
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Informational Arm Limited
Expires: November 28, 2020 D. Brown
 Linaro
 M. Meriac
 Consultant
 May 27, 2020

A Firmware Update Architecture for Internet of Things
draft-ietf-suit-architecture-10

Abstract

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a solid and secure firmware update mechanism that is also
 suitable for constrained devices. Incorporating such update
 mechanism to fix vulnerabilities, to update configuration settings as
 well as adding new functionality is recommended by security experts.

 This document lists requirements and describes an architecture for a
 firmware update mechanism suitable for IoT devices. The architecture
 is agnostic to the transport of the firmware images and associated
 meta-data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 28, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Moran, et al. Expires November 28, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft A Firmware Update Architecture for IoT May 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 4
3. Requirements . 7
3.1. Agnostic to how firmware images are distributed 8
3.2. Friendly to broadcast delivery 8
3.3. Use state-of-the-art security mechanisms 8
3.4. Rollback attacks must be prevented 9
3.5. High reliability . 9
3.6. Operate with a small bootloader 9
3.7. Small Parsers . 10
3.8. Minimal impact on existing firmware formats 10
3.9. Robust permissions 10
3.10. Operating modes . 11
3.11. Suitability to software and personalization data 13

4. Claims . 13
5. Communication Architecture 14
6. Manifest . 18
7. Device Firmware Update Examples 19
7.1. Single CPU SoC . 19
7.2. Single CPU with Secure - Normal Mode Partitioning 19
7.3. Dual CPU, shared memory 19
7.4. Dual CPU, other bus 19

8. Bootloader . 20
9. Example . 22

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Moran, et al. Expires November 28, 2020 [Page 2]

Internet-Draft A Firmware Update Architecture for IoT May 2020

10. IANA Considerations . 26
11. Security Considerations 26
12. Mailing List Information 27
13. Acknowledgements . 27
14. References . 28
14.1. Normative References 28
14.2. Informative References 28
14.3. URIs . 29

 Authors' Addresses . 29

1. Introduction

 When developing Internet of Things (IoT) devices, one of the most
 difficult problems to solve is how to update firmware on the device.
 Once the device is deployed, firmware updates play a critical part in
 its lifetime, particularly when devices have a long lifetime, are
 deployed in remote or inaccessible areas where manual intervention is
 cost prohibitive or otherwise difficult. Updates to the firmware of
 an IoT device are done to fix bugs in software, to add new
 functionality, and to re-configure the device to work in new
 environments or to behave differently in an already deployed context.

 The firmware update process, among other goals, has to ensure that

 - The firmware image is authenticated and integrity protected.
 Attempts to flash a modified firmware image or an image from an
 unknown source are prevented.

 - The firmware image can be confidentiality protected so that
 attempts by an adversary to recover the plaintext binary can be
 prevented. Obtaining the firmware is often one of the first steps
 to mount an attack since it gives the adversary valuable insights
 into used software libraries, configuration settings and generic
 functionality (even though reverse engineering the binary can be a
 tedious process).

 This version of the document assumes asymmetric cryptography and a
 public key infrastructure. Future versions may also describe a
 symmetric key approach for very constrained devices.

 While the standardization work has been informed by and optimised for
 firmware update use cases of Class 1 (as defined in RFC 7228
 [RFC7228]) devices, there is nothing in the architecture that
 restricts its use to only these constrained IoT devices. Software
 update and delivery of arbitrary data, such as configuration
 information and keys, can equally be managed by manifests.

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228

Moran, et al. Expires November 28, 2020 [Page 3]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 More details about the security goals are discussed in Section 5 and
 requirements are described in Section 3.

2. Conventions and Terminology

 This document uses the following terms:

 - Manifest: The manifest contains meta-data about the firmware
 image. The manifest is protected against modification and
 provides information about the author.

 - Firmware Image: The firmware image, or image, is a binary that may
 contain the complete software of a device or a subset of it. The
 firmware image may consist of multiple images, if the device
 contains more than one microcontroller. Often it is also a
 compressed archive that contains code, configuration data, and
 even the entire file system. The image may consist of a
 differential update for performance reasons. Firmware is the more
 universal term. The terms, firmware image, firmware, and image,
 are used in this document and are interchangeable.

 - Software: The terms "software" and "firmware" are used
 interchangeably.

 - Bootloader: A bootloader is a piece of software that is executed
 once a microcontroller has been reset. It is responsible for
 deciding whether to boot a firmware image that is present or
 whether to obtain and verify a new firmware image. Since the
 bootloader is a security critical component its functionality may
 be split into separate stages. Such a multi-stage bootloader may
 offer very basic functionality in the first stage and resides in
 ROM whereas the second stage may implement more complex
 functionality and resides in flash memory so that it can be
 updated in the future (in case bugs have been found). The exact
 split of components into the different stages, the number of
 firmware images stored by an IoT device, and the detailed
 functionality varies throughout different implementations. A more
 detailed discussion is provided in Section 8.

 - Microcontroller (MCU for microcontroller unit): An MCU is a
 compact integrated circuit designed for use in embedded systems.
 A typical microcontroller includes a processor, memory (RAM and
 flash), input/output (I/O) ports and other features connected via
 some bus on a single chip. The term 'system on chip (SoC)' is
 often used for these types of devices.

Moran, et al. Expires November 28, 2020 [Page 4]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 - System on Chip (SoC): An SoC is an integrated circuit that
 integrates all components of a computer, such as CPU, memory,
 input/output ports, secondary storage, etc.

 - Homogeneous Storage Architecture (HoSA): A device that stores all
 firmware components in the same way, for example in a file system
 or in flash memory.

 - Heterogeneous Storage Architecture (HeSA): A device that stores at
 least one firmware component differently from the rest, for
 example a device with an external, updatable radio, or a device
 with internal and external flash memory.

 - Trusted Execution Environments (TEEs): An execution environment
 that runs alongside of, but is isolated from, an REE.

 - Rich Execution Environment (REE): An environment that is provided
 and governed by a typical OS (e.g., Linux, Windows, Android, iOS),
 potentially in conjunction with other supporting operating systems
 and hypervisors; it is outside of the TEE. This environment and
 applications running on it are considered un-trusted.

 - Trusted applications (TAs): An application component that runs in
 a TEE.

 For more information about TEEs see [I-D.ietf-teep-architecture].

 The following entities are used:

 - Author: The author is the entity that creates the firmware image.
 There may be multiple authors in a system either when a device
 consists of multiple micro-controllers or when the the final
 firmware image consists of software components from multiple
 companies.

 - Firmware Consumer: The firmware consumer is the recipient of the
 firmware image and the manifest. It is responsible for parsing
 and verifying the received manifest and for storing the obtained
 firmware image. The firmware consumer plays the role of the
 update component on the IoT device typically running in the
 application firmware. It interacts with the firmware server and
 with the status tracker, if present.

 - (IoT) Device: A device refers to the entire IoT product, which
 consists of one or many MCUs, sensors and/or actuators. Many IoT
 devices sold today contain multiple MCUs and therefore a single
 device may need to obtain more than one firmware image and
 manifest to succesfully perform an update. The terms device and

Moran, et al. Expires November 28, 2020 [Page 5]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 firmware consumer are used interchangably since the firmware
 consumer is one software component running on an MCU on the
 device.

 - Status Tracker: The status tracker offers device management
 functionality to retrieve information about the installed firmware
 on a device and other device characteristics (including free
 memory and hardware components), to obtain the state of the
 firmware update cycle the device is currently in, and to trigger
 the update process. The deployment of status trackers is flexible
 and they may be used as cloud-based servers, on-premise servers,
 embedded in edge computing device (such as Internet access
 gateways or protocol translation gateways), or even in smart
 phones and tablets. While the IoT device itself runs the client-
 side of the status tracker it will most likely not run a status
 tracker itself unless it acts as a proxy for other IoT devices in
 a protocol translation or edge computing device node. How much
 functionality a status tracker includes depends on the selected
 configuration of the device management functionality and the
 communication environment it is used in. In a generic networking
 environment the protocol used between the client and the server-
 side of the status tracker need to deal with Internet
 communication challenges involving firewall and NAT traversal. In
 other cases, the communication interaction may be rather simple.
 This architecture document does not impose requirements on the
 status tracker.

 - Firmware Server: The firmware server stores firmware images and
 manifests and distributes them to IoT devices. Some deployments
 may require a store-and-forward concept, which requires storing
 the firmware images/manifests on more than one entity before
 they reach the device. There is typically some interaction
 between the firmware server and the status tracker but those
 entities are often physically separated on different devices for
 scalability reasons.

 - Device Operator: The actor responsible for the day-to-day
 operation of a fleet of IoT devices.

 - Network Operator: The actor responsible for the operation of a
 network to which IoT devices connect.

 In addition to the entities in the list above there is an orthogonal
 infrastructure with a Trust Provisioning Authority (TPA) distributing
 trust anchors and authorization permissions to various entities in
 the system. The TPA may also delegate rights to install, update,
 enhance, or delete trust anchors and authorization permissions to
 other parties in the system. This infrastructure overlaps the

Moran, et al. Expires November 28, 2020 [Page 6]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 communication architecture and different deployments may empower
 certain entities while other deployments may not. For example, in
 some cases, the Original Design Manufacturer (ODM), which is a
 company that designs and manufactures a product, may act as a TPA and
 may decide to remain in full control over the firmware update process
 of their products.

 The terms 'trust anchor' and 'trust anchor store' are defined in
 [RFC6024]:

 - "A trust anchor represents an authoritative entity via a public
 key and associated data. The public key is used to verify digital
 signatures, and the associated data is used to constrain the types
 of information for which the trust anchor is authoritative."

 - "A trust anchor store is a set of one or more trust anchors stored
 in a device. A device may have more than one trust anchor store,
 each of which may be used by one or more applications." A trust
 anchor store must resist modification against unauthorized
 insertion, deletion, and modification.

3. Requirements

 The firmware update mechanism described in this specification was
 designed with the following requirements in mind:

 - Agnostic to how firmware images are distributed

 - Friendly to broadcast delivery

 - Use state-of-the-art security mechanisms

 - Rollback attacks must be prevented

 - High reliability

 - Operate with a small bootloader

 - Small Parsers

 - Minimal impact on existing firmware formats

 - Robust permissions

 - Diverse modes of operation

 - Suitability to software and personalization data

https://datatracker.ietf.org/doc/html/rfc6024

Moran, et al. Expires November 28, 2020 [Page 7]

Internet-Draft A Firmware Update Architecture for IoT May 2020

3.1. Agnostic to how firmware images are distributed

 Firmware images can be conveyed to devices in a variety of ways,
 including USB, UART, WiFi, BLE, low-power WAN technologies, etc. and
 use different protocols (e.g., CoAP, HTTP). The specified mechanism
 needs to be agnostic to the distribution of the firmware images and
 manifests.

3.2. Friendly to broadcast delivery

 This architecture does not specify any specific broadcast protocol.
 However, given that broadcast may be desirable for some networks,
 updates must cause the least disruption possible both in metadata and
 firmware transmission.

 For an update to be broadcast friendly, it cannot rely on link layer,
 network layer, or transport layer security. A solution has to rely
 on security protection applied to the manifest and firmware image
 instead. In addition, the same manifest must be deliverable to many
 devices, both those to which it applies and those to which it does
 not, without a chance that the wrong device will accept the update.
 Considerations that apply to network broadcasts apply equally to the
 use of third-party content distribution networks for payload
 distribution.

3.3. Use state-of-the-art security mechanisms

 End-to-end security between the author and the device is shown in
Section 5.

 Authentication ensures that the device can cryptographically identify
 the author(s) creating firmware images and manifests. Authenticated
 identities may be used as input to the authorization process.

 Integrity protection ensures that no third party can modify the
 manifest or the firmware image.

 For confidentiality protection of the firmware image, it must be done
 in such a way that every intended recipient can decrypt it. The
 information that is encrypted individually for each device must
 maintain friendliness to Content Distribution Networks, bulk storage,
 and broadcast protocols.

 A manifest specification must support different cryptographic
 algorithms and algorithm extensibility. Due of the nature of
 unchangeable code in ROM for use with bootloaders the use of post-
 quantum secure signature mechanisms, such as hash-based signatures

Moran, et al. Expires November 28, 2020 [Page 8]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 [I-D.ietf-cose-hash-sig], are attractive. These algorithms maintain
 security in presence of quantum computers.

 A mandatory-to-implement set of algorithms will be specified in the
 manifest specification [I-D.ietf-suit-manifest]}.

3.4. Rollback attacks must be prevented

 A device presented with an old, but valid manifest and firmware must
 not be tricked into installing such firmware since a vulnerability in
 the old firmware image may allow an attacker to gain control of the
 device.

3.5. High reliability

 A power failure at any time must not cause a failure of the device.
 A failure to validate any part of an update must not cause a failure
 of the device. One way to achieve this functionality is to provide a
 minimum of two storage locations for firmware and one bootable
 location for firmware. An alternative approach is to use a 2nd stage
 bootloader with build-in full featured firmware update functionality
 such that it is possible to return to the update process after power
 down.

 Note: This is an implementation requirement rather than a requirement
 on the manifest format.

3.6. Operate with a small bootloader

 Throughout this document we assume that the bootloader itself is
 distinct from the role of the firmware consumer and therefore does
 not manage the firmware update process. This may give the impression
 that the bootloader itself is a completely separate component, which
 is mainly responsible for selecting a firmware image to boot.

 The overlap between the firmware update process and the bootloader
 functionality comes in two forms, namely

 - First, a bootloader must verify the firmware image it boots as
 part of the secure boot process. Doing so requires meta-data to
 be stored alongside the firmware image so that the bootloader can
 cryptographically verify the firmware image before booting it to
 ensure it has not been tampered with or replaced. This meta-data
 used by the bootloader may well be the same manifest obtained with
 the firmware image during the update process (with the severable
 fields stripped off).

Moran, et al. Expires November 28, 2020 [Page 9]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 - Second, an IoT device needs a recovery strategy in case the
 firmware update / boot process fails. The recovery strategy may
 include storing two or more firmware images on the device or
 offering the ability to have a second stage bootloader perform the
 firmware update process again using firmware updates over serial,
 USB or even wireless connectivity like a limited version of
 Bluetooth Smart. In the latter case the firmware consumer
 functionality is contained in the second stage bootloader and
 requires the necessary functionality for executing the firmware
 update process, including manifest parsing.

 In general, it is assumed that the bootloader itself, or a minimal
 part of it, will not be updated since a failed update of the
 bootloader poses a risk in reliability.

 All information necessary for a device to make a decision about the
 installation of a firmware update must fit into the available RAM of
 a constrained IoT device. This prevents flash write exhaustion.
 This is typically not a difficult requirement to accomplish because
 there are not other task/processing running while the bootloader is
 active (unlike it may be the case when running the application
 firmware).

 Note: This is an implementation requirement.

3.7. Small Parsers

 Since parsers are known sources of bugs they must be minimal.
 Additionally, it must be easy to parse only those fields that are
 required to validate at least one signature or MAC with minimal
 exposure.

3.8. Minimal impact on existing firmware formats

 The design of the firmware update mechanism must not require changes
 to existing firmware formats.

3.9. Robust permissions

 When a device obtains a monolithic firmware image from a single
 author without any additional approval steps then the authorization
 flow is relatively simple. There are, however, other cases where
 more complex policy decisions need to be made before updating a
 device.

 In this architecture the authorization policy is separated from the
 underlying communication architecture. This is accomplished by
 separating the entities from their permissions. For example, an

Moran, et al. Expires November 28, 2020 [Page 10]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 author may not have the authority to install a firmware image on a
 device in critical infrastructure without the authorization of a
 device operator. In this case, the device may be programmed to
 reject firmware updates unless they are signed both by the firmware
 author and by the device operator.

 Alternatively, a device may trust precisely one entity, which does
 all permission management and coordination. This entity allows the
 device to offload complex permissions calculations for the device.

3.10. Operating modes

 There are three broad classifications of update operating modes.

 - Client-initiated Update

 - Server-initiated Update

 - Hybrid Update

 Client-initiated updates take the form of a firmware consumer on a
 device proactively checking (polling) for new firmware images.

 Server-initiated updates are important to consider because timing of
 updates may need to be tightly controlled in some high- reliability
 environments. In this case the status tracker determines what
 devices qualify for a firmware update. Once those devices have been
 selected the firmware server distributes updates to the firmware
 consumers.

 Note: This assumes that the status tracker is able to reach the
 device, which may require devices to keep reachability information at
 the status tracker up-to-date. This may also require keeping state
 at NATs and stateful packet filtering firewalls alive.

 Hybrid updates are those that require an interaction between the
 firmware consumer and the status tracker. The status tracker pushes
 notifications of availability of an update to the firmware consumer,
 and it then downloads the image from a firmware server as soon as
 possible.

 An alternative view to the operating modes is to consider the steps a
 device has to go through in the course of an update:

 - Notification

 - Pre-authorisation

Moran, et al. Expires November 28, 2020 [Page 11]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 - Dependency resolution

 - Download

 - Installation

 The notification step consists of the status tracker informing the
 firmware consumer that an update is available. This can be
 accomplished via polling (client-initiated), push notifications
 (server-initiated), or more complex mechanisms.

 The pre-authorisation step involves verifying whether the entity
 signing the manifest is indeed authorized to perform an update. The
 firmware consumer must also determine whether it should fetch and
 process a firmware image, which is referenced in a manifest.

 A dependency resolution phase is needed when more than one component
 can be updated or when a differential update is used. The necessary
 dependencies must be available prior to installation.

 The download step is the process of acquiring a local copy of the
 firmware image. When the download is client-initiated, this means
 that the firmware consumer chooses when a download occurs and
 initiates the download process. When a download is server-initiated,
 this means that the status tracker tells the device when to download
 or that it initiates the transfer directly to the firmware consumer.
 For example, a download from an HTTP-based firmware server is client-
 initiated. Pushing a manifest and firmware image to the transfer to
 the Package resource of the LwM2M Firmware Update object [LwM2M] is
 server-initiated.

 If the firmware consumer has downloaded a new firmware image and is
 ready to install it, it may need to wait for a trigger from the
 status tracker to initiate the installation, may trigger the update
 automatically, or may go through a more complex decision making
 process to determine the appropriate timing for an update (such as
 delaying the update process to a later time when end users are less
 impacted by the update process).

 Installation is the act of processing the payload into a format that
 the IoT device can recognise and the bootloader is responsible for
 then booting from the newly installed firmware image.

 Each of these steps may require different permissions.

Moran, et al. Expires November 28, 2020 [Page 12]

Internet-Draft A Firmware Update Architecture for IoT May 2020

3.11. Suitability to software and personalization data

 The work on a standardized manifest format initially focused on the
 most constrained IoT devices and those devices contain code put
 together by a single author (although that author may obtain code
 from other developers, some of it only in binary form).

 Later it turns out that other use cases may benefit from a
 standardized manifest format also for conveying software and even
 personalization data alongside software. Trusted Execution
 Environments (TEEs), for example, greatly benefit from a protocol for
 managing the lifecycle of trusted applications (TAs) running inside a
 TEE. TEEs may obtain TAs from different authors and those TAs may
 require personalization data, such as payment information, to be
 securely conveyed to the TEE.

 To support this wider range of use cases the manifest format should
 therefore be extensible to convey other forms of payloads as well.

4. Claims

 Claims in the manifest offer a way to convey instructions to a device
 that impact the firmware update process. To have any value the
 manifest containing those claims must be authenticated and integrity
 protected. The credential used must be directly or indirectly
 related to the trust anchor installed at the device by the Trust
 Provisioning Authority.

 The baseline claims for all manifests are described in
 [I-D.ietf-suit-information-model]. For example, there are:

 - Do not install firmware with earlier metadata than the current
 metadata.

 - Only install firmware with a matching vendor, model, hardware
 revision, software version, etc.

 - Only install firmware that is before its best-before timestamp.

 - Only allow a firmware installation if dependencies have been met.

 - Choose the mechanism to install the firmware, based on the type of
 firmware it is.

Moran, et al. Expires November 28, 2020 [Page 13]

Internet-Draft A Firmware Update Architecture for IoT May 2020

5. Communication Architecture

 Figure 1 shows the communication architecture where a firmware image
 is created by an author, and uploaded to a firmware server. The
 firmware image/manifest is distributed to the device either in a push
 or pull manner using the firmware consumer residing on the device.
 The device operator keeps track of the process using the status
 tracker. This allows the device operator to know and control what
 devices have received an update and which of them are still pending
 an update.

Moran, et al. Expires November 28, 2020 [Page 14]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 Firmware + +----------+ Firmware + +-----------+
 Manifest | |-+ Manifest | |-+
 +--------->| Firmware | |<---------------| | |
 | | Server | | | Author | |
 | | | | | | |
 | +----------+ | +-----------+ |
 | +----------+ +-----------+
 |
 |
 |
 -+-- ------
 ---- | ---- ---- ----
 // | \\ // \\
 / | \ / \
 / | \ / \
 / | \ / \
 / | \ / \
 | v | | |
 | +------------+ |
	Firmware					
	Consumer		Device	+--------+		
+------------+	Management					
		<------------------------->	Status			
	Device				Tracker	
+------------+						
			+--------+			
	\ /					
 \ / \ /
 \ / \ Device /
 \ Network / \ Operator /
 \ Operator / \\ //
 \\ // ---- ----
 ---- ---- ------

 Figure 1: Architecture.

 End-to-end security mechanisms are used to protect the firmware image
 and the manifest although Figure 2 does not show the manifest itself
 since it may be distributed independently.

Moran, et al. Expires November 28, 2020 [Page 15]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 +-----------+
 +--------+ | | +--------+
	Firmware Image	Firmware	Firmware Image	
Device	<-----------------	Server	<------------------	Author
 +--------+ +-----------+ +--------+
 ^ *
 * *
 **
 End-to-End Security

 Figure 2: End-to-End Security.

 Whether the firmware image and the manifest is pushed to the device
 or fetched by the device is a deployment specific decision.

 The following assumptions are made to allow the firmware consumer to
 verify the received firmware image and manifest before updating
 software:

 - To accept an update, a device needs to verify the signature
 covering the manifest. There may be one or multiple manifests
 that need to be validated, potentially signed by different
 parties. The device needs to be in possession of the trust
 anchors to verify those signatures. Installing trust anchors to
 devices via the Trust Provisioning Authority happens in an out-of-
 band fashion prior to the firmware update process.

 - Not all entities creating and signing manifests have the same
 permissions. A device needs to determine whether the requested
 action is indeed covered by the permission of the party that
 signed the manifest. Informing the device about the permissions
 of the different parties also happens in an out-of-band fashion
 and is also a duty of the Trust Provisioning Authority.

 - For confidentiality protection of firmware images the author needs
 to be in possession of the certificate/public key or a pre-shared
 key of a device. The use of confidentiality protection of
 firmware images is deployment specific.

 There are different types of delivery modes, which are illustrated
 based on examples below.

 There is an option for embedding a firmware image into a manifest.
 This is a useful approach for deployments where devices are not
 connected to the Internet and cannot contact a dedicated firmware
 server for the firmware download. It is also applicable when the

Moran, et al. Expires November 28, 2020 [Page 16]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 firmware update happens via a USB stick or via Bluetooth Smart.
 Figure 3 shows this delivery mode graphically.

 /------------\ /------------\
 /Manifest with \ /Manifest with \
 |attached | |attached |
 \firmware image/ \firmware image/
 \------------/ +-----------+ \------------/
 +--------+ | | +--------+
 | |<.................| Firmware |<................| |
 | Device | | Server | | Author |
 | | | | | |
 +--------+ +-----------+ +--------+

 Figure 3: Manifest with attached firmware.

 Figure 4 shows an option for remotely updating a device where the
 device fetches the firmware image from some file server. The
 manifest itself is delivered independently and provides information
 about the firmware image(s) to download.

 /--------\ /--------\
 / \ / \
 | Manifest | | Manifest |
 \ / \ /
 \--------/ \--------/
 +-----------+
 +--------+ | | +--------+
	<.................	Status>	
Device		Tracker	--	Author
	<-		---	
 +--------+ -- +-----------+ --- +--------+
 -- ---
 --- ---
 -- +-----------+ --
 -- | | --
 /------------\ -- | Firmware |<- /------------\
 / \ -- | Server | / \
 | Firmware | | | | Firmware |
 \ / +-----------+ \ /
 \------------/ \------------/

 Figure 4: Independent retrieval of the firmware image.

 This architecture does not mandate a specific delivery mode but a
 solution must support both types.

Moran, et al. Expires November 28, 2020 [Page 17]

Internet-Draft A Firmware Update Architecture for IoT May 2020

6. Manifest

 In order for a device to apply an update, it has to make several
 decisions about the update:

 - Does it trust the author of the update?

 - Has the firmware been corrupted?

 - Does the firmware update apply to this device?

 - Is the update older than the active firmware?

 - When should the device apply the update?

 - How should the device apply the update?

 - What kind of firmware binary is it?

 - Where should the update be obtained?

 - Where should the firmware be stored?

 The manifest encodes the information that devices need in order to
 make these decisions. It is a data structure that contains the
 following information:

 - information about the device(s) the firmware image is intended to
 be applied to,

 - information about when the firmware update has to be applied,

 - information about when the manifest was created,

 - dependencies on other manifests,

 - pointers to the firmware image and information about the format,

 - information about where to store the firmware image,

 - cryptographic information, such as digital signatures or message
 authentication codes (MACs).

 The manifest information model is described in
 [I-D.ietf-suit-information-model].

Moran, et al. Expires November 28, 2020 [Page 18]

Internet-Draft A Firmware Update Architecture for IoT May 2020

7. Device Firmware Update Examples

 Although these documents attempt to define a firmware update
 architecture that is applicable to both existing systems, as well as
 yet-to-be-conceived systems; it is still helpful to consider existing
 architectures.

7.1. Single CPU SoC

 The simplest, and currently most common, architecture consists of a
 single MCU along with its own peripherals. These SoCs generally
 contain some amount of flash memory for code and fixed data, as well
 as RAM for working storage. These systems either have a single
 firmware image, or an immutable bootloader that runs a single image.
 A notable characteristic of these SoCs is that the primary code is
 generally execute in place (XIP). Combined with the non-relocatable
 nature of the code, firmware updates need to be done in place.

7.2. Single CPU with Secure - Normal Mode Partitioning

 Another configuration consists of a similar architecture to the
 previous, with a single CPU. However, this CPU supports a security
 partitioning scheme that allows memory (in addition to other things)
 to be divided into secure and normal mode. There will generally be
 two images, one for secure mode, and one for normal mode. In this
 configuration, firmware upgrades will generally be done by the CPU in
 secure mode, which is able to write to both areas of the flash
 device. In addition, there are requirements to be able to update
 either image independently, as well as to update them together
 atomically, as specified in the associated manifests.

7.3. Dual CPU, shared memory

 This configuration has two or more CPUs in a single SoC that share
 memory (flash and RAM). Generally, they will be a protection
 mechanism to prevent one CPU from accessing the other's memory.
 Upgrades in this case will typically be done by one of the CPUs, and
 is similar to the single CPU with secure mode.

7.4. Dual CPU, other bus

 This configuration has two or more CPUs, each having their own
 memory. There will be a communication channel between them, but it
 will be used as a peripheral, not via shared memory. In this case,
 each CPU will have to be responsible for its own firmware upgrade.
 It is likely that one of the CPUs will be considered a master, and
 will direct the other CPU to do the upgrade. This configuration is
 commonly used to offload specific work to other CPUs. Firmware

Moran, et al. Expires November 28, 2020 [Page 19]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 dependencies are similar to the other solutions above, sometimes
 allowing only one image to be upgraded, other times requiring several
 to be upgraded atomically. Because the updates are happening on
 multiple CPUs, upgrading the two images atomically is challenging.

8. Bootloader

 More devices today than ever before are being connected to the
 Internet, which drives the need for firmware updates to be provided
 over the Internet rather than through traditional interfaces, such as
 USB or RS232. Updating a device over the Internet requires the
 device to fetch not only the firmware image but also the manifest.
 Hence, the following building blocks are necessary for a firmware
 update solution:

 - the Internet protocol stack for firmware downloads (*),

 - the capability to write the received firmware image to persistent
 storage (most likely flash memory) prior to performing the update,

 - the ability to unpack, decompress or otherwise process the
 received firmware image,

 - the features to verify an image and a manifest, including digital
 signature verification or checking a message authentication code,

 - a manifest parsing library, and

 - integration of the device into a device management server to
 perform automatic firmware updates and to track their progress.

 (*) Because firmware images are often multiple kilobytes, sometimes
 exceeding one hundred kilobytes, in size for low end IoT devices and
 even several megabytes large for IoT devices running full-fledged
 operating systems like Linux, the protocol mechanism for retrieving
 these images needs to offer features like congestion control, flow
 control, fragmentation and reassembly, and mechanisms to resume
 interrupted or corrupted transfers.

 All these features are most likely offered by the application, i.e.
 firmware consumer, running on the device (except for basic security
 algorithms that may run either on a trusted execution environment or
 on a separate hardware security MCU/module) rather than by the
 bootloader itself.

 Once manifests have been processed and firmware images successfully
 downloaded and verified the device needs to hand control over to the
 bootloader. In most cases this requires the MCU to restart. Once

Moran, et al. Expires November 28, 2020 [Page 20]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 the MCU has initiated a restart, the bootloader takes over control
 and determines whether the newly downloaded firmware image should be
 executed.

 The boot process is security sensitive because the firmware images
 may, for example, be stored in off-chip flash memory giving attackers
 easy access to the image for reverse engineering and potentially also
 for modifying the binary. The bootloader will therefore have to
 perform security checks on the firmware image before it can be
 booted. These security checks by the bootloader happen in addition
 to the security checks that happened when the firmware image and the
 manifest were downloaded.

 The manifest may have been stored alongside the firmware image to
 allow re-verification of the firmware image during every boot
 attempt. Alternatively, secure boot-specific meta-data may have been
 created by the application after a successful firmware download and
 verification process. Whether to re-use the standardized manifest
 format that was used during the initial firmware retrieval process or
 whether it is better to use a different format for the secure boot-
 specific meta-data depends on the system design. The manifest format
 does, however, have the capability to serve also as a building block
 for secure boot with its severable elements that allow shrinking the
 size of the manifest by stripping elements that are no longer needed.

 If the application image contains the firmware consumer
 functionality, as described above, then it is necessary that a
 working image is left on the device. This allows the bootloader to
 roll back to a working firmware image to execute a firmware download
 if the bootloader itself does not have enough functionality to fetch
 a firmware image plus manifest from a firmware server over the
 Internet. A multi-stage bootloader may soften this requirement at
 the expense of a more sophisticated boot process.

 For a bootloader to offer a secure boot mechanism it needs to provide
 the following features:

 - ability to access security algorithms, such as SHA-256 to compute
 a fingerprint over the firmware image and a digital signature
 algorithm.

 - access keying material directly or indirectly to utilize the
 digital signature. The device needs to have a trust anchor store.

 - ability to expose boot process-related data to the application
 firmware (such as to the device management software). This allows
 a device management server to determine whether the firmware
 update has been successful and, if not, what errors occurred.

Moran, et al. Expires November 28, 2020 [Page 21]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 - to (optionally) offer attestation information (such as
 measurements).

 While the software architecture of the bootloader and its security
 mechanisms are implementation-specific, the manifest can be used to
 control the firmware download from the Internet in addition to
 augmenting secure boot process. These building blocks are highly
 relevant for the design of the manifest.

9. Example

 Figure 5 illustrates an example message flow for distributing a
 firmware image to a device starting with an author uploading the new
 firmware to firmware server and creating a manifest. The firmware
 and manifest are stored on the same firmware server. This setup does
 not use a status tracker and the firmware consumer component is
 therefore responsible for periodically checking whether a new
 firmware image is available for download.

 +--------+ +-----------------+ +------------+ +----------+
 | | | | | Firmware | | |
 | Author | | Firmware Server | | Consumer | |Bootloader|
 +--------+ +-----------------+ +------------+ +----------+
 | | | +
 | Create Firmware | | | |
 |--------------+ | | |
 | | | | |
 |<-------------+ | | |
 | | | |
 | Upload Firmware | | |
 |------------------>| | |
 | | | |
 | Create Manifest | | |
 |---------------+ | | |
 | | | | |
 |<--------------+ | | |
 | | | |
 | Sign Manifest | | |
 |-------------+ | | |
 | | | | |
 |<------------+ | | |
 | | | |
 | Upload Manifest | | |
 |------------------>| | |
 | | | |
 | | Query Manifest | |
 | |<--------------------| |
 | | | |

Moran, et al. Expires November 28, 2020 [Page 22]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 | | Send Manifest | | |
 | |-------------------->| |
 | | | Validate |
 | | | Manifest |
 | | |---------+ |
 | | | | |
 | | |<--------+ |
 | | | |
 | | Request Firmware | |
 | |<--------------------| |
 | | | |
 | | Send Firmware | |
 | |-------------------->| |
 | | | Verify |
 | | | Firmware |
 | | |--------------+ |
 | | | | |
 | | |<-------------+ |
 | | | |
 | | | Store |
 | | | Firmware |
 | | |-------------+ |
 | | | | |
 | | |<------------+ |
 | | | |
 | | | |
 | | | Trigger Reboot |
 | | |--------------->|
 | | | |
 | | | |
 | | +---+----------------+--+
 | | S| | | | |
 | | E| | Verify | |
 | | C| | Firmware | |
 | | U| | +--------------| |
 | | R| | | | |
 | | E| | +------------->| |
 | | | | | |
 | | B| | Activate new | |
 | | O| | Firmware | |
 | | O| | +--------------| |
 | | T| | | | |
 | | | | +------------->| |
 | | P| | | |
 | | R| | Boot new | |
 | | O| | Firmware | |
 | | C| | +--------------| |
 | | E| | | | |

Moran, et al. Expires November 28, 2020 [Page 23]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 | | S| | +------------->| |
 | | S| | | |
 | | +---+----------------+--+
 | | | |

 Figure 5: First Example Flow for a Firmware Upate.

 Figure 6 shows an example follow with the device using a status
 tracker. For editorial reasons the author publishing the manifest at
 the status tracker and the firmware image at the firmware server is
 not shown. Also omitted is the secure boot process following the
 successful firmware update process.

 The exchange starts with the device interacting with the status
 tracker; the details of such exchange will vary with the different
 device management systems being used. In any case, the status
 tracker learns about the firmware version of the devices it manages.
 In our example, the device under management is using firmware version
 A.B.C. At a later point in time the author uploads a new firmware
 along with the manifest to the firmware server and the status
 tracker, respectively. While there is no need to store the manifest
 and the firmware on different servers this example shows a common
 pattern used in the industry. The status tracker may then
 automatically, based on human intervention or based on a more complex
 policy decide to inform the device about the newly available firmware
 image. In our example, it does so by pushing the manifest to the
 firmware consumer. The firmware consumer downloads the firmware
 image with the newer version X.Y.Z after successful validation of the
 manifest. Subsequently, a reboot is initiated and the secure boot
 process starts.

 +---------+ +-----------------+ +-----------------------------+
 | Status | | | | +------------+ +----------+ | | | | |
 | Tracker | | Firmware Server | | | Firmware | |Bootloader| |
 | | | | | | Consumer | | | |
 +---------+ +-----------------+ | +------------+ +----------+ |
 | | | | IoT Device | |
 | | `''''''''''''''''''''''''''''
 | | | |
 | Query Firmware Version | |
 |------------------------------------->| |
 | Firmware Version A.B.C | |
 |<-------------------------------------| |
 | | | |
 | <<some time later>> | |
 | | | |
 ,.... _,...._ | |
 ,' `. ,' `. | |

Moran, et al. Expires November 28, 2020 [Page 24]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 | New | | New | | |
 \ Manifest / \ Firmware / | |
 `.._ _,,' `.._ _,,' | |
 `'' `'' | |
 | Push manifest | | |
 |----------------+-------------------->| |
 | | | |
 | ' | '
 | | | Validate | |
 | | | Manifest |
 | | |---------+ |
 | | | | |
 | | |<--------+ |
 | | Request firmware | |
 | | X.Y.Z | |
 | |<--------------------| |
 | | | |
 | | Firmware X.Y.Z | |
 | |-------------------->| |
 | | | |
 | | | Verify |
 | | | Firmware |
 | | |--------------+ |
 | | | | |
 | | |<-------------+ |
 | | | |
 | | | Store |
 | | | Firmware |
 | | |-------------+ |
 | | | | |
 | | |<------------+ |
 | | | |
 | | | |
 | | | Trigger Reboot |
 | | |--------------->|
 | | | |
 | | | |
 | | | __..-------..._'
 | | ,-' `-.
 | | | Secure Boot |
 | | `-. _/
 | | |`--..._____,,.,-'
 | | | |

 Figure 6: Second Example Flow for a Firmware Upate.

Moran, et al. Expires November 28, 2020 [Page 25]

Internet-Draft A Firmware Update Architecture for IoT May 2020

10. IANA Considerations

 This document does not require any actions by IANA.

11. Security Considerations

 Firmware updates fix security vulnerabilities and are considered to
 be an important building block in securing IoT devices. Due to the
 importance of firmware updates for IoT devices the Internet
 Architecture Board (IAB) organized a 'Workshop on Internet of Things
 (IoT) Software Update (IOTSU)', which took place at Trinity College
 Dublin, Ireland on the 13th and 14th of June, 2016 to take a look at
 the big picture. A report about this workshop can be found at
 [RFC8240]. A standardized firmware manifest format providing end-to-
 end security from the author to the device will be specified in a
 separate document.

 There are, however, many other considerations raised during the
 workshop. Many of them are outside the scope of standardization
 organizations since they fall into the realm of product engineering,
 regulatory frameworks, and business models. The following
 considerations are outside the scope of this document, namely

 - installing firmware updates in a robust fashion so that the update
 does not break the device functionality of the environment this
 device operates in.

 - installing firmware updates in a timely fashion considering the
 complexity of the decision making process of updating devices,
 potential re-certification requirements, and the need for user
 consent to install updates.

 - the distribution of the actual firmware update, potentially in an
 efficient manner to a large number of devices without human
 involvement.

 - energy efficiency and battery lifetime considerations.

 - key management required for verifying the digital signature
 protecting the manifest.

 - incentives for manufacturers to offer a firmware update mechanism
 as part of their IoT products.

https://datatracker.ietf.org/doc/html/rfc8240

Moran, et al. Expires November 28, 2020 [Page 26]

Internet-Draft A Firmware Update Architecture for IoT May 2020

12. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/suit [2]

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/suit/current/index.html [3]

13. Acknowledgements

 We would like to thank the following persons for their feedback:

 - Geraint Luff

 - Amyas Phillips

 - Dan Ros

 - Thomas Eichinger

 - Michael Richardson

 - Emmanuel Baccelli

 - Ned Smith

 - Jim Schaad

 - Carsten Bormann

 - Cullen Jennings

 - Olaf Bergmann

 - Suhas Nandakumar

 - Phillip Hallam-Baker

 - Marti Bolivar

 - Andrzej Puzdrowski

 - Markus Gueller

 - Henk Birkholz

https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires November 28, 2020 [Page 27]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 - Jintao Zhu

 - Takeshi Takahashi

 - Jacob Beningo

 - Kathleen Moriarty

 We would also like to thank the WG chairs, Russ Housley, David
 Waltermire, Dave Thaler for their support and their reviews.

14. References

14.1. Normative References

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

14.2. Informative References

 [I-D.ietf-cose-hash-sig]
 Housley, R., "Use of the HSS/LMS Hash-based Signature
 Algorithm with CBOR Object Signing and Encryption (COSE)",

draft-ietf-cose-hash-sig-09 (work in progress), December
 2019.

 [I-D.ietf-suit-information-model]
 Moran, B., Tschofenig, H., and H. Birkholz, "An
 Information Model for Firmware Updates in IoT Devices",

draft-ietf-suit-information-model-05 (work in progress),
 January 2020.

 [I-D.ietf-suit-manifest]
 Moran, B., Tschofenig, H., Birkholz, H., and K. Zandberg,
 "A Concise Binary Object Representation (CBOR)-based
 Serialization Format for the Software Updates for Internet
 of Things (SUIT) Manifest", draft-ietf-suit-manifest-04
 (work in progress), March 2020.

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-08 (work in
 progress), April 2020.

https://datatracker.ietf.org/doc/html/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://datatracker.ietf.org/doc/html/draft-ietf-cose-hash-sig-09
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-05
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-04
https://datatracker.ietf.org/doc/html/draft-ietf-teep-architecture-08

Moran, et al. Expires November 28, 2020 [Page 28]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 [LwM2M] OMA, ., "Lightweight Machine to Machine Technical
 Specification, Version 1.0.2", February 2018,
 <http://www.openmobilealliance.org/release/LightweightM2M/

V1_0_2-20180209-A/OMA-TS-LightweightM2M-
V1_0_2-20180209-A.pdf>.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 DOI 10.17487/RFC5649, September 2009,
 <https://www.rfc-editor.org/info/rfc5649>.

 [RFC6024] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", RFC 6024, DOI 10.17487/RFC6024, October
 2010, <https://www.rfc-editor.org/info/rfc6024>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC8240] Tschofenig, H. and S. Farrell, "Report from the Internet
 of Things Software Update (IoTSU) Workshop 2016",

RFC 8240, DOI 10.17487/RFC8240, September 2017,
 <https://www.rfc-editor.org/info/rfc8240>.

14.3. URIs

 [1] mailto:suit@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/suit

 [3] https://www.ietf.org/mail-archive/web/suit/current/index.html

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
https://datatracker.ietf.org/doc/html/rfc5649
https://www.rfc-editor.org/info/rfc5649
https://datatracker.ietf.org/doc/html/rfc6024
https://www.rfc-editor.org/info/rfc6024
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc8240
https://www.rfc-editor.org/info/rfc8240
https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires November 28, 2020 [Page 29]

Internet-Draft A Firmware Update Architecture for IoT May 2020

 David Brown
 Linaro

 EMail: david.brown@linaro.org

 Milosch Meriac
 Consultant

 EMail: milosch@meriac.com

Moran, et al. Expires November 28, 2020 [Page 30]

