
Secure Time Working Group David L. Mills
Internet Draft University of Delaware
Document: draft-ietf-stime-ntpauth-04.txt November 2002
Expires: April 2003

Public Key Cryptography for the Network Time Protocol
Version 2

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [RFC-2026]].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Copyright (C), The Internet Society, 2002. All rights reserved.

 Abstract

 This document describes the Autokey security model for authenticating
 servers to clients using the Network Time Protocol (NTP) and public
 key cryptography. its design is based on the premiss that IPSEC
 schemes cannot be adopted intact, since that would preclude stateless
 servers and severely compromise timekeeping accuracy. In addition,
 PKI schemes presume authenticated time values are always available to
 enforce certificate lifetimes; however, cryptographically verified
 timestamps require interaction between the timekeeping function and
 authentication function in ways not yet considered by the IETF.

 This Document includes the Autokey requirements analysis, design
 principles and protocol specification. A detailed description of the

Mills Expires - May 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-stime-ntpauth-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Public Key Cryptography for the NTP November 2002

 protocol states, events and transition functions is included. A
 prototype of the Autokey design based on this document has been
 implemented, tested and documented in the NTP Version 4 (NTPv4)
 software distribution for Unix, Windows and VMS at

http://www.ntp.org.

 Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC-2119].

Mills Expires - May 2003 [Page 2]

http://www.ntp.org
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Public Key Cryptography for the NTP November 2002

 Table of Contents

1. Introduction...4
2. NTP Security Model...5
3. Approach...8
4. Autokey Cryptography...9
5. Autokey Operations..11
6. Public Key Signatures and Timestamps..........................14
7. Autokey Protocol Overview.....................................16
8. Autokey State Machine...18

8.1 Status Word...18
8.2 Host State Variables......................................20
8.3 Client State Variables (all modes)........................21
8.4 Server State Variables (broadcast and symmetric modes)....22
8.5 Autokey Messages..23

9. Error Recovery..27
10. References...29
Appendix A. Packet Formats.......................................31

A.1 Extension Field Format....................................32
A.2 Autokey Version 2 Messages................................34

Appendix B. Cryptographic Key and Certificate Management.........43
Appendix C. Autokey Error Checking...............................45

C.1 Packet Processing Rules...................................45
C.2 Timestamps, Filestamps and Partial Ordering...............47

Appendix D. Security Analysis....................................49
D.1 Protocol Vulnerability....................................49
D.2 Clogging Vulnerability....................................50

Appendix E. Identity Schemes.....................................53
E.1 Private Certificate (PC) Scheme...........................55
E.2 Trusted Certificate (TC) Scheme...........................55
E.3 Schnorr (IFF) Scheme......................................55
E.4 Guillard-Quisquater (GQ) Scheme...........................56
E.5 Interoperability Issues...................................57

Appendix F. File Examples..60
F.1 RSA-MD5cert File and ASN.1 Encoding.......................60
F.2 GQkey File and ASN.1 Encoding.............................61
F.3 GQpar File and ASN.1 Encoding.............................61
F.4 RSAkey File and ASN.1 Encoding............................61
F.5 IFFpar File and ASN.1 Encoding............................62

Appendix G. ASN.1 Encoding Rules.................................63
G.1 COOKIE request, IFF response, GQ response.................63
G.2 CERT response, SIGN request and response..................63

 Security Considerations..66
 Author's Addresses...66

Mills Expires - May 2003 [Page 3]

Internet-Draft Public Key Cryptography for the NTP November 2002

1. Introduction

 A distributed network service requires reliable, ubiquitous and
 survivable provisions to prevent accidental or malicious attacks on
 the servers and clients in the network or the values they exchange.
 Reliability requires that clients can determine that received packets
 are authentic; that is, were actually sent by the intended server and
 not manufactured or modified by an intruder. Ubiquity requires that
 any client can verify the authenticity of any server using only
 public information. Survivability requires protection from faulty
 implementations, improper operation and possibly malicious clogging
 and replay attacks with or without data modification. These
 requirements are especially stringent with widely distributed network
 services, since damage due to failures can propagate quickly
 throughout the network, devastating archives, routing databases and
 monitoring systems and even bring down major portions of the network.

 The Network Time Protocol (NTP) contains provisions to
 cryptographically authenticate individual servers as described in the
 most recent protocol NTP Version 3 (NTPv3) specification [RFC-1305];
 however, that specification does not provide a scheme for the
 distribution of cryptographic keys, nor does it provide for the
 retrieval of cryptographic media that reliably bind the server
 identification credentials with the associated private keys and
 related public values. However, conventional key agreement and
 digital signatures with large client populations can cause
 significant performance degradations, especially in time critical
 applications such as NTP. In addition, there are problems unique to
 NTP in the interaction between the authentication and synchronization
 functions, since each requires the other.

 This document describes a cryptographically sound and efficient
 methodology for use in NTP and similar distributed protocols. As
 demonstrated in the reports and briefings cited in the references at
 the end of this document, there is a place for PKI and related
 schemes, but none of these schemes alone satisfies the requirements
 of the NTP security model. The various key agreement schemes [RFC-
 2408], RFC-2412], [RFC-2522] proposed by the IETF require per-
 association state variables, which contradicts the principles of the
 remote procedure call (RPC) paradigm in which servers keep no state
 for a possibly large client population. An evaluation of the PKI
 model and algorithms as implemented in the RSAref2.0 package formerly
 distributed by RSA Laboratories leads to the conclusion that any
 scheme requiring every NTP packet to carry a PKI digital signature
 would result in unacceptably poor timekeeping performance.

 A revised security model and authentication scheme called Autokey was
 proposed in earlier reports [MILLS96], [MILLS00]. It is based on a

https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2522

Mills Expires - May 2003 [Page 4]

Internet-Draft Public Key Cryptography for the NTP November 2002

 combination of PKI and a pseudo-random sequence generated by repeated
 hashes of a cryptographic value involving both public and private
 components. This scheme has been tested and evaluated in a local
 environment and in the CAIRN experiment network funded by DARPA. A
 detailed description of the security model, design principles and
 implementation experience is presented in this document.

 Additional information about NTP, including executive summaries,
 briefings and bibliography can be found on the NTP project page
 linked from www.ntp.org. The NTPv4 reference implementation for Unix
 and Windows, including sources and documentation in HTML, is
 available from the NTP repository at the same site. All of the
 features described in this document, including support for both IPv4
 and IPv6 address families, are included in the current development
 version at that repository. The reference implementation is not
 intended to become part of any standard that may be evolved from this
 document, but to serve as an example of how the procedures described
 in this document can be implemented in a practical way.

2. NTP Security Model

 NTP security requirements are even more stringent than most other
 distributed services. First, the operation of the authentication
 mechanism and the time synchronization mechanism are inextricably
 intertwined. Reliable time synchronization requires cryptographic
 keys which are valid only over designated time intervals; but, time
 intervals can be enforced only when participating servers and clients
 are reliably synchronized to UTC. Second, the NTP subnet is
 hierarchical by nature, so time and trust flow from the primary
 servers at the root through secondary servers to the clients at the
 leaves.

 A client can claim authentic to dependent applications only if all
 servers on the path to the primary servers are bone-fide authentic.
 In order to emphasize this requirement, in this document the notion
 of "authentic" is replaced by "proventic", a noun new to English and
 derived from provenance, as in the provenance of a painting. Having
 abused the language this far, the suffixes fixable to the various
 noun and verb derivatives of authentic will be adopted for proventic
 as well. In NTP each server authenticates the next lower stratum
 servers and proventicates (authenticates by induction) the lowest
 stratum (primary) servers. Serious computer linguists would correctly
 interpret the proventic relation as the transitive closure of the
 authentic relation.

 It is important to note that the notion of proventic does not
 necessarily imply the time is correct. A NTP client mobilizes a
 number of concurrent associations with different servers and uses a

 crafted agreement algorithm to pluck truechimers from the population

Mills Expires - May 2003 [Page 5]

Internet-Draft Public Key Cryptography for the NTP November 2002

 possibly including falsetickers. A particular association is
 proventic if the server certificate and identity have been verified
 by the means described in this document. However, the statement "the
 client is synchronized to proventic sources" means that the system
 clock has been set using the time values of one or more proventic
 client associations and according to the NTP mitigation algorithms.
 While a certificate authority must satisfy this requirement when
 signing a certificate request, the certificate itself can be stored
 in public directories and retrieved over unsecured network paths.

 Over the last several years the IETF has defined and evolved the
 IPSEC infrastructure for privacy protection and source authentication
 in the Internet, The infrastructure includes the Encapsulating
 Security Payload (ESP) [RFC-2406] and Authentication Header (AH)
 [RFC-2402] for IPv4 and IPv6. Cryptographic algorithms that use these
 headers for various purposes include those developed for the PKI,
 including MD5 message digests, RSA digital signatures and several
 variations of Diffie-Hellman key agreements. The fundamental
 assumption in the security model is that packets transmitted over the
 Internet can be intercepted by other than the intended receiver,
 remanufactured in various ways and replayed in whole or part. These
 packets can cause the client to believe or produce incorrect
 information, cause protocol operations to fail, interrupt network
 service or consume precious network and processor resources.

 In the case of NTP, the assumed goal of the intruder is to inject
 false time values, disrupt the protocol or clog the network, servers
 or clients with spurious packets that exhaust resources and deny
 service to legitimate applications. The mission of the algorithms and
 protocols described in this document is to detect and discard
 spurious packets sent by other than the intended sender or sent by
 the intended sender, but modified or replayed by an intruder. The
 cryptographic means of the reference implementation are based on the
 OpenSSL cryptographic software library available at www.openssl.org,
 but other libraries with equivalent functionality could be used as
 well. It is important for distribution and export purposes that the
 way in which these algorithms are used precludes encryption of any
 data other than incidental to the construction of digital signatures.

 There are a number of defense mechanisms already built in the NTP
 architecture, protocol and algorithms. The fundamental timestamp
 exchange scheme is inherently resistant to spoof and replay attacks.
 The engineered clock filter, selection and clustering algorithms are
 designed to defend against evil cliques of Byzantine traitors. While
 not necessarily designed to defeat determined intruders, these
 algorithms and accompanying sanity checks have functioned well over
 the years to deflect improperly operating but presumably friendly
 scenarios. However, these mechanisms do not securely identify and

https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2402

Mills Expires - May 2003 [Page 6]

Internet-Draft Public Key Cryptography for the NTP November 2002

 authenticate servers to clients. Without specific further protection,
 an intruder can inject any or all of the following mischiefs.

 The NTP security model assumes the following possible threats.
 Further discussion is in [MILLS00] and in the briefings at the NTP
 project page, but beyond the scope of this document.

 1. An intruder can intercept and archive packets forever, as well as
 all the public values ever generated and transmitted over the net.

 2. An intruder can generate packets faster than the server, network
 or client can process them, especially if they require expensive
 cryptographic computations.

 3. In a wiretap attack the intruder can intercept, modify and replay
 a packet. However, it cannot permanently prevent onward transmission
 of the original packet; that is, it cannot break the wire, only tell
 lies and congest it. Except in unlikely cases considered in Appendix

D, the modified packet cannot arrive at the victim before the
 original packet.

 4. In a middleman or masquerade attack the intruder is positioned
 between the server anc client, so it can intercept, modify and replay
 a packet and prevent onward transmission of the original packet.
 Except in unlikely cases considered in Appendix D, the middleman does
 not have the server private keys or identity parameters.

 The NTP security model assumes the following possible limitations.
 Further discussion is in [MILLS00] and in the briefings at the NTP
 project page, but beyond the scope of this document.

 1. The running times for public key algorithms are relatively long
 and highly variable. In general, the performance of the time
 synchronization function is badly degraded if these algorithms must
 be used for every NTP packet.

 2. In some modes of operation it is not feasible for a server to
 retain state variables for every client. It is however feasible to
 regenerated them for a client upon arrival of a packet from that
 client.

 3. The lifetime of cryptographic values must be enforced, which
 requires a reliable system clock. However, the sources that
 synchronize the system clock must be cryptographically proventicated.
 This circular interdependence of the timekeeping and proventication
 functions requires special handling.

 4. All proventication functions must involve only public values
 transmitted over the net with the single exception of encrypted

Mills Expires - May 2003 [Page 7]

Internet-Draft Public Key Cryptography for the NTP November 2002

 signatures and cookies intended only to authenticate the source.
 Private values must never be disclosed beyond the machine on which
 they were created.

 5. Public encryption keys and certificates must be retrievable
 directly from servers without requiring secured channels; however,
 the fundamental security of identification credentials and public
 values bound to those credentials must be a function of certificate
 authorities and/or webs of trust.

 6. Error checking must be at the enhanced paranoid level, as network
 terrorists may be able to craft errored packets that consume
 excessive cycles with needless result. While this document includes
 an informal vulnerability analysis and error protection paradigm, a
 formal model based on communicating finite-state machine analysis
 remains to be developed.

 Unlike the Secure Shell security model, where the client must be
 securely authenticated to the server, in NTP the server must be
 securely authenticated to the client. In ssh each different interface
 address can be bound to a different name, as returned by a reverse-
 DNS query. In this design separate public/private key pairs may be
 required for each interface address with a distinct name. A perceived
 advantage of this design is that the security compartment can be
 different for each interface. This allows a firewall, for instance,
 to require some interfaces to proventicate the client and others not.

 However, the NTP security model specifically assumes that access
 control is performed by means external to the protocol and that all
 time values and cryptographic values are public, so there is no need
 to associate each interface with different cryptographic values. To
 do so would create the possibility of a two-faced clock, which is
 ordinarily considered a Byzantine hazard. In other words, there is
 one set of private secrets for the host, not one for each interface.
 In the NTP design the host name, as returned by the Unix
 gethostname() library function, represents all interface addresses.
 Since at least in some host configurations the host name may not be
 identifiable in a DNS query, the name must be either configured in
 advance or obtained directly from the server using the Autokey
 protocol.

3. Approach

 The Autokey protocol described in this document is designed to meet
 the following objectives. Again, in-depth discussions on these
 objectives is in the web briefings and will not be elaborated in this
 document. Note that here and elsewhere in this document mention of
 broadcast mode means multicast mode as well, with exceptions noted in

 the NTP software documentation.

Mills Expires - May 2003 [Page 8]

Internet-Draft Public Key Cryptography for the NTP November 2002

 1. It must interoperate with the existing NTP architecture model and
 protocol design. In particular, it must support the symmetric key
 scheme described in [RFC-1305]. As a practical matter, the reference
 implementation must use the same internal key management system,
 including the use of 32-bit key IDs and existing mechanisms to store,
 activate and revoke keys.

 2. It must provide for the independent collection of cryptographic
 values and time values. A NTP packet is accepted for processing only
 when the required cryptographic values have been obtained and
 verified and the NTP header has passed all sanity checks.

 3. It must not significantly degrade the potential accuracy of the
 NTP synchronization algorithms. In particular, it must not make
 unreasonable demands on the network or host processor and memory
 resources.

 4. It must be resistant to cryptographic attacks, specifically those
 identified in the security model above. In particular, it must be
 tolerant of operational or implementation variances, such as packet
 loss or misorder, or suboptimal configurations.

 5. It must build on a widely available suite of cryptographic
 algorithms, yet be independent of the particular choice. In
 particular, it must not require data encryption other than incidental
 to signature and cookie encryption operations.

 6. It must function in all the modes supported by NTP, including
 server, symmetric and broadcast modes.

 7. It must not require intricate per-client or per-server
 configuration other than the availability of the required
 cryptographic keys and certificates.

 8. The reference implementation must contain provisions to generate
 cryptographic key files specific to each client and server.

4. Autokey Cryptography

 Autokey public key cryptography is based on the PKI algorithms
 commonly used in the Secure Shell and Secure Sockets Layer
 applications. As in these applications Autokey uses keyed message
 digests to detect packet modification, digital signatures to verify
 the source and public key algorithms to encrypt cookies. What makes
 Autokey cryptography unique is the way in which these algorithms are
 used to deflect intruder attacks while maintaining the integrity and
 accuracy of the time synchronization function.

https://datatracker.ietf.org/doc/html/rfc1305

Mills Expires - May 2003 [Page 9]

Internet-Draft Public Key Cryptography for the NTP November 2002

 The NTPv3 symmetric key cryptography uses keyed-MD5 message digests
 with a 128-bit private key and 32-bit key ID. In order to retain
 backward compatibility, the key ID space is partitioned in two
 subspaces at a pivot point of 65536. Symmetric key IDs have values
 less than the pivot and indefinite lifetime. Autokey key IDs have
 pseudo-random values equal to or greater than the pivot and are
 expunged immediately after use.

 There are three Autokey protocol variants corresponding to each of
 the three NTP modes: server, symmetric and broadcast. All three
 variants make use of specially contrived session keys, called
 autokeys, and a precomputed pseudo-random sequence of autokeys with
 the key IDs saved in a key list. As in the original NTPv3
 authentication scheme, the Autokey protocol operates separately for
 each association, so there may be several autokey sequences operating
 independently at the same time.

 An autokey is computed from four fields in network byte order as
 shown below:

 +-----------+-----------+-----------+-----------+
 | Source IP | Dest IP | Key ID | Cookie |
 +-----------+-----------+-----------+-----------+

 The four values are hashed by the MD5 message digest algorithm to
 produce the 128-bit autokey value, which in the reference
 implementation is stored along with the key ID in a cache used for
 symmetric keys as well as autokeys. Keys are retrieved from the cache
 by key ID using hash tables and a fast lookup algorithm.

 For use with IPv4, the Source IP and Dest IP fields contain 32 bits;
 for use with IPv6, these fields contain 128 bits. In either case the
 Key ID and Cookie fields contain 32 bits. Thus, an IPv4 autokey has
 four 32-bit words, while an IPv6 autokey has ten 32-bit words. The
 source and destination IP addresses and key ID are public values
 visible in the packet, while the cookie can be a public value or
 shared private value, depending on the mode.

 The NTP packet format has been augmented to include one or more
 extension fields piggybacked between the original NTP header and the
 message authenticator code (MAC) at the end of the packet. For
 packets without extension fields, the cookie is a shared private
 value conveyed in encrypted form. For packets with extension fields,
 the cookie has a default public value of zero, since these packets
 can be validated independently using digital signatures.

 There are some scenarios where the use of endpoint IP addresses may
 be difficult or impossible. These include configurations where

 network address translation (NAT) devices are in use or when

Mills Expires - May 2003 [Page 10]

Internet-Draft Public Key Cryptography for the NTP November 2002

 addresses are changed during an association lifetime due to mobility
 constraints. For Autokey, the only restriction is that the address
 fields visible in the transmitted packet must be the same as those
 used to construct the autokey sequence and key list and that these
 fields be the same as those visible in the received packet.

 Provisions are included in the reference implementation to handle
 cases when these addresses change, as possible in mobile IP. For
 scenarios where the endpoint IP addresses are not available, an
 optional public identification value could be used instead of the
 addresses. Examples include the Interplanetary Internet, where
 bundles are identified by name rather than address. Specific
 provisions are for further study.

 The key list consists of a sequence of key IDs starting with a random
 32-bit nonce (autokey seed) equal to or greater than the pivot as the
 first key ID. The first autokey is computed as above using the given
 cookie and the first 32 bits of the result in network byte order
 become the next key ID. Operations continue in this way to generate
 the entire list. It may happen that a newly generated key ID is less
 than the pivot or collides with another one already generated
 (birthday event). When this happens, which should occur only rarely,
 the key list is terminated at that point. The lifetime of each key is
 set to expire one poll interval after its scheduled use. In the
 reference implementation, the list is terminated when the maximum key
 lifetime is about one hour, so for poll intervals above one hour a
 new key list containing only a single entry is regenerated for every
 poll.

 The index of the last key ID in the list is saved along with the next
 key ID for that entry, collectively called the autokey values. The
 autokey values are then signed. The list is used in reverse order, so
 that the first autokey used is the last one generated. The Autokey
 protocol includes a message to retrieve the autokey values and
 signature, so that subsequent packets can be validated using one or
 more hashes that eventually match the last key ID (valid) or exceed
 the index (invalid). This is called the autokey test in the following
 and is done for every packet, including those with and without
 extension fields. In the reference implementation the most recent key
 ID received is saved for comparison with the first 32 bits in network
 byte order of the next following key value. This minimizes the number
 of hash operations in case a packet is lost.

5. Autokey Operations

 The Autokey protocol has three variations, called dances,
 corresponding to the NTP server, symmetric and broadcast modes. The
 server dance was suggested by Steve Kent over lunch some time ago,

 but considerably modified since that meal. The server keeps no state

Mills Expires - May 2003 [Page 11]

Internet-Draft Public Key Cryptography for the NTP November 2002

 for each client, but uses a fast algorithm and a 32-bit random
 private value (server seed) to regenerate the cookie upon arrival of
 a client packet. The cookie is calculated as the first 32 bits of the
 autokey computed from the client and server addresses, a key ID of
 zero and the server seed as cookie. The cookie is used for the actual
 autokey calculation by both the client and server and is thus
 specific to each client separately.

 In previous Autokey versions the cookie was transmitted in clear on
 the assumption it was not useful to a wiretapper other than to launch
 an ineffective replay attack. However, a middleman could intercept
 the cookie and manufacture bogus messages acceptable to the client.
 In order to reduce the risk of such an attack, the Autokey Version 2
 server encrypts the cookie using a public key supplied by the client.
 While requiring additional processor resources for the encryption,
 this makes it effectively impossible to spoof a cookie or masquerade
 as the server.

 [Note in passing. In an attempt to avoid the use of overt encryption
 operations, an experimental scheme used a Diffie-Hellman agreed key
 as a stream cipher to encrypt the cookie. However, not only was the
 protocol extremely awkward, but the processing time to execute the
 agreement, encrypt the key and sign the result was horrifically
 expensive - 15 seconds in a vintage Sun IPC. This scheme was quickly
 dropped in favor of generic public key encryption.]

 The server dance uses the cookie and each key ID on the key list in
 turn to retrieve the autokey and generate the MAC in the NTP packet.
 The server uses the same values to generate the message digest and
 verifies it matches the MAC in the packet. It then generates the MAC
 for the response using the same values, but with the client and
 server addresses exchanged. The client generates the message digest
 and verifies it matches the MAC in the packet. In order to deflect
 old replays, the client verifies the key ID matches the last one
 sent. In this mode the sequential structure of the key list is not
 exploited, but doing it this way simplifies and regularizes the
 implementation while making it nearly impossible for an intruder to
 guess the next key ID.

 In broadcast dance clients normally do not send packets to the
 server, except when first starting up to verify credentials and
 calibrate the propagation delay. At the same time the client runs the
 broadcast dance to obtain the autokey values. The dance requires the
 association ID of the particular server association, since there can
 be more than one operating in the same server. For this purpose, the
 server packet includes the association ID in every response message
 sent and, when sending the first packet after generating a new key
 list, it sends the autokey values as well. After obtaining and

Mills Expires - May 2003 [Page 12]

Internet-Draft Public Key Cryptography for the NTP November 2002

 verifying the autokey values, the client verifies further server
 packets using the autokey sequence.

 The symmetric dance is similar to the server dance and keeps only a
 small amount of state between the arrival of a packet and departure
 of the reply. The key list for each direction is generated separately
 by each peer and used independently, but each is generated with the
 same cookie. The cookie is conveyed in a way similar to the server
 dance, except that the cookie is a random value. There exists a
 possible race condition where each peer sends a cookie request
 message before receiving the cookie response from the other peer. In
 this case, each peer winds up with two values, one it generated and
 one the other peer generated. The ambiguity is resolved simply by
 computing the working cookie as the EXOR of the two values.

 Autokey choreography includes one or more exchanges, each with a
 specific purpose, that must be completed in order. The client obtains
 the server host name, digest/signature scheme and identity shcme in
 the parameter exchange. It recursively obtains and verifies
 certificates on the trail leading to a trusted certificate in the
 certificate exchange and verifies the server identity in the identity
 exchange. In the values exchange the client obtains the cookie and
 autokey values, depending on the particular dance. Finally, the
 client presents its self-signed certificate to the server for
 signature in the sign exchange.

 The ultimate security of Autokey is based on digitally signed
 certificates and a certificate infrastructure compatible with [RFC-
 2510] and [RFC-3280]. The Autokey protocol builds the certificate
 trail from the primary servers, which presumably have trusted self-
 signed certificates, recursively by stratum. Each stratum n + 2
 server obtains the certificate of a stratum n server, presumably
 signed by a stratum n - 1 server, and then the stratum n + 1 server
 presentes its own self-signed certificate for signature by the
 stratum n server. As the NTP subnet forms from the primary servers at
 the root outward to the leaves, each server accumulates non-
 duplicative certificates for all associations and for all trails. In
 typical NTP subnets, this results in a good deal of useful
 redundancy, so far not explointed in the present implementation.

 In order to prevent masquerade, it is necessary for the stratum n
 server to prove identity to the stratum n + 1 server when signing its
 certificate. In many applications a number of servers share a single
 security compartment, so it is only necessary that each server
 verifies identity to the group. Although no specific identity scheme
 is specified in this document, Appendix E describes a number of them
 based on cryptographic challenge-response algorithms. The reference
 implementation includes all of them with provision to add more if

https://datatracker.ietf.org/doc/html/rfc3280

 required.

Mills Expires - May 2003 [Page 13]

Internet-Draft Public Key Cryptography for the NTP November 2002

 Once the certificates and identity have been validated, subsequent
 packets are validated by digital signatures or autokey sequences.
 These packets are presumed to contain valid time values; however,
 unless the system clock has already been set by some other proventic
 means, it is not known whether these values actually represent a
 truechime or falsetick source. As the protocol evolves, the NTP
 associations continue to accumulate time values until a majority
 clique is available to synchronize the system clock. At this point
 the NTP intersection algorithm culls the falsetickers from the
 population and the remaining truechimers are allowed to discipline
 the clock.

 The time values for truechimer sources form a proventic partial
 ordering relative to the applicable signature timestamps. This raises
 the interesting issue of how to mitigate between the timestamps of
 different associations. It might happen, for instance, that the
 timestamp of some Autokey message is ahead of the system clock by
 some presumably small amount. For this reason, timestamp comparisons
 between different associations and between associations and the
 system clock are avoided, except in the NTP intersection and
 clustering algorithms and when determining whether a certificate has
 expired.

 Once the Autokey values have been instantiated, the dances are
 normally dormant. In all except the broadcast dance, packets are
 normally sent without extension fields, unless the packet is the
 first one sent after generating a new key list or unless the client
 has requested the cookie or autokey values. If for some reason the
 client clock is stepped, rather than slewed, all cryptographic and
 time values for all associations are purged and the dances in all
 associations restarted from scratch. This insures that stale values
 never propagate beyond a clock step. At intervals of about one day
 the reference implementation purges all associations, refreshes all
 signatures, garbage collects expired certificates and refreshes the
 server seed.

6. Public Key Signatures and Timestamps

 While public key signatures provide strong protection against
 misrepresentation of source, computing them is expensive. This
 invites the opportunity for an intruder to clog the client or server
 by replaying old messages or to originate bogus messages. A client
 receiving such messages might be forced to verify what turns out to
 be an invalid signature and consume significant processor resources.

 In order to foil such attacks, every signed extension field carries a

 timestamp in the form of the NTP seconds at the signature epoch. The

Mills Expires - May 2003 [Page 14]

Internet-Draft Public Key Cryptography for the NTP November 2002

 signature spans the entire extension field including the timestamp.
 If the Autokey protocol has verified a proventic source and the NTP
 algorithms have validated the time values, the system clock can be
 synchronized and signatures will then carry a nonzero (valid)
 timestamp. Otherwise the system clock is unsynchronized and
 signatures carry a zero (invalid) timestamp. The protocol detects and
 discards replayed extension fields with old or duplicate timestamps,
 as well fabricated extension fields with bogus timestamps, before any
 values are used or signatures verified.

 There are three signature types currently defined:

 1. Cookie signature/timestamp: Each association has a cookie for use
 when generating a key list. The cookie value is determined along with
 the cookie signature and timestamp upon arrival of a cookie request
 message. The values are returned in a a cookie response message.

 2. Autokey signature/timestamp: Each association has a key list for
 generating the autokey sequence. The autokey values are determined
 along with the autokey signature and timestamp when a new key list is
 generated, which occurs about once per hour in the reference
 implementation. The values are returned in a autokey response
 message.

 3. Public values signature/timestamp: All public key, certificate and
 leapsecond table values are signed at the time of generation, which
 occurs when the system clock is first synchronized to a proventic
 source, when the values have changed and about once per day after
 that, even if these values have not changed. During protocol
 operations, each of these values and associated signatures and
 timestamps are returned in the associated request or response
 message. While there are in fact several public value signatures,
 depending on the number of entries on the certificate list, the
 values are all signed at the same time, so there is only one public
 value timestamp.

 The most recent timestamp received of each type is saved for
 comparison. Once a valid signature with valid timestamp has been
 received, messages with invalid timestamps or earlier valid
 timestamps of the same type are discarded before the signature is
 verified. For signed messages this deflects replays that otherwise
 might consume significant processor resources; for other messages the
 Autokey protocol deflects message modification or replay by a
 wiretapper, but not necessarily by a middleman. In addition, the NTP
 protocol itself is inherently resistant to replays and consumes only
 minimal processor resources.

 All cryptographic values used by the protocol are time sensitive and

 are regularly refreshed. In particular, files containing

Mills Expires - May 2003 [Page 15]

Internet-Draft Public Key Cryptography for the NTP November 2002

 cryptographic basis values used by signature and encryption
 algorithms are regenerated from time to time. It is the intent that
 file regenerations occur without specific advance warning and without
 requiring prior distribution of the file contents. While
 cryptographic data files are not specifically signed, every file is
 associated with a filestamp in the form of the NTP seconds at the
 creation epoch. It is not the intent in this document to specify file
 formats or names or encoding rules; however, whatever conventions are
 used must support a NTP filestamp in one form or another. Additional
 details specific to the reference implementation are in Appendix B.

 Filestamps and timestamps can be compared in any combination and use
 the same conventions. It is necessary to compare them from time to
 time to determine which are earlier or later. Since these quantities
 have a granularity only to the second, such comparisons are ambiguous
 if the values are the same. Thus, the ambiguity must be resolved for
 each comparison operation as described in Appendix C.

 It is important that filestamps be proventic data; thus, they cannot
 be produced unless the producer has been synchronized to a proventic
 source. As such, the filestamps throughout the NTP subnet represent a
 partial ordering of all creation epoches and serve as means to
 expunge old data and insure new data are consistent. As the data are
 forwarded from server to client, the filestamps are preserved,
 including those for certificate and leapseconds files. Packets with
 older filestamps are discarded before spending cycles to verify the
 signature.

7. Autokey Protocol Overview

 This section presents an overview of the three server, symmetric and
 broadcast dances. Each dance is designed to be nonintrusive and to
 require no additional packets other than for regular NTP operations.
 The NTP and Autokey protocols operate independently and
 simultaneously and use the same packets. When the preliminary dance
 exchanges are complete, subsequent packets are validated by the
 autokey sequence and thus considered proventic as well. Autokey
 assumes clients poll servers at a relatively low rate, such as once
 per minute. In particular, it is assumed that a request sent at one
 poll opportunity will normally result in a response before the next
 poll opportunity.

 The Autokey protocol data unit is the extension field, one or more of
 which can be piggybacked in the NTP packet. An extension field
 contains either a request with optional data or a response with data.
 To avoid deadlocks, any number of responses can be included in a
 packet, but only one request. A response is generated for every
 request, even if the requestor is not synchronized to a proventic

 source, but contain meaningful data only if the responder is

Mills Expires - May 2003 [Page 16]

Internet-Draft Public Key Cryptography for the NTP November 2002

 synchronized to a proventic source. Some requests and most responses
 carry timestamped signatures. The signature covers the entire
 extension field, including the timestamp and filestamp, where
 applicable. Only if the packet passes all extension field tests are
 cycles spent to verify the signature.

 All dances begin with the parameter exchange where the client obtains
 the server host name and status word specifying the digest/signature
 scheme it will use and the identity schemes it supports. The dance
 continues with the certificate exchange where the client obtains and
 verifies the certificates along the trail to a trusted, self-cigned
 certifidate, usually, but not necessarily, provided by a primary
 (stratum 1) server. Primary servers are by design proventic with
 trusted, self-signed certificates.

 However, the certificate trail is not sufficient protection against
 middleman attacks unless an identity scheme such as described in

Appendix E or proof-of-posession scheme in [RFC-2875] is available.
 While the protocol for a generic challenge/response scheme is defined
 in this document, the choice of one or another required or optional
 identification schemes is yet to be determined. If all certificate
 signatures along the trail are verified and the server identity is
 confirmed, the server is declared proventic. Once declared proventic,
 the client verifies packets using digital signatures and/or the
 autokey sequence.

 Once synchronized to a proventic source, the client continues with
 the sign exchange where the server acting as CA signs the client
 certificate. The CA interprets the certificate as a X.509v3
 certificate request, but verifies the signature if it is self-signed.
 The CA extracts the subject, issuer, extension fields and public key,
 then builds a new certificate with these data along with its own
 serial number and begin and end times, then signs it using its own
 public key. The client uses the signed certificate in its own role as
 CA for dependent clients.

 In the server dance the client presents its public key and requests
 the server to generate and return a cookie encrypted with this key.
 The server constructs the cookie as described above and encrypts it
 using this key. The client decrypts the cookie for use in generating
 the key list. A similar dance is used in symmetric mode, where one
 peer acts as the client and the other the server. In case of
 overlapping messages, each peer generates a cookie and the agreed
 common value is computed as the EXOR of the two cookies.

 The cookie is used to generate the key list and autokey values in all
 dances. In the server dance there is no need to provide these values
 to the server, so once the cookie has been obtained the client can

https://datatracker.ietf.org/doc/html/rfc2875

 generate the key list and validate succeeding packets directly. In

Mills Expires - May 2003 [Page 17]

Internet-Draft Public Key Cryptography for the NTP November 2002

 other dances the client requests the autokey values from the server
 or, in some modes, the server provides them as each new key list is
 generated. Once these values have been received, the client validates
 succeeding packets using the autokey sequence as described
 previously.

 A final exchange occurs when the server has the leapseconds table, as
 indicated in the host status word. If so, the client requests the
 table and compares the filestamp with its own leapseconds table
 filestamp, if available. If the server table is newer than the client
 table, the client replaces its table with the server table. The
 client, acting as server, can now provide the most recent table to
 any of its dependent clients. In symmetric mode, this results in both
 peers having the newest table.

8. Autokey State Machine

 This section describes the formal model of the Autokey state machine,
 its state variables and the state transition functions.

8.1 Status Word

 Each server and client operating also as a server implements a host
 status word, while each client implements a server status word for
 each server. Both words have the format and content shown below. The
 low order 16 bits of the status words define the state of the Autokey
 protocol, while the high order 16 bits specify the message
 digest/signature encryption scheme. Bits 24-31 of the status word are
 reserved for server use, while bits 16-23 are reserved for client
 use. There are four additional bits implemented separately.

 The host status word is included in the ASSOC request and response
 messages. The client copies this word to the associatino status word
 and then lights additional association bits as the dance proceeds.
 Once lit, these bits never come dark unless a general reset occurs
 and the protocol is restarted from the beginning.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
		L	S	A	C	P	I	V			L	E
Digest/Signature NID		P	G	U	K	R	F	A	IDN		P	N
		T	N	T	Y	V	F	L			F	B
 +-+

 The host status bits are defined as follows:

 ENB - Lit if the server implements the Autokey protocol and is
 prepared to dance.

Mills Expires - May 2003 [Page 18]

Internet-Draft Public Key Cryptography for the NTP November 2002

 LPF
 Lit if the server has loaded a valid leapseconds file. This bit can
 be either lit or dim.

 IDN
 These three bits select which identity scheme is in use. While
 specific coding for various schemes is yet to be determined, the
 schemes available in the reference implementation and described in

Appendix E include the following.

 0x0 Trusted Certificate (TC) Scheme (default)
 0x1 Private Certificate (PC) Scheme
 0x2 Schnorr aka Identify-Friendly-or-Foe (IFF) Scheme
 0x4 Guillard-Quisquater (GC) Scheme

 The PC scheme is exclusive of any other scheme. Otherwise, either
 none or the IFF scheme or the GC scheme or both can be selected.

 The server status bits are defined as follows:

 VAL 0x0100
 Lit when the server certificate and public key are validated.

 IFF 0x0200
 Lit when the server identity credentials are confirmed by one of
 several schemes described later.

 PRV 0x0400
 Lit when the server signature is verified using the public key and
 identity credentials. Also called the proventic bit elsewhere in this
 document. When lit, signed values in subsequent messages are presumed
 proventic, but not necessarily time-synchronized.

 CKY 0x0800
 Lit when the cookie is received and validated. When lit, key lists
 can be generated.

 AUT 0x1000
 Lit when the autokey values are received and validated. When lit,
 clients can validate packets without extension fields according to
 the autokey sequence.

 SGN 0x2000
 Lit when the host certificate is signed by the server.

 LPT 0x4000
 Lit when the leapseconds table is received and validated.

Mills Expires - May 2003 [Page 19]

Internet-Draft Public Key Cryptography for the NTP November 2002

 There are four additional status bits LST, LBK, DUP and SYN not
 included in the status word. All except SYN are association
 properties, while SYN is a host property. These bits may be lit or
 dim as the protocol proceeds; all except LST are active whether or
 not the protocol is running. LST is lit when the key list is
 regenerated and signed and comes dim after the autokey values have
 been transmitted. This is necessary to avoid livelock under some
 conditions. SYN is lit when the client has synchronized to a
 proventic source and never dim after that. There are two error bits:
 LBK indicates the received packet does not match the last one sent
 and DUP indicates a duplicate packet. These bits, which are described
 in Appendix C, are lit if the corresponding error has occurred for
 the current packet and dim otherwise.

8.2 Host State Variables

 Host Name
 The name of the host returned by the Unix gethostname() library
 function. The name must agree with the subject name in the host
 certificate.

 Host Status Word
 This word is initialized when the host first starts up. The format is
 described above.

 Host Key
 The RSA public/private key used to encrypt/decrypt cookies. This is
 also the default sign key.

 Sign Key
 The RSA or DSA public/private key used to encrypt/decrypt signatures
 when the host key is not used for this purpose.

 Sign Digest
 The message digest algorithm used to compute the signature before
 encryption.

 IFF Parameters
 The parameters used in the IFF identity scheme described in Appendix

E.

 GQ Parameters
 The parameters used in the GQ identity scheme described in Appendix

E.

 GQ keys
 The public/private key used in the GQ identity scheme described in

Appendix E.

Mills Expires - May 2003 [Page 20]

Internet-Draft Public Key Cryptography for the NTP November 2002

 Server Seed
 The private value hashed with the IP addresses to construct the
 cookie.

 Certificate Information Structure (CIS)
 A structure including certain information fields from an X.509v3
 certificate, together with the certificate itself encoded in ASN.1
 syntax and including X.509v3 extension fields. Each structure carries
 the public value timestamp and the filestamp of the certificate file
 where it was generated. Elsewhere in this document the CIS will not
 be distinguished from the certificate unless noted otherwise.

 Certificate List
 CIS structures are stored on the certificate list in order of
 arrival, with the most recently received CIS placed first on the
 list. The list is initialized with the CIS for the host certificate,
 which is read from the certificate file. Additional CIS entries are
 pushed on the list as certificates are obtained from the servers
 during the certificate exchange. CIS entries are discarded if
 overtaken by newer ones or expire due to old age.

 Host Certificate
 The self-signed X.509v3 certificate for the host. The subject and
 issuer fields consist of the host name, while the message
 digest/signature encryption scheme consists of the sign key and
 message digest defined above. Optional information used in the
 identity schemes is carried in X.509v3 extension fields compatible
 with [RFC-3280].

 Public Key Values
 The public encryption key for the COOKIE request, which consists of
 the public value of the host key. It carries the public values
 timestamp and the filestamp of the host key file.

 Leapseconds Table Values
 The NIST leapseconds table from the NIST leapseconds file. It carries
 the public values timestamp and the filestamp of the leapseconds
 file.

8.3 Client State Variables (all modes)

 Association ID
 The association ID used in responses. It is assigned when the
 association is mobilized.

 Server Association ID
 The server association ID used in requests. It is initialized from
 the first nonzero association ID field in a response.

https://datatracker.ietf.org/doc/html/rfc3280

Mills Expires - May 2003 [Page 21]

Internet-Draft Public Key Cryptography for the NTP November 2002

 Server Subject Name
 The server host name determined in the parameter exchange.

 Server Issuer Name
 The host name signing the certificate. It is extracted from the
 current server certificate upon arrival and used to request the next
 item on the certificate trail.

 Server Status Word
 The host status word of the server determined in the parameter
 exchange.

 Server Public Key
 The public key used to decrypt signatures. It is extracted from the
 first certificate received, which by design is the server host
 certificate.

 Server Message Digest
 The digest/signature scheme determined in the parameter exchange.

 Identification Challenge
 A 512-bit nonce used in the identification exchange.

 Group Key
 A 512-bit secret group key used in the identification exchange. It
 identifies the cryptographic compartment shared by the server and
 client.

 Receive Cookie Values
 The cookie returned in a COOKIE response, together with its timestamp
 and filestamp.

 Receive Autokey Values
 The autokey values returned in an AUTO response, together with its
 timestamp and filestamp.

 Receive Leapsecond Values
 The leapsecond table returned by a LEAP response, together with its
 timestamp and filestamp.

8.4 Server State Variables (broadcast and symmetric modes)

 Send Cookie Values
 The cookie encryption values, signature and timestamps.

 Send Autokey Values
 The autokey values, signature and timestamps.

 Key List

Mills Expires - May 2003 [Page 22]

Internet-Draft Public Key Cryptography for the NTP November 2002

 A sequence of key IDs starting with the autokey seed and each
 pointing to the next. It is computed, timestamped and signed at the
 next poll opportunity when the key list becomes empty.

 Current Key Number
 The index of the entry on the Key List to be used at the next poll
 opportunity.

8.5 Autokey Messages

 There are currently eight Autokey requests and eight corresponding
 responses. An abbreviated description of these messages is given
 below; the detailed formats are described in Appendix A.

 Association Message (ASSOC)
 This message is used in the parameter exchange. The client sends the
 request with its host name and status word. The server sends the
 response with its host name and status word. If the server response
 is acceptable, ENB is lit. When the PC identity scheme is in use, the
 ASSOC response lights VAL, IFF and SIG, since the IFF exchange is
 complete at this point.

 Certificate Message (CERT)
 In the certificate exchange the client sends the request with the
 server subject name and the server responds with the certificate with
 that subject name. In the TC identity scheme the client sends the
 request with the server issuer name and the server responds with the
 certificate with that subject name. In either case if the certificate
 is valid, the client lights VAL.

 Cookie Message (COOKIE)
 The client sends the request with its public key. The server responds
 with the cookie encrypted with this public key. If the cookie is
 valid, the client lights CKY.

 Autokey Message (AUTO)
 The client sends the request to retrieve the Autokey values. The
 server responds with these values. If the values are valid, the
 client lights AUT.

 Leapseconds Message (LEAP)
 The client sends the request with its leapseconds table, if
 available. The server responds with its own leapseconds table. Both
 the client and server agree to use the version with the latest
 filestamp. When the latest version is identified, the client lights
 LPT.

 Sign Message (SIGN)

Mills Expires - May 2003 [Page 23]

Internet-Draft Public Key Cryptography for the NTP November 2002

 The client sends the request with its host certificate. The server
 extracts the subject, public key and optional extension fields, then
 returns a certificate signed using its own public key. If the
 certificate is valid when received by the client, it is linked in the
 certificate list and the client lights SGN.

 IFF Message (IFF)
 This exchange is used with the IFF identity scheme described in

Appendix E. If the server identity is confirmed, the client lights
 IFF and PRV.

 GQ Message (GQ)
 This exchange is used with the GQ identity scheme described in

Appendix E. If the server identity is confirmed, the client lights
 IFF and PRV.

 8.5 Protocol State Transitions

 The protocol state machine is very simple but robust. The state is
 determined by the server status bits defined above. The state
 transitions of the three dances are shown below. The capitalized
 truth values represent the server status bits. All server bits are
 initialized dark and light up upon the arrival of a specific response
 message, as detailed above.

 When the system clock is first set and about once per day after that,
 or when the system clock is stepped, the server seed is refreshed,
 signatures and timestamps updated and the protocol restarted in all
 associations. When the server seed is refreshed or a new certificate
 or leapsecond table is received, the public values timestamp is reset
 to the current time and all signatures are recomputed.

 8.5.1 Server Dance

 The server dance begins when the client sends an ASSOC request to the
 server. It ends when the first signature is verified and PRV is lit.
 Subsequent packets received without extension fields are validated by
 the autokey sequence. An optional LEAP exchange updates the
 leapseconds table. Note the order of the identity exchanges and that
 only the first one will be used if multiple schemes are available.
 Note also that the SIGN and LEAP requests are not issued until the
 client has synchronized to a proventic source.

 while (1) {
 wait_for_next_poll;
 make_NTP_header;
 if (response_ready)
 send_response;
 if (!ENB) /* parameters exchange */

Mills Expires - May 2003 [Page 24]

Internet-Draft Public Key Cryptography for the NTP November 2002

 ASSOC_request;
 else if (!VAL) /* certificate exchange */
 CERT_request(Host_Name);
 else if (IDN & GQ && !IFF) /* GQ identity exchange */
 GQ_challenge;
 else if (IDN & IFF && !IFF)/* IFF identity exchange */
 IFF_challenge;
 else if (!IFF) /* TC identity exchange */
 CERT_request(Issuer_Name);
 else if (!CKY) /* cookie exchange */
 COOKIE_request;
 else if (SYN && !SIG) /* sign exchange */
 SIGN_request(Host_Certificate);
 else if (SYN && LPF & !LPT)/* leapseconds exchange */
 LEAP_request;
 }

 When the PC identity scheme is in use, the ASSOC response lights VAL,
 IFF and SIG, the COOKIE response lights CKY and AUT and the first
 valid signature lights PRV.

 8.5.2 Broadcast Dance

 THe only difference between the broadcast and server dances is the
 inclusion of an autokey values exchange following the cookie
 exchange. The broadcast dance begins when the client receives the
 first broadcast packet, which includes an ASSOC response with
 association ID. The broadcast client uses the association ID to
 initiate a server dance in order to calibrate the propagation delay.

 The dance ends when the first signature is verified and PRV is lit.
 Subsequent packets received without extension fields are validated by
 the autokey sequence. An optional LEAP exchange updates the
 leapseconds table. When the server generates a new key list, the
 server replaces the ASSOC response with an AUTO response in the first
 packet sent.

 while (1) {
 wait_for_next_poll;
 make_NTP_header;
 if (response_ready)
 send_response;
 if (!ENB) /* parameters exchange */
 ASSOC_request;
 else if (!VAL) /* certificate exchange */
 CERT_request(Host_Name);
 else if (IDN & GQ && !IFF) /* GQ identity exchange */
 GQ_challenge;

 else if (IDN & IFF && !IFF)/* IFF identity exchange */

Mills Expires - May 2003 [Page 25]

Internet-Draft Public Key Cryptography for the NTP November 2002

 IFF_challenge;
 else if (!IFF) /* TC identity exchange */
 CERT_request(Issuer_Name);
 else if (!CKY) /* cookie exchange */
 COOKIE_request;
 else if (!AUT) /* autokey values exchange */
 AUTO_request;
 else if (SYN && !SIG) /* sign exchange */
 SIGN_request(Host_Certificate);
 else if (SYN && LPF & !LPT)/* leapseconds exchange */
 LEAP_request;
 }

 When the PC identity scheme is in use, the ASSOC response lights VAL,
 IFF and SIG, the COOKIE response lights CKY and AUT and the first
 valid signature lights PRV.

 8.5.3 Symmetric Dance

 The symmetric dance is intricately choreographed. It begins when the
 active peer sends an ASSOC request to the passive peer. The passive
 peer mobilizes an association and both peers step the same dance from
 the beginning. Until the active peer is synchronized to a proventic
 source (which could be the passive peer) and can sign messages, the
 passive peer loops waiting for the timestamp in the ASSOC response to
 light up. Until then, the active peer dances the server steps, but
 skips the sign, cookie and leapseconds exchanges.

 while (1) {
 wait_for_next_poll;
 make_NTP_header;
 if (!ENB) /* parameters exchange */
 ASSOC_request;
 else if (!VAL) /* certificate exchange */
 CERT_request(Host_Name);
 else if (IDN & GQ && !IFF) /* GQ identity exchange */
 GQ_challenge;
 else if (IDN & IFF && !IFF)/* IFF identity exchange */
 IFF_challenge;
 else if (!IFF) /* TC identity exchange */
 CERT_request(Issuer_Name);
 else if (SYN && !SIG) /* sign exchange */
 SIGN_request(Host_Certificate);
 else if (SYN && !CKY) /* cookie exchange */
 COOKIE_request;
 else if (!LST) /* autokey values response */
 AUTO_response;
 else if (!AUT) /* autokey values exchange */

 AUTO_request;

Mills Expires - May 2003 [Page 26]

Internet-Draft Public Key Cryptography for the NTP November 2002

 else if (SYN && LPF & !LPT)/* leapseconds exchange */
 LEAP_request;
 }

 When the PC identity scheme is in use, the ASSOC response lights VAL,
 IFF and SIG, the COOKIE response lights CKY and AUT and the first
 valid signature lights PRV.

 Once the active peer has synchronized to a proventic source, it
 includes timestamped signatures with its messages. The first thing it
 does after lighting timestamps is dance the sign exchange so that the
 passive peer can survive the default identity exchange, if necessary.
 This is pretty wierd, since the passive peer will find the active
 certificate signed by its own public key.

 The passive peer, which has been stalled waiting for the active
 timestamps to light up, now mates the dance. The initial value of the
 cookie is zero. If a COOKIE response has not been received by either
 peer, the next message sent is a COOKIE request. The recipient rolls
 a random cookie, lights CKY and returns the encrypted cookie. The
 recipient decrypts the cookie and lights CKY. It is not a protocol
 error if both peers happen to send a COOKIE request at the same time.
 In this case both peers will have two values, one generated by itself
 peer and the other received from the other peer. In such cases the
 working cookie is constructed as the EXOR of the two values.

 At the next packet transmission opportunity, either peer generates a
 new key list and lights LST; however, there may already be an AUTO
 request queued for transmission and the rules say no more than one
 request in a packet. When available, either peer sends an AUTO
 response and dims LST. The recipient initializes the autokey values,
 dims LST and lights AUT. Subsequent packets received without
 extension fields are validated by the autokey sequence.

 The above description assumes the active peer synchronizes to the
 passive peer, which itself is synchronized to some other source, such
 as a radio clock or another NTP server. In this case, the active peer
 is operating at a stratum level one greater than the passive peer and
 so the passive peer will not synchronize to it unless it loses its
 own sources and the active peer itself has another source.

9. Error Recovery

 The Autokey protocol state machine includes provisions for various
 kinds of error conditions that can arise due to missing files,
 corrupted data, protocol violations and packet loss or misorder, not
 to mention hostile intrusion. This section describes how the protocol
 responds to reachability and timeout events which can occur due to

Mills Expires - May 2003 [Page 27]

Internet-Draft Public Key Cryptography for the NTP November 2002

 such errors. Appendix C contains an extended discussion on error
 checking and timestamp validation.

 A persistent NTP association is mobilized by an entry in the
 configuration file, while an ephemeral association is mobilized upon
 the arrival of a broadcast, manycast or symmetric active packet. A
 general reset reinitializes all association variables to the initial
 state when first mobilized. In addition, if the association is
 ephemeral, the association is demobilized and all resources acquired
 are returned to the system.

 Every NTP association has two variables which maintain the liveness
 state of the protocol, the 8-bit reachability register defined in
 [RFC-1305] and the watchdog timer, which is new in NTPv4. At every
 poll interval the reachability register is shifted left, the low
 order bit is dimmed and the high order bit is lost. At the same time
 the watchdog counter is incremented by one. If an arriving packet
 passes all authentication and sanity checks, the rightmost bit of the
 reachability register is lit and the watchdog counter is set to zero.
 If any bit in the reachability register is lit, the server is
 reachable, otherwise it is unreachable.

 When the first poll is sent by an association, the reachability
 register and watchdog counter are zero. If the watchdog counter
 reaches 16 before the server becomes reachable, a general reset
 occurs. This resets the protocol and clears any acquired state before
 trying again. If the server was once reachable and then becomes
 unreachable, a general reset occurs. In addition, if the watchdog
 counter reaches 16 and the association is persistent, the poll
 interval is doubled. This reduces the network load for packets that
 are unlikely to elicit a response.

 At each state in the protocol the client expects a particular
 response from the server. A request is included in the NTP packet
 sent at each poll interval until a valid response is received or a
 general reset occurs, in which case the protocol restarts from the
 beginning. A general reset also occurs for an association when an
 unrecoverable protocol error occurs. A general reset occurs for all
 associations when the system clock is first synchronized or the clock
 is stepped or when the server seed is refreshed.

 There are special cases designed to quickly respond to broken
 associations, such as when a server restarts or refreshes keys. Since
 the client cookie is invalidated, the server rejects the next client
 request and returns a crypto-NAK packet. Since the crypto-NAK has no
 MAC, the problem for the client is to determine whether it is
 legitimate or the result of intruder mischief. In order to reduce the
 vulnerability in such cases, the crypto-NAK, as well as all

https://datatracker.ietf.org/doc/html/rfc1305

 responses, is believed only if the result of a previous packet sent

Mills Expires - May 2003 [Page 28]

Internet-Draft Public Key Cryptography for the NTP November 2002

 by the client and not a replay, as confirmed by the LBK and DUP
 status bits described above. While this defense can be easily
 circumvented by a middleman, it does deflect other kinds of intruder
 warfare.

 There are a number of situations where some event happens that causes
 the remaining autokeys on the key list to become invalid. When one of
 these situations happens, the key list and associated autokeys in the
 key cache are purged. A new key list, signature and timestamp are
 generated when the next NTP message is sent, assuming there is one.
 Following is a list of these situations.

 1. When the cookie value changes for any reason.

 2. When a client switches from server mode to broadcast mode. There
 is no further need for the key list, since the client will not
 transmit again.

 3. When the poll interval is changed. In this case the calculated
 expiration times for the keys become invalid.

 4. If a problem is detected when an entry is fetched from the key
 list. This could happen if the key was marked non-trusted or timed
 out, either of which implies a software bug.

10. References

 [RFC-1305] Mills, D.L., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis," RFC-1305, March 1992.

 [RFC-2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC-2402] Kent, S., R. Atkinson, "IP Authentication Header," RFC-
2402, November 1998.

 [RFC-2406] Kent, S., and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)," RFC-2406, November 1998.

 [RFC-2408] Maughan, D., M. Schertler, M. Schneider, and J. Turner,
 "Internet Security Association and Key Management Protocol (ISAKMP),"

RFC-2408, November 1998.

 [RFC-2412] Orman, H., "The OAKLEY Key Determination Protocol," RFC-
2412, November 1998.

https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2412

Mills Expires - May 2003 [Page 29]

Internet-Draft Public Key Cryptography for the NTP November 2002

 [RFC-2510] Adams, C., S. Farrell, "Internet X.509 Public Key
 Infrastructure Certificate Management Protocols," RFC-2510, March
 1999.

 [RFC-2522] Karn, P., and W. Simpson, "Photuris: Session-key
 Management Protocol", RFC-2522, March 1999.

 [RFC-2875] Prafullchandra, H., and J. Schaad, "Diffie-Hellman Proof-
 of-Possession Algorithms," RFC-2875, July 2000, 23 pp.

 [RFC-3279] Bassham, L., W. Polk and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation Lists (CRL) Profile," RFC-

3279, April 2002.

 [RFC-3280] Housley, R., et al., "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List (CRL)
 Profile," RFC-3280, April 2002.

 [MILLS00] Mills, D.L. Public key cryptography for the Network Time
 Protocol. Electrical Engineering Report 00-5-1, University of
 Delaware, May 2000. 23 pp.

 [MILLS96] Mills, D.L. Proposed authentication enhancements for the
 Network Time Protocol version 4. Electrical Engineering Report 96-10-
 3, University of Delaware, October 1996, 36 pp.

 [STIMSON] Stimson, D.R. Cryptography - Theory and Practice. CRC
 Press, Boca Raton, FA, 1995, ISBN 0-8493-8521-0.

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc2875
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3280

Mills Expires - May 2003 [Page 30]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix A. Packet Formats

 The NTPv4 packet consists of a number of fields made up of 32-bit (4
 octet) words in network byte order. The packet consists of three
 components, the header, one or more optional extension fields and an
 optional message authenticator code (MAC), consisting of the Key ID
 and Message Digest fields. The header format is shown below, where
 the size of some multiple word fields is shown in words.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |LI | VN |Mode | Stratum | Poll | Precision |
 +-+
 | Root Delay |
 +-+
 | Root Dispersion |
 +-+
 | Reference ID |
 +-+
 | |
 | Reference Timestamp (2) |
 | |
 +-+
 | |
 | Originate Timestamp (2) |
 | |
 +-+
 | |
 | Receive Timestamp (2) |
 | |
 +-+
 | |
 | Transmit Timestamp (2) |
 | |
 +-+
 | |
 | |
 = Extension Field(s) =
 | |
 | |
 +-+
 | Key ID |
 +-+
 | |
 | |
 | Message Digest (4) |
 | |

Mills Expires - May 2003 [Page 31]

Internet-Draft Public Key Cryptography for the NTP November 2002

 | |
 +-+

 The NTP header extends from the beginning of the packet to the end of
 the Transmit Timestamp field. The format and interpretation of the
 header fields are backwards compatible with the NTPv3 header fields
 as described in [RFC-1305].

 A non-authenticated NTP packet includes only the NTP header, while an
 authenticated one contains in addition a MAC. The format and
 interpretation of the NTPv4 MAC is described in [RFC-1305] when using
 the Digital Encryption Standard (DES) algorithm operating in Cipher-
 Block Chaining (CBC) node. This algorithm and mode of operation is no
 longer supported in NTPv4. The preferred replacement in both NTPv3
 and NTPv4 is the Message Digest 5 (MD5) algorithm, which is included
 in the reference implementation. For MD5 the Message Digest field is
 4 words (8 octets), but the Key ID field remains 1 word (4 octets).

A.1 Extension Field Format

 In NTPv4 one or more extension fields can be inserted after the NTP
 header and before the MAC, which is always present when an extension
 field is present. The extension fields can occur in any order;
 however, in some cases there is a preferred order which improves the
 protocol efficiency. While previous versions of the Autokey protocol
 used several different extension field formats, in version 2 of the
 protocol only a single extension field format is used.

 Each extension field contains a request or response message in the
 following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|E| Version | Code | Length |
 +-+
 | Association ID |
 +-+
 | Timestamp |
 +-+
 | Filestamp |
 +-+
 | Value Length |
 +-+
 | |
 | |
 = Value =
 | |

https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1305

 | |

Mills Expires - May 2003 [Page 32]

Internet-Draft Public Key Cryptography for the NTP November 2002

 +-+
 | Signature Length |
 +-+
 | |
 | |
 = Signature =
 | |
 | |
 +-+
 | Padding |
 +-+

 Each extension field except the last is zero-padded to a word (4
 octets) boundary, while the last is zero-padded to a doubleword (8
 octets) boundary. The Length field covers the entire extension field,
 including the Length and Padding fields. While the minimum field
 length is 8 octets, a maximum field length remains to be established.
 The reference implementation discards any packet with a field length
 more than 1024 octets.

 The presence of the MAC and extension fields in the packet is
 determined from the length of the remaining area after the header to
 the end of the packet. The parser initializes a pointer just after
 the header. If the length is not a multiple of 4, a format error has
 occurred and the packet is discarded. The following cases are
 possible based on the remaining length in words.

 0 The packet is not authenticated.
 4 The packet is an error report or crypto-NAK resulting from a
 previous packet that failed the message digest check. The 4 octets
 are presently unused and should be set to 0.
 2, 3, 4 The packet is discarded with a format error.
 5 The remainder of the packet is the MAC.
 >5 One or more extension fields are present.

 If an extension field is present, the parser examines the Length
 field. If the length is less than 4 or not a multiple of 4, a format
 error has occurred and the packet is discarded; otherwise, the parser
 increments the pointer by this value. The parser now uses the same
 rules as above to determine whether a MAC is present and/or another
 extension field. An additional implementation-dependent test is
 necessary to ensure the pointer does not stray outside the buffer
 space occupied by the packet.

 In the Autokey Version 2 format, the Code field specifies the request
 or response operation, while the Version field is 2 for the current
 protocol version. There are two flag bits defined. Bit 0 is the
 response flag (R) and bit 1 is the error flag (E); the other six bits

Mills Expires - May 2003 [Page 33]

Internet-Draft Public Key Cryptography for the NTP November 2002

 are presently unused and should be set to 0. The remaining fields
 will be described later.

 In the most common protocol operations, a client sends a request to a
 server with an operation code specified in the Code field and lights
 the R bit. Ordinarily, the client dims the E bit as well, but may in
 future light it for some purpose. The Association ID field is set to
 the value previously received from the server or 0 otherwise. The
 server returns a response with the same operation code in the Code
 field and the R bit lit. The server can also light E bit in case of
 error. The Association ID field is set to the association ID sending
 the response as a handle for subsequent exchanges. If for some reason
 the association ID value in a request does not match the association
 ID of any mobilized association, the server returns the request with
 both the R and E bits lit. Note that it is not a protocol error to
 send an unsolicited response with no matching request.

 In some cases not all fields may be present. For requests, until a
 client has synchronized to a proventic source, signatures are not
 valid. In such cases the Timestamp and Signature Length fields are 0
 and the Signature field is empty. Responses are generated only when
 the responder has synchronized to a proventic source; otherwise, an
 error response message is sent. Some request and error response
 messages carry no value or signature fields, so in these messages
 only the first two words are present.

 The Timestamp and Filestamp words carry the seconds field of an NTP
 timestamp. The Timestamp field establishes the signature epoch of the
 data field in the message, while the filestamp establishes the
 generation epoch of the file that ultimately produced the data that
 is signed. Since a signature and timestamp are valid only when the
 signing host is synchronized to a proventic source and a
 cryptographic data file can only be generated if a signature is
 possible, the response filestamp is always nonzero, except in the
 Association response message, where it contains the server status
 word.

A.2 Autokey Version 2 Messages

 Following is a list of the messages used by the protocol.

 A.2.1 Association Message (ASSOC)

 The Association message is used to obtain the host name and related
 values. The request and response are unsigned and have the following
 format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Mills Expires - May 2003 [Page 34]

Internet-Draft Public Key Cryptography for the NTP November 2002

 +-+
 |1|E| 1 | 1 | Length |
 +-+
 | 0 |
 +-+
 | Public Values Timestamp |
 +-+
 | Host Status Word |
 +-+
 | Host Name Length |
 +-+
 | |
 | |
 = Host Name =
 | |
 | |
 +-+

 The Host Name field contains the unterminated string returned by the
 Unix gethostname() library function. While minimum and maximum host
 name lengths remain to be established, the reference implementation
 uses the values 4 and 256, respectively. The remaining fields are
 defined previously in this document.

 A.2.2. Certificate Message (CERT)

 The Certificate message is used to obtain a certificate and related
 values by subject name. The unsigned request has the following
 format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| 2 | 2 | 8 |
 +-+
 | Association ID |
 +-+
 | Current Time |
 +-+
 | Public Values Timestamp |
 +-+
 | Subject Name Length |
 +-+
 | |
 | |
 = Subject Name =
 | |
 | |

 +-+

Mills Expires - May 2003 [Page 35]

Internet-Draft Public Key Cryptography for the NTP November 2002

 For the purposes of interoperability with older Autokey versions, if
 only the first two words are sent, the request is for the host
 certificate. The response has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 2 | 2 | Length |
 +-+
 | Association ID |
 +-+
 | Public Values Timestamp |
 +-+
 | Certificate Filestamp |
 +-+
 | Certificate Length |
 +-+
 | |
 | |
 = Certificate =
 | |
 | |
 +-+
 | Certificate Signature Length |
 +-+
 | |
 | |
 = Certificate Signature =
 | |
 | |
 +-+

 The certificate is encoded in X.509 format with ASN.1 syntax as
 described in Appendix G. The remaining fields are defined previously
 in this document.

 A.2.3 Cookie Message (COOKIE)

 The Cookie message is used in server and symmetric modes to obtain
 the server cookie. The request has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| 3 | 3 | Length |
 +-+
 | Association ID |

 +-+

Mills Expires - May 2003 [Page 36]

Internet-Draft Public Key Cryptography for the NTP November 2002

 | Public Values Timestamp |
 +-+
 | Host Key Filestamp |
 +-+
 | Public Key Length |
 +-+
 | |
 | |
 = Public Key =
 | |
 | |
 +-+
 | Public Key Signature Length |
 +-+
 | |
 | |
 = Public Key Signature =
 | |
 | |
 +-+

 The Public Key field contains the host public key encoded with ASN.1
 syntax as described in Appendix G. The remaining fields are defined
 previously in this document.

 The response message has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 3 | 3 | Length |
 +-+
 | Association ID |
 +-+
 | Cookie Timestamp |
 +-+
 | Public Key Timestamp |
 +-+
 | Encrypted Cookie Length |
 +-+
 | |
 | |
 = Encrypted Cookie =
 | |
 | |
 +-+
 | Cookie Signature Length |
 +-+

 | |

Mills Expires - May 2003 [Page 37]

Internet-Draft Public Key Cryptography for the NTP November 2002

 | |
 = Cookie Signature =
 | |
 | |
 +-+

 The Encrypted Cookie field contains the raw cookie value encrypted by
 the public key in the request. The Cookie Signature and Timestamp are
 determined when the response is sent. The Public Key Timestamp is
 copied from the request. The remaining fields are defined previously
 in this document.

 A.2.4 Autokey Message (AUTO)

 The Autokey message is used to obtain the autokey values. The request
 message has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| 2 | 4 | 8 |
 +-+
 | Association ID |
 +-+

 The response message has the following format:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 4 | 4 | Length |
 +-+
 | Association ID |
 +-+
 | Autokey Timestamp |
 +-+
 | Public Values Timestamp |
 +-+
 | 8 |
 +-+
 | Key ID |
 +-+
 | Key Number |
 +-+
 | Autokey Signature Length |
 +-+
 | |
 | |

 = Autokey Signature =

Mills Expires - May 2003 [Page 38]

Internet-Draft Public Key Cryptography for the NTP November 2002

 | |
 | |
 +-+

 The Autokey Signature and Timestamp are determined when the key list
 is generated. The remaining fields are defined previously in this
 document.

 A.2.5 Leapseconds Table Message (LEAP)

 The Leapseconds Table message is used to exchange leapseconds tables.
 The request and response messages have the following format, except
 that the R bit is dim in the request and lit in the response:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|E| 2 | 5 | Length |
 +-+
 | Association ID |
 +-+
 | Public Values Timestamp |
 +-+
 | Leapseconds Filestamp |
 +-+
 | Leapseconds Table Length |
 +-+
 | |
 | |
 = Leapseconds Table =
 | |
 | |
 +-+
 | Leapseconds Signature Length |
 +-+
 | |
 | |
 = Leapseconds Signature =
 | |
 | |
 +-+

 The Leapseconds Table field contains the leapseconds table as parsed
 from the leapseconds file from NIST. If the client already has a copy
 of the leapseconds data, it uses the one with the latest filestamp
 and discards the other. The remaining fields are defined previously
 in this document.

 A.2.6 Sign Message (SIGN)

Mills Expires - May 2003 [Page 39]

Internet-Draft Public Key Cryptography for the NTP November 2002

 The Sign message requests the server to sign and return a certificate
 presented in the request. The request and response messages have the
 following format, except that the R bit is dim in the request and lit
 in the response:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|E| 2 | 6 | Length |
 +-+
 | Association ID |
 +-+
 | Public Values Timestamp |
 +-+
 | Certificate Filestamp |
 +-+
 | Certificate Length |
 +-+
 | |
 | |
 = Certificate =
 | |
 | |
 +-+
 | Certificate Signature Length |
 +-+
 | |
 | |
 = Certificate Signature =
 | |
 | |
 +-+

 The certificate is in X.509 format encoded in ASN.1 syntax as
 described in Appendix G. The remaining fields are defined previously
 in this document.

 A.2.7 Identity Messages (IFF, GQ)

 The Identity request asks the server to perform a mathematical
 operation on the challenge and return the results in the response.
 The request message has the following format, where 7 is the IFF
 scheme and 8 is the GQ shseme:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 |0|E| 2 | 7/8 | Length |

Mills Expires - May 2003 [Page 40]

Internet-Draft Public Key Cryptography for the NTP November 2002

 +-+
 | Association ID |
 +-+
 | Challenge Timestamp |
 +-+
 | Public Values Timestamp |
 +-+
 | Challenge Length |
 +-+
 | |
 | |
 = Challenge (512 bits) =
 | |
 | |
 +-+
 | Challenge Signature Length |
 +-+
 | |
 | |
 = Challenge Signature =
 | |
 | |
 +-+

 The Challenge is a raw 512-bit nonce. The remaining fields are
 defined previously in this document.

 The Identity response contains the result of the mathematical
 operation and is in two parts, the results and a message digest. The
 response message has the following format, where 7 is the IFF scheme
 and 8 is for the GQ shseme:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|E| 2 | 7/8 | Length |
 +-+
 | Association ID |
 +-+
 | Response Timestamp |
 +-+
 | Public Values Timestamp |
 +-+
 | Response Length |
 +-+
 | |
 | |
 = Response =

 | |

Mills Expires - May 2003 [Page 41]

Internet-Draft Public Key Cryptography for the NTP November 2002

 | |
 +-+
 | Resonse Signature Length |
 +-+
 | |
 | |
 = Response Signature =
 | |
 | |
 +-+

 The Response is encoded in ASN.1 syntax as described in Appendix G.
 The Response Signature and Timestamp are determined when the response
 is sent. The Parameters Filestamp is copied from the request.

Mills Expires - May 2003 [Page 42]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix B. Cryptographic Key and Certificate Management

 This appendix describes how cryptographic keys and certificates are
 generated and managed in the NTPv4 reference implementation. These
 means are not intended to become part of any standard that may be
 evolved from this document, but to serve as an example of how these
 functions can be implemented and managed in a typical operational
 environment.

 The ntp-keygen utility program in the NTP software library generates
 public/private key files, certificate files, identity parameter files
 and public/private identity key files. By default the modulus of all
 encryption and identity keys is 512 bits. All random cryptographic
 data are based on a pseudo-random number generator seeded in such a
 way that random values are exceedingly unlikely to repeat. The files
 are PEM encoded in printable ASCII format suitable for mailing as
 MIME objects.

 Every file has a filestamp, which is a string of decimal digits
 representing the NTP seconds the file was created. The file name is
 formed from the concatenation of the host name, filestamp and
 constant strings, so files can be copied from one environment to
 another while preserving the original filestamp. The file header
 includes the file name and date and generation time in printable
 ASCII. The utility assumes the host is synchronized to a proventic
 source at the time of generation, so that filestamps are proventic
 data. This raises an interesting circularity issue that will not be
 further explored here.

 The generated files are typically stored in NFS mounted file systems,
 with files containing private keys obscured to all but root. Symbolic
 links are installed from default file names assumed by the NTP daemon
 to the selected files. Since the files of successive generations and
 different hosts have unique names, there is no possibility of name
 collisions.

 Public/private keys must be generated by the host to which they
 belong. OpenSSL public/private RSA and DSA keys are generated as an
 OpenSSL structure, which is then PEM encoded in ASN.1 syntax and
 written to the host key file. The host key must be RSA, since it is
 used to encrypt the cookie, as well as encrypt signatures by default.
 In principle, these files could be generated directly by OpenSSL
 utility programs, as long as the symbolic links are consistent. The
 optional sign key can be RSA or DSA, since it is used only to encrypt
 signatures.

 Identity parameters must be generated by the ntp-keygen utility,
 since they have proprietary formats. Since these are private to the

 group, they are generated by one machine acting as a trusted

Mills Expires - May 2003 [Page 43]

Internet-Draft Public Key Cryptography for the NTP November 2002

 authority and then distributed to all other members of the group by
 secure means. Public/private identity keys are generated by the host
 to which they belong along with certificates with the public identity
 key.

 Certificates are usually, but not necessarily, generated by the host
 to which they belong. The ntp-keygen utility generates self-signed
 X.509v3 host certificate files with optional extension fields.
 Certificate requests are not used, since the certificate itself is
 used as a request to be signed. OpenSSL X.509v3 certificates are
 generated as an OpenSSL structure, which is then PEM encoded in ASN.1
 syntax and written to the host certificate file. The string returned
 by the Unix gethostname() routine is used for both the subject and
 issuer fields. The serial number and begin time fields are derived
 from the filestamp; the end time is one year hence. The host
 certificate is signed by the sign key or host key by default.

 An important design goal is to make cryptographic data refreshment as
 simple and intuitive as possible, so it can be driven by scripts on a
 periodic basis. When the ntp-keygen utility is run for the first
 time, it creates by default a RSA host key file and RSA-MD5 host
 certificate file and necessary symbolic links. After that, it creates
 a new certificate file and symbolic link using the existing host key.
 The program run with given options creates identity parameter files
 for one or both the IFF or GQ identity schemes. The parameter files
 must then be securely copied to all other group members and symbolic
 links installed from the default names to the installed files. In the
 GQ scheme the next and each subsequent time the ntp-keygen utility
 runs, it automatically creates or updates the private/public identity
 key file and certificate file using the existing identity parameters.

Mills Expires - May 2003 [Page 44]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix C. Autokey Error Checking

 Exhaustive examination of possible vulnerabilities at the various
 processing steps of the NTPv3 protocol as specified in [RFC-1305]
 have resulted in a revised list of packet sanity tests. There are 12
 tests in the NTPv4 reference implementation, called TEST1 through
 TEST12, which are performed in a specific order designed to gain
 maximum diagnostic information while protecting against an accidental
 or malicious clogging attacks. These tests are described in detail in
 the NTP software documentation. Those relevant to the Autokey
 protocol are described in this appendix.

 The sanity tests are classified in four tiers. The first tier
 deflects access control and message digest violations. The second,
 represented by the autokey sequence, deflects spoofed or replayed
 packets. The third, represented by timestamped digital signatures,
 binds cryptographic values to verifiable credentials. The fourth
 deflects packets with invalid NTP header fields or out of bounds time
 values. However, the tests in this last group do not directly affect
 cryptographic protocol vulnerability, so are beyond the scope of
 discussion here.

C.1 Packet Processing Rules

 Every arriving NTP packet is checked enthusiastically for format,
 content and protocol errors. Some packet header fields are checked by
 the main NTP code path both before and after the Autokey protocol
 engine cranks. These include the NTP version number, overall packet
 length and extension field lengths. Extension fields may be no longer
 than 1024 octets in the reference implementation. Packets failing any
 of these checks are discarded immediately. Packets denied by the
 access control mechanism will be discarded later, but processing
 continues temporarily in order to gather further information useful
 for error recovery and reporting.

 Next, the cookie and session key are determined and the MAC computed
 as described above. If the MAC fails to match the value included in
 the packet, the action depends on the mode and the type of packet.
 Packets failing the MAC check will be discarded later, but processing
 continues temporarily in order to gather further information useful
 for error recovery and reporting.

 The NTP transmit and receive timestamps are in effect nonces, since
 an intruder cannot effectively guess either value in advance. To
 minimize the possibility that an intruder can guess the nonces, the
 low order unused bits in all timestamps are obscured with random
 values. If the transmit timestamp matches the transmit timestamp in
 the last packet received, the packet is a duplicate, so the DUP bit

https://datatracker.ietf.org/doc/html/rfc1305

 is lit. If the packet mode is not broadcast and the last transmit

Mills Expires - May 2003 [Page 45]

Internet-Draft Public Key Cryptography for the NTP November 2002

 timestamp does not match the originate timestamp in the packet,
 either it was delivered out of order or an intruder has injected a
 rogue packet, so the LBK bit is lit. Packets with either the DUP or
 LBK bit lie be discarded later, but processing continues temporarily
 in order to gather further information useful for error recovery and
 reporting.

 Further indicators of the server and client state are apparent from
 the transmit and receive timestamps of both the packet and the
 association. The quite intricate rules take into account these and
 the above error indicators They are designed to discriminate between
 legitimate cases where the server or client are in inconsistent
 states and recoverable, and when an intruder is trying to destabilize
 the protocol or force consumption of needless resources. The exact
 behavior is beyond the scope of discussion, but is clearly described
 in the source code documentation.

 Next, the Autokey protocol engine is cranked and the dances evolve as
 described above. Some requests and all responses have value fields
 which carry timestamps and filestamps. When the server or client is
 synchronized to a proventic source, most requests and responses with
 value fields carry signatures with valid timestamps. When not
 synchronized to a proventic source, value fields carry an invalid
 (zero) timestamp and the signature field and signature length word
 are omitted.

 The extension field parser checks that the Autokey version number,
 operation code and field length are valid. If the error bit is lit in
 a request, the request is discarded without response; if an error is
 discovered in processing the request, or if the responder is not
 synchronized to a proventic source, the response contains only the
 first two words of the request with the response and error bits lit.
 For messages with signatures, the parser requires that timestamps and
 filestampes are valid and not a replay, that the signature length
 matches the certificate public key length and only then verifies the
 signature. Errors are reported via the security logging facility.

 All certificates must have correct ASN.1 encoding, supported
 digest/signature scheme and valid subject, issuer, public key and,
 for self-signed certificates, valid signature. While the begin and
 end times can be checked relative to the filestamp and each other,
 whether the certificate is valid relative to the actual time cannot
 be determined until the client is synchronized to a proventic source
 and the certificate is signed and verified by the server.

 When the protocol starts the only response accepted is ASSOC with
 valid timestamp, after which the server status word must be nonzero.
 ASSOC responses are discarded if this word is nonzero. The only

 responses accepted after that and until the PRV bit is lit are CERT,

Mills Expires - May 2003 [Page 46]

Internet-Draft Public Key Cryptography for the NTP November 2002

 IFF and GQ. Once identity is confirmed and IFF is lit, these
 responses are no longer accepted, but all other responses are
 accepted only if in response to a previously sent request and only in
 the order prescribed in the protocol dances. Additional checks are
 implemented for each request type and dance step.

C.2 Timestamps, Filestamps and Partial Ordering

 When the host starts, it reads the host key and certificate files,
 which are required for continued operation. It also reads the sign
 key and leapseconds files, when available. When reading these files
 the host checks the file formats and filestamps for validity; for
 instance, all filestamps must be later than the time the UTC
 timescale was established in 1972 and the certificate filestamp must
 not be earlier than its associated sign key filestamp. In general, at
 the time the files are read, the host is not synchronized, so it
 cannot determine whether the filestamps are bogus other than these
 simple checks.

 In the following the relation A->B is Lamport's "happens before"
 relation, which is true if event A happens before event B. When
 timestamps are compared to timestamps, the relation is false if A ==
 B; that is, false if the events are simultaneous. For timestamps
 compared to filestamps and filestamps compared to filestamps, the
 relation is true if A == B. Note that the current time plays no part
 in these assertions except in (6) below; however, the NTP protocol
 itself insures a correct partial ordering for all current time
 values.

 The following assertions apply to all relevant responses:

 1. The client saves the most recent timestamp T0 and filestamp F0 for
 the respective signature type. For every received message carrying
 timestamp T1 and filestamp F1, the message is discarded unless T0->T1
 and F0->F1. The requirement that T0->T1 is the primary defense
 against replays of old messages.

 2. For timestamp T and filestamp F, F->T; that is, the timestamp must
 not be earlier than the filestamp. This could be due to a file
 generation error or a significant error in the system clock time.

 3. For sign key filestamp S, certificate filestamp C, cookie
 timestamp D and autokey timestamp A, S->C->D->A; that is, the autokey
 must be generated after the cookie, the cookie after the certificate
 and the certificate after the sign key.

 4. For sign key filestamp S and certificate filestamp C specifying
 begin time B and end time E, S->C->B->E; that is, the valid period
 must not be retroactive.

Mills Expires - May 2003 [Page 47]

Internet-Draft Public Key Cryptography for the NTP November 2002

 5. A certificate for subject S signed by issuer I and with filestamp
 C1 obsoletes, but does not necessarily invalidate, another
 certificate with the same subject and issuer but with filestamp C0,
 where C0->C1.

 6. A certificate with begin time B and end time E is invalid and can
 not be used to sign certificates if t->B or E->t, where t is the
 current time. Note that the public key previously extracted from the
 certificate continues to be valid for an indefinite time. This raises
 the interesting possibilities where a truechimer server with expired
 certificate or a falseticker with valid certificate are not detected
 until the client has synchronized to a clique of proventic
 truechimers.

Mills Expires - May 2003 [Page 48]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix D. Security Analysis

 This section discusses the most obvious security vulnerabilities in
 the various Autokey dances. First, some observations on the
 particular engineering parameters of the Autokey protocol are in
 order. The number of bits in some cryptographic values are
 considerably smaller than would ordinarily be expected for strong
 cryptography. One of the reasons for this is the need for
 compatibility with previous NTP versions; another is the need for
 small and constant latencies and minimal processing requirements.
 Therefore, what the scheme gives up on the strength of these values
 must be regained by agility in the rate of change of the
 cryptographic basis values. Thus, autokeys are used only once and
 seed values are regenerated frequently. However, in most cases even a
 successful cryptanalysis of these values compromises only a
 particular association and does not represent a danger to the general
 population.

 Throughout the following discussion the cryptographic algorithms and
 private values themselves are assumed secure; that is, a brute force
 cryptanalytic attack will not reveal the host private key, sign
 private key, cookie value, identity parameters, server seed or
 autokey seed. In addition, an intruder will not be able to predict
 random generator values or predict the next autokey. On the other
 hand, the intruder can remember the totality of all past values for
 all packets ever sent.

D.1 Protocol Vulnerability

 While the protocol has not been subjected to a formal analysis, a few
 preliminary assertions can be made. The protocol cannot loop forever
 in any state, since the watchdog counter and general reset insure
 that the association variables will eventually be purged and the
 protocol restarted from the beginning. However, if something is
 seriously wrong, the timeout/restart cycle could continue
 indefinitely until whatever is wrong is fixed. This is not a clogging
 hazard, as the timeout period is very long compared to expected
 network delays.

 The LBK and DUP bits described in the main body and Appendix C are
 effective whether or not cryptographic means are in use. The DUP bit
 deflects duplicate packets in any mode, while the LBK bit deflects
 bogus packets in all except broadcast mode. All packets must have the
 correct MAC, as verified with correct key ID and cookie. In all modes
 the next key ID cannot be predicted by a wiretapper, so are of no use
 for cryptanalysis.

 As long as the client has validated the server certificate trail, a

 wiretapper cannot produce a convincing signature and cannot produce

Mills Expires - May 2003 [Page 49]

Internet-Draft Public Key Cryptography for the NTP November 2002

 cryptographic values acceptable to the client. As long as the
 identity values are not compromised, a middleman cannot masquerade as
 a legitimate group member and produce convincing certificates or
 signatures. In server and symmetric modes after the preliminary
 exchanges have concluded, extension fields are no longer used, a
 client validates the packet using the autokey sequence. A wiretapper
 cannot predict the next Key IDs, so cannot produce a valid MAC. A
 middleman cannot successfully modify and replay a message, since he
 does not know the cookie and without the cookie cannot produce a
 valid MAC.

 In broadcast mode a wiretapper cannot produce a key list with signed
 autokey values that a client will accept. The most it can do is
 replay an old packet causing clients to repeat the autokey hash
 operations until exceeding the maximum key number. However, a
 middleman could intercept an otherwise valid broadcast packet and
 produce a bogus packet with acceptable MAC, since in this case it
 knows the key ID before the clients do. Of course, the middleman key
 list would eventually be used up and clients would discover the ruse
 when verifying the signature of the autokey values. There does not
 seem to be a suitable defense against this attack.

 During the exchanges where extension fields are in use, the cookie is
 a public value rather than a shared secret and an intruder can easily
 construct a packet with a valid MAC, but not a valid signature. In
 the certificate and identity exchanges an intruder can generate fake
 request messages which may evade server detection; however, the LBK
 and DUP bits minimize the client exposure to the resulting rogue
 responses. A wiretapper might be able to intercept a request,
 manufacture a fake response and loft it swiftly to the client before
 the real server response. A middleman could do this without even
 being swift. However, once the identity exchange has completed and
 the PRV bit lit, these attacks are readily deflected.

 A client instantiates cryptographic variables only if the server is
 synchronized to a proventic source. A server does not sign values or
 generate cryptographic data files unless synchronized to a proventic
 source. This raises an interesting issue: how does a client generate
 proventic cryptographic files before it has ever been synchronized to
 a proventic source? [Who shaves the barber if the barber shaves
 everybody in town who does not shave himself?] In principle, this
 paradox is resolved by assuming the primary (stratum 1) servers are
 proventicated by external phenomological means.

D.2 Clogging Vulnerability

 There are two clogging vulnerabilities exposed in the protocol
 design: a encryption attack where the intruder hopes to clog the

 victim server with needless cookie or signature encryptions or

Mills Expires - May 2003 [Page 50]

Internet-Draft Public Key Cryptography for the NTP November 2002

 identity calculations, and a decryption attack where the intruder
 attempts to clog the victim client with needless cookie or
 verification decryptions. Autokey uses public key cryptography and
 the algorithms that perform these functions consume significant
 processor resources.

 In order to reduce exposure to decryption attacks the LBK and DUP
 bits deflect bogus and replayed packets before invoking any
 cryptographic operations. In order to reduce exposure to encryption
 attacks, signatures are computed only when the data have changed. For
 instance, the autokey values are signed only when the key list is
 regenerated, which happens about once an hour, while the public
 values are signed only when one of them changes or the server seed is
 refreshed, which happens about once per day.

 In some Autokey dances the protocol precludes server state variables
 on behalf of an individual client, so a request message must be
 processed and the response message sent without delay. The identity,
 cookie and sign exchanges are particularly vulnerable to a clogging
 attack, since these exchanges can involve expensive cryptographic
 algorithms as well as digital signatures. A determined intruder could
 replay identity, cookie or sign requests at high rate, which may very
 well be a useful munition for an encryption attack. Ordinarily, these
 requests are seldom used, except when the protocol is restarted or
 the server seed or public values are refreshed.

 Once synchronized to a proventic source, a legitimate extension field
 with timestamp the same as or earlier than the most recent received
 of that type is immediately discarded. This foils a middleman cut-
 and-paste attack using an earlier AUTO response, for example. A
 legitimate extension field with timestamp in the future is unlikely,
 as that would require predicting the autokey sequence. In either case
 the extension field is discarded before expensive signature
 computations. This defense is most useful in symmetric mode, but a
 useful redundancy in other modes.

 The client is vulnerable to a certificate clogging attack until
 declared proventic, after which CERT responses are discarded. Before
 that, a determined intruder could flood the client with bogus
 certificate responses and force spurious signature verifications,
 which of course would fail. The intruder could flood the server with
 bogus certificate requests and cause similar mischief. Once declared
 proventic, further certificate responses are discard, so these
 attacks would fail. The intruder could flood the server with replayed
 sign requests and cause the server to verify the request and sign the
 response, although the client would drop the response due invalid
 timestamp.

Mills Expires - May 2003 [Page 51]

Internet-Draft Public Key Cryptography for the NTP November 2002

 An interesting adventure is when an intruder replays a recent packet
 with an intentional bit error. A stateless server will return a
 crypto-NAK message which the client will notice and discard, since
 the LBK bit is lit. However, a legitimate crypto-NAK is sent if the
 server has just refreshed the server seed. In this case the LBK bit
 is dim and the client performs a general reset and restarts the
 protocol as expected. Another adventure is to replay broadcast mode
 packets at high rate. These will be rejected by the clients by the
 timestamp check and before consuming signature cycles.

 In broadcast and symmetric modes the client must include the
 association ID in the AUTO request. Since association ID values for
 different invocations of the NTP daemon are randomized over the 16-
 bit space, it is unlikely that a bogus request would match a valid
 association with different IP addresses, for example, and cause
 confusion.

Mills Expires - May 2003 [Page 52]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix E. Identity Schemes

 The Internet infrastructure model described in [RFC-2510] is based on
 certificate trails where a subject proves identity to a certificate
 authority (CA) who then signs the subject certificate using the CA
 issuer key. The CA in turn proves identity to the next CA and obtains
 its own signed certificate. The trail continues to a CA with a self-
 signed trusted root certificate independently validated by other
 means. If it is possible to prove identity at each step, each
 certificate along the trail can be considered trusted relative to the
 identity scheme and trusted root certificate.

 The import issue with respect to NTP and ad hoc sensor networks is
 the cryptographic strength of the identity scheme, since if a
 middleman could compromise it, the trail would have a security
 breach. In electric mail and commerce the identity scheme can be
 based on handwritten signatures, photographs, fingerprints and other
 things very hard to counterfeit. As applied to NTP subnets and
 identity proofs, the scheme must allow a client to securely verify
 that a server knows the same secret that it does, presuming the
 secret was previously instantiated by secure means, but without
 revealing the secret to members outside the group.

 The Autokey Version 2 reference implementation supports four identity
 schemes of varying cryptographic strengths: one using private
 certificates (PC), a second using trusted certificates (TC), a third
 using a modified Schnorr (IFF aka Identify Friend or Foe) algorithm,
 and the fourth using a modified Guillou-Quisquater (GQ) algorithm.
 The available schemes are selected during the key generation phase,
 with the particular scheme selected during the parameter exchange.

 The IFF and GQ schemes involve a cryptographically strong challenge-
 response exchange. These schemes begin when the client sends a nonce
 to the server, which then rolls its own nonce, performs a
 mathematical operation and sends the results along with a message
 digest to the client. The client performs a second mathematical
 operation to produce a digest that must match the one included in the
 message. Still another scheme based on a modified Diffie-Hellman
 agreement algorithm described in [RFC-2875], was considered, but the
 computation resources required are considerably more than the IFF and
 GQ schemes.

 Certificate extension fields are used to convey information used by
 the identity schemes, such as whether the certificate is private,
 trusted or contains a public identity key. While the semantics of
 these fields generally conforms with conventional usage, there are
 subtle variations. The fields used by Autokey Version 2 include:

https://datatracker.ietf.org/doc/html/rfc2510
https://datatracker.ietf.org/doc/html/rfc2875

 Basic Constraints

Mills Expires - May 2003 [Page 53]

Internet-Draft Public Key Cryptography for the NTP November 2002

 This field defines the basic functions of the certificate. It
 contains the string "critical,CA:TRUE", which means the field must be
 interpreted and the associated private key can be used to sign other
 certificates. While included for compatibility, Autokey makes no use
 of this field.

 Key Usage
 This field defines the intended use of the public key contained in
 the certificate. It contains the string
 "digitalSignature,keyCertSign", which means the contained public key
 can be used to verify signatures on data and other certificates.
 While included for compatibility, Autokey makes no use of this field.

 Extended Key Usage
 This field further refines the intended use of the public key
 contained in the certificate and is present only in self-signed
 certificates. It contains the string "Private" if the certificate is
 designated private or the string "trustRoot" if it is designated
 trusted. A private certificate is always trusted.

 Subject Key Identifier:
 This field contains the public identity key used in the GQ identity
 scheme. It is present only if the GQ scheme is configured.

 Certificates are used to construct certificate information structures
 (CIS) which are stored on the certificate list. A flags field in the
 CIS determines the status of the certificate. The field is encoded as
 follows:

 Sign 0x01
 The certificate signature has been verified. If the certificate is
 self-signed and verified using the contained public key, this bit
 will be lit when the CIS is constructed.

 Trust 0x02
 The certificate has been signed by a trusted issuer. If the
 certificate is self-signed and contains "trustRoot" in the Extended
 Key Usage field, this bit will be lit when the CIS is constructed.

 Private 0x04
 The certificate is private and not to be revealed. If the certificate
 is self-signed and contains "Private" in the Extended Key Usage
 field, this bit will be lit when the CIS is constructed.

 Error 0x80
 The certificate is defective and not to be used in any way.

 These flags can also be set by the identity schemes described below.

Mills Expires - May 2003 [Page 54]

Internet-Draft Public Key Cryptography for the NTP November 2002

E.1 Private Certificate (PC) Scheme

 The PC scheme uses a private certificate as group key. A certificate
 is designated private for the purpose of the this scheme if the CIS
 Private bit is lit. The certificate is distributed to all other group
 members by secret means and never revealed outside the group. There
 is no identity exchange, since the certificate itself is the group
 key. Therefore, when the parameter exchange completes the VAL, IFF
 and SGN bits are lit in the server status word. When the following
 cookie exchange is complete, the PRV bit is lit and operation
 continues as described in the main body of this document.

E.2 Trusted Certificate (TC) Scheme

 The TC identification exchange follows the parameter exchange in
 which the VAL bit is lit. It involves a conventional certificate
 trail and a sequence of certificates, each signed by an issuer one
 stratum level lower than the client, and terminating at a trusted
 certificate, as described in [RFC-2510]. A certificate is designated
 trusted for the purpose of the TC scheme if the CIS Trust bit is lit
 and the certificate is self-signed. Such would normally be the case
 when the trail ends at a primary (stratum 1) server, but the trail
 can end at a secondary server if the security model permits this.

 When a certificate is obtained from a server, or when a certificate
 is signed by a server, A CIS for the new certificate is pushed on the
 certificate list, but only if the certificate filestamp is greater
 than any with the same subject name and issuer name already on the
 list. The list is then scanned looking for signature opportunities.
 If a CIS issuer name matches the subject name of another CIS and the
 issuer certificate is verified using the public key of the subject
 certificate, the Sign bit is lit in the issuer CIS. Furthermore, if
 the Trust bit is lit in the subject CIS, the Trust bit is lit in the
 issuer CIS.

 The client continues to follow the certificate trail to a self-signed
 certificate, lighting the Sign and Trust bits as it proceeds. If it
 finds a self-signed certificate with Trust bit lit, the client lights
 the IFF and PRV bits and the exchange completes. It can, however,
 happen that the client finds a self-signed certificate with Trust bit
 dark. This can happen when a server is just coming up, has
 synchronized to a proventic source, but has not yet completed the
 sign exchange. This is considered a temporary condition, so the
 client simply retries at poll opportunities until the server
 certificate is signed.

E.3 Schnorr (IFF) Scheme

https://datatracker.ietf.org/doc/html/rfc2510

Mills Expires - May 2003 [Page 55]

Internet-Draft Public Key Cryptography for the NTP November 2002

 The Schnorr (IFF) identity scheme is useful when certificates are
 generated by means other than the NTP software library, such as a
 trusted public authority. In this case a X.509v3 extension field
 might not be available to convey the identity public key. The scheme
 involves a set of parameters which persist for the life of the
 scheme. New generations of these parameters must be securely
 transmitted to all members of the group before use. The scheme is
 self contained and independent of new generations of host keys, sign
 keys and certificates.

 The IFF identity scheme is based on DSA cryptography and algorithms
 adapted from Stimson p. 285 [STIMSON]. The IFF parameters are
 generated by OpenSSL routines normally used to generate DSA
 parameters. By happy coincidence, the mathematical principles on
 which IFF is based are similar to DSA, but only the prime p,
 generator g and prime q are used in identity calculations. The p is a
 512-bit prime and q a 160-bit prime that divides p - 1 and is a qth
 root of 1 mod p; that is, g^q = 1 mod p. The trusted authority rolls
 random group key a, computes public identity key v = g^(q - a) and
 shares (p, g, q, a, v) with the group members. These values are never
 revealed, although only a need be truly secret.

 Alice challenges Bob to confirm identity using the following
 exchange. Alice rolls new random challenge r and sends to Bob in the
 IFF request message. Bob rolls new random k, then computes y = k + a
 r mod q and x = g^k mod p and sends (y, hash(x)) to Alice in the IFF
 response message. Besides making the response shorter, the hash makes
 it effectively impossible for an intruder to solve for k and the
 unpredictable nonces make it effectively impossible to solve for a by
 monitoring multiple request and response message.

 Alice receives the response and computes g^y v^r mod p. After a bit
 of modular algebra, this simplifies to g^k. If hash(g^k) matches x,
 Alice knows that Bob has the group key a. The signed response binds
 this knowledge to Bob's private key and the public key previously
 received in his certificate. On success the IFF and PRV bits are lit
 in the server status word.

E.4 Guillard-Quisquater (GQ) Scheme

 The Guillou-Quisquater (GQ) identity scheme is useful when
 certificates are generated using the NTP software library. These
 routines convey the GQ public key in a X.509v3 extension field. The
 scheme involves a set of parameters which persist for the life of the
 scheme and a private/public identity key, which is refreshed each
 time a new certificate is generated. The scheme is self contained and
 independent of new generations of host keys and sign keys and
 certificates.

Mills Expires - May 2003 [Page 56]

Internet-Draft Public Key Cryptography for the NTP November 2002

 The GQ identity scheme is based on RSA cryptography and algorithms
 adapted from Stimson p. 300 [STIMSON] (with errors corrected). The GQ
 parameters are generated by OpenSSL routines normally used to
 generate RSA keys. By happy coincidence, the mathematical principles
 on which GQ is based are similar to RSA, but only the modulus n is
 used in identity calculations. The 512-bit public modulus is n = p q,
 where p and q are secret large primes, but not used in identity
 calculations. The trusted authority rolls random group key b and
 shares (n, b) with the group members. These values are never
 revealed, although only b need be truly secret.

 When generating a new certificate, group members roll a random nonce
 u and compute its inverse v = (u^-1)^b obscured by the group key b.
 Thus, each has a private identity key u and a public identity key v,
 but not necessarily the same ones. The public key is conveyed on the
 certificate in an extension field; the private key is never revealed.

 Alice challenges Bob to confirm identity using the following
 exchange. Alice rolls new random challenge r and sends to Bob in the
 GQ request message. Bob rolls new random k, then computes y = k u^r
 mod n and x = k^b mod n and sends (y, hash(x)) to Alice in the GQ
 response message. Besides making the response shorter, the hash makes
 it effectively impossible for an intruder to solve for b by observing
 a number of these messages.

 Alice receives the response and computes y^b v^r mod n. After a bit
 of modular algebra, this simplifies to k^b. If hash(k^b) matches x,
 Alice knows that Bob has the group key b. The signed response binds
 this knowledge to Bob's private key and the public key previously
 received in his certificate. Further evidence is the certificate
 containing the public identity key, since this is also signed with
 Bob's private key. On success the IFF and PRV bits are lit in the
 server status word.

E.5 Interoperability Issues

 A specific combination of authentication scheme (none, symmetric key,
 Autokey), digest/signature scheme and identity scheme (PC, TC, GQ,
 IFF) is called a cryptotype, although not all combinations are
 possible. There may be management configurations where the servers
 and clients may not all support the same cryptotypes. A secure NTPv4
 subnet can be configured in several ways while keeping in mind the
 principles explained in this section. Note however that some
 cryptotype combinations may successfully interoperate with each
 other, but may not represent good security practice.

 The cryptotype of an association is determined at the time of
 mobilization, either at configuration time or some time later when a

 packet of appropriate cryptotype arrives. When a client, broadcast or

Mills Expires - May 2003 [Page 57]

Internet-Draft Public Key Cryptography for the NTP November 2002

 symmetric active association is mobilized at configuration time, it
 can be designated non-authentic, authenticated with symmetric key or
 authenticated with some Autokey scheme, and subsequently it will send
 packets with that cryptotype. When a responding server, broadcast
 client or symmetric passive association is mobilized, it is
 designated with the same cryptotype as the received packet.

 When multiple identity schemes are supported, the parameter exchange
 determines which one is used. The request message contains bits
 corresponding to the schemes it supports, while the response message
 contains bits corresponding to the schemes it supports. The client
 matches the server bits with its own and selects a compatible
 identity scheme. The server is driven entirely by the client
 selection and remains stateless. When multiple selections are
 possible, the order from most secure to least is GC, IFF, TC. Note
 that PC does not interoperate with any of the others, since they
 require the host certificate which a PC server will not reveal.

 Following the principle that time is a public value, a server
 responds to any client packet that matches its cryptotype
 capabilities. Thus, a server receiving a non-authenticated packet
 will respond with a non-authenticated packet, while the same server
 receiving a packet of a cryptotype it supports will respond with
 packets of that cryptotype. However, new broadcast or manycast client
 associations or symmetric passive associations will not be mobilized
 unless the server supports a cryptotype compatible with the first
 packet received. By default, non-authenticated associations will not
 be mobilized unless overridden in a decidedly dangerous way.

 Some examples may help to reduce confusion. Client Alice has no
 specific cryptotype selected. Server Bob supports both symmetric key
 and Autokey cryptography. Alice's non-authenticated packets arrive at
 Bob, who replies with non-authenticated packets. Cathy has a copy of
 Bob's symmetric key file and has selected key ID 4 in packets to Bob.
 If Bob verifies the packet with key ID 4, he sends Cathy a reply with
 that key. If authentication fails, Bob sends Cathy a thing called a
 crypto-NAK, which tells her something broke. She can see the evidence
 using the utility programs of the NTP software library.

 Symmetric peers Bob and Denise have rolled their own host keys,
 certificates and identity parameters and lit the host status bits for
 the identity schemes they can support. Upon completion of the
 parameter exchange, both parties know the digest/signature scheme and
 available identity schemes of the other party. They do not have to
 use the same schemes, but each party must use the digest/signature
 scheme and one of the identity schemes supported by the other party.

 It should be clear from the above that Bob can support all the girls

 at the same time, as long as he has compatible authentication and

Mills Expires - May 2003 [Page 58]

Internet-Draft Public Key Cryptography for the NTP November 2002

 identification credentials. Now, Bob can act just like the girls in
 his own choice of servers; he can run multiple configured
 associations with multiple different servers (or the same server,
 although that might not be useful). But, wise security policy might
 preclude some cryptotype combinations; for instance, running an
 identity scheme with one server and no authentication with another
 might not be wise.

Mills Expires - May 2003 [Page 59]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix F. File Examples

 This appendix shows the file formats used by the OpenSSL library and
 the reference implementation. These are not included in the
 specification and are given here only as examples. In each case the
 actual file contents are shown followed by a dump produced by the
 OpenSSL asn1 program.

F.1 RSA-MD5cert File and ASN.1 Encoding

 # ntpkey_RSA-MD5cert_whimsy.udel.edu.3236983143
 # Tue Jul 30 01:59:03 2002
 -----BEGIN CERTIFICATE-----
 MIIBkTCCATugAwIBAgIEwPBxZzANBgkqhkiG9w0BAQQFADAaMRgwFgYDVQQDEw93
 aGltc3kudWRlbC5lZHUwHhcNMDIwNzMwMDE1OTA3WhcNMDMwNzMwMDE1OTA3WjAa
 MRgwFgYDVQQDEw93aGltc3kudWRlbC5lZHUwWjANBgkqhkiG9w0BAQEFAANJADBG
 AkEA2PpOz6toSQ3BtdGrBt+F6cSSde6zhayOwRj5nAkOvtQ505hdxWhudfKe7ZOY
 HRLLqACvVJEfBaSvE5OFWldUqQIBA6NrMGkwDwYDVR0TAQH/BAUwAwEB/zALBgNV
 HQ8EBAMCAoQwSQYDVR0OBEIEQEVFGZar3afoZcHDmhbgiOmaBrtWTlLHRwIJswge
 LuqB1fbsNEgUqFebBR1Y9qLwYQUm7ylBD+3z9PlhcUOwtnIwDQYJKoZIhvcNAQEE
 BQADQQAVZMiNbYV2BjvFH9x+t0PB9//giOV3fQoLK8hXXpyiAF4KLleEqP13pK0H
 TceF3e3bxSRTndkIhklEAcbYXm66
 -----END CERTIFICATE-----

 0:d=0 hl=4 l= 401 cons: SEQUENCE
 4:d=1 hl=4 l= 315 cons: SEQUENCE
 8:d=2 hl=2 l= 3 cons: cont [0]
 10:d=3 hl=2 l= 1 prim: INTEGER :02
 13:d=2 hl=2 l= 4 prim: INTEGER :-3F0F8E99
 19:d=2 hl=2 l= 13 cons: SEQUENCE
 21:d=3 hl=2 l= 9 prim: OBJECT:md5WithRSAEncryption
 32:d=3 hl=2 l= 0 prim: NULL
 34:d=2 hl=2 l= 26 cons: SEQUENCE
 36:d=3 hl=2 l= 24 cons: SET
 38:d=4 hl=2 l= 22 cons: SEQUENCE
 40:d=5 hl=2 l= 3 prim: OBJECT:commonName
 45:d=5 hl=2 l= 15 prim: PRINTABLESTRING :whimsy.udel.edu
 62:d=2 hl=2 l= 30 cons: SEQUENCE
 64:d=3 hl=2 l= 13 prim: UTCTIME :020730015907Z
 79:d=3 hl=2 l= 13 prim: UTCTIME :030730015907Z
 94:d=2 hl=2 l= 26 cons: SEQUENCE
 96:d=3 hl=2 l= 24 cons: SET
 98:d=4 hl=2 l= 22 cons: SEQUENCE
 100:d=5 hl=2 l= 3 prim: OBJECT:commonName
 105:d=5 hl=2 l= 15 prim: PRINTABLESTRING :whimsy.udel.edu
 122:d=2 hl=2 l= 90 cons: SEQUENCE
 124:d=3 hl=2 l= 13 cons: SEQUENCE
 126:d=4 hl=2 l= 9 prim: OBJECT:rsaEncryption

 137:d=4 hl=2 l= 0 prim: NULL

Mills Expires - May 2003 [Page 60]

Internet-Draft Public Key Cryptography for the NTP November 2002

 139:d=3 hl=2 l= 73 prim: BIT STRING
 214:d=2 hl=2 l= 107 cons: cont [3]
 216:d=3 hl=2 l= 105 cons: SEQUENCE
 218:d=4 hl=2 l= 15 cons: SEQUENCE
 220:d=5 hl=2 l= 3 prim: OBJECT:X509v3 Basic Constraints
 225:d=5 hl=2 l= 1 prim: BOOLEAN :255
 228:d=5 hl=2 l= 5 prim: OCTET STRING
 235:d=4 hl=2 l= 11 cons: SEQUENCE
 237:d=5 hl=2 l= 3 prim: OBJECT:X509v3 Key Usage
 242:d=5 hl=2 l= 4 prim: OCTET STRING
 248:d=4 hl=2 l= 73 cons: SEQUENCE
 250:d=5 hl=2 l= 3 prim: OBJECT:X509v3 Subject Key Identifier
 255:d=5 hl=2 l= 66 prim: OCTET STRING
 323:d=1 hl=2 l= 13 cons: SEQUENCE
 325:d=2 hl=2 l= 9 prim: OBJECT:md5WithRSAEncryption
 336:d=2 hl=2 l= 0 prim: NULL
 338:d=1 hl=2 l= 65 prim: BIT STRING

F.2 GQkey File and ASN.1 Encoding

 # ntpkey_GQkey_whimsy.udel.edu.3236983143
 # Tue Jul 30 01:59:03 2002
 -----BEGIN RSA PUBLIC KEY-----
 MIGEAkAbYA9K8kpo2ki7Vq6cSkDccqe0RV6MTrFgjt/sp7E8Ki1mng45PJneAq9B
 ZO4rlLYrftLoejQY/nJA2q3MK7iMAkBFRRmWq92n6GXBw5oW4Ijpmga7Vk5Sx0cC
 CbMIHi7qgdX27DRIFKhXmwUdWPai8GEFJu8pQQ/t8/T5YXFDsLZy
 -----END RSA PUBLIC KEY-----

 0:d=0 hl=3 l= 132 cons: SEQUENCE
 3:d=1 hl=2 l= 64 prim: INTEGER :<hex string omitted>
 69:d=1 hl=2 l= 64 prim: INTEGER :<hex string omitted>

F.3 GQpar File and ASN.1 Encoding

 # ntpkey_GQpar_whimsy.udel.edu.3236983143
 # Tue Jul 30 01:59:03 2002
 -----BEGIN RSA PUBLIC KEY-----
 MIGFAkEAvojViJ3TowkOKpsb6HBZ50SfzC1M4mAGd51q91WhT7S7IZBfIF/emwXe
 yJmZijRqYkCpQj+fp528yRwefq+IowJADgw/uaQ0qU/Q2JeMQ2JtSHKHCTmnVVPE
 mXPvH9UU/AnMEuiG0LL6AkdxIZiXRuUrOtXsb22tifzMnc/yrus+2g==
 -----END RSA PUBLIC KEY-----

 0:d=0 hl=3 l= 133 cons: SEQUENCE
 3:d=1 hl=2 l= 65 prim: INTEGER :<hex string omitted>
 70:d=1 hl=2 l= 64 prim: INTEGER :<hex string omitted>

F.4 RSAkey File and ASN.1 Encoding

 # ntpkey_RSAkey_whimsy.udel.edu.3236983143

Mills Expires - May 2003 [Page 61]

Internet-Draft Public Key Cryptography for the NTP November 2002

 # Tue Jul 30 01:59:03 2002
 -----BEGIN RSA PRIVATE KEY-----
 MIIBOgIBAAJBANj6Ts+raEkNwbXRqwbfhenEknXus4WsjsEY+ZwJDr7UOdOYXcVo
 bnXynu2TmB0Sy6gAr1SRHwWkrxOThVpXVKkCAQMCQQCQpt81HPAws9Z5NnIElQPx
 Lbb5Sc0DyF8rZfu9W18p4Zb5UH3KYqZfAO4K0GTmxuriFphgS9bELSw5L6ow4t6D
 AiEA7ACLlKZtCp91CaDohViPhs7KBdRVq7DG9n88z9MM/gMCIQDrXRQMb2dqR/ww
 PHJ7aljkhhTE78mxLpn2Po82PfYI4wIhAJ1VsmMZngcU+LEV8FjltQSJ3APi48fL
 L07/fd/iCKlXAiEAnOi4CEpE8YVSytL2/PGQmFljLfUxIMm7+X8KJClOsJcCICgU
 1w07kRO2ycicL2QRVh8J8vQL68VfH53H+oobKDCd
 -----END RSA PRIVATE KEY-----

 0:d=0 hl=4 l= 314 cons: SEQUENCE
 4:d=1 hl=2 l= 1 prim: INTEGER :00
 7:d=1 hl=2 l= 65 prim: INTEGER :<hex string omitted>
 74:d=1 hl=2 l= 1 prim: INTEGER :03
 77:d=1 hl=2 l= 65 prim: INTEGER :<hex string omitted>
 144:d=1 hl=2 l= 33 prim: INTEGER :<hex string omitted>
 179:d=1 hl=2 l= 33 prim: INTEGER :<hex string omitted>
 214:d=1 hl=2 l= 33 prim: INTEGER :<hex string omitted>
 249:d=1 hl=2 l= 33 prim: INTEGER :<hex string omitted>
 284:d=1 hl=2 l= 32 prim: INTEGER :<hex string omitted>

F.5 IFFpar File and ASN.1 Encoding

 # ntpkey_IFFpar_whimsy.udel.edu.3236983143
 # Tue Jul 30 01:59:03 2002
 -----BEGIN DSA PRIVATE KEY-----
 MIH4AgEAAkEA7fBvqq9+3DH5BnBScMkruqH4QEB76oec1zjWQ23gyoP2U+L8tHfv
 z2LmogOqE1c0McgQynyfQMSDUEmxMyiDwQIVAJ18qdV84wmiCGmWgsHKbpAwepDX
 AkA4y42QqZ8aUzQRwkMuYTKbyRRnCG1TJi5eVJcCq65twl5c1bnn24xkbl+FXqck
 G6w9NcDtSzuYg1gFLxEuWsYaAkEAjc+nPJR7VY4BjDleVTna07edDfcySl9vy8Pa
 B4qArk51LdJlJ49yxEPUxFy/KBIFEHCwRZMc1J7z7dQ/Af26zQIUMXkbVz0D+2Yo
 YlG0C/F33Q+N5No=
 -----END DSA PRIVATE KEY-----

 0:d=0 hl=3 l= 248 cons: SEQUENCE
 3:d=1 hl=2 l= 1 prim: INTEGER :00
 6:d=1 hl=2 l= 65 prim: INTEGER :<hex string omitted>
 73:d=1 hl=2 l= 21 prim: INTEGER :<hex string omitted>
 96:d=1 hl=2 l= 64 prim: INTEGER :<hex string omitted>
 162:d=1 hl=2 l= 65 prim: INTEGER :<hex string omitted>
 229:d=1 hl=2 l= 20 prim: INTEGER :<hex string omitted>

Mills Expires - May 2003 [Page 62]

Internet-Draft Public Key Cryptography for the NTP November 2002

Appendix G. ASN.1 Encoding Rules

 Certain value fields in request and response messages contain data
 encoded in ASN.1 distinguished encoding rules (DER). The BNF grammer
 for each encoding rule is given below along with the OpenSSL routine
 used for the encoding in the reference implementation. The object
 identifiers for the encryption algorithms and message
 digest/signature encryption schemes are specified in [RFC-3279]. The
 particular algorithms required for conformance are not specified in
 this document.

G.1 COOKIE request, IFF response, GQ response

 The value field of these messages contains a sequence of two integers
 (x, y). For the COOKIE request, the values are encoded by the
 i2d_RSAPublicKey() routine in the OpenSSL distribution. For the IFF
 and GQ responses, the values are encoded by the i2d_DSA_SIG()
 routine.

 In the COOKIE request, x is the RSA modulus in bits and y is the
 public exponent. In the IFF and GQ responses, x is the challenge
 response and y is the hash of the private value.

 RSAPublicKey ::= SEQUENCE {
 x ::= INTEGER,
 y ::= INTEGER
 }

G.2 CERT response, SIGN request and response

 The value field contains a X509v3 certificate encoded by the
 i2d_X509() routine in the OpenSSL distribution. The encoding follows
 the rules stated in [RFC-3280], including the use of X509v3 extension
 fields.

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithmAlgorithmIdentifier,
 signatureValue BIT STRING
 }
 The signatureAlgorithm is the object identifier of the message
 digest/signature encryption scheme used to sign the certificate. The
 signatureValue is computed by the certificate issuer using this
 algorithm and the issuer private key.

 TBSCertificate ::= SEQUENCE {
 version EXPLICIT v3(2),

https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3280

Mills Expires - May 2003 [Page 63]

Internet-Draft Public Key Cryptography for the NTP November 2002

 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 extensions EXPLICIT Extensions OPTIONAL
 }

 The serialNumber is an integer guaranteed to be unique for the
 generating host. The reference implementation uses the NTP seconds
 when the certificate was generated. The signature is the object
 identifier of the message digest/signature encryption scheme used to
 sign the certificate. It must be identical to the signatureAlgorithm.

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {
 notBefore UTCTime,
 notAfter UTCTime
 }

 The notBefore and notAfter define the period of validity as defined
 in and certificate filestamp are summarized in Appendix X.

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING
 }

 The AlgorithmIdentifier specifies the encryption algorithm for the
 subject public key. The subjectPublicKey is the public key of the
 subject.

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
 }

 Name ::= SEQUENCE {
 OBJECT IDENTIFIER commonName
 PrintableString HostName
 }

 For all certificates, the subject HostName is the unique DNS name of
 the host to which the public key belongs. The reference

Mills Expires - May 2003 [Page 64]

Internet-Draft Public Key Cryptography for the NTP November 2002

 implementation uses the string returned by the Unix gethostname()
 routine (trailing NUL removed). For other than self-signed
 certificates, the issuer HostName is the unique DNS name of the host
 signing the certificate.

Mills Expires - May 2003 [Page 65]

Internet-Draft Public Key Cryptography for the NTP November 2002

Security Considerations

 Security issues are the main topic of this document.

Author's Addresses

 David L. Mills
 Electrical and Computer Engineering Department
 University of Delaware
 Newark, DE 19716
 USA

 Email: mills@udel.edu

Mills Expires - May 2003 [Page 66]

Internet-Draft Public Key Cryptography for the NTP November 2002

 Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Mills Expires - May 2003 [Page 67]

