
SUIT B. Moran

Internet-Draft Arm Limited

Intended status: Informational M. Meriac

Expires: October 11, 2019 Consultant

 H. Tschofenig

 Arm Limited

 D. Brown

 Linaro

 April 09, 2019

 A Firmware Update Architecture for Internet of Things Devices

 draft-ietf-suit-architecture-05

Abstract

 Vulnerabilities with Internet of Things (IoT) devices have raised the

 need for a solid and secure firmware update mechanism that is also

 suitable for constrained devices. Incorporating such update

 mechanism to fix vulnerabilities, to update configuration settings as

 well as adding new functionality is recommended by security experts.

 This document lists requirements and describes an architecture for a

 firmware update mechanism suitable for IoT devices. The architecture

 is agnostic to the transport of the firmware images and associated

 meta-data.

 This version of the document assumes asymmetric cryptography and a

 public key infrastructure. Future versions may also describe a

 symmetric key approach for very constrained devices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 11, 2019.

Moran, et al. Expires October 11, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft IoT Firmware Update Architecture April 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF

 Contributions published or made publicly available before November

 10, 2008. The person(s) controlling the copyright in some of this

 material may not have granted the IETF Trust the right to allow

 modifications of such material outside the IETF Standards Process.

 Without obtaining an adequate license from the person(s) controlling

 the copyright in such materials, this document may not be modified

 outside the IETF Standards Process, and derivative works of it may

 not be created outside the IETF Standards Process, except to format

 it for publication as an RFC or to translate it into languages other

 than English.

Table of Contents

 1. Introduction . 3

 2. Conventions and Terminology 3

 3. Requirements . 6

 3.1. Agnostic to how firmware images are distributed 7

 3.2. Friendly to broadcast delivery 7

 3.3. Use state-of-the-art security mechanisms 7

 3.4. Rollback attacks must be prevented 8

 3.5. High reliability . 8

 3.6. Operate with a small bootloader 8

 3.7. Small Parsers . 9

 3.8. Minimal impact on existing firmware formats 9

 3.9. Robust permissions 9

 3.10. Operating modes . 9

 4. Claims . 11

 5. Communication Architecture 12

 6. Manifest . 16

 7. Device Firmware Update Examples 17

 7.1. Single CPU SoC . 17

 7.2. Single CPU with Secure - Normal Mode Partitioning 17

Moran, et al. Expires October 11, 2019 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft IoT Firmware Update Architecture April 2019

 7.3. Dual CPU, shared memory 17

 7.4. Dual CPU, other bus 17

 8. Bootloader . 18

 9. Example . 20

 10. IANA Considerations . 21

 11. Security Considerations 22

 12. Mailing List Information 22

 13. Acknowledgements . 23

 14. References . 24

 14.1. Normative References 24

 14.2. Informative References 24

 14.3. URIs . 25

 Authors' Addresses . 25

1. Introduction

 When developing IoT devices, one of the most difficult problems to

 solve is how to update the firmware on the device. Once the device

 is deployed, firmware updates play a critical part in its lifetime,

 particularly when devices have a long lifetime, are deployed in

 remote or inaccessible areas where manual intervention is cost

 prohibitive or otherwise difficult. Updates to the firmware of an

 IoT device are done to fix bugs in software, to add new

 functionality, and to re-configure the device to work in new

 environments or to behave differently in an already deployed context.

 The firmware update process, among other goals, has to ensure that

 - The firmware image is authenticated and integrity protected.

 Attempts to flash a modified firmware image or an image from an

 unknown source are prevented.

 - The firmware image can be confidentiality protected so that

 attempts by an adversary to recover the plaintext binary can be

 prevented. Obtaining the firmware is often one of the first steps

 to mount an attack since it gives the adversary valuable insights

 into used software libraries, configuration settings and generic

 functionality (even though reverse engineering the binary can be a

 tedious process).

 More details about the security goals are discussed in Section 5 and

 requirements are described in Section 3.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

Moran, et al. Expires October 11, 2019 [Page 3]

Internet-Draft IoT Firmware Update Architecture April 2019

 "OPTIONAL" in this document are to be interpreted as described in RFC

 2119 [RFC2119].

 This document uses the following terms:

 - Manifest: The manifest contains meta-data about the firmware

 image. The manifest is protected against modification and

 provides information about the author.

 - Firmware Image: The firmware image is a binary that may contain

 the complete software of a device or a subset of it. The firmware

 image may consist of multiple images, if the device contains more

 than one microcontroller. The image may consist of a differential

 update for performance reasons. Firmware is the more universal

 term. Both terms are used in this document and are

 interchangeable.

 - Bootloader: A bootloader is a piece of software that is executed

 once a microcontroller has been reset. It is responsible for

 deciding whether to boot a firmware image that is present or

 whether to obtain and verify a new firmware image. Since the

 bootloader is a security critical component its functionality may

 be split into separate stages. Such a multi-stage bootloader may

 offer very basic functionality in the first stage and resides in

 ROM whereas the second stage may implement more complex

 functionality and resides in flash memory so that it can be

 updated in the future (in case bugs have been found). The exact

 split of components into the different stages, the number of

 firmware images stored by an IoT device, and the detailed

 functionality varies throughout different implementations. A more

 detailed discussion is provided in Section 8.

 - Microcontroller (MCU for microcontroller unit): An MCU is a

 compact integrated circuit designed for use in embedded systems.

 A typical microcontroller includes a processor, memory (RAM and

 flash), input/output (I/O) ports and other features connected via

 some bus on a single chip. The term 'system on chip (SoC)' is

 often used for these types of devices.

 - System on Chip (SoC): An SoC is an integrated circuit that

 integrates all components of a computer, such as CPU, memory,

 input/output ports, secondary storage, etc.

 - Homogeneous Storage Architecture (HoSA): A device that stores all

 firmware components in the same way, for example in a file system

 or in flash memory.

Moran, et al. Expires October 11, 2019 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft IoT Firmware Update Architecture April 2019

 - Heterogeneous Storage Architecture (HeSA): A device that stores at

 least one firmware component differently from the rest, for

 example a device with an external, updatable radio, or a device

 with internal and external flash memory.

 The following entities are used:

 - Author: The author is the entity that creates the firmware image.

 There may be multiple authors in a system either when a device

 consists of multiple micro-controllers or when the the final

 firmware image consists of software components from multiple

 companies.

 - Firmware Consumer: The firmware consumer is the recipient of the

 firmware image and the manifest.

 - Device: A device refers to the entire IoT product, which consists

 of one or many MCUs, sensors and/or actuators. Many IoT devices

 sold today contain multiple MCUs and therefore a single device may

 need to obtain more than one firmware image and manifest to

 succesfully perform an update. The terms device and firmware

 consumer are used interchangably since the firmware consumer is

 one software component running on an MCU on the device.

 - Status Tracker: The status tracker offers device management

 functionality to monitor the firmware update process. A status

 tracker may, for example, want to know what state of the firmware

 update cycle the device is currently in.

 - Firmware Server: The firmware server stores firmware images and

 manifests and distributes them to IoT devices. Some deployments

 may require a store-and-forward concept, which requires storing

 the firmware images/manifests on more than one entity before

 they reach the device.

 - Device Operator: The actor responsible for the day-to-day

 operation of a fleet of IoT devices.

 - Network Operator: The actor responsible for the operation of a

 network to which IoT devices connect.

 In addition to the entities in the list above there is an orthogonal

 infrastructure with a Trust Provisioning Authority (TPA) distributing

 trust anchors and authorization permissions to various entities in

 the system. The TPA may also delegate rights to install, update,

 enhance, or delete trust anchors and authorization permissions to

 other parties in the system. This infrastructure overlaps the

 communication architecture and different deployments may empower

Moran, et al. Expires October 11, 2019 [Page 5]

Internet-Draft IoT Firmware Update Architecture April 2019

 certain entities while other deployments may not. For example, in

 some cases, the Original Design Manufacturer (ODM), which is a

 company that designs and manufactures a product, may act as a TPA and

 may decide to remain in full control over the firmware update process

 of their products.

 The terms 'trust anchor' and 'trust anchor store' are defined in

 [RFC6024]:

 - "A trust anchor represents an authoritative entity via a public

 key and associated data. The public key is used to verify digital

 signatures, and the associated data is used to constrain the types

 of information for which the trust anchor is authoritative."

 - "A trust anchor store is a set of one or more trust anchors stored

 in a device. A device may have more than one trust anchor store,

 each of which may be used by one or more applications." A trust

 anchor store must resist modification against unauthorized

 insertion, deletion, and modification.

3. Requirements

 The firmware update mechanism described in this specification was

 designed with the following requirements in mind:

 - Agnostic to how firmware images are distributed

 - Friendly to broadcast delivery

 - Use state-of-the-art security mechanisms

 - Rollback attacks must be prevented

 - High reliability

 - Operate with a small bootloader

 - Small Parsers

 - Minimal impact on existing firmware formats

 - Robust permissions

 - Diverse modes of operation

Moran, et al. Expires October 11, 2019 [Page 6]

https://datatracker.ietf.org/doc/html/rfc6024

Internet-Draft IoT Firmware Update Architecture April 2019

3.1. Agnostic to how firmware images are distributed

 Firmware images can be conveyed to devices in a variety of ways,

 including USB, UART, WiFi, BLE, low-power WAN technologies, etc. and

 use different protocols (e.g., CoAP, HTTP). The specified mechanism

 needs to be agnostic to the distribution of the firmware images and

 manifests.

3.2. Friendly to broadcast delivery

 This architecture does not specify any specific broadcast protocol.

 However, given that broadcast may be desirable for some networks,

 updates must cause the least disruption possible both in metadata and

 payload transmission.

 For an update to be broadcast friendly, it cannot rely on link layer,

 network layer, or transport layer security. In addition, the same

 message must be deliverable to many devices, both those to which it

 applies and those to which it does not, without a chance that the

 wrong device will accept the update. Considerations that apply to

 network broadcasts apply equally to the use of third-party content

 distribution networks for payload distribution.

3.3. Use state-of-the-art security mechanisms

 End-to-end security between the author and the device, as shown in

 Section 5, is used to ensure that the device can verify firmware

 images and manifests produced by authorized authors.

 The use of post-quantum secure signature mechanisms, such as hash-

 based signatures, should be explored. A migration to post-quantum

 secure signatures would require significant effort, therefore,

 mandatory-to-implement support for post-quantum secure signatures is

 a goal.

 A mandatory-to-implement set of algorithms has to be defined offering

 a key length of 112-bit symmetric key or security or more, as

 outlined in Section 20 of RFC 7925 [RFC7925]. This corresponds to a

 233 bit ECC key or a 2048 bit RSA key.

 If the firmware image is to be encrypted, it must be done in such a

 way that every intended recipient can decrypt it. The information

 that is encrypted individually for each device must be an absolute

 minimum, for example AES Key Wrap [RFC5649], in order to maintain

 friendliness to Content Distribution Networks, bulk storage, and

 broadcast protocols.

Moran, et al. Expires October 11, 2019 [Page 7]

https://datatracker.ietf.org/doc/html/rfc7925#section-20
https://datatracker.ietf.org/doc/html/rfc7925
https://datatracker.ietf.org/doc/html/rfc5649

Internet-Draft IoT Firmware Update Architecture April 2019

3.4. Rollback attacks must be prevented

 A device presented with an old, but valid manifest and firmware must

 not be tricked into installing such firmware since a vulnerability in

 the old firmware image may allow an attacker to gain control of the

 device.

3.5. High reliability

 A power failure at any time must not cause a failure of the device.

 A failure to validate any part of an update must not cause a failure

 of the device. One way to achieve this functionality is to provide a

 minimum of two storage locations for firmware and one bootable

 location for firmware. An alternative approach is to use a 2nd stage

 bootloader with build-in full featured firmware update functionality

 such that it is possible to return to the update process after power

 down.

 Note: This is an implementation requirement rather than a requirement

 on the manifest format.

3.6. Operate with a small bootloader

 The bootloader must be minimal, containing only flash support,

 cryptographic primitives and optionally a recovery mechanism. The

 recovery mechanism is used in case the update process failed and may

 include support for firmware updates over serial, USB or even a

 limited version of wireless connectivity standard like a limited

 Bluetooth Smart. Such a recovery mechanism must provide security at

 least at the same level as the full featured firmware update

 functionalities.

 The bootloader needs to verify the received manifest and to install

 the bootable firmware image. The bootloader should not require

 updating since a failed update poses a risk in reliability. If more

 functionality is required in the bootloader, it must use a two-stage

 bootloader, with the first stage comprising the functionality defined

 above.

 All information necessary for a device to make a decision about the

 installation of a firmware update must fit into the available RAM of

 a constrained IoT device. This prevents flash write exhaustion.

 Note: This is an implementation requirement.

Moran, et al. Expires October 11, 2019 [Page 8]

Internet-Draft IoT Firmware Update Architecture April 2019

3.7. Small Parsers

 Since parsers are known sources of bugs they must be minimal.

 Additionally, it must be easy to parse only those fields that are

 required to validate at least one signature or MAC with minimal

 exposure.

3.8. Minimal impact on existing firmware formats

 The design of the firmware update mechanism must not require changes

 to existing firmware formats.

3.9. Robust permissions

 When a device obtains a monolithic firmware image from a single

 author without any additional approval steps then the authorization

 flow is relatively simple. There are, however, other cases where

 more complex policy decisions need to be made before updating a

 device.

 In this architecture the authorization policy is separated from the

 underlying communication architecture. This is accomplished by

 separating the entities from their permissions. For example, an

 author may not have the authority to install a firmware image on a

 device in critical infrastructure without the authorization of a

 device operator. In this case, the device may be programmed to

 reject firmware updates unless they are signed both by the firmware

 author and by the device operator.

 Alternatively, a device may trust precisely one entity, which does

 all permission management and coordination. This entity allows the

 device to offload complex permissions calculations for the device.

3.10. Operating modes

 There are three broad classifications of update operating modes.

 - Client-initiated Update

 - Server-initiated Update

 - Hybrid Update

 Client-initiated updates take the form of a firmware consumer on a

 device proactively checking (polling) for new firmware images.

 Server-initiated updates are important to consider because timing of

 updates may need to be tightly controlled in some high- reliability

Moran, et al. Expires October 11, 2019 [Page 9]

Internet-Draft IoT Firmware Update Architecture April 2019

 environments. In this case the status tracker determines what

 devices qualify for a firmware update. Once those devices have been

 selected the firmware server distributes updates to the firmware

 consumers.

 Note: This assumes that the status tracker is able to reach the

 device, which may require devices to keep reachability information at

 the status tracker up-to-date. This may also require keeping state

 at NATs and stateful packet filtering firewalls alive.

 Hybrid updates are those that require an interaction between the

 firmware consumer and the status tracker. The status tracker pushes

 notifications of availability of an update to the firmware consumer,

 and it then downloads the image from a firmware server as soon as

 possible.

 An alternative view to the operating modes is to consider the steps a

 device has to go through in the course of an update:

 - Notification

 - Pre-authorisation

 - Dependency resolution

 - Download

 - Installation

 The notification step consists of the status tracker informing the

 firmware consumer that an update is available. This can be

 accomplished via polling (client-initiated), push notifications

 (server-initiated), or more complex mechanisms.

 The pre-authorisation step involves verifying whether the entity

 signing the manifest is indeed authorized to perform an update. The

 firmware consumer must also determine whether it should fetch and

 process a firmware image, which is referenced in a manifest.

 A dependency resolution phase is needed when more than one component

 can be updated or when a differential update is used. The necessary

 dependencies must be available prior to installation.

 The download step is the process of acquiring a local copy of the

 firmware image. When the download is client-initiated, this means

 that the firmware consumer chooses when a download occurs and

 initiates the download process. When a download is server-initiated,

 this means that the status tracker tells the device when to download

Moran, et al. Expires October 11, 2019 [Page 10]

Internet-Draft IoT Firmware Update Architecture April 2019

 or that it initiates the transfer directly to the firmware consumer.

 For example, a download from an HTTP-based firmware server is client-

 initiated. Pushing a manifest and firmware image to the transfer to

 the Package resource of the LwM2M Firmware Update object [LwM2M] is

 server-initiated.

 If the firmware consumer has downloaded a new firmware image and is

 ready to install it, it may need to wait for a trigger from the

 status tracker to initiate the installation, may trigger the update

 automatically, or may go through a more complex decision making

 process to determine the appropriate timing for an update (such as

 delaying the update process to a later time when end users are less

 impacted by the update process).

 Installation is the act of processing the payload into a format that

 the IoT device can recognise and the bootloader is responsible for

 then booting from the newly installed firmware image.

 Each of these steps may require different permissions.

4. Claims

 Claims in the manifest offer a way to convey instructions to a device

 that impact the firmware update process. To have any value the

 manifest containing those claims must be authenticated and integrity

 protected. The credential used to must be directly or indirectly

 related to the trust anchor installed at the device by the Trust

 Provisioning Authority.

 The baseline claims for all manifests are described in

 [I-D.ietf-suit-information-model]. For example, there are:

 - Do not install firmware with earlier metadata than the current

 metadata.

 - Only install firmware with a matching vendor, model, hardware

 revision, software version, etc.

 - Only install firmware that is before its best-before timestamp.

 - Only allow a firmware installation if dependencies have been met.

 - Choose the mechanism to install the firmware, based on the type of

 firmware it is.

Moran, et al. Expires October 11, 2019 [Page 11]

Internet-Draft IoT Firmware Update Architecture April 2019

5. Communication Architecture

 Figure 1 shows the communication architecture where a firmware image

 is created by an author, and uploaded to a firmware server. The

 firmware image/manifest is distributed to the device either in a push

 or pull manner using the firmware consumer residing on the device.

 The device operator keeps track of the process using the status

 tracker. This allows the device operator to know and control what

 devices have received an update and which of them are still pending

 an update.

Moran, et al. Expires October 11, 2019 [Page 12]

Internet-Draft IoT Firmware Update Architecture April 2019

 Firmware + +----------+ Firmware + +-----------+

 Manifest | |-+ Manifest | |-+

 +--------->| Firmware | |<---------------| | |

 | | Server | | | Author | |

 | | | | | | |

 | +----------+ | +-----------+ |

 | +----------+ +-----------+

 |

 |

 |

 -+-- ------

 ---- | ---- ---- ----

 // | \\ // \\

 / | \ / \

 / | \ / \

 / | \ / \

 / | \ / \

 | v | | |

 | +------------+ |

 | | Firmware | | | |

 | | Consumer | | Device | +--------+ |

 | +------------+ | Management| | | |

 | | |<------------------------->| Status | |

 | | Device | | | | Tracker| |

 | +------------+ | || | | |

 | | || +--------+ |

 | | | |

 | | \ /

 \ / \ /

 \ / \ Device /

 \ Network / \ Operator /

 \ Operator / \\ //

 \\ // ---- ----

 ---- ---- ------

 Figure 1: Architecture.

 End-to-end security mechanisms are used to protect the firmware image

 and the manifest although Figure 2 does not show the manifest itself

 since it may be distributed independently.

Moran, et al. Expires October 11, 2019 [Page 13]

Internet-Draft IoT Firmware Update Architecture April 2019

 +-----------+

 +--------+ | | +--------+

 | | Firmware Image | Firmware | Firmware Image | |

 | Device |<-----------------| Server |<------------------| Author |

 | | | | | |

 +--------+ +-----------+ +--------+

 ^ *

 * *

 **

 End-to-End Security

 Figure 2: End-to-End Security.

 Whether the firmware image and the manifest is pushed to the device

 or fetched by the device is a deployment specific decision.

 The following assumptions are made to allow the firmware consumer to

 verify the received firmware image and manifest before updating

 software:

 - To accept an update, a device needs to verify the signature

 covering the manifest. There may be one or multiple manifests

 that need to be validated, potentially signed by different

 parties. The device needs to be in possession of the trust

 anchors to verify those signatures. Installing trust anchors to

 devices via the Trust Provisioning Authority happens in an out-of-

 band fashion prior to the firmware update process.

 - Not all entities creating and signing manifests have the same

 permissions. A device needs to determine whether the requested

 action is indeed covered by the permission of the party that

 signed the manifest. Informing the device about the permissions

 of the different parties also happens in an out-of-band fashion

 and is also a duty of the Trust Provisioning Authority.

 - For confidentiality protection of firmware images the author needs

 to be in possession of the certificate/public key or a pre-shared

 key of a device. The use of confidentiality protection of

 firmware images is deployment specific.

 There are different types of delivery modes, which are illustrated

 based on examples below.

 There is an option for embedding a firmware image into a manifest.

 This is a useful approach for deployments where devices are not

 connected to the Internet and cannot contact a dedicated firmware

 server for the firmware download. It is also applicable when the

Moran, et al. Expires October 11, 2019 [Page 14]

Internet-Draft IoT Firmware Update Architecture April 2019

 firmware update happens via a USB stick or via Bluetooth Smart.

 Figure 3 shows this delivery mode graphically.

 /------------\ /------------\

 /Manifest with \ /Manifest with \

 |attached | |attached |

 \firmware image/ \firmware image/

 \------------/ +-----------+ \------------/

 +--------+ | | +--------+

 | |<.................| Firmware |<................| |

 | Device | | Server | | Author |

 | | | | | |

 +--------+ +-----------+ +--------+

 Figure 3: Manifest with attached firmware.

 Figure 4 shows an option for remotely updating a device where the

 device fetches the firmware image from some file server. The

 manifest itself is delivered independently and provides information

 about the firmware image(s) to download.

 /------------\

 / \

 | Manifest |

 \ /

 +--------+ \------------/ +--------+

 | |<..>| |

 | Device | -- | Author |

 | |<- --- | |

 +--------+ -- --- +--------+

 -- ---

 --- ---

 -- +-----------+ --

 -- | | --

 /------------\ -- | Firmware |<- /------------\

 / \ -- | Server | / \

 | Firmware | | | | Firmware |

 \ / +-----------+ \ /

 \------------/ \------------/

 Figure 4: Independent retrieval of the firmware image.

 This architecture does not mandate a specific delivery mode but a

 solution must support both types.

Moran, et al. Expires October 11, 2019 [Page 15]

Internet-Draft IoT Firmware Update Architecture April 2019

6. Manifest

 In order for a device to apply an update, it has to make several

 decisions about the update:

 - Does it trust the author of the update?

 - Has the firmware been corrupted?

 - Does the firmware update apply to this device?

 - Is the update older than the active firmware?

 - When should the device apply the update?

 - How should the device apply the update?

 - What kind of firmware binary is it?

 - Where should the update be obtained?

 - Where should the firmware be stored?

 The manifest encodes the information that devices need in order to

 make these decisions. It is a data structure that contains the

 following information:

 - information about the device(s) the firmware image is intended to

 be applied to,

 - information about when the firmware update has to be applied,

 - information about when the manifest was created,

 - dependencies on other manifests,

 - pointers to the firmware image and information about the format,

 - information about where to store the firmware image,

 - cryptographic information, such as digital signatures or message

 authentication codes (MACs).

 The manifest information model is described in

 [I-D.ietf-suit-information-model].

Moran, et al. Expires October 11, 2019 [Page 16]

Internet-Draft IoT Firmware Update Architecture April 2019

7. Device Firmware Update Examples

 Although these documents attempt to define a firmware update

 architecture that is applicable to both existing systems, as well as

 yet-to-be-conceived systems; it is still helpful to consider existing

 architectures.

7.1. Single CPU SoC

 The simplest, and currently most common, architecture consists of a

 single MCU along with its own peripherals. These SoCs generally

 contain some amount of flash memory for code and fixed data, as well

 as RAM for working storage. These systems either have a single

 firmware image, or an immutable bootloader that runs a single image.

 A notable characteristic of these SoCs is that the primary code is

 generally execute in place (XIP). Combined with the non-relocatable

 nature of the code, firmware updates need to be done in place.

7.2. Single CPU with Secure - Normal Mode Partitioning

 Another configuration consists of a similar architecture to the

 previous, with a single CPU. However, this CPU supports a security

 partitioning scheme that allows memory (in addition to other things)

 to be divided into secure and normal mode. There will generally be

 two images, one for secure mode, and one for normal mode. In this

 configuration, firmware upgrades will generally be done by the CPU in

 secure mode, which is able to write to both areas of the flash

 device. In addition, there are requirements to be able to update

 either image independently, as well as to update them together

 atomically, as specified in the associated manifests.

7.3. Dual CPU, shared memory

 This configuration has two or more CPUs in a single SoC that share

 memory (flash and RAM). Generally, they will be a protection

 mechanism to prevent one CPU from accessing the other's memory.

 Upgrades in this case will typically be done by one of the CPUs, and

 is similar to the single CPU with secure mode.

7.4. Dual CPU, other bus

 This configuration has two or more CPUs, each having their own

 memory. There will be a communication channel between them, but it

 will be used as a peripheral, not via shared memory. In this case,

 each CPU will have to be responsible for its own firmware upgrade.

 It is likely that one of the CPUs will be considered a master, and

 will direct the other CPU to do the upgrade. This configuration is

 commonly used to offload specific work to other CPUs. Firmware

Moran, et al. Expires October 11, 2019 [Page 17]

Internet-Draft IoT Firmware Update Architecture April 2019

 dependencies are similar to the other solutions above, sometimes

 allowing only one image to be upgraded, other times requiring several

 to be upgraded atomically. Because the updates are happening on

 multiple CPUs, upgrading the two images atomically is challenging.

8. Bootloader

 More devices today than ever before are being connected to the

 Internet, which drives the need for firmware updates to be provided

 over the Internet rather than through traditional interfaces, such as

 USB or RS232. Updating a device over the Internet requires the

 device to fetch not only the firmware image but also the manifest.

 Hence, the following building blocks are necessary for a firmware

 update solution:

 - the Internet protocol stack for (possibly large) firmware

 downloads,

 - the capability to write the received firmware image to persistent

 storage (most likely flash memory) prior to performing the update,

 - the ability to unpack, decompress or otherwise process the

 received firmware image,

 - the features to verify an image and a manifest, including digital

 signature verification or checking a message authentication code,

 - a manifest parsing library, and

 - integration of the device into a device management server to

 perform automatic firmware updates and to track their progress.

 All these features are most likely offered by the application, i.e.

 firmware consumer, running on the device (except for basic security

 algorithms that may run either on a trusted execution environment or

 on a separate hardware security MCU/module) rather than by the

 bootloader itself.

 Once manifests have been processed and firmware images successfully

 downloaded and verified the device needs to hand control over to the

 bootloader. In most cases this requires the MCU to restart. Once

 the MCU has initiated a restart, the bootloader takes over control

 and determines whether the newly downloaded firmware image should be

 executed.

 The boot process is security sensitive because the firmware images

 may, for example, be stored in off-chip flash memory giving attackers

 easy access to the image for reverse engineering and potentially also

Moran, et al. Expires October 11, 2019 [Page 18]

Internet-Draft IoT Firmware Update Architecture April 2019

 for modifying the binary. The bootloader will therefore have to

 perform security checks on the firmware image before it can be

 booted. These security checks by the bootloader happen in addition

 to the security checks that happened when the firmware image and the

 manifest were downloaded.

 The manifest may have been stored alongside the firmware image to

 allow re-verification of the firmware image during every boot

 attempt. Alternatively, secure boot-specific meta-data may have been

 created by the application after a successful firmware download and

 verification process. Whether to re-use the standardized manifest

 format that was used during the initial firmware retrieval process or

 whether it is better to use a different format for the secure boot-

 specific meta-data depends on the system design. The manifest format

 does, however, have the capability to serve also as a building block

 for secure boot with its severable elements that allow shrinking the

 size of the manifest by stripping elements that are no longer needed.

 If the application image contains the firmware consumer

 functionality, as described above, then it is necessary that a

 working image is left on the device to ensure that the bootloader can

 roll back to a working firmware image to re-do the firmware download

 since the bootloader itself does not have enough functionality to

 fetch a firmware image plus manifest from a firmware server over the

 Internet. A multi-stage bootloader may soften this requirement at

 the expense of a more sophisticated boot process.

 For a bootloader to offer a secure boot mechanism it needs to provide

 the following features:

 - ability to access security algorithms, such as SHA-256 to compute

 a fingerprint over the firmware image and a digital signature

 algorithm.

 - access keying material directly or indirectly to utilize the

 digital signature. The device needs to have a trust anchor store.

 - ability to expose boot process-related data to the application

 firmware (such as to the device management software). This allows

 a device management server to determine whether the firmware

 update has been successful and, if not, what errors occurred.

 - to (optionally) offer attestation information (such as

 measurements).

 While the software architecture of the bootloader and its security

 mechanisms are implementation-specific, the manifest can be used to

 control the firmware download from the Internet in addition to

Moran, et al. Expires October 11, 2019 [Page 19]

Internet-Draft IoT Firmware Update Architecture April 2019

 augmenting secure boot process. These building blocks are highly

 relevant for the design of the manifest.

9. Example

 The following example message flow illustrates a possible interaction

 for distributing a firmware image to a device starting with an author

 uploading the new firmware to firmware server and creating a

 manifest. The firmware and manifest are stored on the same firmware

 server.

 +--------+ +-----------------+ +------------+ +----------+

 | Author | | Firmware Server | |FW Consumer | |Bootloader|

 +--------+ +-----------------+ +------------+ +----------+

 | | | +

 | Create Firmware | | |

 |--------------- | | |

 | | | | |

 |<-------------- | | |

 | | | |

 | Upload Firmware | | |

 |------------------>| | |

 | | | |

 | Create Manifest | | |

 |---------------- | | |

 | | | | |

 |<--------------- | | |

 | | | |

 | Sign Manifest | | |

 |-------------- | | |

 | | | | |

 |<------------- | | |

 | | | |

 | Upload Manifest | | |

 |------------------>| | |

 | | | |

 | | Query Manifest | |

 | |<--------------------| |

 | | | |

 | | Send Manifest | |

 | |-------------------->| |

 | | | Validate |

 | | | Manifest |

 | | |---------+ |

 | | | | |

 | | |<--------+ |

 | | | |

 | | Request Firmware | |

Moran, et al. Expires October 11, 2019 [Page 20]

Internet-Draft IoT Firmware Update Architecture April 2019

 | |<--------------------| |

 | | | |

 | | Send Firmware | |

 | |-------------------->| |

 | | | Verify |

 | | | Firmware |

 | | |--------------- |

 | | | | |

 | | |<-------------- |

 | | | |

 | | | Store |

 | | | Firmware |

 | | |-------------- |

 | | | | |

 | | |<------------- |

 | | | |

 | | | |

 | | | Reboot |

 | | |--------------->|

 | | | |

 | | | Verify |

 | | | Firmware |

 | | | ---------------|

 | | | | |

 | | | -------------->|

 | | | |

 | | | Activate new |

 | | | Firmware |

 | | | ---------------|

 | | | | |

 | | | -------------->|

 | | | |

 | | | Boot new |

 | | | Firmware |

 | | | ---------------|

 | | | | |

 | | | -------------->|

 | | | |

 Figure 5: Example Flow for a Firmware Upate.

10. IANA Considerations

 This document does not require any actions by IANA.

Moran, et al. Expires October 11, 2019 [Page 21]

Internet-Draft IoT Firmware Update Architecture April 2019

11. Security Considerations

 Firmware updates fix security vulnerabilities and are considered to

 be an important building block in securing IoT devices. Due to the

 importance of firmware updates for IoT devices the Internet

 Architecture Board (IAB) organized a 'Workshop on Internet of Things

 (IoT) Software Update (IOTSU)', which took place at Trinity College

 Dublin, Ireland on the 13th and 14th of June, 2016 to take a look at

 the big picture. A report about this workshop can be found at

 [RFC8240]. A standardized firmware manifest format providing end-to-

 end security from the author to the device will be specified in a

 separate document.

 There are, however, many other considerations raised during the

 workshop. Many of them are outside the scope of standardization

 organizations since they fall into the realm of product engineering,

 regulatory frameworks, and business models. The following

 considerations are outside the scope of this document, namely

 - installing firmware updates in a robust fashion so that the update

 does not break the device functionality of the environment this

 device operates in.

 - installing firmware updates in a timely fashion considering the

 complexity of the decision making process of updating devices,

 potential re-certification requirements, and the need for user

 consent to install updates.

 - the distribution of the actual firmware update, potentially in an

 efficient manner to a large number of devices without human

 involvement.

 - energy efficiency and battery lifetime considerations.

 - key management required for verifying the digital signature

 protecting the manifest.

 - incentives for manufacturers to offer a firmware update mechanism

 as part of their IoT products.

12. Mailing List Information

 The discussion list for this document is located at the e-mail

 address suit@ietf.org [1]. Information on the group and information

 on how to subscribe to the list is at

 https://www1.ietf.org/mailman/listinfo/suit [2]

Moran, et al. Expires October 11, 2019 [Page 22]

https://datatracker.ietf.org/doc/html/rfc8240
https://www1.ietf.org/mailman/listinfo/suit

Internet-Draft IoT Firmware Update Architecture April 2019

 Archives of the list can be found at: https://www.ietf.org/mail-

 archive/web/suit/current/index.html [3]

13. Acknowledgements

 We would like to thank the following persons for their feedback:

 - Geraint Luff

 - Amyas Phillips

 - Dan Ros

 - Thomas Eichinger

 - Michael Richardson

 - Emmanuel Baccelli

 - Ned Smith

 - Jim Schaad

 - Carsten Bormann

 - Cullen Jennings

 - Olaf Bergmann

 - Suhas Nandakumar

 - Phillip Hallam-Baker

 - Marti Bolivar

 - Andrzej Puzdrowski

 - Markus Gueller

 - Henk Birkholz

 - Jintao Zhu

 - Takeshi Takahashi

 - Jacob Beningo

Moran, et al. Expires October 11, 2019 [Page 23]

https://www.ietf.org/mail-archive/web/suit/current/index.html
https://www.ietf.org/mail-archive/web/suit/current/index.html

Internet-Draft IoT Firmware Update Architecture April 2019

 We would also like to thank the WG chairs, Russ Housley, David

 Waltermire, Dave Thaler for their support and their reviews.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer

 Security (TLS) / Datagram Transport Layer Security (DTLS)

 Profiles for the Internet of Things", RFC 7925,

 DOI 10.17487/RFC7925, July 2016,

 <https://www.rfc-editor.org/info/rfc7925>.

14.2. Informative References

 [I-D.ietf-suit-information-model]

 Moran, B., Tschofenig, H., and H. Birkholz, "Firmware

 Updates for Internet of Things Devices - An Information

 Model for Manifests", draft-ietf-suit-information-model-02

 (work in progress), January 2019.

 [LwM2M] OMA, ., "Lightweight Machine to Machine Technical

 Specification, Version 1.0.2", February 2018,

 <http://www.openmobilealliance.org/release/LightweightM2M/

 V1_0_2-20180209-A/

 OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf>.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard

 (AES) Key Wrap with Padding Algorithm", RFC 5649,

 DOI 10.17487/RFC5649, September 2009,

 <https://www.rfc-editor.org/info/rfc5649>.

 [RFC6024] Reddy, R. and C. Wallace, "Trust Anchor Management

 Requirements", RFC 6024, DOI 10.17487/RFC6024, October

 2010, <https://www.rfc-editor.org/info/rfc6024>.

 [RFC8240] Tschofenig, H. and S. Farrell, "Report from the Internet

 of Things Software Update (IoTSU) Workshop 2016",

 RFC 8240, DOI 10.17487/RFC8240, September 2017,

 <https://www.rfc-editor.org/info/rfc8240>.

Moran, et al. Expires October 11, 2019 [Page 24]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-02
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
https://datatracker.ietf.org/doc/html/rfc5649
https://www.rfc-editor.org/info/rfc5649
https://datatracker.ietf.org/doc/html/rfc6024
https://www.rfc-editor.org/info/rfc6024
https://datatracker.ietf.org/doc/html/rfc8240
https://www.rfc-editor.org/info/rfc8240

Internet-Draft IoT Firmware Update Architecture April 2019

14.3. URIs

 [1] mailto:suit@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/suit

 [3] https://www.ietf.org/mail-archive/web/suit/current/index.html

Authors' Addresses

 Brendan Moran

 Arm Limited

 EMail: Brendan.Moran@arm.com

 Milosch Meriac

 Consultant

 EMail: milosch@meriac.com

 Hannes Tschofenig

 Arm Limited

 EMail: hannes.tschofenig@arm.com

 David Brown

 Linaro

 EMail: david.brown@linaro.org

Moran, et al. Expires October 11, 2019 [Page 25]

https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html

