zero, as described
 previously, then provides it to the client. Both the client and server
 use the cookie to generate the autokey which validates each packet
 received. To further strengthen the validation process, the client
 selects a new key ID for every packet and verifies that it matches the
 key ID in the server response to that packet.

 Before proceeding to the full protocol description, it should be noted
 that in the case of lightweight SNTP protocol associations, it is not
 necessary to proceed beyond the preliminary protocol defined above. Most
 if not all SNTP implementations send only a single client-mode packet
 and expect only a single NTP server-mode packet in return. Since the
 Autokey protocol is piggybacked in the NTP packet, the clock can be set
 and the server authenticated with a single packet exchange if a
 certificate is not required and in two exchanges if it is. Details of
 this simplified protocol remain to be determined.

 The following pseudo-code describes the client state machine operations.
 The machine requires the association ID, public key, optional
 certificate, cookie, autokey values and leapseconds table in that order,
 but the autokey values are required only if broadcast client mode.

 if (response_pending)
 send_response;
 if (!cookie)
 request_cookie;
 else if (!autokey_values && broadcast_client))
 request_autokey_values;
 else if (!leapseconds_table)
 request_leapseconds_table;

 The following diagram shows the protocol dance in client/server mode.
 The following cryptographic values are instantiated by the dance:

 public key server public key
 host name server host name
 filestamp generation time of public key file
 timestamp signature time of public key/host name values

 cookie cookie determined by the server for this client

 timestamp signature time of cookie
 proventic bit set when client clock is synchronized to source

 server client

 Mills Expires October, 2001 [page 19]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 | |
 | NTP client |
 7 |<-----------------| request cookie
 | cookie req |
 | |
 | NTP server |
 8 |----------------->| store cookie and timestamp; set proventic bit;
 | cookie rsp |
 | ... |
 | |
 | NTP client |
 9 |<-----------------| regenerate key list with server cookie
 | |
 | NTP server |
 10 |----------------->|
 | |
 | continue |
 = client/server =

 The dance begins when the client on the right mobilizes an association
 and validates the public key as in the preliminary dance above. Some
 time later the client sends a cookie request (7). The server immediately
 responds with the cookie and timestamp (8). The client checks the
 timestamp, verifies the signature and initializes the cookie and cookie
 timestamp, then sets the proventic bit. Since the cookie has changed,
 the client regenerates the key list with this cookie when the next
 packet is sent. The client retransmits request (7) at every poll
 opportunity until receiving a valid response (8) or association timeout.

 After successful verification, there is no further need for extension
 fields, unless an error occurs or the server generates a new private
 value. When this happens, the server fails to authenticate packet (9)
 and, following the original NTP protocol, responds with a NAK packet
 (10), which the client ignores. Eventually, an association timeout and
 general reset occurs and the dance restarts from the beginning. Of
 course, the NAK client could interpret the NAK message to restart the
 protocol immediately and avoid the timeout. However, this invites the
 opportunity for an intruder to destabilize the state machine with
 spurious NAK messages.

 Broadcast Mode (5)

 In broadcast mode, packets are always sent with an extension field.
 Since the autokey values for these packets use a well known default
 cookie (zero), they can in principle be remanufactured with a new MAC
 acceptable to the receiver; however, the key list provides the
 authentication function as described earlier. The broadcast server keeps
 no state variables specific to each of possibly very many clients and

 mobilizes no associations for them.

 The following pseudo-code describes the broadcast server state machine
 operations. Each broadcast packet includes one response message
 containing either the signed autokey values, if the first autokey on the

 Mills Expires October, 2001 [page 20]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 key list, or the association ID and status word otherwise. Note however,
 when a broadcast client first comes up, the state machine also responds
 to client requests as in client/server mode without affecting the
 broadcast packets. Note that the association ID request and response
 messages also contain the system status word.

 if (new_list)
 send_autokey_values;

 else
 send_association_ID;

 The server on the left in the diagram below sends packets that are
 received by each of a possibly large number of clients, one of which is
 shown on the right. Ordinarily, clients do not send packets to the
 server, except to calibrate the propagation delay and to obtain
 cryptographic values such as the cookie and autokey values. The
 following diagram shows the protocol dance in broadcast mode. The
 following cryptographic values are instantiated by the dance:

 public key server public key
 host name server host name
 filestamp generation time of public key file
 timestamp signature time of public key/host name values

 cookie cookie determined by the server for this client
 timestamp signature time of cookie

 autokey values initial key ID, initial autokey
 timestamp signature time of autokey values

 proventic bit set when client clock is synchronized to source

 server client
 | |
 | NTP broadcast |
 1 |----------------->| mobilize broadcast client association; set
 | assoc ID rsp | initially to operate in client/server mode
 | |
 | ... | continue as in preliminary protocol above
 | |
 | NTP client |
 7 |<-----------------| request cookie
 | cookie req |
 | |
 | NTP server |
 8 |----------------->| store cookie and timestamp
 | cookie rsp |
 | ... |

 | |
 | NTP client |
 9 |<-----------------| regenerate key list with server cookie
 | autokey req |

 Mills Expires October, 2001 [page 21]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 | |
 | NTP server |
 10 |----------------->| store autokey values and timestamp; set
 | autokey rsp | proventic bit
 | ... |
 | |
 | NTP client |
 |<-----------------| continue to accumulate time values
 | |
 | NTP server |
 |----------------->|
 | |
 | continue |
 = volley =
 | |
 | NTP client |
 |<-----------------|
 | |
 | NTP server |
 |----------------->| set clock and propagation estimate; discard
 | | remaining keys; switch to broadcast client mode
 | continue |
 = broadcast =
 | |
 | NTP broadcast |
 |----------------->| server rolls new key list; client refreshes
 | autokey rsp | autokey values
 | |
 = =

 The server sends broadcast packets (1) continuously at intervals of
 about one minute using the key list and regenerating the list as
 required. The first packet sent after regenerating the list includes the
 autokey values and signature; other packets include only the association
 ID and status word.

 The dance begins when the client on the right receives a broadcast
 message (1). It mobilizes a broadcast client association set initially
 to operate in client/server mode. It then continues to operate as in the
 prelimiary protocol to obtain and validate the public key and host name
 values. However, the client does not initiate the dance until some time
 later (to avoid implosion at the server). However, in addition to the
 status word, the association ID response includes the association ID of
 the server, so the correct association, if more than one, can be
 identified.

 Some time later the client sends a cookie request (7). The server
 immediately responds with the requested value (8). The client checks the

 timestamp, verifies the signature and initializes the cookie and cookie
 timestamp. Since the cookie has changed, the client regenerates the key
 list with this cookie when the next packet is sent. The client
 retransmits request (7) at every poll opportunity until receiving a
 valid response (8) or association timeout.

 Mills Expires October, 2001 [page 22]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 If an autokey response happens to be in one of the server packets (1),
 the client has stored the autokey values and autokey timestamp, so can
 switch immediately to broadcast client mode and send no further packets.
 Otherwise, some time later the client sends an autokey request (9). The
 server immediately responds with the values (10). The client checks the
 timestamp, verifies the signature and initializes the autokey values and
 autokey timestamp and sets the proventic bit. The client retransmits
 packet (9) until receiving a valid response (10) or association timeout.

 After successful verification, there is no further need for extension
 fields and the client can switch to broadcast client mode and send no
 additional packets. However, it is the usual practice to send additional
 client/server packets in order for the client mitigation algorithms to
 refine the clock offset/delay estimates. When a sufficient number of
 estimates are available, the client discards the cookie and remaining
 keys on the key list, switches to broadcast client mode, calculates the
 propagation delay and sets the clock.

 When the server regenerates the key list, it sends an autokey response
 in the first packet, which allows the clients to validate it and reset
 the autokey values. Unless this packet happens to be lost, the clients
 can continue with no further interaction with the server. Otherwise, the
 client fails to authenticate the packets (1). Eventually, an association
 timeout and general reset occurs and the dance restarts from the
 beginning.

 Symmetric Active/Passive Mode (1/2)

 In symmetric modes there is no explicit client/server relationship,
 since each peer in the relationship can operate as a server with the
 other operating as a client. Which peer acts as the server depends on
 which peer has the smallest root synchronization distance to its
 ultimate reference source, and the choice may change from time to time.
 This requirement results in a quite complex interaction between the
 peers, especially when considering the many possibilities of failure and
 recovery.

 There are two protocol scenarios involving symmetric modes. The simplest
 scenario is where both peers have configured associations that operate
 continuously in symmetric active mode and cryptographic values such as
 the public key/host name, certificate, agreement parameters and public
 value can be configured in advance. A more interesting scenario is when
 a symmetric active peer with a configured association begins operation
 with a symmetric-passive peer initially without such an association.

 The following pseudo-code describes the symmetric state machine
 operations. Note that the packet can contain one request and one or two

 responses. The machine requires the association ID, public key,
 certificate, agreement parameters, agreement public value, autokey
 values and leapseconds table in that order. There is a provision to send
 the current autokey values when the peer has not requested them. This

 Mills Expires October, 2001 [page 23]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 happens when a peer first proventicates and recomputes the key list
 using the agreed cookie.

 if (response_pending)
 send_response;
 if (!agreement_parameters)
 request_agreement_parameters;
 else if (!agreement)
 send_agreement;
 else if (!autokey_values)
 request_autokey_values;
 else if (!new_list)
 send_autokey_values;
 else if (!leapseconds_table)
 request_leapseconds_table;

 The following diagrams show the protocol dance in symmetric
 active/passive mode. The dance in symmetric active/active mode is much
 simpler and similar to two independent client/server modes, one for each
 direction, but with the cookie requests replaced by an agreement
 algorithm. Note that in the following the NTP client header is replaced
 by the NTP symmetric active header and the NTP server header is replaced
 by the NTP symmetric passive header. The following cryptographic values
 are instantiated by each peer in the dance:

 public key server public key
 host name server host name
 filestamp generation time of public key file
 timestamp signature time of public key/host name values

 cookie cookie determined by the agreement algorithm
 timestamp signature time of cookie

 autokey values initial key ID, initial autokey
 timestamp signature time of autokey values

 proventic bit set when client clock is synchronized to source

 passive active
 | |
 | NTP active |
 1 |<-----------------| mobilize symmetric active association; generate
 | assocID req | key list with default cookie; send status word
 | |
 | ... | continue as in preliminary protocol above
 | |
 | NTP passive |
 2 |----------------->| store status word

 | assoc ID rsp |
 | |
 | NTP active |
 1 |<-----------------| generate key list with default cookie; request
 | key/name req | passive key/name

 Mills Expires October, 2001 [page 24]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 | ... |
 | |
 | NTP passive |
 2 |----------------->| verify passive credentials
 | key/name rsp |
 | key/name req |
 | ... |
 | |
 | NTP active |
 3 |<-----------------| send active key/name; request agreement
 | key/name rsp | parameters
 | param req |
 | ... |
 | |
 | NTP passive |
 4 |----------------->| store agreement parameters; and timestamp; set
 | param rsp | proventic bit
 | agree rsp |
 | ... |
 | |
 | NTP active |
 3 |<-----------------| send active key/name; request agreement
 | key/name rsp | parameters
 | param req |
 | ... |
 | |
 | NTP passive |
 4 |----------------->| store autokey values and timestamp; set
 | key/name req | proventic bit
 | autokey rsp |
 | ... |
 | |
 | NTP active |
 5 |<-----------------| continue to accumulate time values
 | key/name rsp |
 | |
 = continue =
 | |
 | NTP passive |
 6 |----------------->| set clock
 | key/name req |
 | |
 | continue below |
 = =

 The dance begins when the active peer on the right generates a key list
 with default cookie and timestamp and sends a public key/host name
 request to the passive peer on the left (1). The passive peer checks its

 access control list and (optionally) queries the DNS using the server IP
 address to obtain related cryptographic values. If successful, the peer
 mobilizes an association in symmetric passive mode, but takes no further
 action until the next poll interval, as required by the NTP protocol.
 From this point the passive peer responds to requests, but otherwise

 Mills Expires October, 2001 [page 25]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 ignores all time values until the active peer has set its clock and can
 provide valid timestamps.

 Some time later the passive peer generates a key list with default
 cookie and timestamp and sends its public key/host name values along
 with a request for the public key/host name values of the active peer
 (2). Subsequently, the active peer sends these values, but they are
 ignored since the timestamps are invalid. Meanwhile, the active peer
 checks the timestamp, verifies the signature and initializes the public
 key/host name values, filestamp and timestamp. The active peer
 retransmits request (1) at every poll opportunity until receiving a
 valid response (2) or until association timeout.

 Some time later the active peer sends the requested public key/host name
 values along with an autokey request (3). The passive peer retransmits
 request (2) at every poll opportunity until receiving a valid timestamp
 and verified signature or until association timeout. Since the cookies
 for each peer already have a common value and the active peer is
 unsynchronized, it is pointless to run the agreement algorithm.

 Some time later the passive peer sends the requested autokey values (4).
 The active peer checks the timestamp, verifies the signature and
 initializes the autokey values and timestamp and sets the proventic bit.
 At this point the active peer has authenticated the passive peer, but
 may not have accumulated sufficient time values to set the clock and
 provide valid timestamps. Operation continues in rounds where the
 passive peer requests the public key/host name values and the active
 peer returns them, but the passive peer ignores them. Eventually, the
 active peer accumulates sufficient time values to set the clock. While
 the cookie has not changed, the timestamp has, so the key list is
 regenerated with the default key (strictly speaking, only the signature
 needs to be recomputed). The active peer is now proventicated, but the
 passive peer has not yet authenticated the active peer.

 Some understanding of the tricky actions to follow can be gained from
 the observation that, up until this point every message received by the
 active peer had a signed response field, so that the cookie value is the
 default. However, at this point the active peer has all the
 cryptographic means at hand and does not need to request anything
 further from the passive peer. Thus, the passive peer sends nothing but
 requests and these are not signed or timestamped. Since the cryptograhic
 security relies entirely on the autokey test, it is important that both
 peers generate key lists with the same cookie.

 The steps now taken are shown below with the active peer on the left and
 the passive peer on the right.

 active passive

 | |
 | NTP active |
 1 |----------------->| validate active peer, compute agreed key,
 | key/name rsp | regenerate key list with peer key
 | public req |

 Mills Expires October, 2001 [page 26]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 | |
 | NTP passive |
 2 |<-----------------| active computes agreed key, regenerates key
 | public rsp | list with agreed key
 | autokey req |
 | ... |
 | |
 | NTP active |
 3 |----------------->| set authentic
 | autokey rsp |
 | autokey req |
 | ... |
 | |
 | NTP passive |
 4 |<-----------------|
 | autokey rsp |
 | ... |
 | |
 | NTP active |
 5 |----------------->| regular operation (no extension fields)
 | ... |
 | |
 | NTP passive |
 6 |<-----------------|
 | |
 | continue |
 = active/passive =

 The agreement parameters must have been previously obtained by at least
 one of the peers, either directly from a file or indirectly from another
 server running the Autokey protocol. A peer needing the parameters sends
 an agreement parameters request to the other peer and that peer responds
 with the requested data. This exchange, along with the leapseconds table
 exchange, is similar to the public key/host name exchange, but not shown
 here.

 Once the proventic bit is set, the next message sent by the active peer
 contains the public key/host name requested by the passive peer, but now
 with valid timestamp, plus a public value request containing the active
 peer public value (1). The passive peer checks the public key/host name
 filestamp and timestamp, verifies the signature and initializes the
 values. Optionally, it checks its access control list and queries the
 DNS using the server IP address to obtain related cryptographic values.
 Conceivably, the active peer could be found bogus at this time; what to
 do in this case is for further study.

 The passive peer next checks the public value request timestamp,
 verifies the signature and runs the agreement algorithm to construct the

 shared cookie. Since the cookie has changed, the peer regenerates the
 key list with this cookie when the next packet is sent.

 Some time later the passive peer sends a public value response including
 its own public value together with an autokey request (2). The active

 Mills Expires October, 2001 [page 27]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 peer checks the timestamp, verifies the signature and runs the agreement
 algorithm to construct the shared cookie. Since the cookie has changed,
 the peer regenerates the key list with this cookie when the next packet
 is sent. The active peer retransmits the public value request (only) (1)
 at every poll opportunity until receiving a valid response (2) or
 association timeout.

 Some time later the active peer sends its autokey values as requested
 together with an autokey request (3). The passive peer checks the
 timestamp, verifies the signature, initializes the autokey values and
 sets its proventic bit. The passive peer retransmits request (2) at
 every poll opportunity until receiving a valid response (3) or
 association timeout.

 Some time later the passive peer sends its autokey values as requested
 (4). The active peer checks the timestamp, verifies the signature, and
 initializes the autokey values (the proventic bit is already set). The
 active retransmits the autokey request (only) (3) until receiving a
 valid response (4) or association timeout.

 At this point both peers have completed the Autokey dance and each is
 authenticated to the other. However, note that the NTP rules require a
 peer operating at a lower stratum disregards time values from a hither
 stratum peer; so, while the peers continue to exchange time values, the
 values will not be used unless the passive server for some reason loses
 its synchronization source.

 After successful authentication, there is no further need for extension
 fields, unless an error occurs or one of the peers generates new public
 values. The protocol requires that, if a peer receives a public value
 resulting in a different cookie, it must send its own public value.
 Since the autokey values are included in an extension field when a new
 key list is generated, there is ordinarily no need to request these
 values, unless one or the other peer restarts the protocol or the packet
 containing the autokey values is lost. Eventually, an association
 timeout and general reset occurs and the dance restarts from the
 beginning.

 Security Analysis

 This section discusses the most obvious security vulnerabilities in the
 various modes and phases of operation. Throughout the discussion the
 cryptographic algorithms themselves are assumed secure; that is, a
 successful brute force attack on the algorithms or public/private keys
 or agreement values is unlikely. However, vulnerabilities remain in the
 way the actual cryptographic data, including the cookie and autokey
 values, are computed and used.

 While the protocol has not been subjected to a formal analysis, a few
 preliminary observations are warranted. The protocol cannot loop forever
 in any state, since the association timeout and general reset insure
 that the association variables will eventually be purged and the
 protocol will start from the beginning. A general reset is performed on

 Mills Expires October, 2001 [page 28]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 all associations when the clock is first set and when it is stepped
 after that. This purges all cryptographic values and time values
 dependent on unproventicated sources.

 The first exchange in all protocol modes involves an association ID
 request and response cycle. Bits in the server status word indicate
 whether the server has the agreement paramters and/or leapseconds table.
 The association ID messages are not protected by a signature, so
 presumably an intruder can manufacture fake bits causing a client
 livelock or deadlock condition. To protect against this vulnerability,
 the transmit timestamp of the request is matched against the originate
 timestamp of the response. The response is accepted only if the two
 values match. An intruder is unlikely to predict the transmit timestamp,
 which in this case is an effective nonce.

 Once the clock is set, and except for the special cases summarized
 below, no old or duplicate values will be accepted in any state and an
 intruder cannot induce a clogging attack, since the MAC, autokey and
 timestamp tests will discard packets before a clogging vulnerability is
 exposed. While significant vulnerabilities exist during the initial
 protocol states while the necessary values are being obtained, the most
 an intruder can do is prevent the protocol dance from completing. If it
 does complete, it must complete correctly.

 The cryptographic values are always obtained in the same order and in
 the same order as the dependency relationships between them. No
 cryptographic variables or time variables are instantiated unless the
 server is proventic and proventicated. The public key and host name must
 be obtained first and no other messages are accepted until they have
 been obtained. The cookie must be obtained before the autokey values
 that depend on them, etc. Finally, in symmetric modes, both peers obtain
 cryptographic values in the same order, so deadlock cannot occur.

 Some observations on the particular engineering constraints of the
 Autokey protocol are in order. First, the number of bits in some
 cryptographic values are considerably smaller than would ordinarily be
 expected for strong cryptography. One of the reasons for this is the
 need for compatibility with previous NTP versions; another is the need
 for small and constant latencies and minimal processing requirements.
 Therefore, what the scheme gives up on the strength of these values must
 be regained by agility in the rate of change of the cryptographic basis
 values. Thus, autokeys are used only once and basis values are
 regenerated frequently. However, in most cases even a successful
 cryptanalysis of these values compromises only a particular
 client/server association and does not represent a danger to the general
 population.

 There are three tiers of defense against hostile intruder interference.

 The first is the message authentication code (MAC) based on a keyed
 message digest or autokey generated as the hash of the IP address
 fields, key ID field and a special cookie, which can be public or the
 result of an agreement algorithm. If the message digest computed by the
 client does not match the value in the MAC, either the autokey used a

 Mills Expires October, 2001 [page 29]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 different cookie than the server or the packet was modified by an
 intruder. Packets that fail this test are discarded without further
 processing; in particular, without spending processor cycles on
 expensive public-key algorithms.

 The second tier of defense involves the key list, which is generated as
 a repeated hash of autokeys and used in the reverse order. While any
 receiver can authenticate a message by hashing to match a previous key
 ID, as a practical matter an intruder cannot predict the next key ID and
 thus cannot spoof a packet acceptable to the client. In addition,
 tedious hashing operations provoked by replays of old packets are
 suppressed because of the basic NTP protocol design. Finally, spurious
 public-key computations provoked by replays of old packets with
 extension fields are suppressed because of the signature timestamp
 check.

 The third tier of defense is represented by the Autokey protocol and
 extension fields with timestamped signatures. The signatures are used to
 reliably bind the autokey values to the private key of a trusted server.
 Once these values are instantiated, the key list authenticates each
 packet relative to its predecessors and by induction to the instantiated
 autokey values.

 In addition to the three-tier defense strategy, all packets are
 protected by the NTP sanity checks. Since all packets carry time values,
 replays of old or bogus packets can be deflected once the client has
 synchronized to proventic sources. However, the NTP sanity checks are
 only effective once the packet has passed all cryptographic tests. This
 is why the signature timestamp is necessary to avoid expensive
 calculations that might be provoked by replays. Since the signature and
 verify operations have a high manufacturing cost, in all except
 client/server modes the protocol design protects against a clogging
 attack by signing cryptographic values only when they are created or
 changed and not on request.

 Specific Attacks

 While the above arguments suggest that the vulnerability of the Autokey
 protocols to cryptanalysis is suitably hard, the same cannot be said
 about the vulnerability to a replay or clogging attack, especially when
 a client is first mobilized and has not yet proventicated. In the
 following discussion a clogging attack is considered a replay attack at
 high speed which can clog the network and deny service to other network
 users or clog the processor and deny service to other users on the same
 machine. While a clogging attack can be concentrated on any function or
 algorithm of the Autokey protocol, the must vulnerable target is the
 public key routines to sign and verify public values. It is vital to
 shield these routines from a clogging attack.

 In all modes the cryptographic seed data used to generate cookies and
 autokey values are changed from time to time. Thus, a determined
 intruder could save old request and response packets containing these
 values and replay them before or after the seed data have changed. Once

 Mills Expires October, 2001 [page 30]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 the client has proventicated, the client will detect replays due to the
 old timestamp and discard the data. This is why the timestamp test is
 done first and before the signature is computed. However, before this
 happens, the client is vulnerable to replays whether or not they result
 in clogging.

 There are two vulnerabilities exposed in the protocol design: a sign
 attack where the intruder hopes to clog the victim with needless
 signature computations, and a verify attack where the intruder attempts
 to clog the victim with needless verification computations. The
 reference implementation uses the RSA public key algorithms for both
 sign and verify functions and these algorithms require significant
 processor resources.

 In order to reduce the exposure to a sign attack, signatures are
 computed only when the data have changed. For instance, the autokey
 values are signed only when the key list is regenerated, which happens
 about once an hour, while the public values are signed only when the
 agreement values are regenerated, which happens about once per day.
 However, a server is vulnerable to a sign attack where the intruder can
 clog the server with cookie-request messages. The protocol design
 precludes server state variables stored on behalf of any client, so the
 signature must be recomputed for every cookie request. Ordinarily,
 cookie requests are seldom used, except when the private values are
 regenerated. However, a determined intruder could replay intercepted
 cookie requests at high rate, which may very well clog the server. There
 appears no easy countermeasure for this particular attack.

 The intruder might be more successful with a verify attack. Once the
 client has proventicated, replays are detected and discarded before the
 signature is verified. However, if the cookie is known or compromised,
 the intruder can replace the timestamp in an old message with one in the
 future and construct a packet with a MAC acceptable to a client, even if
 it has bogus signature and incorrect autokey sequence. The packet passes
 the MAC test, but then tricks the client to verify the signature, which
 of course fails. What makes this kind of attack more serious is the fact
 that the cookie used when extension fields are present is well known
 (zero). Since all broadcast packets have an extension field, all the
 intruder has to do is clog the clients with responses including
 timestamps in the future. Assuming the intruder has joined the NTP
 broadcast group, the attack could clog all other members of the group.
 This attack can be deflected by the autokey test, which in the reference
 implementation is after extension field processing, but this requires
 very intricate protocol engineering and is left for a future refinement.

 An interesting vulnerability in client/server mode is for an intruder to
 replay a recent client packet with an intentional bit error. This could
 cause the server to return the special NAK packet. A naive client might

 conclude the server had refreshed its private value and so attempt to
 refresh the server cookie using a cookie-request message. This results
 in the server and client burning spurious machine cycles and invites a
 clogging attack. This is why the reference implementation simply
 discards all protocol and procedure errors and waits for timeout in

 Mills Expires October, 2001 [page 31]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 order to refresh the values. However, a more clever client may notice
 that the NTP originate timestamp does not match the most recent client
 packet sent, so can discard the bogus NAK immediately.

 In broadcast and symmetric modes the client must include the association
 ID in the Autokey request. Since association ID values for different
 invocations of the NTP daemon are randomized over the 16-bit space, it
 is unlikely that a very old packet would contain a valid ID value. An
 intruder could save old server packets and replay them to the client
 population with the hope that the values will be accepted and cause
 general chaos. The conservative client will discard them on the basis of
 invalid timestamp.

 As mentioned earlier in this memorandum, an intruder could pounce on the
 initial volley between peers in symmetric mode before both peers have
 determined each other reachable. In this volley the peers are vulnerable
 to an intruder using fake timestamps. The result can be that the peers
 never synchronize the timestamps and never completely mobilize their
 associations.

 Present Status and Unifinished Business

 The Autokey protocol described in this memorandu has been implemented in
 the public software distribution for NTP Version 4 and has been tested
 in machines of either endian persuasion and both 32- and 64-bit
 architectures and kernels. Testing the implementation has been
 complicated by the many combinations of modes and failure/recovery
 mechanisms, including daemon restarts, key expiration, communication
 failures and various management mistakes. The experience points up the
 fact that many little gotchas that are survivable in ordinary protocol
 designs become showstoppers when strong cryptographic assurance is
 required.

 The analysis, design and implementation of the Autokey protocol is
 basically mature; however, There are several remaining implementation
 issues. One has to do with cryptographic parameter negotiation, as in
 IPSEC protocols such as Photuris. As with Photuris, there may be a need
 to offer and agree to one of possibly several hashing algorithms,
 signature algorithms and agreement algorithms. A message type has been
 defined for this purpose, but its syntax and semantics remain to be
 provoked.

 Another issue is support for certificates and certificate authorities,
 in particular Secure DNS services. In the reference implementation a
 complicating factor is the existing banal state of the configuration and
 resolver code. Over the years this code has sprouted to a fractal-like
 state where possibly the only correct repair is a complete rewrite.

Appendix A. Packet Formats

 The NTP Version 4 packet consists of a number of fields made up of 32-
 bit (4 octet) words. The packet consists of three components, the
 header, one or more optional extension fields and an optional message

 Mills Expires October, 2001 [page 32]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 authenticator code (MAC), consisting of the Key ID and Message Digest
 fields. The format is shown below, where the size of some multiple word
 fields is shown in bits.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |LI | VN |Mode | Stratum | Poll | Precision |
 +-+
 | Root Delay |
 +-+
 | Root Dispersion |
 +-+
 | Reference ID |
 +-+
 | |
 | Reference Timestamp (64) |
 | |
 +-+
 | |
 | Originate Timestamp (64) |
 | |
 +-+
 | |
 | Receive Timestamp (64) |
 | |
 +-+
 | |
 | Transmit Timestamp (64) |
 | |
 +-+
 | |
 | |
 = Extension Field(s) =
 | |
 | |
 +-+
 | Key ID |
 +-+
 | |
 | |
 | Message Digest (128) |
 | |
 | |
 +-+

 The NTP header extends from the beginning of the packet to the end of
 the Transmit Timestamp field. The format and interpretation of the

 header fields are backwards compatible with the NTP Version 3 header
 fields as described in RFC-1305, except for a slightly modified
 computation for the Root Dispersion field. In NTP Version 3, this field
 includes an estimated jitter quantity based on weighted absolute

 Mills Expires October, 2001 [page 33]

https://datatracker.ietf.org/doc/html/rfc1305

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 differences, while in NTP Version 4 this quantity is based on weighted
 root-mean-square (RMS) differences.

 An unauthenticated NTP packet includes only the NTP header, while an
 authenticated one contains a MAC. The format and interpretation of the
 NTP Version 4 MAC is described in RFC-1305 when using the Digital
 Encryption Standard (DES) algorithm operating in cipher block chaining
 (CBC) node. While this algorithm and mode of operation is supported in
 NTP Version 4, the DES algorithm has been removed from the standard
 software distribution and must be obtained via other sources. The
 preferred replacement for NTP Version 4 is the Message Digest 5 (MD5)
 algorithm, which is included in the distribution. The Message Digest
 field is 64 bits for DES-CBC and 128 bits for MD5, while the Key ID
 field is 32 bits for either algorithm.

 In NTP Version 4 one or more extension fields can be inserted after the
 NTP header and before the MAC, which is always present when an extension
 field is present. Each extension field contains a request or response
 message, which consists of a 16-bit length field, an 8-bit control
 field, an 8-bit flags field and a variable length data field, all in
 network byte order:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|E| Version | Code | Length |
 +-+
 | |
 = Data =
 | |
 +-+

 There are two flag bits defined. Bit 0 is the response flag (R) and bit
1 is the error flag (E); the other six bits are presently unused and

 should be set to 0. The Version field identifies the version number of
 the extension field protocol; this memorandum specifies version 1. The
 Code field specifies the operation in request and response messages. The
 length includes all octets in the extension field, including the length
 field itself. Each extension field is rounded up to the next multiple of

4 octets and the last field rounded up to the next multiple of 8 octets.
 The extension fields can occur in any order; however, in some cases
 there is a preferred order which improves the protocol efficiency.

 The presence of the MAC and extension fields in the packet is determined
 from the length of the remaining area after the header to the end of the
 packet. The parser initializes a pointer just after the header. If the
 length is not a multiple of 4, a format error has occurred and the
 packet is discarded. If the length is zero the packet is not

https://datatracker.ietf.org/doc/html/rfc1305

 authenticated. If the length is 4 (1 word), the packet is an error
 report resulting from a previous packet that failed the message digest
 check. The 4 octets are presently unused and should be set to 0. If the
 length is 12 (3 words), a MAC (DES-CBC) is present, but no extension
 field; if 20 (5 words), a MAC (MD5) is present, but no extension field;

 Mills Expires October, 2001 [page 34]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 If the length is 8 (2 words) or 16 (4 words), the packet is discarded
 with a format error. If the length is greater than 20 (5 words), one or
 more extension fields are present.

 If an extension field is present, the parser examines the length field.
 If the length is less than 4 or not a multiple of 4, a format error has
 occurred and the packet is discarded; otherwise, the parser increments
 the pointer by this value. The parser now uses the same rules as above
 to determine whether a MAC is present and/or another extension field. An
 additional implementation-dependent test is necessary to ensure the
 pointer does not stray outside the buffer space occupied by the packet.

 In the most common protocol operations, a client sends a request to a
 server with an operation code specified in the Code field and the R bit
 set to 0. Ordinarily, the client sets the E bit to 0 as well, but may in
 future set it to 1 for some purpose. The server returns a response with
 the same operation code in the Code field and the R bit set to 1. The
 server can also set the E bit to 1 in case of error. However, it is not
 a protocol error to send an unsolicited response with no matching
 request.

 There are currently five request and six response messages. All request
 messages except the Association ID request message have the following
 format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| 1 | Code | Length |
 +-+
 | Association ID |
 +-+

 The Association ID field is used to match a client request to a
 particular server association. By convention, servers set the
 association ID in the response and clients include the same value in
 requests. Also by convention, until a client has received a response
 from a server, the client sets the Association ID field to 0. If for
 some reason the association ID value in a request does not match the
 association ID of any mobilized association, the server returns the
 request with both the R and E bits set to 1.

 The following request and response messages have been defined.

 Parameter Negotiation (1)

 This extension field is reserved for future use as an algorithm and
 algorithm parameter offer/select exchange, as well as to provide the
 optional identification value to use in lieu of endpoint IP addresses

 when calculating the autokey. The format, encoding and use of these data
 remain to be specified. The command code is reserved.

 Association ID (2)

 Mills Expires October, 2001 [page 35]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 A client sends the request to obtain the association ID and status
 flags. A broadcast server sends an unsolicited response for all except
 the first autokey sent from the key list. The request and response have
 the following format (except for the response bit):

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|E| 1 | 2 | Length |
 +-+
 | Association ID |
 +-+
 | Flags |
 +-+

 The Association ID field contains the association ID of the server. The
 status flags currently defined are

 Bit Function
 ================

31 autokey is enabled
30 public and private keys have been loaded
29 agreement parameters have been loaded
28 leapseconds table has been loaded

 Additional bits may be defined in future, so for now bits 0-27 should be
 set to zero. There is no timestamp or signature associated with this
 message.

 Autokey (3)

 A broadcast server or symmetric peer sends the request to obtain the
 autokey values. The response has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 1 | 4 | Length |
 +-+
 | Association ID |
 +-+
 | Timestamp |
 +-+
 | Initial Sequence |
 +-+
 | Initial Key ID |
 +-+
 | Signature Length |

 +-+
 | |
 | |
 = Signature =

 Mills Expires October, 2001 [page 36]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 | |
 | |
 +-+

 The response is also sent unsolicited when the server or peer generates
 a new key list. The Initial Sequence field contains the first key number
 in the current key list and the Initial Key ID field contains the next
 key ID associated with that number. If the server is not synchronized to
 a proventicated source, the Timestamp field contains 0; otherwise, it
 contains the NTP seconds when the key list was generated and signed. The
 signature covers all fields from the Timestamp field through the Initial
 Key ID field. If for some reason these values are unavailable or the
 signing operation fails, the Initial Sequence and Initial Key ID fields
 contain 0 and the extension field is truncated following the Initial Key
 ID field.

 Cookie (4)

 A client sends the request to obtain the server cookie. The response has
 the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 1 | 3 | Length |
 +-+
 | Association ID |
 +-+
 | Timestamp |
 +-+
 | Cookie |
 +-+
 | Signature Length |
 +-+
 | |
 | |
 = Signature =
 | |
 | |
 +-+

 Since there is no server association matching the client, the
 association ID field for the request and response is 0. The Cookie field
 contains the cookie used in client/server modes. If the server is not
 synchronized to a proventicated source, the Timestamp field contains 0;
 otherwise, it contains the NTP seconds when the cookie was computed and
 signed. The signature covers the Timestamp and Cookie fields. If for
 some reason the cookie value is unavailable or the signing operation

 fails, the Cookie field contains 0 and the extension field is truncated
 following this field.

 Diffie-Hellman Parameters (5)

 Mills Expires October, 2001 [page 37]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 A symmetric peer uses the request and response to send the public value
 and signature to its peer. The response has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 1 | 5 | Length |
 +-+
 | Association ID |
 +-+
 | Timestamp |
 +-+
 | Parameters Filestamp |
 +-+
 | Parameters Length |
 +-+
 | |
 | |
 = Parameters =
 | |
 | |
 +-+
 | Signature Length |
 +-+
 | |
 | |
 = Signature =
 | |
 | |
 +-+

 The Parameters field contains the Diffie-Hellman parameters used to
 compute the public and private values. The Parameters Filestamp field
 contains the NTP seconds when the Diffie-Hellman parameter file was
 generated. If the server is not synchronized to a proventicated source,
 the Timestamp field contains 0; otherwise, it contains the NTP seconds
 when the public value was generated and signed. The signature covers the
 Timestamp, Parameters Length and Parameters fields. If for some reason
 these values are unavailable or the signing operation fails, the
 Parameters Length field contains 0 and the extension field is truncated
 following this field.

 Public Value (6)

 A symmetric peer uses the request and response to send the public value
 and signature to its peer. The response has the following format:

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 1 | 5 | Length |
 +-+
 | Association ID |

 Mills Expires October, 2001 [page 38]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 +-+
 | Timestamp |
 +-+
 | Filestamp |
 +-+
 | Public Value Length |
 +-+
 | |
 | |
 = Public Value =
 | |
 | |
 +-+
 | Signature Length |
 +-+
 | |
 | |
 = Signature =
 | |
 | |
 +-+

 The Public Value field contains the Diffie-Hellman public value used to
 compute the agreed key.

 The Filestamp field contains the NTP seconds when the Diffie-Hellman
 parameter file was generated. If the server is not synchronized to a
 proventicated source, the Timestamp field contains 0; otherwise, it
 contains the NTP seconds when the public value was generated and signed.
 The signature covers all fields from the Timestamp field through the
 Public Value field. If for some reason these values are unavailable or
 the signing operation fails, the Public Value Length field contains 0
 and the extension field is truncated following this field.

 Public Key/Host Name (7)

 A client uses the request to retrieve the public key, host name and
 signature. The response has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 1 | 7 | Length |
 +-+
 | Public Key ID |
 +-+
 | Association ID |
 +-+

 | Timestamp |
 +-+
 | Filestamp |
 +-+
 | Public Key Length |

 Mills Expires October, 2001 [page 39]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 +-+
 | |
 | |
 = Public Key =
 | |
 | |
 +-+
 | Host Name Length |
 +-+
 | |
 | |
 = Host Name =
 | |
 | |
 +-+
 | Signature Length |
 +-+
 | |
 | |
 = Signature =
 | |
 | |
 +-+

 Since the public key and host name are a property of the server and not
 any particular association, the association ID field for the request and
 response is 0. The Public Key field contains the RSA public key in
 rsaref2.0 format; that is, the modulus length (in bits) as the first
 word followed by the modulus bits. Note that in some architectures the
 rsaref2.0 modulus word may be something other than 32 bits. The Host
 Name field contains the host name string returned by the Unix
 gethostname() library function.

 The Filestamp field contains the NTP seconds when the public/private key
 files were generated. If the server is not synchronized to a
 proventicated source, the Timestamp field contains 0; otherwise, it
 contains the NTP seconds when the public value was generated and signed.
 The signature covers all fields from the Timestamp field through the
 Host Name field. If for some reason these values are unavailable or the
 signing operation fails, the Host Name Length field contains 0 and the
 extension field is truncated following this field.

 Leapseconds table (8)

 The civil timescale (UTC), which is based on Earth rotation, has been
 diverging from atomic time (TAI), which is based on an ensemble of
 cesium oscillators, at about one second per year. Since 1972 the
 International Bureau of Weights and Measures (BIPM) declares on occasion

 a leap second to be inserted in the UTC timescale on the last day of
 June or December. Sometimes it is necessary to correct UTC as
 disseminated by NTP to agree with TAI on the current or some previous
 epoch.

 Mills Expires October, 2001 [page 40]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 A client uses the request to retrieve the leapseconds table and
 signature. The response has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 1 | 8 | Length |
 +-+
 | Public Key ID |
 +-+
 | Association ID |
 +-+
 | Timestamp |
 +-+
 | Filestamp |
 +-+
 | Leapseconds table Length |
 +-+
 | |
 | |
 = Leapseconds table =
 | |
 | |
 +-+
 | Signature Length |
 +-+
 | |
 | |
 = Signature =
 | |
 | |
 +-+

 The NTP extension field format consists of a table with one entry in NTP
 seconds for each leap second.

 Since the leapseconds table is a property of the server and not any
 particular association, the association ID field for the request and
 response is 0. The Leapseconds table field contains a list of the
 historic epoches that leap seconds were inserted in the UTC timescale.
 Each list entry is a 32-bit word in NTP seconds, while the table is in
 order from the most recent to the oldest insertion. At the first
 insertion in January, 1972 UTC was ahead of TAI by 10 s and has
 increased by 1 s for each insertion since then. Thus, the table length
 in bytes divided by four plus nine is the current offset of UTC relative
 to TAI.

 The Filestamp field contains the NTP seconds when the leapseconds table

 was generated at the original host, in this case one of the public time
 servers operated by NIST. If the value of the filestamp is less than the
 first entry on the list, the first entry is the epoch of the predicted
 next leap insertion. The filestamp must always be greater than the
 second entry in the list. If the server is not synchronized to a

 Mills Expires October, 2001 [page 41]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 proventicated source, the Timestamp field contains 0; otherwise, it
 contains the NTP seconds when the public value was generated and signed.
 The signature covers all fields from the Timestamp field through the
 Leapseconds table field. If for some reason these values are unavailable
 or the signing operation fails, the Host Name Length field contains 0
 and the extension field is truncated following this field.

Appendix B. Key Generation and Management

 In the reference implementation the lifetimes of various cryptographic
 values are carefully managed and frequently refreshed. While permanent
 keys have lifetimes that expire only when manually revoked, autokeys
 have a lifetime specified at the time of generation. When generating a
 key list for an association, the lifetime of each autokey is set to
 expire one poll interval later than it is scheduled to be used.
 Ordinarily, key lists are regenerated and signed about once per hour and
 private cookie values and public agreement values are refreshed and
 signed about once per day. The protocol design is specially tailored to
 make a smooth transition when these values are refreshed and to avoid
 vulnerabilities due to clogging and replay attacks while refreshment is
 in progress.

 Autokey key management can be handled in much the same way as in the ssh
 facility. A set of public and private keys and agreement parameters are
 generated by a utility program designed for this purpose. The program
 generates four files, one containing random DES/MD5 private keys, which
 are not used in the Autokey protocol, a second containing the RSA
 private key, a third the RSA public key, and a fourth the Diffie-Hellman
 agreement parameters. In addition, the leapseconds table is generated
 and stored in public time servers maintained by NIST. The means to do
 this are beyond the scope of this memorandum.

 All files are based on random strings seeded by the system clock at the
 time of generation and are in printable ASCII format with PEM (base-64)
 encoding. The name of each file includes an extension consisting of the
 NTP seconds at the time of generation. This is interpreted as a key ID
 in order to detect incorrect keys and to handle key changeovers in an
 orderly way. In the recommended method, all files except the RSA private
 key file are installed in a shared directory /usr/local/etc, which is
 where the daemon looks for them by default. The private RSA key file is
 installed in an unshared directory such as /etc. It is convenient to
 install links from the default file names, which do not have filestamp
 extensions, to the current files, which do. This way when a new
 generation of keys is installed, only the links need to be changed.

 When a server or client first initializes, it loads the RSA public and
 private key files, which are required for continued operation. It then
 attempts to load the agreement parameters file, certificate file and

 leapseconds table file. If one or more of these files are present, the
 associated bit is set in the system status word. Neither of these files
 are necessary at this time, since the data can be retrieved later from
 another server. If obtaining these data from another server is
 considered a significant vulnerability, the files should be present.

 Mills Expires October, 2001 [page 42]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 In the current management model, the keys and parameter files are
 generated on each machine separately and the private key obscured. For
 the most demanding applications, the public key files for a community of
 users can be copied to all of those users, while one of the parameter
 files can be selected and copied to all users. However, if security
 considerations permit, the public key and parameter values, as well as
 the certificate file and leapseconds table file, can be obtained from
 other servers during operation. These data completely define the
 security community and the servers configured for each client. In
 broadcast client and symmetric passive modes the identity of a
 particular server may not be known in advance, so the protocol obtains
 and verifies the public key and host name directly from the server.
 Ultimately, these procedures may be automated using public certificates
 retrieved from secure directory services.

 Since all files carry a filestamp incorporated in the file name, newer
 file generations are detected in the data obtained from the one or more
 configured servers. When detected, the newer generations replace the
 older ones automatically and the newer ones made available to dependent
 clients as required. Since the filestamp signatures are refreshed once
 per day, which causes all associations to reset, the newer generations
 will eventually overtake all older ones throughout the subnet of servers
 and dependent clients.

 Where security considerations permit and the public key, certificate and
 agreement parameter files can be retrieved directly from the server,
 these data can be easily automated. Each server and client runs a shell
 script perhaps once per month. The script generates new key and
 parameter files, updates the links and then restarts the daemon. The
 daemon loads the necessary files and then restarts the protocol with
 each of its servers, refreshing public keys and parameter files during
 the process. Clients will not be able to authenticate following daemon
 restart, but the protocol design is such that they will eventually time
 out, restart the protocol and retrieve the latest data.

 Security Considerations

 Security issues are the main topic of this memorandum.

 References

 Note: Internet Engineering Task Force documents can be obtained at
 www.ietf.org. Other papers and reports can be obtained at
 www.eecis.udel.edu/~mills. Additional briefings in PowerPoint,
 PostScript and PDF are at that site in ./autokey.htm.

1. Bradner, S. Key words for use in RFCs to indicate requirement levels.
 Request for Comments RFC-2119, BCP 14, Internet Engineering Task Force,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14

 March 1997.

 Mills Expires October, 2001 [page 43]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

2. Karn, P., and W. Simpson. Photuris: session-key management protocol.
 Request for Comments RFC-2522, Internet Engineering Task Force, March
 1999.

3. Kent, S., R. Atkinson. IP Authentication Header. Request for Comments
RFC-2402, Internet Engineering Task Force, November 1998.

4. Kent, S., and R. Atkinson. IP Encapsulating security payload (ESP).
 Request for Comments RFC-2406, Internet Engineering Task Force, November
 1998.

5. Maughan, D., M. Schertler, M. Schneider, and J. Turner. Internet
 security association and key management protocol (ISAKMP). Request for
 Comments RFC-2408, Internet Engineering Task Force, November 1998.

6. Mills, D.L. Authentication scheme for distributed, ubiquitous, real-
 time protocols. Proc. Advanced Telecommunications/Information
 Distribution Research Program (ATIRP) Conference (College Park MD,
 January 1997), 293-298.

7. Mills, D.L. Cryptographic authentication for real-time network
 protocols. In: AMS DIMACS Series in Discrete Mathematics and Theoretical
 Computer Science, Vol. 45 (1999), 135-144.

8. Mills, D.L. Network Time Protocol (Version 3) specification,
 implementation and analysis. Network Working Group Report RFC-1305,
 University of Delaware, March 1992, 113 pp.

9. Mills, D.L. Proposed authentication enhancements for the Network Time
 Protocol version 4. Electrical Engineering Report 96-10-3, University of
 Delaware, October 1996, 36 pp.

10. Mills, D.L, and A. Thyagarajan. Network time protocol version 4
 proposed changes. Electrical Engineering Department Report 94-10-2,
 University of Delaware, October 1994, 32 pp.

11. Mills, D.L. Public key cryptography for the Network Time Protocol.
 Electrical Engineering Report 00-5-1, University of Delaware, May 2000.

23 pp.

12. Orman, H. The OAKLEY key determination protocol. Request for
 Comments RFC-2412, Internet Engineering Task Force, November 1998.

 Author's Address

 David L. Mills
 Electrical and Computer Engineering Department
 University of Delaware
 Newark, DE 19716

https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc2412

 mail mills@udel.edu, phone 302 831 8247, fax 302 831 4316
 web www.eecis.udel.edu/~mills

 Mills Expires October, 2001 [page 44]

 Internet Draft Public-Key Cryptography for the NTP April, 2001

 Edited into Internet-draft form by:

 Patrick Cain. Please notify pcain@genuity.com of editorial omissions or
 errors.

 Full Copyright Statement

 "Copyright (C) The Internet Society (date). All Rights Reserved. This
 document and translations of it may be copied and furnished to others,
 and derivative works that comment on or otherwise explain it or assist
 in its implmentation may be prepared, copied, published and distributed,
 in whole or in part, without restriction of any kind, provided that the
 above copyright notice and this paragraph are included on all such
 copies and derivative works. However, this document itself may not be
 modified in any way, such as by removing the copyright notice or
 references to the Internet Society or other Internet organizations,
 except as needed for the purpose of developing Internet standards in
 which case the procedures for copyrights defined in the Internet
 Standards process must be followed, or as required to translate it into.

 Mills Expires October, 2001 [page 45]

