Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 7, 2020

J. Peterson Neustar November 4, 2019

STIR Certificate Delegation draft-ietf-stir-cert-delegation-01

Abstract

The Secure Telephone Identity Revisited (STIR) certificate profile provides a way to attest authority over telephone numbers and related identifiers for the purpose of preventing telephone number spoofing. This specification details how that authority can be delegated from a parent certificate to a subordinate certificate. This supports a number of use cases, including those where service providers grant credentials to enterprises or other customers capable of signing calls with STIR.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of $\underline{\mathsf{BCP}}$ 78 and $\underline{\mathsf{BCP}}$ 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 7, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

<u>1</u> .	Introduction	2
<u>2</u> .	Terminology	<u>3</u>
<u>3</u> .	Motivation	<u>3</u>
<u>4</u> .	Delegation of STIR Certificates	4
4	<u>.1</u> . Scope of Delegation	<u>5</u>
5.	Authentication Services Signing with Delegate Certificates .	6
6.	Verification Service Behavior for Delegate Certificate	
	Signatures	<u>6</u>
<u>7</u> .	Acquiring Certificate Chains in STIR	7
<u>8</u> .	Certification Authorities and Service Providers	7
8	. <u>1</u> . ACME and Delegation	8
8.	<u>.2</u> . Handling Multiple Certificates	9
<u>9</u> .	Alternative Solutions	9
<u>10</u> .	IANA Considerations	<u>10</u>
<u>11</u> .	Privacy Considerations	<u>10</u>
<u>12</u> .	Security Considerations	<u>10</u>
<u>13</u> .	Acknowledgments	<u>10</u>
<u>14</u> .	References	<u>10</u>
14	4.1. Normative References	<u>10</u>
14	4.2. Informative References	<u>11</u>
Auth	nor's Address	12

1. Introduction

The STIR problem statement [RFC7340] reviews the difficulties facing the telephone network that are enabled by impersonation, including various forms of robocalling, voicemail hacking, and swatting. One of the most important components of a system to prevent impersonation is the implementation of credentials which identify the parties who control telephone numbers. The STIR certificates [RFC8226] specification describes a credential system based on [X.509] version 3 certificates in accordance with [RFC5280] for that purpose. Those credentials can then be used by STIR authentication services [RFC8224] to sign PASSporT objects [RFC8225] carried in SIP [RFC3261] requests.

[RFC8226] specifies an extension to X.509 that defines a Telephony Number (TN) Authorization List that may be included by certification authorities (CAs) in certificates. This extension provides additional information that relying parties can use when validating transactions with the certificate. When a SIP request, for example, arrives at a terminating administrative domain, the calling number

attested by the SIP request can be compared to the TN Authorization List of the certificate that signed the PASSporT to determine if the caller is authorized to use that calling number.

Initial deployment of [RFC8226] has focused on the use of Service Provider Codes (SPCs) to attest the scope of authority of a certificate. Typically, these codes are internal telephone network identifiers such as the Operating Company Numbers (OCNs) assigned to carriers in the United States. However, these network identifiers are effectively unavailable to non-carrier entities, and this has raised questions about how such entities might best participate in STIR, when needed. [RFC8226] gave an overview of a certificate enrollment model based on "delegation," whereby the holder of certificate might allocate a subset of that certificate's authority to another party. This specification details how delegation of authority works for STIR certificates.

2. Terminology

TThe key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Motivation

The most pressing need for delegation in STIR arises in a set of use cases where callers want to use a particular calling number, but for whatever reason, their outbound calls will not pass through the authentication service of the service provider that controls that numbering resource.

One example would be an enterprise that places outbound calls through a set of service providers, for each call choosing a provider based on a least-cost routing algorithm or similar local policy. The enterprise was assigned a calling number by a particular service provider, but some calls originating from that number will go out through other service providers.

A user might also roam from their usual service provider to a different network or administrative domain, for various reasons. Most "legitimate spoofing" examples are of this form: where a user wants to be able to use the main call-back number for their business as a calling party number, even when the user is away from the business.

These sorts of use cases could be addressed if the carrier who controls the numbering resource were able to delegate a credential that could be used to sign calls regardless of which network or administrative domain handles the outbound routing for the call. In the absence of something like a delegation mechanism, outbound carriers may be forced to sign calls with credentials that do not cover the originating number in question. Unfortunately, that practice would be difficult to distinguish from malicious spoofing, and if it becomes widespread, it could erode trust in STIR overall.

4. Delegation of STIR Certificates

STIR delegate certificates are certificates containing a TNAuthList object that have been signed with the private key of a parent certificate that itself contains a TNAuthList object. The parent certificate needs to have its CA boolean set to "true", indicating that that it can sign certificates. Every STIR delegate certificate identifies its parent certificate with a standard [RFC5280] Authority Key Identifier.

The authority bestowed on the holder of the delegate certificate by the parent certificate is recorded in the delegate certificate's TNAuthList. Because STIR certificates use the TNAuthList object rather than the Subject Name for indicating the scope of their authority, traditional [RFC5280] name constraints are not directly applicable to STIR. In a manner similar to the RPKI [RFC6480] "encompassing" semantics, each delegate certificate must have a TNAuthList scope that is equal to or a subset of its parent certificate's scope: it must be "encompassed." For example, a parent certificate with a TNAuthList that attested authority for the numbering range +1-212-555-1000 through 1999 could issue a certificate to one delegate attesting authority for the range +1-212-555-1500 through 1599, and to another delegate a certificate for the individual number +1-212-555-1824.

Delegate certificates may themselves be issued with the CA boolean set to "true" so that they can serve as parent certificates to further delegates; effectively, this delegate certificate is a crosscertificate, as its issuer is not the same as its subject. In the STIR ecosystem, CA certificates may be used to sign PASSporTs; this removes the need for creating a redundant end-entity certificate with an identical TNAuthList to its parent, though if for operational or security reasons certificate holders wish to do so, they may.

4.1. Scope of Delegation

STIR certificates may have a TNAuthList containing one or more SPCs, one or more telephone number ranges, or both. When delegating from a STIR certificate, a child certificate may inherit from its parent either of the above. Depending on the sort of numbering resources that a delegate has been assigned, various syntaxes can be used to capture the delegated resource.

Some non-carrier entities may be assigned large and complex allocations of telephone numbers, which may be only partially contiguous or entirely disparate. Allocations may also change frequently, in minor or significant ways. These resources may be so complex, dynamic, or extensive that listing them in a certificate is prohibitively difficult. [RFC8226] Section 10.1 describes one potential way to address this, including the TNAuthList in the certificate by-reference rather than by value, where a URL in the certificate points to a secure, dynamically-updated list of the telephone numbers in the scope of authority of a certificate. For entities that are carriers in all but name, another alternative is the allocation of an SPC; this yields much the same property, as the SPC is effectively a pointer to an external database which dynamically tracks the numbers associated with the SPC. Either of these approaches may make sense for a given deployment.

Other non-carrier entities may have straightforward telephone number assignments, such as enterprises receiving a set of thousand blocks from a carrier that may be kept for years or decades. Particular freephone numbers may also have a long-term association with an enterprise and its brand. For these sorts of assignments, assigning an SPC may seem like overkill, and using the TN ranges of the TNAuthList (by-value) is surely sufficient.

Whichever approach is taken to representing the delegated resource, there are fundamental trade-offs regarding when and where in the architecture a delegation is validated: that is, when the delegated TNAuthList is checked to be "encompassed" by the TNAuthList of its parent. This might be performed at the time the delegate certificate is issued, or at the time that a verification service receives an inbound call, or potentially both. It is generally desirable to offload as much of this as possible to the certification process, as verification occurs during call setup and thus additional network dips could lead to perceptible delay, whereas certification happens outside of call processing as a largely administrative function. Ideally, if a delegate certificate can supply a by-value TN range, then a verification service could ascertain that an attested calling party number is within the scope of the provided certificate without requiring any additional network dip. In practice, verification

services may already incorporate network queries into their processing (for example, to deference the "x5u" field of a PASSporT) that could piggyback any additional information needed by the verification service.

Note that the permission semantics of the [RFC8226] TNAuthList are additive: that is, the scope of a certificate is the superset of all of the SPCs and telephone number ranges enumerated in the TNAuthList. As SPCs themselves are effectively pointers to a set of telephone number ranges, and a telephone number may belong to more than one SPC, this may introduce some redundancy to the set of telephone numbers specified as the scope of a certificate. The presence of one or more SPCs and one or more sets of telephone number ranges should similarly be treated additively, even if the telephone number ranges turn out to be redundant to the scope of an SPC.

5. Authentication Services Signing with Delegate Certificates

Authentication service behavior for delegate certificates is little changed from baseline STIR behavior. The same checks are performed by the authentication service, comparing the calling party number attested in call signaling with the scope of the authority of the signing certificate. Authentication services SHOULD NOT use a delegate certificate without validating that its scope of authority is encompassed by that of its parent certificate, and if that certificate in turn has its own parent, the entire certificate path should be validated.

This delegation architecture does not require that a non-carrier entity act as its own authentication service. That function may be performed by any authentication service that holds the private key corresponding to the delegate certificate, including one run by an outbound service provider, a third party in an enterprise's outbound call path, or in the SIP User Agent itself.

Note that authentication services creating a PASSporT for a call signed with a delegate certificate MUST provide an "x5u" link corresponding to the entire certificate chain, rather than just the delegate certificate used to sign the call, as described in Section 7.

6. Verification Service Behavior for Delegate Certificate Signatures

The responsibility of a verification service validating PASSporTs signed with delegate certificates, while largely following baseline [RFC8224] and [RFC8225], requires some additional procedures. When the verification service dereferences the "x5u" parameter, it will acquire a certificate list rather than a single certificate. It MUST

then validate all of the credentials in the list, identifying the parent certificate for each delegate through its AKID object.

While ordinarily, relying parties have significant latitude in path construction when validating a certificate chain, STIR assumes a more rigid hierarchical subordination model, rather than one where relying parties may want to derive their own chains to particular trust anchors. If the certificate chain acquired from the "x5u" element of a PASSporT does not lead to an anchor that the verification service trusts, it treats the validation no differently than it would when a non-delegated certificate was issued by an untrusted root; in SIP, it MAY return a 437 "Unsupported Credential" response if the call should be failed for lack of a valid Identity header.

7. Acquiring Certificate Chains in STIR

PASSporT [RFC8225] uses the "x5u" element to convey the URL where verification services can acquire the certificate used to sign a PASSporT. This value is mirrored by the "info" parameter of the Identity header when a PASSporT is conveyed via SIP. Commonly, this is an HTTPS URI.

When a STIR delegate certificate is used to sign a PASSporT, the "x5u" element in the PASSporT will contain a URI indicating where a certificate list is available. While baseline JWS also supports an "x5c" element specifically for certificate chains, in operational practice, chains are already being delivered in the STIR environment via the "x5u" element, so this specification recommends continuing to use "x5u". That list will be a concatenation of PEM encoded certificates of the type "application/pem-certificate-chain" defined in [RFC8555]. The list begins with the certificate used to sign the PASSporT, followed by its parent, and then any subsequent grandparents, great-grandparents, and so on. The ordering MUST conform to the AKID/SKID order chain encoded in the certs themselves. Note that ACME requires the first element in a pem-certificate-chain to be an end-entity certificate; STIR relaxes this requirement, as CA certificates are permitted to sign PASSporTs, so the first element in a pem-certificate-chain used for STIR MAY be a CA certificate.

8. Certification Authorities and Service Providers

Once a telephone service provider has received a CA certificate attesting their numbering resources, they may delegate from it as they see fit. Note that the allocation to a service provider of a certificate with the CA boolean set to "true" does not require that a service provider act as a certification authority itself; it is a function requiring specialized expertise and infrastructure. A third-party certification authority, including the same one that

issued the service provider its parent certificate, could act as the CA that issues delegate certificates for the service provider, if the necessary business relationships permit it. A service provider might in this case act as a Token Authority (see <u>Section 8.1</u>) granting its customers permissions to receive certificates from the CA.

Note that if the same CA that issued the parent certificate is also issuing a delegate certificate, it may be possible to shorten the certificate chain, which reduces the work required of verification services. The trade-off here is that if the CA simply issued a non-delegate certificate (whose parent is the CA's root certificate) with the proper TNAuthList value, relying parties might not be able to ascertain which service provider owned those telephone numbers, information which might be used to make an authorization decision on the terminating side. However, some additional object in the certificate outside of the TNAuthList could preserve that information; this is a potential area for future work.

All CAs must detail in their practices and policies a requirement to validate that the "encompassing" of a delegate certificate by its parent. Note that this requires that CAs have access to the necessary industry databases to ascertain whether, for example, a particular telephone number is encompassed by an SPC. Alternatively, a CA may acquire an Authority Token that affirms that a delegation is in the proper scope. Exactly what operational practices this entails may vary in different national telephone administrations, and are thus left to the CP/CPS.

8.1. ACME and Delegation

STIR deployments commonly use ACME [RFC8555] for certificate acquisition, and it is anticipated that delegate certificates as well will be acquired through an ACME interface. An entity can acquire a certificate from a particular CA by requesting an Authority Token [I-D.ietf-acme-authority-token] from the parent with the desired TNAuthList [I-D.ietf-acme-authority-token-tnauthlist] object. Note that if the client intends to do further subdelegation of its own, it should request a token with the "ca" Authority Token flag set.

The entity then presents that Authority Token to a CA to acquire a STIR delegate certificate. ACME returns an "application/pemcertificate-chain" object with suitable for publishing as an HTTPS resource for retrieval with the PASSporT "x5u" mechanism as discussed in Section 7. If the CSR presented to the ACME server is for a certificate with the CA boolean set to "true", then the ACME server makes a policy decision to determine whether or not it is appropriate to issue that certificate to the requesting entity. That policy decision will be reflected by the "ca" flag in the Authority Token.

Service providers that want the capability to rapidly revoke delegated certificates can rely on the ACME STAR $[\underline{\text{I-D.ietf-acme-star}}]$ mechanism to automate the process of short-term certificate expiry.

8.2. Handling Multiple Certificates

In some deployments, non-carrier entities may receive telephone numbers from several different carriers. This could lead to enterprises needing to maintain a sort of STIR keyring, with different certificates delegated to them from different providers, potentially issued by different CAs, which they choose between when signing a call. This could be the case regardless of which syntax is used in the TNAuthList to represent the scope of the delegation (see Section 4.1).

For a small number of certificates, this is probably not a significant burden. For cases where it becomes burdensome, a few potential approaches exist. A delegate certificate could be crosscertified with another delegate certificate via an Authority Information Access field containing the URL of a Certificate Authority Issuer, so that a signer would only need to sign with a single certificate to inherit the privileges of the other certificate(s) it has cross-certified with. In very complex delegation cases, it might make more sense to establish a bridge CA that cross-certifies with all of the certificates held by the enterprise, rather than requiring a mesh of cross-certification between a large number of certificates. Again, this bridge CA function would likely be performed by some existing CA in the STIR ecosystem.

9. Alternative Solutions

At the time this specification was written, STIR was only starting to see deployment. In some future environments, the policies that govern CAs may not permit them to issue intermediate certificates with a TNAuthList object. Similar problems in the web PKI space motivated the development of TLS subcerts [I-D.ietf-tls-subcerts], which substitutes a signed "delegated credential" token for a certificate for such environments. A similar mechanism could be developed for the STIR space, allowing STIR certificates to sign a data object which contains effectively the same data as the delegate certificate specified here, including a public key that could sign PASSporTs. The TLS subcerts system has furthermore developed ways for the issuer of a delegated credential to revoke it, as well as exploring the potential interaction with ACME to issue short-lived certificates for temporary delegation. Specification of a TLS subcerts analog for STIR is deferred here to future work, at such a time as market players require it.

10. IANA Considerations

This document contains no actions for the IANA.

11. Privacy Considerations

Any STIR certificate that identifies a narrow range of telephone numbers potentially exposes information about the entities that are placing calls. As this information is necessarily a superset of the calling party number that is openly signaled during call setup, the privacy risks associated with this mechanism are not substantially greater than baseline STIR. See [RFC8224] for guidance on the use of anonymization mechanisms in STIR.

12. Security Considerations

This document is entirely about security. For further information on certificate security and practices, see [RFC5280], in particular its Security Considerations. Also see the Security Considerations of [RFC8226] for general guidance on the implications of the use of certificates in STIR.

13. Acknowledgments

We would like to thank Richard Barnes, Chris Wendt, Dave Hancock, Russ Housley, and Sean Turner for key input to the discussions leading to this document.

14. References

14.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.
- [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 https://www.rfc-editor.org/info/rfc3261>.
- [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, https://www.rfc-editor.org/info/rfc8174>.

- [RFC8224] Peterson, J., Jennings, C., Rescorla, E., and C. Wendt,
 "Authenticated Identity Management in the Session
 Initiation Protocol (SIP)", RFC 8224,
 DOI 10.17487/RFC8224, February 2018,
 https://www.rfc-editor.org/info/rfc8224.
- [RFC8225] Wendt, C. and J. Peterson, "PASSporT: Personal Assertion Token", RFC 8225, DOI 10.17487/RFC8225, February 2018, https://www.rfc-editor.org/info/rfc8225.

14.2. Informative References

[I-D.ietf-acme-authority-token]

Peterson, J., Barnes, M., Hancock, D., and C. Wendt, "ACME Challenges Using an Authority Token", draft-ietf-acme-authority-token-03 (work in progress), March 2019.

- [I-D.ietf-acme-authority-token-tnauthlist]
 Wendt, C., Hancock, D., Barnes, M., and J. Peterson,
 "TNAuthList profile of ACME Authority Token", draft-ietf acme-authority-token-tnauthlist-04 (work in progress),
 September 2019.
- [I-D.ietf-acme-star]

Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T. Fossati, "Support for Short-Term, Automatically-Renewed (STAR) Certificates in Automated Certificate Management Environment (ACME)", draft-ietf-acme-star-11 (work in progress), October 2019.

[I-D.ietf-tls-subcerts]

Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla, "Delegated Credentials for TLS", <u>draft-ietf-tls-subcerts-04</u> (work in progress), July 2019.

- [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 https://www.rfc-editor.org/info/rfc5280.
- [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480, February 2012, https://www.rfc-editor.org/info/rfc6480>.
- [RFC7340] Peterson, J., Schulzrinne, H., and H. Tschofenig, "Secure Telephone Identity Problem Statement and Requirements", RFC 7340, DOI 10.17487/RFC7340, September 2014, https://www.rfc-editor.org/info/rfc7340.
- [X.509] ITU-T Recommendation X.509 (10/2012) | ISO/IEC 9594-8,
 "Information technology Open Systems Interconnection The Directory: Public-key and attribute certificate
 frameworks", 2012.
- [X.680] ITU-T Recommendation X.680 (08/2015) | ISO/IEC 8824-1, "Information Technology Abstract Syntax Notation One: Specification of basic notation".
- [X.681] ITU-T Recommendation X.681 (08/2015) | ISO/IEC 8824-2, "Information Technology Abstract Syntax Notation One: Information Object Specification".
- [X.683] ITU-T Recommendation X.683 (08/2015) | ISO/IEC 8824-3, "Information Technology Abstract Syntax Notation One: Parameterization of ASN.1 Specifications".

Author's Address

Jon Peterson Neustar, Inc.

Email: jon.peterson@team.neustar