
SUIT H. Tschofenig
Internet-Draft Arm Limited
Intended status: Standards Track R. Housley
Expires: January 8, 2022 Vigil Security
 B. Moran
 Arm Limited
 July 07, 2021

Firmware Encryption with SUIT Manifests
draft-ietf-suit-firmware-encryption-00

Abstract

 This document specifies a firmware update mechanism where the
 firmware image is encrypted. This mechanism uses the IETF SUIT
 manifest with key establishment provided by the hybrid public-key
 encryption (HPKE) scheme or AES Key Wrap (AES-KW) with a pre-shared
 key-encryption key. In either case, AES-GCM or AES-CCM is used for
 firmware encryption.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 8, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Tschofenig, et al. Expires January 8, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Firmware Encryption July 2021

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 2
2. Conventions and Terminology 3
3. AES Key Wrap . 4
4. Hybrid Public-Key Encryption (HPKE) 7
5. Complete Examples . 12
6. Security Considerations 12
7. IANA Considerations . 13
8. References . 14
8.1. Normative References 14
8.2. Informative References 15

Appendix A. Acknowledgements 16
 Authors' Addresses . 16

1. Introduction

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a reliable and secure firmware update mechanism that is also
 suitable for constrained devices. To protect firmware images the
 SUIT manifest format was developed [I-D.ietf-suit-manifest]. The
 SUIT manifest provides a bundle of metadata about the firmware for an
 IoT device, where to find the firmware image, and the devices to
 which it applies.

 The SUIT information model [I-D.ietf-suit-information-model] details
 the information that has to be offered by the SUIT manifest format.
 In addition to offering protection against modification, which is
 provided by a digital signature or a message authentication code, the
 firmware image may also be afforded confidentiality using encryption.

Tschofenig, et al. Expires January 8, 2022 [Page 2]

Internet-Draft Firmware Encryption July 2021

 Encryption prevents third parties, including attackers, from gaining
 access to the firmware image. For example, return-oriented
 programming (ROP) requires intimate knowledge of the target firmware
 and encryption makes this approach much more difficult to exploit.
 The SUIT manifest provides the data needed for authorized recipients
 of the firmware image to decrypt it.

 A symmetric cryptographic key is established for encryption and
 decryption, and that key can be applied to a SUIT manifest, firmware
 images, or personalization data, depending on the encryption choices
 of the firmware author. This symmetric key can be established using
 a variety of mechanisms; this document defines two approaches for use
 with the IETF SUIT manifest. Key establishment can be provided by
 the hybrid public-key encryption (HPKE) scheme or AES Key Wrap (AES-
 KW) with a pre-shared key-encryption key. These choices reduce the
 number of possible key establishment options for interoperability of
 different SUIT manifest implementations. The document also offers a
 number of examples for developers.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document assumes familiarity with the IETF SUIT manifest
 [I-D.ietf-suit-manifest] and the SUIT architecture [RFC9019].

 The terms "recipient" and "firmware consumer" are used
 interchangeably.

 Additionally, the following abbreviations are used in this document:

 - Key Wrap (KW), defined in RFC 3394 [RFC3394] for use with AES.

 - Key-encryption key / key-encrypting key (KEK), a term defined in
RFC 4949 [RFC4949].

 - Content-encryption key (CEK), a term defined in RFC 2630
 [RFC2630].

 - Hybrid Public Key Encryption (HPKE), defined in
 [I-D.irtf-cfrg-hpke].

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc9019
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc2630
https://datatracker.ietf.org/doc/html/rfc2630

Tschofenig, et al. Expires January 8, 2022 [Page 3]

Internet-Draft Firmware Encryption July 2021

3. AES Key Wrap

 The AES Key Wrap (AES-KW) algorithm is described in RFC 3394
 [RFC3394], and it can be used to encrypt a randomly generated
 content-encryption key (CEK) with a pre-shared key-encryption key
 (KEK). The COSE conventions for using AES-KW are specified in

Section 12.2.1 of [RFC8152]. The encrypted CEK is carried in the
 COSE_recipient structure alongside the information needed for AES-KW.
 The COSE_recipient structure, which is a substructure of the
 COSE_Encrypt, contains the CEK encrypted by the KEK. When the
 firmware image is encrypted for use by multiple recipients, the
 COSE_recipient structure will contain one encrypted CEK if all of the
 authorized recipients have access to the KEK.

 However, the COSE_recipient structure can contain the same CEK
 encrypted with many different KEKs if needed to reach all of the
 authorized recipients.

 Note that the AES-KW algorithm, as defined in Section 2.2.3.1 of
 [RFC3394], does not have public parameters that vary on a per-
 invocation basis. Hence, the protected structure in the
 COSE_recipient is a byte string of zero length.

 The COSE_Encrypt conveys information for encrypting the firmware
 image, which includes information like the algorithm and the IV, even
 though the firmware image is not embedded in the
 COSE_Encrypt.ciphertext itself since it conveyed as detached content.

 The CDDL for the COSE_Encrypt_Tagged structure is shown in Figure 1.

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc8152#section-12.2.1
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1

Tschofenig, et al. Expires January 8, 2022 [Page 4]

Internet-Draft Firmware Encryption July 2021

 COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)

 SUIT_Encryption_Info = COSE_Encrypt_Tagged

 COSE_Encrypt = [
 protected : bstr .cbor outer_header_map_protected,
 unprotected : outer_header_map_unprotected,
 ciphertext : null, ; because of detached ciphertext
 recipients : [+ COSE_recipient]
]

 outer_header_map_protected =
 {
 1 => int, ; algorithm identifier
 * label =values ; extension point
 }

 outer_header_map_unprotected =
 {
 5 => bstr, ; IV
 * label =values ; extension point
 }

 COSE_recipient = [
 protected : bstr .size 0,
 unprotected : recipient_header_map,
 ciphertext : bstr ; CEK encrypted with KEK
]

 recipient_header_map =
 {
 1 => int, ; algorithm identifier
 4 => bstr, ; key identifier
 * label =values ; extension point
 }

 Figure 1: CDDL for AES Key Wrap-based Firmware Encryption

 The COSE specification requires a consistent byte stream for the
 authenticated data structure to be created, which is defined as shown
 in Figure 2.

Tschofenig, et al. Expires January 8, 2022 [Page 5]

Internet-Draft Firmware Encryption July 2021

 Enc_structure = [
 context : "Encrypt",
 protected : empty_or_serialized_map,
 external_aad : bstr
]

 Figure 2: CDDL for Enc_structure Data Structure

 As it can be seen in the CDDL in Figure 1, there are two protected
 fields and the 'protected' field in the Enc_structure, see Figure 2,
 refers to the outer protected field, not the protected field of the
 COSE_recipient structure.

 The value of the external_aad is set to null.

 The following example illustrates the use of the AES-KW algorithm
 with AES-128.

 We use the following parameters in this example:

 - IV: 0x26, 0x68, 0x23, 0x06, 0xd4, 0xfb, 0x28, 0xca, 0x01, 0xb4,
 0x3b, 0x80

 - KEK: "aaaaaaaaaaaaaaaa"

 - KID: "kid-1"

 - Plaintext Firmware: "This is a real firmware image."

 - Firmware (hex):
 546869732069732061207265616C206669726D7761726520696D6167652E

 The COSE_Encrypt structure in hex format is (with a line break
 inserted):

 D8608443A10101A1054C26682306D4FB28CA01B43B80F68340A2012204456B69642D
 315818AF09622B4F40F17930129D18D0CEA46F159C49E7F68B644D

 The resulting COSE_Encrypt structure in a dignostic format is shown
 in Figure 3.

Tschofenig, et al. Expires January 8, 2022 [Page 6]

Internet-Draft Firmware Encryption July 2021

 96(
 [
 // protected field with alg=AES-GCM-128
 h'A10101',
 {
 // unprotected field with iv
 5: h'26682306D4FB28CA01B43B80'
 },
 // null because of detached ciphertext
 null,
 [// recipients array
 h'', // protected field
 { // unprotected field
 1: -3, // alg=A128KW
 4: h'6B69642D31' // key id
 },
 // CEK encrypted with KEK
 h'AF09622B4F40F17930129D18D0CEA46F159C49E7F68B644D'
]
]
)

 Figure 3: COSE_Encrypt Example for AES Key Wrap

 The CEK was "4C805F1587D624ED5E0DBB7A7F7FA7EB" and the encrypted
 firmware was:

 A8B6E61EF17FBAD1F1BF3235B3C64C06098EA512223260
 F9425105F67F0FB6C92248AE289A025258F06C2AD70415

4. Hybrid Public-Key Encryption (HPKE)

 Hybrid public-key encryption (HPKE) [I-D.irtf-cfrg-hpke] is a scheme
 that provides public key encryption of arbitrary-sized plaintexts
 given a recipient's public key.

 For use with firmware encryption the scheme works as follows: The
 firmware author uses HPKE, which internally utilizes a non-
 interactive ephemeral-static Diffie-Hellman exchange to derive a
 shared secret, which is then used to encrypt plaintext. In the
 firmware encryption scenario, the plaintext passed to HPKE for
 encryption is a randomly generated CEK. The output of the HPKE
 operation is therefore the encrypted CEK along with HPKE encapsulated
 key (i.e. the ephemeral ECDH public key of the author). The CEK is
 then used to encrypt the firmware.

Tschofenig, et al. Expires January 8, 2022 [Page 7]

Internet-Draft Firmware Encryption July 2021

 Only the holder of recipient's private key can decapsulate the CEK to
 decrypt the firmware. Key generation is influced by additional
 parameters, such as identity information.

 This approach allows us to have all recipients to use the same CEK to
 encrypt the firmware image, in case there are multiple recipients, to
 fulfill a requirement for the efficient distribution of firmware
 images using a multicast or broadcast protocol.

 The CDDL for the COSE_Encrypt structure as used with HPKE is shown in
 Figure 4.

Tschofenig, et al. Expires January 8, 2022 [Page 8]

Internet-Draft Firmware Encryption July 2021

 COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)

 SUIT_Encryption_Info = COSE_Encrypt_Tagged

 COSE_Encrypt = [
 protected : bstr .cbor header_map, ; must contain alg
 unprotected : header_map, ; must contain iv
 ciphertext : null, ; because of detached ciphertext
 recipients : [+ COSE_recipient_outer]
]

 COSE_recipient_outer = [
 protected : bstr .size 0,
 unprotected : header_map, ; must contain alg
 ciphertext : bstr ; CEK encrypted based on HPKE algo
 recipients : [+ COSE_recipient_inner]
]

 COSE_recipient_inner = [
 protected : bstr .cbor header_map, ; must contain alg
 unprotected : header_map, ; must contain kid,
 ciphertext : bstr ; CEK encrypted based on HPKE algo
 recipients : null
]

 header_map = {
 Generic_Headers,
 * label =values,
 }

 Generic_Headers = (
 ? 1 => int, ; algorithm identifier
 ? 2 => crv, ; EC identifier
 ? 4 => bstr, ; key identifier
 ? 5 => bstr ; IV
)

 Figure 4: CDDL for HPKE-based COSE_Encrypt Structure

 The COSE_Encrypt structure in Figure 4 requires the encrypted CEK and
 the ephemeral public key of the firmare author to be generated. This
 is accomplished with the HPKE encryption function as shown in
 Figure 5.

Tschofenig, et al. Expires January 8, 2022 [Page 9]

Internet-Draft Firmware Encryption July 2021

 CEK = random()
 pkR = DeserializePublicKey(recipient_public_key)
 info = "cose hpke" || 0x00 || COSE_KDF_Context
 enc, context = SetupBaseS(pkR, info)
 ciphertext = context.Seal(null, CEK)

 Figure 5

 Legend:

 - The functions DeserializePublicKey(), SetupBaseS() and Seal() are
 defined in HPKE [I-D.irtf-cfrg-hpke].

 - CEK is a random byte sequence of keysize length whereby keysize
 corresponds to the size of the indicated symmetric encryption
 algorithm used for firmware encryption. For example, AES-128-GCM
 requires a 16 byte key. The CEK would therefore be 16 bytes long.

 - 'recipient_public_key' represents the public key of the recipient.

 - 'info' is a data structure described below used as input to the
 key derivation internal to the HPKE algorithm. In addition to the
 constant prefix, the COSE_KDF_Context structure is used. The
 COSE_KDF_Context is shown in Figure 6.

 The result of the above-described operation is the encrypted CEK
 (denoted as ciphertext) and the enc - the HPKE encapsulated key (i.e.
 the ephemeral ECDH public key of the author).

 PartyInfo = (
 identity : bstr,
 nonce : nil,
 other : nil
)

 COSE_KDF_Context = [
 AlgorithmID : int,
 PartyUInfo : [PartyInfo],
 PartyVInfo : [PartyInfo],
 SuppPubInfo : [
 keyDataLength : uint,
 protected : empty_or_serialized_map
],
]

 Figure 6: COSE_KDF_Context Data Structure

 Notes:

Tschofenig, et al. Expires January 8, 2022 [Page 10]

Internet-Draft Firmware Encryption July 2021

 - PartyUInfo.identity corresponds to the kid found in the
 COSE_Sign_Tagged or COSE_Sign1_Tagged structure (when a digital
 signature is used. When utilizing a MAC, then the kid is found in
 the COSE_Mac_Tagged or COSE_Mac0_Tagged structure.

 - PartyVInfo.identity corresponds to the kid used for the respective
 recipient from the inner-most recipients array.

 - The value in the AlgorithmID field corresponds to the alg
 parameter in the protected structure in the inner-most recipients
 array.

 - keyDataLength is set to the number of bits of the desired output
 value.

 - protected refers to the protected structure of the inner-most
 array.

 The author encrypts the firmware using the CEK with the selected
 algorithm.

 The recipient decrypts the received ciphertext, i.e. the encrypted
 CEK, using two input parameters:

 - the private key skR corresponding to the public key pkR used by
 the author when creating the manifest.

 - the HPKE encapsulated key (i.e. ephemeral ECDH public key) created
 by the author.

 If the HPKE operation is successful, the recipient obtains the CEK
 and can decrypt the firmware.

 Figure 7 shows the HPKE computations performed by the recipient for
 decryption.

 info = "cose hpke" || 0x00 || COSE_KDF_Context
 context = SetupBaseR(ciphertext, skR, info)
 CEK = context.Open(null, ciphertext)

 Figure 7

 An example of the COSE_Encrypt structure using the HPKE scheme is
 shown in Figure 8.

Tschofenig, et al. Expires January 8, 2022 [Page 11]

Internet-Draft Firmware Encryption July 2021

 96(
 [
 // protected field with alg=AES-GCM-128
 h'A10101',
 { // unprotected field with iv
 5: h'26682306D4FB28CA01B43B80'
 },
 // null because of detached ciphertext
 null,
 [// COSE_recipient_outer
 h'', // empty protected field
 { // unprotected field with ...
 1: 1 // alg=A128GCM
 },
 // Encrypted CEK
 h'FA55A50CF110908DA6443149F2C2062011A7D8333A72721A',
 [// COSE_recipient_inner
 // protected field with alg HPKE/P-256+HKDF-256 (new)
 h'A1013818',
 { // unprotected field with ...
 // HPKE encapsulated key
 -1: h'A4010220012158205F...979D51687187510C445',
 // kid for recipient static ECDH public key
 4: h'6B69642D31'
 },
 // empty ciphertext
 null
]
]
]
)

 Figure 8: COSE_Encrypt Example for HPKE

5. Complete Examples

 TBD: Add example for complete manifest here (which also includes the
 digital signature). TBD: Add multiple recipient example as well.
 TBD: Add encryption of manifest (in addition of firmware encryption).

6. Security Considerations

 The algorithms described in this document assume that the firmware
 author

 - has either shared a key-encryption key (KEK) with the firmware
 consumer (for use with the AES-Key Wrap scheme), or

Tschofenig, et al. Expires January 8, 2022 [Page 12]

Internet-Draft Firmware Encryption July 2021

 - is in possession of the public key of the firmware consumer (for
 use with HPKE).

 Both cases require some upfront communication interaction, which is
 not part of the SUIT manifest. This interaction is likely provided
 by a IoT device management solution, as described in [RFC9019].

 For AES-Key Wrap to provide high security it is important that the
 KEK is of high entropy, and that implementations protect the KEK from
 disclosure. Compromise of the KEK may result in the disclosure of
 all key data protected with that KEK.

 Since the CEK is randomly generated, it must be ensured that the
 guidelines for random number generations are followed, see [RFC8937].

7. IANA Considerations

 This document requests IANA to create new entries in the COSE
 Algorithms registry established with [I-D.ietf-cose-rfc8152bis-algs].

https://datatracker.ietf.org/doc/html/rfc9019
https://datatracker.ietf.org/doc/html/rfc8937

Tschofenig, et al. Expires January 8, 2022 [Page 13]

Internet-Draft Firmware Encryption July 2021

 +-------------+-------+---------+------------+--------+---------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +-------------+-------+---------+------------+--------+---------------+
HPKE/P-256+	TBD1	HKDF -	yes	none	HPKE with
HKDF-256		SHA-256			ECDH-ES
					(P-256) +
					HKDF-256
+-------------+-------+---------+------------+--------+---------------+					
HPKE/P-384+	TBD2	HKDF -	yes	none	HPKE with
HKDF-SHA384		SHA-384			ECDH-ES
					(P-384) +
					HKDF-384
+-------------+-------+---------+------------+--------+---------------+					
HPKE/P-521+	TBD3	HKDF -	yes	none	HPKE with
HKDF-SHA521		SHA-521			ECDH-ES
					(P-521) +
					HKDF-521
+-------------+-------+---------+------------+--------+---------------+					
HPKE	TBD4	HKDF -	yes	none	HPKE with
X25519 +		SHA-256			ECDH-ES
HKDF-SHA256					(X25519) +
					HKDF-256
+-------------+-------+---------+------------+--------+---------------+					
HPKE	TBD4	HKDF -	yes	none	HPKE with
X448 +		SHA-512			ECDH-ES
HKDF-SHA512					(X448) +
					HKDF-512
 +-------------+-------+---------+------------+--------+---------------+

8. References

8.1. Normative References

 [I-D.ietf-cose-rfc8152bis-algs]
 August Cellars, "CBOR Object Signing and Encryption
 (COSE): Initial Algorithms", draft-ietf-cose-rfc8152bis-

algs-12 (work in progress), September 2020.

 [I-D.ietf-suit-manifest]
 Arm Limited, Arm Limited, Fraunhofer SIT, and Inria, "A
 Concise Binary Object Representation (CBOR)-based
 Serialization Format for the Software Updates for Internet
 of Things (SUIT) Manifest", draft-ietf-suit-manifest-12
 (work in progress), February 2021.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-algs-12
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-algs-12
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-12

Tschofenig, et al. Expires January 8, 2022 [Page 14]

Internet-Draft Firmware Encryption July 2021

 [I-D.irtf-cfrg-hpke]
 Cisco, Inria, Inria, and Cloudflare, "Hybrid Public Key
 Encryption", draft-irtf-cfrg-hpke-08 (work in progress),
 February 2021.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [I-D.ietf-suit-information-model]
 Arm Limited, Arm Limited, and Fraunhofer SIT, "A Manifest
 Information Model for Firmware Updates in IoT Devices",

draft-ietf-suit-information-model-11 (work in progress),
 April 2021.

 [RFC2630] Housley, R., "Cryptographic Message Syntax", RFC 2630,
 DOI 10.17487/RFC2630, June 1999,
 <https://www.rfc-editor.org/info/rfc2630>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC8937] Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,
 and C. Wood, "Randomness Improvements for Security
 Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,
 <https://www.rfc-editor.org/info/rfc8937>.

 [RFC9019] Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A
 Firmware Update Architecture for Internet of Things",

RFC 9019, DOI 10.17487/RFC9019, April 2021,
 <https://www.rfc-editor.org/info/rfc9019>.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-11
https://datatracker.ietf.org/doc/html/rfc2630
https://www.rfc-editor.org/info/rfc2630
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc8937
https://www.rfc-editor.org/info/rfc8937
https://datatracker.ietf.org/doc/html/rfc9019
https://www.rfc-editor.org/info/rfc9019

Tschofenig, et al. Expires January 8, 2022 [Page 15]

Internet-Draft Firmware Encryption July 2021

Appendix A. Acknowledgements

 We would like to thank Henk Birkholz for his feedback on the CDDL
 description in this document. Additionally, we would like to thank
 Michael Richardson and Carsten Bormann for their review feedback.

Authors' Addresses

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 Russ Housley
 Vigil Security, LLC

 EMail: housley@vigilsec.com

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

Tschofenig, et al. Expires January 8, 2022 [Page 16]

