
SUIT B. Moran
Internet-Draft Arm Limited
Intended status: Informational M. Meriac
Expires: December 5, 2018 Consultant
 H. Tschofenig
 Arm Limited
 June 03, 2018

A Firmware Update Architecture for Internet of Things Devices
draft-ietf-suit-architecture-00

Abstract

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a solid and secure firmware update mechanism that is also
 suitable for constrained devices. Incorporating such update
 mechanism to fix vulnerabilities, to update configuration settings as
 well as adding new functionality is recommended by security experts.

 This document lists requirements and describes an architecture for a
 firmware update mechanism suitable for IoT devices. The architecture
 is agnostic to the transport of the firmware images and associated
 meta-data.

 This version of the document assumes asymmetric cryptography and a
 public key infrastructure. Future versions may also describe a
 symmetric key approach for very constrained devices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 5, 2018.

Moran, et al. Expires December 5, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft IoT Firmware Update Architecture June 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 3
3. Requirements . 4
3.1. Agnostic to how firmware images are distributed 5
3.2. Friendly to broadcast delivery 5
3.3. Use state-of-the-art security mechanisms 5
3.4. Rollback attacks must be prevented 6
3.5. High reliability . 6
3.6. Operate with a small bootloader 6
3.7. Small Parsers . 7
3.8. Minimal impact on existing firmware formats 7
3.9. Robust permissions 7
3.10. Operating modes . 8

4. Claims . 9
5. Architecture . 10
6. Manifest . 12
7. Example Flow . 13
8. IANA Considerations . 15
9. Security Considerations 15

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Moran, et al. Expires December 5, 2018 [Page 2]

Internet-Draft IoT Firmware Update Architecture June 2018

10. Mailing List Information 16
11. Acknowledgements . 16
12. References . 17
12.1. Normative References 17
12.2. Informative References 17
12.3. URIs . 18

 Authors' Addresses . 18

1. Introduction

 When developing IoT devices, one of the most difficult problems to
 solve is how to update the firmware on the device. Once the device
 is deployed, firmware updates play a critical part in its lifetime,
 particularly when devices have a long lifetime, are deployed in
 remote or inaccessible areas or where manual intervention is cost
 prohibitive or otherwise difficult. The need for a firmware update
 may be to fix bugs in software, to add new functionality, or to re-
 configure the device.

 The firmware update process has to ensure that

 - The firmware image is authenticated and attempts to flash a
 malicious firmware image are prevented.

 - The firmware image can be confidentiality protected so that
 attempts by an adversary to recover the plaintext binary can be
 prevented. Obtaining the plaintext binary is often one of the
 first steps for an attack to mount an attack.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 This document uses the following terms:

 - Manifest: The manifest contains meta-data about the firmware
 image. The manifest is protected against modification and
 provides information about the author.

 - Firmware Image: The firmware image is a binary that may contain
 the complete software of a device or a subset of it. The firmware
 image may consist of multiple images, if the device contains more
 than one microcontroller. The image may consist of a differential
 update for performance reasons. Firmware is the more universal

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Moran, et al. Expires December 5, 2018 [Page 3]

Internet-Draft IoT Firmware Update Architecture June 2018

 term. Both terms are used in this document and are
 interchangeable.

 - Bootloader: A bootloader is a piece of software that is executed
 once a microcontroller has been reset. It is responsible for
 deciding whether to boot a firmware image that is present or
 whether to obtain and verify a new firmware image. Since the
 bootloader is a security critical component its functionality may
 be split into separate stages. Such a multi-stage bootloader may
 offer very basic functionality in the first stage and resides in
 ROM whereas the second stage may implement more complex
 functionality and resides in flash memory so that it can be
 updated in the future (in case bugs have been found). The exact
 split of components into the different stages, the number of
 firmware images stored by an IoT device, and the detailed
 functionality varies throughout different implementations.

 The following entities are used:

 - Author: The author is the entity that creates the firmware image,
 signs and/or encrypts it. The author is most likely a developer
 using a set of tools.

 - Device: The device is the recipient of the firmware image and the
 manifest. The goal is to update the firmware of the device.

 - Untrusted Storage: Firmware images and manifests may be stored on
 untrusted fileservers or cloud storage infrastructure. Some
 deployments may require storage of the firmware images/manifests
 to be stored on various entities before they reach the device.

3. Requirements

 The firmware update mechanism described in this specification was
 designed with the following requirements in mind:

 - Agnostic to how firmware images are distributed

 - Friendly to broadcast delivery

 - Use state-of-the-art security mechanisms

 - Rollback attacks must be prevented

 - High reliability

 - Operate with a small bootloader

Moran, et al. Expires December 5, 2018 [Page 4]

Internet-Draft IoT Firmware Update Architecture June 2018

 - Small Parsers

 - Minimal impact on existing firmware formats

 - Robust permissions

 - Diverse modes of operation

3.1. Agnostic to how firmware images are distributed

 Firmware images can be conveyed to devices in a variety of ways,
 including USB, UART, WiFi, BLE, low-power WAN technologies, etc. and
 use different protocols (e.g., CoAP, HTTP). The specified mechanism
 needs to be agnostic to the distribution of the firmware images and
 manifests.

3.2. Friendly to broadcast delivery

 This architecture does not specify any specific broadcast protocol
 however, given that broadcast may be desirable for some networks,
 updates must cause the least disruption possible both in metadata and
 payload transmission.

 For an update to be broadcast friendly, it cannot rely on link layer,
 network layer, or transport layer security. In addition, the same
 message must be deliverable to many devices, both those to which it
 applies and those to which it does not, without a chance that the
 wrong device will accept the update. Considerations that apply to
 network broadcasts apply equally to the use of third-party content
 distribution networks for payload distribution.

3.3. Use state-of-the-art security mechanisms

 End-to-end security between the author and the device, as shown in
Section 5, is used to ensure that the device can verify firmware

 images and manifests produced by authorized authors.

 The use of post-quantum secure signature mechanisms, such as hash-
 based signatures, should be explored. A migration to post-quantum
 secure signatures would require significant effort, therefore,
 mandatory-to-implement support for post-quantum secure signatures is
 a goal.

 A mandatory-to-implement set of algorithms has to be defined offering
 a key length of 112-bit symmetric key or security or more, as
 outlined in Section 20 of RFC 7925 [RFC7925]. This corresponds to a
 233 bit ECC key or a 2048 bit RSA key.

https://datatracker.ietf.org/doc/html/rfc7925#section-20
https://datatracker.ietf.org/doc/html/rfc7925

Moran, et al. Expires December 5, 2018 [Page 5]

Internet-Draft IoT Firmware Update Architecture June 2018

 If the firmware image is to be encrypted, it must be done in such a
 way that every intended recipient can decrypt it. The information
 that is encrypted individually for each device must be an absolute
 minimum, for example AES Key Wrap [RFC5649], in order to maintain
 friendliness to Content Distribution Networks, bulk storage, and
 broadcast protocols.

3.4. Rollback attacks must be prevented

 A device presented with an old, but valid manifest and firmware must
 not be tricked into installing such firmware since a vulnerability in
 the old firmware image may allow an attacker to gain control of the
 device.

3.5. High reliability

 A power failure at any time must not cause a failure of the device.
 A failure to validate any part of an update must not cause a failure
 of the device. One way to achieve this functionality is to provide a
 minimum of two storage locations for firmware and one bootable
 location for firmware. An alternative approach is to use a 2nd stage
 bootloader with build-in full featured firmware update functionality
 such that it is possible to return to the update process after power
 down.

 Note: This is an implementation requirement rather than a requirement
 on the manifest format.

3.6. Operate with a small bootloader

 The bootloader must be minimal, containing only flash support,
 cryptographic primitives and optionally a recovery mechanism. The
 recovery mechanism is used in case the update process failed and may
 include support for firmware updates over serial, USB or even a
 limited version of wireless connectivity standard like a limited
 Bluetooth Smart. Such a recovery mechanism must provide security at
 least at the same level as the full featured firmware update
 functionalities.

 The bootloader needs to verify the received manifest and to install
 the bootable firmware image. The bootloader should not require
 updating since a failed update poses a risk in reliability. If more
 functionality is required in the bootloader, it must use a two-stage
 bootloader, with the first stage comprising the functionality defined
 above.

https://datatracker.ietf.org/doc/html/rfc5649

Moran, et al. Expires December 5, 2018 [Page 6]

Internet-Draft IoT Firmware Update Architecture June 2018

 All information necessary for a device to make a decision about the
 installation of a firmware update must fit into the available RAM of
 a constrained IoT device. This prevents flash write exhaustion.

 Note: This is an implementation requirement.

3.7. Small Parsers

 Since parsers are known sources of bugs they must be minimal.
 Additionally, it must be easy to parse only those fields that are
 required to validate at least one signature or MAC with minimal
 exposure.

3.8. Minimal impact on existing firmware formats

 The design of the firmware update mechanism must not require changes
 to existing firmware formats.

3.9. Robust permissions

 A device may have many modules that require updating individually.
 It may also need to trust several actors in order to authorize an
 update. These actors might include the following (this is not a
 comprehensive list).

 * A firmware author
 * A device OEM
 * A device operator
 * A network operator
 * A device owner

 These actors exert their authority on the device by making claims (as
 in Section 4).

 For example, a firmware author may not have the authority to install
 firmware on a device in critical infrastructure without the
 authorization of a device operator. In this case, the device may be
 programmed to reject firmware updates unless they are signed both by
 the firmware author and by the device operator. To facilitate
 complex use-cases such as this, updates require several claims.

 Alternatively, a device may trust precisely one authority, which does
 all permission management and coordination. Effectively, the
 authority allows the device to offload complex permissions
 calculations for the device.

Moran, et al. Expires December 5, 2018 [Page 7]

Internet-Draft IoT Firmware Update Architecture June 2018

3.10. Operating modes

 There are three broad classifications of update operating modes.

 * Self initiated
 * Third-party initiated
 * Hybrid

 Self initiated updates take the form of a proactive IoT device that
 checks for updates. Third-party initiated updates are triggered by
 an actor other than the IoT device, be it a server, a peer, or a
 user. Hybrid updates are those that require agreement from both the
 target IoT device and another actor.

 Third-party initiated updates are important to consider because
 timing of updates may need to be tightly controlled in some high-
 reliability environments.

 An IoT device goes through several steps in the course of an update,
 each of which can be self-initiated or third-party initiated, or
 hybrid. An IoT device may go through the following steps, though
 this is not a comprehensive list.

 * Notification
 * Pre-authorisation
 * Dependency resolution
 * Download
 * Installation

 The notification step consists informing an IoT device that an update
 is available. This can be accomplished via polling (self-initiated),
 push notifications (third-party initiated), or more complex
 mechanisms.

 The pre-authorisation step involves verifying the update authority
 and making a determination that the device is prepared to initiate
 the fetching and processing of updates. If the device has all
 information that is necessary to make this determination, then the
 pre-authorisation may be self-initiated. However, the device can
 wait for instruction to begin (third-party initiated). Hybrid
 approaches are possible as well.

 A dependency resolution phase is needed when more than one component
 can be updated or when a differential update is used. The necessary
 dependencies must be available prior to installation.

 The download step is the process of acquiring a local copy of the
 payload. When the download is self-initiated, this means that the

Moran, et al. Expires December 5, 2018 [Page 8]

Internet-Draft IoT Firmware Update Architecture June 2018

 IoT device chooses when a download occurs and initiates the download
 process. When a download is third-party initiated, this means that
 either the remote service tells the IoT device when to download or
 that it initiates the transfer directly to the IoT device. For
 example, a download from an HTTP server is initiated locally. A
 transfer to a LwM2M Firmware Update resource [LwM2M] is initiated
 remotely.

 Installation is the act of processing the payload into a format that
 the IoT device can recognise.

 Each of these steps may require different permissions expressed in
 claims and may be implemented in a variety of ways.

4. Claims

 When a simple set of permissions fails to encapsulate the rules
 required for a device to make decisions about firmware, claims can be
 used instead. Claims represent a form of policy. Several claims can
 be used together, when multiple actors should have the rights to set
 policies.

 Some example claims are:

 - Trust the actor identified by the referenced public key.

 - Trust the actor with access to the referenced shared secret (MAC).

 - Three actors are trusted identified by their public keys.
 Signatures from at least two of these actors are required to trust
 a manifest.

 - The actor identified by the referenced public key is authorized to
 create secondary policies

 The baseline claims for all manifests are described in [SUIT-IM]. In
 summary, they are:

 - Do not install firmware with earlier metadata than the current
 metadata.

 - Only install firmware with a matching vendor, model, hardware
 revision, software version, etc.

 - Only install firmware that is before its best-before timestamp.

 - Only install firmware with metadata signed/authenticated by a
 trusted actor.

Moran, et al. Expires December 5, 2018 [Page 9]

Internet-Draft IoT Firmware Update Architecture June 2018

 - Only allow an actor to exercise rights on the device via a
 manifest if that actor has signed the manifest.

 - Only allow a firmware installation if all required rights have
 been met through signatures/MACs (one or more) or manifest
 dependencies (one or more).

 - Use the instructions provided by the manifest to install the
 firmware.

 - Install any and all firmware images that are linked together with
 manifest dependencies.

 - Choose the mechanism to install the firmware, based on the type of
 firmware it is.

5. Architecture

 We start the architectural description with the security model. It
 is based on end-to-end security. In Figure 1 a firmware image is
 created by an author, sent to the device and subsequently installed.
 When the author is ready to distribute the firmware image it is
 conveyed using some communication channel to the device, which will
 typically involve the use of untrusted storage. Examples of
 untrusted storage are FTP servers, Web servers or USB sticks. End-
 to-end security mechanisms are used to protect the firmware image.
 Figure 1 does not show the manifest itself, which provides the meta-
 data about the firmware image and offers the security protection. It
 may bundled with the firmware image or travel as a standalone item.

 +-----------+
 +--------+ | | +--------+
	Firmware Image	Untrusted	Firmware Image	
Device	<-----------------	Storage	<------------------	Author
 +--------+ +-----------+ +--------+
 ^ *
 * *
 **
 End-to-End Security

 Figure 1: End-to-End Security.

 Whether the firmware image and the manifest is pushed to the device
 or fetched by the device is outside the scope of this work and
 existing device management protocols can be used for efficiently
 distributing this information.

Moran, et al. Expires December 5, 2018 [Page 10]

Internet-Draft IoT Firmware Update Architecture June 2018

 The following assumptions are made to allow the device to verify the
 received firmware image and manifest before updating software:

 - To accept an update, a device needs to decide whether the author
 signing the firmware image and the manifest is authorized to make
 the updates. We use public key cryptography to accomplish this.
 The device verifies the signature covering the manifest using a
 digital signature algorithm OR the device verifies the MAC
 covering the manifest using a MAC algorithm. The device is
 provisioned with a trust anchor that is used to validate the
 digital signature or MAC produced by the author. This trust
 anchor is potentially different from the trust anchor used to
 validate the digital signature produced for other protocols (such
 as device management protocols). This trust anchor may be
 provisioned to the device during manufacturing or during
 commissioning.

 - For confidentiality protection of firmware images the author needs
 to be in possession of the certificate/public key or a pre-shared
 key of a device.

 There are different types of delivery modes, which are illustrated
 based on examples below.

 There is an option for embedding a firmware image into a manifest.
 This is a useful approach for deployments where devices are not
 connected to the Internet and cannot contact a dedicated server for
 download of the firmware. It is also applicable when the firmware
 update happens via a USB stick or via Bluetooth Smart. Figure 2
 shows this delivery mode graphically.

 /------------\ /------------\
 /Manifest with \ /Manifest with \
 |attached | |attached |
 \firmware image/ \firmware image/
 \------------/ +-----------+ \------------/
 +--------+ | | +--------+
 | |<.................| Untrusted |<................| |
 | Device | | Storage | | Author |
 | | | | | |
 +--------+ +-----------+ +--------+

 Figure 2: Manifest with attached firmware.

 Figure 3 shows an option for remotely updating a device where the
 device fetches the firmware image from some file server. The
 manifest itself is delivered independently and provides information
 about the firmware image(s) to download.

Moran, et al. Expires December 5, 2018 [Page 11]

Internet-Draft IoT Firmware Update Architecture June 2018

 /------------\
 / \
 | Manifest |
 \ /
 +--------+ \------------/ +--------+
 | |<..>| |
 | Device | -- | Author |
 | |<- --- | |
 +--------+ -- --- +--------+
 -- ---
 --- ---
 -- +-----------+ --
 -- | | --
 /------------\ -- | Untrusted |<- /------------\
 / \ -- | Storage | / \
 | Firmware | | | | Firmware |
 \ / +-----------+ \ /
 \------------/ \------------/

 Figure 3: Independent retrieval of the firmware image.

 This architecture does not mandate a specific delivery mode but a
 solution must support both types.

6. Manifest

 In order for a device to apply an update, it has to make several
 decisions about the update:

 - Does it trust the author of the update?

 - Has the firmware been corrupted?

 - Does the firmware update apply to this device?

 - Is the update older than the active firmware?

 - When should the device apply the update?

 - How should the device apply the update?

 - What kind of firmware binary is it?

 - Where should the update be obtained?

 - Where should the firmware be stored?

Moran, et al. Expires December 5, 2018 [Page 12]

Internet-Draft IoT Firmware Update Architecture June 2018

 The manifest encodes the information that devices need in order to
 make these decisions. It is a data structure that contains the
 following information:

 - information about the device(s) the firmware image is intended to
 be applied to,

 - information about when the firmware update has to be applied,

 - information about when the manifest was created,

 - dependencies on other manifests,

 - pointers to the firmware image and information about the format,

 - information about where to store the firmware image,

 - cryptographic information, such as digital signatures or message
 authentication codes (MACs).

 The manifest information model is described in [SUIT-IM].

7. Example Flow

 The following example message flow illustrates the interaction for
 distributing a firmware image to a device starting with an author
 uploading the new firmware to untrusted storage and creating a
 manifest. The firmware and manifest are stored on the same untrusted
 storage.

 +--------+ +-----------------+ +------+
 | Author | |Untrusted Storage| |Device|
 +--------+ +-----------------+ +------+
 | | | |
 | Create Firmware | |
 |--------------- | |
 | | | |
 |<-------------- | |
 | | |
 | Upload Firmware | |
 |------------------>| |
 | | |
 | Create Manifest | |
 |---------------- | |
 | | | |
 |<--------------- | |
 | | |
 | Sign Manifest | |

Moran, et al. Expires December 5, 2018 [Page 13]

Internet-Draft IoT Firmware Update Architecture June 2018

 |-------------- | | |
 | | | |
 |<------------- | |
 | | |
 | Upload Manifest | |
 |------------------>| |
 | | |
 | | Query Manifest |
 | |<--------------------|
 | | |
 | | Send Manifest |
 | |-------------------->|
 | | |
 | | | Validate Manifest
 | | |------------------
 | | | |
 | | |<-----------------
 | | |
 | | Request Firmware |
 | |<--------------------|
 | | |
 | | Send Firmware |
 | |-------------------->|
 | | |
 | | | Verify Firmware
 | | |---------------
 | | | |
 | | |<--------------
 | | |
 | | | Store Firmware
 | | |--------------
 | | | |
 | | |<-------------
 | | |
 | | | Reboot
 | | |-------
 | | | |
 | | |<------
 | | |
 | | | Bootloader validates
 | | | Firmware
 | | |----------------------
 | | | |
 | | |<---------------------
 | | |
 | | | Bootloader activates
 | | | Firmware
 | | |----------------------

Moran, et al. Expires December 5, 2018 [Page 14]

Internet-Draft IoT Firmware Update Architecture June 2018

 | | | |
 | | |<---------------------
 | | |
 | | | Bootloader transfers
 | | | control to new Firmware
 | | |----------------------
 | | | |
 | | |<---------------------
 | | |

 Figure 4: Example Flow for a Firmware Upate.

8. IANA Considerations

 This document does not require any actions by IANA.

9. Security Considerations

 Firmware updates fix security vulnerabilities and are considered to
 be an important building block in securing IoT devices. Due to the
 importance of firmware updates for IoT devices the Internet
 Architecture Board (IAB) organized a 'Workshop on Internet of Things
 (IoT) Software Update (IOTSU)', which took place at Trinity College
 Dublin, Ireland on the 13th and 14th of June, 2016 to take a look at
 the big picture. A report about this workshop can be found at
 [RFC8240]. A standardized firmware manifest format providing end-to-
 end security from the author to the device will be specified in a
 separate document.

 There are, however, many other considerations raised during the
 workshop. Many of them are outside the scope of standardization
 organizations since they fall into the realm of product engineering,
 regulatory frameworks, and business models. The following
 considerations are outside the scope of this document, namely

 - installing firmware updates in a robust fashion so that the update
 does not break the device functionality of the environment this
 device operates in.

 - installing firmware updates in a timely fashion considering the
 complexity of the decision making process of updating devices,
 potential re-certification requirements, and the need for user
 consent to install updates.

 - the distribution of the actual firmware update, potentially in an
 efficient manner to a large number of devices without human
 involvement.

https://datatracker.ietf.org/doc/html/rfc8240

Moran, et al. Expires December 5, 2018 [Page 15]

Internet-Draft IoT Firmware Update Architecture June 2018

 - energy efficiency and battery lifetime considerations.

 - key management required for verifying the digital signature
 protecting the manifest.

 - incentives for manufacturers to offer a firmware update mechanism
 as part of their IoT products.

10. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/suit

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/suit/current/index.html

11. Acknowledgements

 We would like to thank the following persons for their feedback:

 - Geraint Luff

 - Amyas Phillips

 - Dan Ros

 - Thomas Eichinger

 - Michael Richardson

 - Emmanuel Baccelli

 - Ned Smith

 - David Brown

 - Jim Schaad

 - Carsten Bormann

 - Cullen Jennings

 - Olaf Bergmann

 - Suhas Nandakumar

https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires December 5, 2018 [Page 16]

Internet-Draft IoT Firmware Update Architecture June 2018

 - Phillip Hallam-Baker

 - Marti Bolivar

 - Andrzej Puzdrowski

 - Markus Gueller

 - Henk Birkholz

 - Jintao Zhu

 We would also like to thank the WG chairs, Russ Housley, David
 Waltermire, Dave Thaler for their support and their reviews.
 Kathleen Moriarty was the responsible security area director when
 this work was started.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016, <https://www.rfc-

editor.org/info/rfc7925>.

12.2. Informative References

 [LwM2M] OMA, ., "Lightweight Machine to Machine Technical
 Specification, Version 1.0.2", February 2018,
 <http://www.openmobilealliance.org/release/LightweightM2M/

V1_0_2-20180209-A/
OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf>.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 DOI 10.17487/RFC5649, September 2009, <https://www.rfc-

editor.org/info/rfc5649>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
https://datatracker.ietf.org/doc/html/rfc5649
https://www.rfc-editor.org/info/rfc5649
https://www.rfc-editor.org/info/rfc5649

Moran, et al. Expires December 5, 2018 [Page 17]

Internet-Draft IoT Firmware Update Architecture June 2018

 [RFC8240] Tschofenig, H. and S. Farrell, "Report from the Internet
 of Things Software Update (IoTSU) Workshop 2016",

RFC 8240, DOI 10.17487/RFC8240, September 2017,
 <https://www.rfc-editor.org/info/rfc8240>.

 [SUIT-IM] Moran, B., Tschofenig, H., Birkholz, H., and J. Jimenez,
 "Firmware Updates for Internet of Things Devices - An
 Information Model for Manifests", June 2018.

12.3. URIs

 [1] mailto:suit@ietf.org

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Milosch Meriac
 Consultant

 EMail: milosch@meriac.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@gmx.net

https://datatracker.ietf.org/doc/html/rfc8240
https://www.rfc-editor.org/info/rfc8240

Moran, et al. Expires December 5, 2018 [Page 18]

