
Workgroup: SUIT

Internet-Draft:

draft-ietf-suit-firmware-encryption-05

Published: 8 July 2022

Intended Status: Standards Track

Expires: 9 January 2023

Authors: H. Tschofenig

Arm Limited

R. Housley

Vigil Security

B. Moran

Arm Limited

Firmware Encryption with SUIT Manifests

Abstract

This document specifies a firmware update mechanism where the

firmware image is encrypted. Firmware encryption uses the IETF SUIT

manifest with key establishment provided by hybrid public-key

encryption (HPKE) and AES Key Wrap (AES-KW). HPKE uses public key

cryptography while AES-KW uses a pre-shared key-encryption key.

Encryption of the firmware image is accomplished with convential

symmetric key cryptography.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. Architecture

4. SUIT Envelope and SUIT Manifest

5. AES Key Wrap

6. Hybrid Public-Key Encryption (HPKE)

7. CEK Verification

8. Ciphers without Integrity Protection

9. Complete Examples

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Acknowledgements

Authors' Addresses

1. Introduction

Vulnerabilities with Internet of Things (IoT) devices have raised

the need for a reliable and secure firmware update mechanism that is

also suitable for constrained devices. To protect firmware images

the SUIT manifest format was developed [I-D.ietf-suit-manifest]. The

SUIT manifest provides a bundle of metadata about the firmware for

an IoT device, where to find the firmware image, and the devices to

which it applies.

The SUIT information model [RFC9124] details the information that

has to be offered by the SUIT manifest format. In addition to

offering protection against modification, which is provided by a

digital signature or a message authentication code, the firmware

image may also be afforded confidentiality using encryption.

¶

¶

¶

¶

Encryption prevents third parties, including attackers, from gaining

access to the firmware binary. Hackers typically need intimate

knowledge of the target firmware to mount their attacks. For

example, return-oriented programming (ROP) requires access to the

binary and encryption makes it much more difficult to write

exploits.

The SUIT manifest provides the data needed for authorized recipients

of the firmware image to decrypt it. The firmware image is encrypted

using a symmetric key. This symmetric cryptographic key is

established for encryption and decryption, and that key can be

applied to a SUIT manifest, firmware images, or personalization

data, depending on the encryption choices of the firmware author.

A symmetric key can be established using a variety of mechanisms;

this document defines two approaches for use with the IETF SUIT

manifest, namely:

hybrid public-key encryption (HPKE), and

AES Key Wrap (AES-KW) using a pre-shared key-encryption key

(KEK).

These choices reduce the number of possible key establishment

options and thereby help increase interoperability between different

SUIT manifest parser implementations.

The document also contains a number of examples.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document assumes familiarity with the IETF SUIT manifest [I-

D.ietf-suit-manifest], the SUIT information model [RFC9124] and the

SUIT architecture [RFC9019].

The terms sender and recipient are defined in [RFC9180] and have the

following meaning:

Sender: Role of entity which sends an encrypted message.

Recipient: Role of entity which receives an encrypted message.

¶

¶

¶

* ¶

*

¶

¶

¶

¶

¶

¶

* ¶

* ¶

Additionally, the following abbreviations are used in this document:

Key Wrap (KW), defined in RFC 3394 [RFC3394] for use with AES.

Key-encryption key (KEK), a term defined in RFC 4949 [RFC4949].

Content-encryption key (CEK), a term defined in RFC 2630

[RFC2630].

Hybrid Public Key Encryption (HPKE), defined in [RFC9180].

The main use case of this document is to encrypt firmware. However,

SUIT manifests may require other payloads than firmware images to

experience confidentiality protection using encryption. While the

term firmware is used throughout the document, plaintext other than

firmware images may get encrypted using the described mechanism.

Hence, the terms firmware (image) and plaintext are used

interchangably.

3. Architecture

[RFC9019] describes the architecture for distributing firmware

images and manifests from the author to the firmware consumer. It

does, however, not detail the use of encrypted firmware images.

This document enhances the SUIT architecutre to include firmware

encryption. Figure 1 shows the distribution system, which represents

the firmware server and the device management infrastructure. The

distribution system is aware of the individual devices to which a

firmware update has to be delivered.

¶

* ¶

* ¶

*

¶

* ¶

¶

¶

¶

Figure 1: Firmware Encryption Architecture.

Firmware encryption requires the sender to know the firmware

consumers and the respective credentials used by the key

distribution mechanism. For AES-KW the KEK needs to be known and, in

case of HPKE, the sender needs to be in possession of the public key

of the recipient.

The firmware author may have knowledge about all devices that need

to receive an encrypted firmware image but in most cases this will

not be likely. The distribution system certainly has the knowledge

about the recipients to perform firmware encryption.

To offer confidentiality protection for firmware images two

deployment variants need to be supported:

The firmware author acts as the sender and the recipient is the

firmware consumer (or the firmware consumers).

The firmware author encrypts the firmware image with the

distribution system as the initial recipient. Then, the

distribution system decrypts and re-encrypts the firmware image

towards the firmware consumer(s). Delegating the task of re-

encrypting the firmware image to the distribution system offers

 +----------+

 | |

 | Author |

 | |

 +----------+ +----------+

 | Device |---+ |

 |(Firmware | | | Firmware +

 | Consumer)| | | Manifest

 +----------+ | |

 | |

 | +--------------+

 | | |

 +----------+ | Firmware + Manifest | Distribution |

 | Device |---+------------------------| System |

 |(Firmware | | | |

 | Consumer)| | | |

 +----------+ | +--------------+

 |

 |

 +----------+ |

 | Device +---+

 |(Firmware |

 | Consumer)|

 +----------+

¶

¶

¶

*

¶

*

flexiblity when the number of devices that need to receive

encrypted firmware images changes dynamically or when updates to

KEKs or recipient public keys are necessary. As a downside, the

author needs to trust the distribution system with performing the

re-encryption of the firmware image.

Irrespectively of the two variants, the key distribution data (in

form of the COSE_Encrypt structure) is included in the SUIT envelope

rather than in the SUIT manifest since the manifest will be

digitally signed (or MACed) by the firmware author.

Since the SUIT envelope is not protected cryptographically an

adversary could modify the COSE_Encrypt structure. For example, if

the attacker alters the key distribution data then a recipient will

decrypt the firmware image with an incorrect key. This will lead to

expending energy and flash cycles until the failure is detected. To

mitigate this attack, the optional suit-cek-verification parameter

is added to the manifest. Since the manifest is protected by a

digital signature (or a MAC), an adversary cannot successfully

modify this value. This parameter allows the recipient to verify

whether the CEK has successfully been derived.

Details about the changes to the envelope and the manifest can be

found in the next section.

4. SUIT Envelope and SUIT Manifest

This specification introduces two extensions to the SUIT envelope

and the manifest structure, as motivated in Section 3.

The SUIT envelope is enhanced with a key exchange payload, which is

carried inside the suit-protection-wrappers parameter, see Figure 2.

One or multiple SUIT_Encryption_Info payload(s) are carried within

the suit-protection-wrappers parameter. The content of the

SUIT_Encryption_Info payload is explained in Section 5 (for AES-KW)

and in Section 6 (for HPKE). When the encryption capability is used,

the suit-protection-wrappers parameter MUST be included in the

envelope.

¶

¶

¶

¶

¶

¶

Figure 2: SUIT Envelope CDDL.

The manifest is extended with a CEK verification parameter (called

suit-cek-verification), see Figure 3. This parameter is optional and

is utilized in environments where battery exhaustion attacks are a

concern. Details about the CEK verification can be found in Section

7.

Figure 3: SUIT Manifest CDDL.

5. AES Key Wrap

The AES Key Wrap (AES-KW) algorithm is described in RFC 3394

[RFC3394], and it can be used to encrypt a randomly generated

content-encryption key (CEK) with a pre-shared key-encryption key

(KEK). The COSE conventions for using AES-KW are specified in

Section 12.2.1 of [RFC8152]. The encrypted CEK is carried in the

COSE_recipient structure alongside the information needed for AES-

KW. The COSE_recipient structure, which is a substructure of the

COSE_Encrypt structure, contains the CEK encrypted by the KEK.

When the firmware image is encrypted for use by multiple recipients,

there are three options. We use the following notation KEK(R1,S) is

the KEK shared between recipient R1 and the sender S. Likewise,

SUIT_Envelope_Tagged = #6.107(SUIT_Envelope)

SUIT_Envelope = {

 suit-authentication-wrapper => bstr .cbor SUIT_Authentication,

 suit-manifest => bstr .cbor SUIT_Manifest,

 SUIT_Severable_Manifest_Members,

 suit-protection-wrappers => bstr .cbor {

 *(int/str) => [+ SUIT_Encryption_Info]

 }

 * SUIT_Integrated_Payload,

 * SUIT_Integrated_Dependency,

 * $$SUIT_Envelope_Extensions,

 * (int => bstr)

}

¶

SUIT_Manifest = {

 suit-manifest-version => 1,

 suit-manifest-sequence-number => uint,

 suit-common => bstr .cbor SUIT_Common,

 ? suit-reference-uri => tstr,

 ? suit-cek-verification => bstr,

 SUIT_Severable_Members_Choice,

 SUIT_Unseverable_Members,

 * $$SUIT_Manifest_Extensions,

}

¶

CEK(R1,S) is shared between R1 and S. If a single CEK or a single

KEK is shared with all authorized recipients R by a given sender S

in a certain context then we use CEK(,S) or KEK(,S), respectively.

The notation ENC(plaintext, key) refers to the encryption of

plaintext with a given key.

If all authorized recipients have access to the KEK, a single

COSE_recipient structure contains the encrypted CEK. This means

KEK(*,S) ENC(CEK,KEK), and ENC(firmware,CEK).

If recipients have different KEKs, then multiple COSE_recipient

structures are included but only a single CEK is used. Each

COSE_recipient structure contains the CEK encrypted with the KEKs

appropriate for the recipient. In short, KEK_1(R1, S),...,

KEK_n(Rn, S), ENC(CEK, KEK_i) for i=1 to n, and

ENC(firmware,CEK). The benefit of this approach is that the

firmware image is encrypted only once with a CEK while there is

no sharing of the KEK accross recipients. Hence, authorized

recipients still use their individual KEKs to decrypt the CEK and

to subsequently obtain the plaintext firmware.

The third option is to use different CEKs encrypted with KEKs of

the authorized recipients. Assume there are KEK_1(R1, S),...,

KEK_n(Rn, S), and for i=1 to n the following computations need to

be made: ENC(CEK_i, KEK_i) and ENC(firmware,CEK_i). This approach

is appropriate when no benefits can be gained from encrypting and

transmitting firmware images only once. For example, firmware

images may contain information unique to a device instance.

Note that the AES-KW algorithm, as defined in Section 2.2.3.1 of

[RFC3394], does not have public parameters that vary on a per-

invocation basis. Hence, the protected structure in the

COSE_recipient is a byte string of zero length.

The COSE_Encrypt conveys information for encrypting the firmware

image, which includes information like the algorithm and the IV,

even though the firmware image is not embedded in the

COSE_Encrypt.ciphertext itself since it conveyed as detached

content.

The CDDL for the COSE_Encrypt_Tagged structure is shown in Figure 4.

¶

*

¶

*

¶

*

¶

¶

¶

¶

Figure 4: CDDL for AES Key Wrap Encryption

The COSE specification requires a consistent byte stream for the

authenticated data structure to be created, which is shown in Figure

5.

Figure 5: CDDL for Enc_structure Data Structure

COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)

SUIT_Encryption_Info = COSE_Encrypt_Tagged

COSE_Encrypt = [

 protected : bstr .cbor outer_header_map_protected,

 unprotected : outer_header_map_unprotected,

 ciphertext : null, ; because of detached ciphertext

 recipients : [+ COSE_recipient]

]

outer_header_map_protected =

{

 1 => int, ; algorithm identifier

 * label =values ; extension point

}

outer_header_map_unprotected =

{

 5 => bstr, ; IV

 * label =values ; extension point

}

COSE_recipient = [

 protected : bstr .size 0,

 unprotected : recipient_header_map,

 ciphertext : bstr ; CEK encrypted with KEK

]

recipient_header_map =

{

 1 => int, ; algorithm identifier

 4 => bstr, ; key identifier

 * label =values ; extension point

}

¶

 Enc_structure = [

 context : "Encrypt",

 protected : empty_or_serialized_map,

 external_aad : bstr

]

As shown in Figure 4, there are two protected fields: one protected

field in the COSE_Encrypt structure and a second one in the

COSE_recipient structure. The 'protected' field in the

Enc_structure, see Figure 5, refers to the content of the protected

field from the COSE_Encrypt structure.

The value of the external_aad MUST be set to null.

The following example illustrates the use of the AES-KW algorithm

with AES-128.

We use the following parameters in this example:

IV: 0x26, 0x68, 0x23, 0x06, 0xd4, 0xfb, 0x28, 0xca, 0x01, 0xb4,

0x3b, 0x80

KEK: "aaaaaaaaaaaaaaaa"

KID: "kid-1"

Plaintext Firmware: "This is a real firmware image."

Firmware (hex):

546869732069732061207265616C206669726D7761726520696D6167652E

The COSE_Encrypt structure, in hex format, is (with a line break

inserted):

The resulting COSE_Encrypt structure in a dignostic format is shown

in Figure 6.

¶

¶

¶

¶

*

¶

* ¶

* ¶

* ¶

*

¶

¶

D8608443A10101A1054C26682306D4FB28CA01B43B80F68340A2012204456B69642D

315818AF09622B4F40F17930129D18D0CEA46F159C49E7F68B644D

¶

¶

Figure 6: COSE_Encrypt Example for AES Key Wrap

The CEK, in hex format, was "4C805F1587D624ED5E0DBB7A7F7FA7EB" and

the encrypted firmware (with a line feed added) was:

6. Hybrid Public-Key Encryption (HPKE)

Hybrid public-key encryption (HPKE) [RFC9180] is a scheme that

provides public key encryption of arbitrary-sized plaintexts given a

recipient's public key.

For use with firmware encryption the scheme works as follows: HPKE,

which internally utilizes a non-interactive ephemeral-static Diffie-

Hellman exchange to derive a shared secret, is used to encrypt a

CEK. This CEK is subsequently used to encrypt the firmware image.

Hence, the plaintext passed to HPKE is the randomly generated CEK.

The output of the HPKE SealBase function is therefore the encrypted

CEK along with HPKE encapsulated key (i.e. the ephemeral ECDH public

key).

Only the holder of recipient's private key can decapsulate the CEK

to decrypt the firmware. Key generation in HPKE is influced by

additional parameters, such as identity information.

96(

 [

 / protected field with alg=AES-GCM-128 /

 h'A10101',

 {

 / unprotected field with iv /

 5: h'26682306D4FB28CA01B43B80'

 },

 / null because of detached ciphertext /

 null,

 [/ recipients array /

 h'', / protected field /

 { / unprotected field /

 1: -3, / alg=A128KW /

 4: h'6B69642D31' / key id /

 },

 / CEK encrypted with KEK /

 h'AF09622B4F40F17930129D18D0CEA46F159C49E7F68B644D'

]

]

)

¶

A8B6E61EF17FBAD1F1BF3235B3C64C06098EA512223260

F9425105F67F0FB6C92248AE289A025258F06C2AD70415

¶

¶

¶

¶

This approach allows all recipients to use the same CEK to encrypt

the firmware image, in case there are multiple recipients, to

fulfill a requirement for the efficient distribution of firmware

images using a multicast or broadcast protocol.

[I-D.ietf-cose-hpke] defines the use of HPKE with COSE.

An example of the COSE_Encrypt structure using the HPKE scheme is

shown in Figure 7. It uses the following algorithm combination:

AES-GCM-128 for encryption of the (detached) firmware image.

AES-GCM-128 for encryption of the CEK as well as ECDH with NIST

P-256 and HKDF-SHA256 as a Key Encapsulation Mechanism (KEM).

Figure 7: COSE_Encrypt Example for HPKE

[Editor's Note: The examples need to be in-sync with the content in

COSE-HPKE.]

¶

¶

¶

* ¶

*

¶

96_0([

 / protected header with alg=AES-GCM-128 /

 h'a10101',

 / unprotected header with nonce /

 {5: h'938b528516193cc7123ff037809f4c2a'},

 / detached ciphertext /

 null,

 / recipient structure /

 [

 / protected field with alg for HPKE /

 h'a1013863',

 / unprotected header /

 {

 / ephemeral public key with x / y coodinate /

 -1: h'a401022001215820a596f2ca8d159c04942308ca90

 cfbfca65b108ca127df8fe191a063d00d7c5172258

 20aef47a45d6d6c572e7bd1b9f3e69b50ad3875c68

 f6da0caaa90c675df4162c39',

 / kid for recipient static ECDH public key /

 4: h'6b69642d32',

 },

 / encrypted CEK /

 h'9aba6fa44e9b2cef9d646614dcda670dbdb31a3b9d37c7a

 65b099a8152533062',

],

])

¶

7. CEK Verification

The suit-cek-verification parameter contains a byte string resulting

from the encryption of 8 bytes of 0xA5 using the CEK with a nonce of

all zeros and empty additional data using the cipher algorithm and

mode also used to encrypt the plaintext.

As explained in Section 3, the suit-cek-verification parameter is

optional to implement and optional to use. When used, it reduces the

risk of an battery exhaustion attack against the IoT device.

8. Ciphers without Integrity Protection

The ability to restart an interrupted firmware update is often a

requirement for low-end IoT devices. To fulfill this requirement it

is necessary to chunk a larger firmware image into blocks and to

encrypt each block individually using a cipher that does not

increase the size of the resulting ciphertext (i.e. by not adding an

authentication tag after each encrypted block).

When the encrypted firmware image has been transferred to the

device, it will typically be stored in a staging area. Then, the

bootloader starts decrypting the downloaded image block-by-block and

swaps it with the currently valid image. Note that the currently

valid image is available in cleartext and hence it has to be re-

encrypted before copying it to the staging area.

This approach of swapping the newly downloaded image with the

previously valid image is often referred as A/B approach. A/B refers

to the two storage areas, sometimes called slots, involved. Two

slots are used to allow the update to be reversed in case the newly

obtained firmware image fails to boot. This approach adds robustness

to the firmware update procedure.

When an update gets aborted while the bootloader is decrypting the

newly obtained image and swapping the blocks, the bootloader can

restart where it left off. This technique again offers robustness.

To accomplish this functionality, ciphers without integrity

protection are used to encrypt the firmware image. Integrity

protection for the firmware image is, however, important and

therefore the image digest defined in [I-D.ietf-suit-manifest] MUST

be used.

This document registers several cipher algorithms for use with

firmware encryption that do not offer integrity protection. These

ciphers are registered within the COSE algorithm registry but are

dedicated for this specific applications only. Hence, all algorithms

listed in Figure 8 are not recommended for general use.

¶

¶

¶

¶

¶

¶

¶

¶

Figure 8: Algorithms for the COSE Algorithm Registry

9. Complete Examples

[[Editor's Note: Add examples for a complete manifest here

(including a digital signature), multiple recipients, encryption of

manifests (in comparison to firmware images).]]

10. Security Considerations

The algorithms described in this document assume that the party

performing the firmware encryption

shares a key-encryption key (KEK) with the firmware consumer (for

use with the AES-Key Wrap scheme), or

is in possession of the public key of the firmware consumer (for

use with HPKE).

Both cases require some upfront communication interaction, which is

not part of the SUIT manifest. This interaction is likely provided

by an IoT device management solution, as described in [RFC9019].

For AES-Key Wrap to provide high security it is important that the

KEK is of high entropy, and that implementations protect the KEK

from disclosure. Compromise of the KEK may result in the disclosure

of all key data protected with that KEK.

 +===========+=====+===========+==============+=========+============+

 | Name |Value|Description| Capabilities |Reference|Recommended |

 +===========+=====+===========+==============+=========+============+

 |AES-128-CBC| 35 | AES 128 | [] | [This |No |

 | | | CBC Mode | |Document]| |

 | | | | | | |

 +-----------+-----+-----------+--------------+---------+------------+

 |AES-256-CBC| 36 | AES 256 | [] | [This |No |

 | | | CBC Mode | |Document]| |

 | | | | | | |

 +-----------+-----+-----------+--------------+---------+------------+

 |AES-128-CTR| 37 | AES 128 | [] | [This |No |

 | | | Counter | |Document]| |

 | | | Mode (CTR)| | | |

 +-----------+-----+-----------+--------------+---------+------------+

 |AES-256-CTR| 38 | AES 256 | [] | [This |No |

 | | | Counter | |Document]| |

 | | | Mode (CTR)| | | |

 +-----------+-----+-----------+--------------+---------+------------+

¶

¶

*

¶

*

¶

¶

¶

[I-D.ietf-cose-hpke]

[I-D.ietf-suit-manifest]

[RFC2119]

[RFC3394]

[RFC8152]

Since the CEK is randomly generated, it must be ensured that the

guidelines for random number generations are followed, see

[RFC8937].

In some cases third party companies analyse binaries for known

security vulnerabilities. With encrypted firmware images this type

of analysis is prevented. Consequently, these third party companies

either need to be given access to the plaintext binary before

encryption or they need to become authorized recipients of the

encrypted firmware images. In either case, it is necessary to

explicitly consider those third parties in the software supply chain

when such a binary analysis is desired.

11. IANA Considerations

This document asks IANA to register new values into the COSE

algorithm registry. The values are listed in Figure 8.

12. References

12.1. Normative References

Tschofenig, H., Housley, R., and B. Moran, "Use

of Hybrid Public-Key Encryption (HPKE) with CBOR Object

Signing and Encryption (COSE)", Work in Progress,

Internet-Draft, draft-ietf-cose-hpke-01, 7 March 2022,

<https://www.ietf.org/archive/id/draft-ietf-cose-

hpke-01.txt>.

Moran, B., Tschofenig, H., Birkholz, H.,

and K. Zandberg, "A Concise Binary Object Representation

(CBOR)-based Serialization Format for the Software

Updates for Internet of Things (SUIT) Manifest", Work in

Progress, Internet-Draft, draft-ietf-suit-manifest-17, 28

April 2022, <https://www.ietf.org/archive/id/draft-ietf-

suit-manifest-17.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Schaad, J. and R. Housley, "Advanced Encryption Standard

(AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/

RFC3394, September 2002, <https://www.rfc-editor.org/

info/rfc3394>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-cose-hpke-01.txt
https://www.ietf.org/archive/id/draft-ietf-cose-hpke-01.txt
https://www.ietf.org/archive/id/draft-ietf-suit-manifest-17.txt
https://www.ietf.org/archive/id/draft-ietf-suit-manifest-17.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152

[RFC8174]

[RFC9180]

[RFC2630]

[RFC4949]

[RFC8937]

[RFC9019]

[RFC9124]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

February 2022, <https://www.rfc-editor.org/info/rfc9180>.

12.2. Informative References

Housley, R., "Cryptographic Message Syntax", RFC 2630,

DOI 10.17487/RFC2630, June 1999, <https://www.rfc-

editor.org/info/rfc2630>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/info/rfc4949>.

Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,

and C. Wood, "Randomness Improvements for Security

Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,

<https://www.rfc-editor.org/info/rfc8937>.

Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A

Firmware Update Architecture for Internet of Things", RFC

9019, DOI 10.17487/RFC9019, April 2021, <https://www.rfc-

editor.org/info/rfc9019>.

Moran, B., Tschofenig, H., and H. Birkholz, "A Manifest

Information Model for Firmware Updates in Internet of

Things (IoT) Devices", RFC 9124, DOI 10.17487/RFC9124,

January 2022, <https://www.rfc-editor.org/info/rfc9124>.

Appendix A. Acknowledgements

We would like to thank Henk Birkholz for his feedback on the CDDL

description in this document. Additionally, we would like to thank

Michael Richardson and Carsten Bormann for their review feedback.

Finally, we would like to thank Dick Brooks for making us aware of

the challenges firmware encryption imposes on binary analysis.

Authors' Addresses

Hannes Tschofenig

Arm Limited

Email: hannes.tschofenig@arm.com

Russ Housley

¶

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc2630
https://www.rfc-editor.org/info/rfc2630
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc8937
https://www.rfc-editor.org/info/rfc9019
https://www.rfc-editor.org/info/rfc9019
https://www.rfc-editor.org/info/rfc9124
mailto:hannes.tschofenig@arm.com

Vigil Security, LLC

Email: housley@vigilsec.com

Brendan Moran

Arm Limited

Email: Brendan.Moran@arm.com

mailto:housley@vigilsec.com
mailto:Brendan.Moran@arm.com

	Firmware Encryption with SUIT Manifests
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Architecture
	4. SUIT Envelope and SUIT Manifest
	5. AES Key Wrap
	6. Hybrid Public-Key Encryption (HPKE)
	7. CEK Verification
	8. Ciphers without Integrity Protection
	9. Complete Examples
	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Acknowledgements
	Authors' Addresses

