
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Standards Track Arm Limited
Expires: May 2, 2020 H. Birkholz
 Fraunhofer SIT
 October 30, 2019

An Information Model for Firmware Updates in IoT Devices
draft-ietf-suit-information-model-04

Abstract

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a solid and secure firmware update mechanism that is also
 suitable for constrained devices. Ensuring that devices function and
 remain secure over their service life requires such an update
 mechanism to fix vulnerabilities, to update configuration settings,
 as well as adding new functionality

 One component of such a firmware update is a concise and machine-
 processable meta-data document, or manifest, that describes the
 firmware image(s) and offers appropriate protection. This document
 describes the information that must be present in the manifest.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Moran, et al. Expires May 2, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft A Firmware Manifest Information Model October 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 5
2. Conventions and Terminology 6
2.1. Requirements Notation 6

3. Manifest Information Elements 6
 3.1. Manifest Element: Version ID of the manifest structure . 6

3.2. Manifest Element: Monotonic Sequence Number 6
3.3. Manifest Element: Vendor ID 7
3.3.1. Example: Domain Name-based UUIDs 7

3.4. Manifest Element: Class ID 7
3.4.1. Example 1: Different Classes 8
3.4.2. Example 2: Upgrading Class ID 9
3.4.3. Example 3: Shared Functionality 9

3.5. Manifest Element: Precursor Image Digest Condition . . . 9
3.6. Manifest Element: Required Image Version List 10
3.7. Manifest Element: Expiration Time 10
3.8. Manifest Element: Payload Format 10
3.9. Manifest Element: Processing Steps 11
3.10. Manifest Element: Storage Location 11
3.10.1. Example 1: Two Storage Locations 11
3.10.2. Example 2: File System 11
3.10.3. Example 3: Flash Memory 12

3.11. Manifest Element: Component Identifier 12
3.12. Manifest Element: Resource Indicator 12
3.13. Manifest Element: Payload Digests 12

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Moran, et al. Expires May 2, 2020 [Page 2]

Internet-Draft A Firmware Manifest Information Model October 2019

3.14. Manifest Element: Size 13
3.15. Manifest Element: Signature 13

 3.16. Manifest Element: Additional installation instructions . 13
3.17. Manifest Element: Aliases 14
3.18. Manifest Element: Dependencies 14
3.19. Manifest Element: Encryption Wrapper 14
3.20. Manifest Element: XIP Address 14
3.21. Manifest Element: Load-time metadata 15
3.22. Manifest Element: Run-time metadata 15
3.23. Manifest Element: Payload 15
3.24. Manifest Element: Key Claims 15

4. Security Considerations 15
4.1. Threat Model . 16
4.2. Threat Descriptions 16
4.2.1. THREAT.IMG.EXPIRED: Old Firmware 16

 4.2.2. THREAT.IMG.EXPIRED.ROLLBACK : Offline device + Old
 Firmware . 16

4.2.3. THREAT.IMG.INCOMPATIBLE: Mismatched Firmware 17
 4.2.4. THREAT.IMG.FORMAT: The target device misinterprets
 the type of payload 17
 4.2.5. THREAT.IMG.LOCATION: The target device installs the
 payload to the wrong location 18
 4.2.6. THREAT.NET.REDIRECT: Redirection to inauthentic
 payload hosting 18

4.2.7. THREAT.NET.MITM: Traffic interception 18
4.2.8. THREAT.IMG.REPLACE: Payload Replacement 19
4.2.9. THREAT.IMG.NON_AUTH: Unauthenticated Images 19

 4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor
 images . 19

4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware 20
 4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering Of
 Firmware Image for Vulnerability Analysis 21
 4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest
 Elements . 22
 4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element
 Exposure . 22

4.2.15. THREAT.IMG.EXTRA: Extra data after image 22
4.2.16. THREAT.KEY.EXPOSURE: Exposure of signing keys 22

 4.2.17. THREAT.MFST.MODIFICATION: Modification of manifest or
 payload prior to signing 23

4.3. Security Requirements 23
4.3.1. REQ.SEC.SEQUENCE: Monotonic Sequence Numbers 23

 4.3.2. REQ.SEC.COMPATIBLE: Vendor, Device-type Identifiers . 24
4.3.3. REQ.SEC.EXP: Expiration Time 24
4.3.4. REQ.SEC.AUTHENTIC: Cryptographic Authenticity 24
4.3.5. REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type . . 25

 4.3.6. Security Requirement REQ.SEC.AUTH.IMG_LOC:
 Authenticated Storage Location 25

Moran, et al. Expires May 2, 2020 [Page 3]

Internet-Draft A Firmware Manifest Information Model October 2019

 4.3.7. REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote
 Resource Location 25

4.3.8. REQ.SEC.AUTH.EXEC: Secure Execution 25
 4.3.9. REQ.SEC.AUTH.PRECURSOR: Authenticated precursor
 images . 26
 4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and
 Class IDs . 26

4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity 26
4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption . . . 26
4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control 27
4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests . . 27
4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest . . . 27
4.3.16. REQ.SEC.REPORTING: Secure Reporting 28

 4.3.17. REQ.SEC.KEY.PROTECTION: Protected storage of signing
 keys . 28
 4.3.18. REQ.SEC.MFST.CHECK: Validate manifests prior to
 deployment . 28
 4.3.19. REQ.SEC.MFST.TRUSTED: Construct manifests in a
 trusted environment 28

4.4. User Stories . 29
 4.4.1. USER_STORY.INSTALL.INSTRUCTIONS: Installation
 Instructions . 29

4.4.2. USER_STORY.MFST.FAIL_EARLY: Fail Early 29
 4.4.3. USER_STORY.OVERRIDE: Override Non-Critical Manifest
 Elements . 29

4.4.4. USER_STORY.COMPONENT: Component Update 30
4.4.5. USER_STORY.MULTI_AUTH: Multiple Authorisations . . . 30
4.4.6. USER_STORY.IMG.FORMAT: Multiple Payload Formats . . . 30

 4.4.7. USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential
 Information Disclosures 30
 4.4.8. USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from
 Unpacking Unknown Formats 31
 4.4.9. USER_STORY.IMG.CURRENT_VERSION: Specify Version
 Numbers of Target Firmware 31
 4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose
 Between Images 31
 4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using
 Manifests . 31

4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load . . . 32
4.4.13. USER_STORY.MFST.IMG: Payload in Manifest 32
4.4.14. USER_STORY.MFST.PARSE: Simple Parsing 32

 4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in
 Manifest . 32

4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation 32
4.5. Usability Requirements 32
4.5.1. REQ.USE.MFST.PRE_CHECK: Pre-Installation Checks . . . 33

 4.5.2. REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote
 Resource Location 33

Moran, et al. Expires May 2, 2020 [Page 4]

Internet-Draft A Firmware Manifest Information Model October 2019

4.5.3. REQ.USE.MFST.COMPONENT: Component Updates 33
4.5.4. REQ.USE.MFST.MULTI_AUTH: Multiple authentications . . 34
4.5.5. REQ.USE.IMG.FORMAT: Format Usability 34
4.5.6. REQ.USE.IMG.NESTED: Nested Formats 35
4.5.7. REQ.USE.IMG.VERSIONS: Target Version Matching 35
4.5.8. REQ.USE.IMG.SELECT: Select Image by Destination . . . 35
4.5.9. REQ.USE.EXEC: Executable Manifest 36
4.5.10. REQ.USE.LOAD: Load-Time Information 36

 4.5.11. REQ.USE.PAYLOAD: Payload in Manifest Superstructure . 36
4.5.12. REQ.USE.PARSE: Simple Parsing 36

 4.5.13. REQ.USE.DELEGATION: Delegation of Authority in
 Manifest . 37

5. IANA Considerations . 37
6. Acknowledgements . 37
7. References . 37
7.1. Normative References 37
7.2. Informative References 38

Appendix A. Mailing List Information 39
 Authors' Addresses . 39

1. Introduction

 The information model describes all the information elements required
 to secure firmware updates of IoT devices from the threats described
 in Section 4.1 and enables the user stories captured in Section 4.4.
 These threats and user stories are not intended to be an exhaustive
 list of the threats against IoT devices, nor of the possible user
 stories that describe how to conduct a firmware update. Instead they
 are intended to describe the threats against firmware updates in
 isolation and provide sufficient motivation to specify the
 information elements that cover a wide range of user stories. The
 information model does not define the serialization, encoding,
 ordering, or structure of information elements, only their semantics.

 Because the information model covers a wide range of user stories and
 a wide range of threats, not all information elements apply to all
 scenarios. As a result, various information elements could be
 considered optional to implement and optional to use, depending on
 which threats exist in a particular domain of application and which
 user stories are required. Elements marked as mandatory provide
 baseline security and usability properties that are expected to be
 required for most applications. Those elements are mandatory to
 implement and mandatory to use. Elements marked as recommended
 provide important security or usability properties that are needed on
 most devices. Elements marked as optional enable security or
 usability properties that are useful in some applications.

Moran, et al. Expires May 2, 2020 [Page 5]

Internet-Draft A Firmware Manifest Information Model October 2019

 The definition of some of the information elements include examples
 that illustrate their semantics and how they are intended to be used.

2. Conventions and Terminology

 This document uses terms defined in [I-D.ietf-suit-architecture].
 The term 'Operator' refers to both Device and Network Operator.

 This document treats devices with a homogeneous storage architecture
 as devices with a heterogeneous storage architecture, but with a
 single storage subsystem.

2.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Manifest Information Elements

 Each manifest information element is anchored in a security
 requirement or a usability requirement. The manifest elements are
 described below, justified by their requirements.

3.1. Manifest Element: Version ID of the manifest structure

 An identifier that describes which iteration of the manifest format
 is contained in the structure.

 This element is MANDATORY and MUST be present in order to allow
 devices to identify the version of the manifest data model that is in
 use.

3.2. Manifest Element: Monotonic Sequence Number

 A monotonically increasing sequence number. For convenience, the
 monotonic sequence number MAY be a UTC timestamp. This allows global
 synchronisation of sequence numbers without any additional
 management. This number MUST be easily accessible so that code
 choosing one out of several manifests can choose which is the latest.

 This element is MANDATORY and is necessary to prevent malicious
 actors from reverting a firmware update against the policies of the
 relevant authority.

 Implements: REQ.SEC.SEQUENCE (Section 4.3.1)

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Moran, et al. Expires May 2, 2020 [Page 6]

Internet-Draft A Firmware Manifest Information Model October 2019

3.3. Manifest Element: Vendor ID

 Vendor IDs must be unique. This is to prevent similarly, or
 identically named entities from different geographic regions from
 colliding in their customer's infrastructure. Recommended practice
 is to use [RFC4122] version 5 UUIDs with the vendor's domain name and
 the DNS name space ID. Other options include type 1 and type 4
 UUIDs.

 Vendor ID is not intended to be a human-readable element. It is
 intended for binary match/mismatch comparison only.

 The use of a Vendor ID is RECOMMENDED. It helps to distinguish
 between identically named products from different vendors.

 Implements: REQ.SEC.COMPATIBLE (Section 4.3.2),
 REQ.SEC.AUTH.COMPATIBILITY (Section 4.3.10).

3.3.1. Example: Domain Name-based UUIDs

 Vendor A creates a UUID based on their domain name:

 vendorId = UUID5(DNS, "vendor-a.com")

 Because the DNS infrastructure prevents multiple registrations of the
 same domain name, this UUID is (with very high probability)
 guaranteed to be unique. Because the domain name is known, this UUID
 is reproducible. Type 1 and type 4 UUIDs produce similar guarantees
 of uniqueness, but not reproducibility.

 This approach creates a contention when a vendor changes its name or
 relinquishes control of a domain name. In this scenario, it is
 possible that another vendor would start using that same domain name.
 However, this UUID is not proof of identity; a device's trust in a
 vendor must be anchored in a cryptographic key, not a UUID.

3.4. Manifest Element: Class ID

 A device "Class" is a set of different device types that can accept
 the same firmware update without modification. Class IDs MUST be
 unique within the scope of a Vendor ID. This is to prevent
 similarly, or identically named devices colliding in their customer's
 infrastructure.

 Recommended practice is to use [RFC4122] version 5 UUIDs with as much
 information as necessary to define firmware compatibility. Possible
 information used to derive the class UUID includes:

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires May 2, 2020 [Page 7]

Internet-Draft A Firmware Manifest Information Model October 2019

 o model name or number

 o hardware revision

 o runtime library version

 o bootloader version

 o ROM revision

 o silicon batch number

 The Class Identifier UUID SHOULD use the Vendor ID as the name space
 ID. Other options include version 1 and 4 UUIDs. Classes MAY be
 more granular than is required to identify firmware compatibility.
 Classes MUST NOT be less granular than is required to identify
 firmware compatibility. Devices MAY have multiple Class IDs.

 Class ID is not intended to be a human-readable element. It is
 intended for binary match/mismatch comparison only.

 The use of Class ID is RECOMMENDED. It allows devices to determine
 applicability of a firmware in an unambiguous way.

 If Class ID is not implemented, then each logical device class MUST
 use a unique trust anchor for authorisation.

 Implements: Security Requirement REQ.SEC.COMPATIBLE (Section 4.3.2),
 REQ.SEC.AUTH.COMPATIBILITY (Section 4.3.10).

3.4.1. Example 1: Different Classes

 Vendor A creates product Z and product Y. The firmware images of
 products Z and Y are not interchangeable. Vendor A creates UUIDs as
 follows:

 o vendorId = UUID5(DNS, "vendor-a.com")

 o ZclassId = UUID5(vendorId, "Product Z")

 o YclassId = UUID5(vendorId, "Product Y")

 This ensures that Vendor A's Product Z cannot install firmware for
 Product Y and Product Y cannot install firmware for Product Z.

Moran, et al. Expires May 2, 2020 [Page 8]

Internet-Draft A Firmware Manifest Information Model October 2019

3.4.2. Example 2: Upgrading Class ID

 Vendor A creates product X. Later, Vendor A adds a new feature to
 product X, creating product X v2. Product X requires a firmware
 update to work with firmware intended for product X v2.

 Vendor A creates UUIDs as follows:

 o vendorId = UUID5(DNS, "vendor-a.com")

 o XclassId = UUID5(vendorId, "Product X")

 o Xv2classId = UUID5(vendorId, "Product X v2")

 When product X receives the firmware update necessary to be
 compatible with product X v2, part of the firmware update changes the
 class ID to Xv2classId.

3.4.3. Example 3: Shared Functionality

 Vendor A produces two products, product X and product Y. These
 components share a common core (such as an operating system), but
 have different applications. The common core and the applications
 can be updated independently. To enable X and Y to receive the same
 common core update, they require the same class ID. To ensure that
 only product X receives application X and only product Y receives
 application Y, product X and product Y must have different class IDs.
 The vendor creates Class IDs as follows:

 o vendorId = UUID5(DNS, "vendor-a.com")

 o XclassId = UUID5(vendorId, "Product X")

 o YclassId = UUID5(vendorId, "Product Y")

 o CommonClassId = UUID5(vendorId, "common core")

 Product X matches against both XclassId and CommonClassId. Product Y
 matches against both YclassId and CommonClassId.

3.5. Manifest Element: Precursor Image Digest Condition

 When a precursor image is required by the payload format, a precursor
 image digest condition MUST be present in the conditions list. The
 precursor image may be installed or stored as a candidate.

 This element is OPTIONAL to implement.

Moran, et al. Expires May 2, 2020 [Page 9]

Internet-Draft A Firmware Manifest Information Model October 2019

 Enables feature: differential updates.

 Implements: REQ.SEC.AUTH.PRECURSOR (Section 4.3.9)

3.6. Manifest Element: Required Image Version List

 When a payload applies to multiple versions of a firmware, the
 required image version list specifies which versions must be present
 for the update to be applied. This allows the update author to
 target specific versions of firmware for an update, while excluding
 those to which it should not be applied.

 Where an update can only be applied over specific predecessor
 versions, that version MUST be specified by the Required Image
 Version List.

 This element is OPTIONAL.

 Implements: REQ.USE.IMG.VERSIONS (Section 4.5.7)

3.7. Manifest Element: Expiration Time

 This element tells a device the time at which the manifest expires
 and should no longer be used. This is only usable in conjunction
 with a secure source of time.

 This element is OPTIONAL and MAY enable user stories where a secure
 source of time is provided and firmware is intended to expire
 predictably.

 Implements: REQ.SEC.EXP (Section 4.3.3)

3.8. Manifest Element: Payload Format

 The format of the payload MUST be indicated to devices in an
 unambiguous way. This element provides a mechanism to describe the
 payload format, within the signed metadata.

 This element is MANDATORY and MUST be present to enable devices to
 decode payloads correctly.

 Implements: REQ.SEC.AUTH.IMG_TYPE (Section 4.3.5), REQ.USE.IMG.FORMAT
 (Section 4.5.5)

Moran, et al. Expires May 2, 2020 [Page 10]

Internet-Draft A Firmware Manifest Information Model October 2019

3.9. Manifest Element: Processing Steps

 A representation of the Processing Steps required to decode a
 payload. The representation MUST describe which algorithm(s) is used
 and any additional parameters required by the algorithm(s). The
 representation MAY group Processing Steps together in predefined
 combinations.

 A Processing Step MAY indicate the expected digest of the payload
 after the processing is complete.

 Processing steps are RECOMMENDED to implement.

 Enables feature: Encrypted, compressed, packed formats

 Implements: REQ.USE.IMG.NESTED (Section 4.5.6)

3.10. Manifest Element: Storage Location

 This element tells the device where to store a payload within a given
 component. The device can use this to establish which permissions
 are necessary and the physical storage location to use.

 This element is MANDATORY and MUST be present to enable devices to
 store payloads to the correct location.

 Implements: REQ.SEC.AUTH.IMG_LOC (Section 4.3.6)

3.10.1. Example 1: Two Storage Locations

 A device supports two components: an OS and an application. These
 components can be updated independently, expressing dependencies to
 ensure compatibility between the components. The Author chooses two
 storage identifiers:

 o "OS"

 o "APP"

3.10.2. Example 2: File System

 A device supports a full filesystem. The Author chooses to use the
 storage identifier as the path at which to install the payload. The
 payload may be a tarball, in which case, it unpacks the tarball into
 the specified path.

Moran, et al. Expires May 2, 2020 [Page 11]

Internet-Draft A Firmware Manifest Information Model October 2019

3.10.3. Example 3: Flash Memory

 A device supports flash memory. The Author chooses to make the
 storage identifier the offset where the image should be written.

3.11. Manifest Element: Component Identifier

 In a heterogeneous storage architecture, a storage identifier is
 insufficient to identify where and how to store a payload. To
 resolve this, a component identifier indicates which part of the
 storage architecture is targeted by the payload. In a homogeneous
 storage architecture, this element is unnecessary.

 This element is OPTIONAL and only necessary in heterogeneous storage
 architecture devices.

 N.B. A serialisation MAY choose to combine Component Identifier and
 Storage Location (Section 3.10)

 Implements: REQ.USE.MFST.COMPONENT (Section 4.5.3)

3.12. Manifest Element: Resource Indicator

 This element provides the information required for the device to
 acquire the resource. This can be encoded in several ways:

 o One URI

 o A list of URIs

 o A prioritised list of URIs

 o A list of signed URIs

 This element is OPTIONAL and only needed when the target device does
 not intrinsically know where to find the payload.

 N.B. Devices will typically require URIs.

 Implements: REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7)

3.13. Manifest Element: Payload Digests

 This element contains one or more digests of one or more payloads.
 This allows the target device to ensure authenticity of the
 payload(s). A serialisation MUST provide a mechanism to select one
 payload from a list based on system parameters, such as Execute-In-
 Place Installation Address.

Moran, et al. Expires May 2, 2020 [Page 12]

Internet-Draft A Firmware Manifest Information Model October 2019

 This element is MANDATORY to implement and fundamentally necessary to
 ensure the authenticity and integrity of the payload. Support for
 more than one digest is OPTIONAL to implement in a recipient device.

 Implements: REQ.SEC.AUTHENTIC (Section 4.3.4), REQ.USE.IMG.SELECT
 (Section 4.5.8)

3.14. Manifest Element: Size

 The size of the payload in bytes.

 Variable-size storage locations MUST be set to exactly the size
 listed in this element.

 This element is MANDATORY and informs the target device how big of a
 payload to expect. Without it, devices are exposed to some classes
 of denial of service attack.

 Implements: REQ.SEC.AUTH.EXEC (Section 4.3.8)

3.15. Manifest Element: Signature

 This is not strictly a manifest element. Instead, the manifest is
 wrapped by a standardised authentication container, such as a COSE
 ([RFC8152]) or CMS ([RFC5652]) signature object. The authentication
 container MUST support multiple actors and multiple authentication
 methods.

 This element is MANDATORY and represents the foundation of all
 security properties of the manifest. There are two exceptions to
 this requirement: 1) if the manifest is authenticated by a second
 manifest as a dependency and 2) if the manifest is authenticated by
 channel security and contains only channel information (such as
 URIs).

 Implements: REQ.SEC.AUTHENTIC (Section 4.3.4), REQ.SEC.RIGHTS
 (Section 4.3.11), REQ.USE.MFST.MULTI_AUTH (Section 4.5.4)

3.16. Manifest Element: Additional installation instructions

 Instructions that the device should execute when processing the
 manifest. This information is distinct from the information
 necessary to process a payload. Additional installation instructions
 include information such as update timing (for example, install only
 on Sunday, at 0200), procedural considerations (for example, shut
 down the equipment under control before executing the update), pre-
 and post-installation steps (for example, run a script).

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5652

Moran, et al. Expires May 2, 2020 [Page 13]

Internet-Draft A Firmware Manifest Information Model October 2019

 This element is OPTIONAL.

 Implements: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

3.17. Manifest Element: Aliases

 A mechanism for a manifest to augment or replace URIs or URI lists
 defined by one or more of its dependencies.

 This element is OPTIONAL and enables some user stories.

 Implements: REQ.USE.MFST.OVERRIDE_REMOTE (Section 4.5.2)

3.18. Manifest Element: Dependencies

 A list of other manifests that are required by the current manifest.
 Manifests are identified an unambiguous way, such as a digest.

 This element is MANDATORY to use in deployments that include both
 multiple authorities and multiple payloads.

 Implements: REQ.USE.MFST.COMPONENT (Section 4.5.3)

3.19. Manifest Element: Encryption Wrapper

 Encrypting firmware images requires symmetric content encryption
 keys. The encryption wrapper provides the information needed for a
 device to obtain or locate a key that it uses to decrypt the
 firmware. Typical choices for an encryption wrapper include CMS
 ([RFC5652]) or COSE ([RFC8152]). This MAY be included in a
 decryption step contained in Processing Steps (Section 3.9).

 This element is MANDATORY to use for encrypted payloads,

 Implements: REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

3.20. Manifest Element: XIP Address

 In order to support XIP systems with multiple possible base
 addresses, it is necessary to specify which address the payload is
 linked for.

 For example a microcontroller may have a simple bootloader that
 chooses one of two images to boot. That microcontroller then needs
 to choose one of two firmware images to install, based on which of
 its two images is older.

 Implements: REQ.USE.IMG.SELECT (Section 4.5.8)

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires May 2, 2020 [Page 14]

Internet-Draft A Firmware Manifest Information Model October 2019

3.21. Manifest Element: Load-time metadata

 Load-time metadata provides the device with information that it needs
 in order to load one or more images. This is effectively a copy
 operation from the permanent storage location of an image into the
 active use location of that image. The metadata contains the source
 and destination of the image as well as any operations that are
 performed on the image.

 Implements: REQ.USE.LOAD (Section 4.5.10)

3.22. Manifest Element: Run-time metadata

 Run-time metadata provides the device with any extra information
 needed to boot the device. This may include information such as the
 entry-point of an XIP image or the kernel command-line of a Linux
 image.

 Implements: REQ.USE.EXEC (Section 4.5.9)

3.23. Manifest Element: Payload

 The Payload element provides a recipient device with the whole
 payload, contained within the manifest superstructure. This enables
 the manifest and payload to be delivered simultaneously.

 Implements: REQ.USE.PAYLOAD (Section 4.5.11)

3.24. Manifest Element: Key Claims

 The Key Claims element is not authenticated by the Signature
 (Section 3.15), instead, it provides a chain of key delegations (or
 references to them) for the device to follow in order to verify the
 key that authenticated the manifest using a trusted key.

 Implements: REQ.USE.DELEGATION (Section 4.5.13)

4. Security Considerations

 The following sub-sections describe the threat model, user stories,
 security requirements, and usability requirements. This section also
 provides the motivations for each of the manifest information
 elements.

Moran, et al. Expires May 2, 2020 [Page 15]

Internet-Draft A Firmware Manifest Information Model October 2019

4.1. Threat Model

 The following sub-sections aim to provide information about the
 threats that were considered, the security requirements that are
 derived from those threats and the fields that permit implementation
 of the security requirements. This model uses the S.T.R.I.D.E.
 [STRIDE] approach. Each threat is classified according to:

 o Spoofing identity

 o Tampering with data

 o Repudiation

 o Information disclosure

 o Denial of service

 o Elevation of privilege

 This threat model only covers elements related to the transport of
 firmware updates. It explicitly does not cover threats outside of
 the transport of firmware updates. For example, threats to an IoT
 device due to physical access are out of scope.

4.2. Threat Descriptions

4.2.1. THREAT.IMG.EXPIRED: Old Firmware

 Classification: Elevation of Privilege

 An attacker sends an old, but valid manifest with an old, but valid
 firmware image to a device. If there is a known vulnerability in the
 provided firmware image, this may allow an attacker to exploit the
 vulnerability and gain control of the device.

 Threat Escalation: If the attacker is able to exploit the known
 vulnerability, then this threat can be escalated to ALL TYPES.

 Mitigated by: REQ.SEC.SEQUENCE (Section 4.3.1)

4.2.2. THREAT.IMG.EXPIRED.ROLLBACK : Offline device + Old Firmware

 Classification: Elevation of Privilege

 An attacker targets a device that has been offline for a long time
 and runs an old firmware version. The attacker sends an old, but
 valid manifest to a device with an old, but valid firmware image.

Moran, et al. Expires May 2, 2020 [Page 16]

Internet-Draft A Firmware Manifest Information Model October 2019

 The attacker-provided firmware is newer than the installed one but
 older than the most recently available firmware. If there is a known
 vulnerability in the provided firmware image then this may allow an
 attacker to gain control of a device. Because the device has been
 offline for a long time, it is unaware of any new updates. As such
 it will treat the old manifest as the most current.

 Threat Escalation: If the attacker is able to exploit the known
 vulnerability, then this threat can be escalated to ALL TYPES.

 Mitigated by: REQ.SEC.EXP (Section 4.3.3)

4.2.3. THREAT.IMG.INCOMPATIBLE: Mismatched Firmware

 Classification: Denial of Service

 An attacker sends a valid firmware image, for the wrong type of
 device, signed by an actor with firmware installation permission on
 both types of device. The firmware is verified by the device
 positively because it is signed by an actor with the appropriate
 permission. This could have wide-ranging consequences. For devices
 that are similar, it could cause minor breakage, or expose security
 vulnerabilities. For devices that are very different, it is likely
 to render devices inoperable.

 Mitigated by: REQ.SEC.COMPATIBLE (Section 4.3.2)

4.2.3.1. Example:

 Suppose that two vendors, Vendor A and Vendor B, adopt the same trade
 name in different geographic regions, and they both make products
 with the same names, or product name matching is not used. This
 causes firmware from Vendor A to match devices from Vendor B.

 If the vendors are the firmware authorities, then devices from Vendor
 A will reject images signed by Vendor B since they use different
 credentials. However, if both devices trust the same Author, then,
 devices from Vendor A could install firmware intended for devices
 from Vendor B.

4.2.4. THREAT.IMG.FORMAT: The target device misinterprets the type of
 payload

 Classification: Denial of Service

 If a device misinterprets the format of the firmware image, it may
 cause a device to install a firmware image incorrectly. An

Moran, et al. Expires May 2, 2020 [Page 17]

Internet-Draft A Firmware Manifest Information Model October 2019

 incorrectly installed firmware image would likely cause the device to
 stop functioning.

 Threat Escalation: An attacker that can cause a device to
 misinterpret the received firmware image may gain elevation of
 privilege and potentially expand this to all types of threat.

 Mitigated by: REQ.SEC.AUTH.IMG_TYPE (Section 4.3.5)

4.2.5. THREAT.IMG.LOCATION: The target device installs the payload to
 the wrong location

 Classification: Denial of Service

 If a device installs a firmware image to the wrong location on the
 device, then it is likely to break. For example, a firmware image
 installed as an application could cause a device and/or an
 application to stop functioning.

 Threat Escalation: An attacker that can cause a device to
 misinterpret the received code may gain elevation of privilege and
 potentially expand this to all types of threat.

 Mitigated by: REQ.SEC.AUTH.IMG_LOC (Section 4.3.5)

4.2.6. THREAT.NET.REDIRECT: Redirection to inauthentic payload hosting

 Classification: Denial of Service

 If a device does not know where to obtain the payload for an update,
 it may be redirected to an attacker's server. This would allow an
 attacker to provide broken payloads to devices.

 Mitigated by: REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7)

4.2.7. THREAT.NET.MITM: Traffic interception

 Classification: Spoofing Identity, Tampering with Data

 An attacker intercepts all traffic to and from a device. The
 attacker can monitor or modify any data sent to or received from the
 device. This can take the form of: manifests, payloads, status
 reports, and capability reports being modified or not delivered to
 the intended recipient. It can also take the form of analysis of
 data sent to or from the device, either in content, size, or
 frequency.

Moran, et al. Expires May 2, 2020 [Page 18]

Internet-Draft A Firmware Manifest Information Model October 2019

 Mitigated by: REQ.SEC.AUTHENTIC (Section 4.3.4),
 REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12), REQ.SEC.AUTH.REMOTE_LOC
 (Section 4.3.7), REQ.SEC.MFST.CONFIDENTIALITY (Section 4.3.14),
 REQ.SEC.REPORTING (Section 4.3.16)

4.2.8. THREAT.IMG.REPLACE: Payload Replacement

 Classification: Elevation of Privilege

 An attacker replaces a newly downloaded firmware after a device
 finishes verifying a manifest. This could cause the device to
 execute the attacker's code. This attack likely requires physical
 access to the device. However, it is possible that this attack is
 carried out in combination with another threat that allows remote
 execution. This is a typical Time Of Check/Time Of Use threat.

 Threat Escalation: If the attacker is able to exploit a known
 vulnerability, or if the attacker can supply their own firmware, then
 this threat can be escalated to ALL TYPES.

 Mitigated by: REQ.SEC.AUTH.EXEC (Section 4.3.8)

4.2.9. THREAT.IMG.NON_AUTH: Unauthenticated Images

 Classification: Elevation of Privilege / All Types

 If an attacker can install their firmware on a device, by
 manipulating either payload or metadata, then they have complete
 control of the device.

 Mitigated by: REQ.SEC.AUTHENTIC (Section 4.3.4)

4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor images

 Classification: Denial of Service / All Types

 An attacker sends a valid, current manifest to a device that has an
 unexpected precursor image. If a payload format requires a precursor
 image (for example, delta updates) and that precursor image is not
 available on the target device, it could cause the update to break.

 An attacker that can cause a device to install a payload against the
 wrong precursor image could gain elevation of privilege and
 potentially expand this to all types of threat. However, it is
 unlikely that a valid differential update applied to an incorrect
 precursor would result in a functional, but vulnerable firmware.

 Mitigated by: REQ.SEC.AUTH.PRECURSOR (Section 4.3.9)

Moran, et al. Expires May 2, 2020 [Page 19]

Internet-Draft A Firmware Manifest Information Model October 2019

4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware

 Classification: Denial of Service, Elevation of Privilege

 This threat can appear in several ways, however it is ultimately
 about ensuring that devices retain the behaviour required by their
 Owner, Device Operator, or Network Operator. The owner or operator
 of a device typically requires that the device maintain certain
 features, functions, capabilities, behaviours, or interoperability
 constraints (more generally, behaviour). If these requirements are
 broken, then a device will not fulfill its purpose. Therefore, if
 any party other than the device's Owner or the Owner's contracted
 Device Operator has the ability to modify device behaviour without
 approval, then this constitutes an elevation of privilege.

 Similarly, a network operator may require that devices behave in a
 particular way in order to maintain the integrity of the network. If
 devices behaviour on a network can be modified without the approval
 of the network operator, then this constitutes an elevation of
 privilege with respect to the network.

 For example, if the owner of a device has purchased that device
 because of Features A, B, and C, and a firmware update is issued by
 the manufacturer, which removes Feature A, then the device may not
 fulfill the owner's requirements any more. In certain circumstances,
 this can cause significantly greater threats. Suppose that Feature A
 is used to implement a safety-critical system, whether the
 manufacturer intended this behaviour or not. When unapproved
 firmware is installed, the system may become unsafe.

 In a second example, the owner or operator of a system of two or more
 interoperating devices needs to approve firmware for their system in
 order to ensure interoperability with other devices in the system.
 If the firmware is not qualified, the system as a whole may not work.
 Therefore, if a device installs firmware without the approval of the
 device owner or operator, this is a threat to devices or the system
 as a whole.

 Similarly, the operator of a network may need to approve firmware for
 devices attached to the network in order to ensure favourable
 operating conditions within the network. If the firmware is not
 qualified, it may degrade the performance of the network. Therefore,
 if a device installs firmware without the approval of the network
 operator, this is a threat to the network itself.

 Threat Escalation: If the firmware expects configuration that is
 present in devices deployed in Network A, but not in devices deployed

Moran, et al. Expires May 2, 2020 [Page 20]

Internet-Draft A Firmware Manifest Information Model October 2019

 in Network B, then the device may experience degraded security,
 leading to threats of All Types.

 Mitigated by: REQ.SEC.RIGHTS (Section 4.3.11), REQ.SEC.ACCESS_CONTROL
 (Section 4.3.13)

4.2.11.1. Example 1: Multiple Network Operators with a Single Device
 Operator

 In this example, assume that Device Operators expect the rights to
 create firmware but that Network Operators expect the rights to
 qualify firmware as fit-for-purpose on their networks. Additionally,
 assume that Device Operators manage devices that can be deployed on
 any network, including Network A and B in our example.

 An attacker may obtain a manifest for a device on Network A. Then,
 this attacker sends that manifest to a device on Network B. Because
 Network A and Network B are under control of different Operators, and
 the firmware for a device on Network A has not been qualified to be
 deployed on Network B, the target device on Network B is now in
 violation of the Operator B's policy and may be disabled by this
 unqualified, but signed firmware.

 This is a denial of service because it can render devices inoperable.
 This is an elevation of privilege because it allows the attacker to
 make installation decisions that should be made by the Operator.

4.2.11.2. Example 2: Single Network Operator with Multiple Device
 Operators

 Multiple devices that interoperate are used on the same network and
 communicate with each other. Some devices are manufactured and
 managed by Device Operator A and other devices by Device Operator B.
 A new firmware is released by Device Operator A that breaks
 compatibility with devices from Device Operator B. An attacker sends
 the new firmware to the devices managed by Device Operator A without
 approval of the Network Operator. This breaks the behaviour of the
 larger system causing denial of service and possibly other threats.
 Where the network is a distributed SCADA system, this could cause
 misbehaviour of the process that is under control.

4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering Of Firmware Image
 for Vulnerability Analysis

 Classification: All Types

 An attacker wants to mount an attack on an IoT device. To prepare
 the attack he or she retrieves the provided firmware image and

Moran, et al. Expires May 2, 2020 [Page 21]

Internet-Draft A Firmware Manifest Information Model October 2019

 performs reverse engineering of the firmware image to analyze it for
 specific vulnerabilities.

 Mitigated by: REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements

 Classification: Elevation of Privilege

 An authorised actor, but not the Author, uses an override mechanism
 (USER_STORY.OVERRIDE (Section 4.4.3)) to change an information
 element in a manifest signed by the Author. For example, if the
 authorised actor overrides the digest and URI of the payload, the
 actor can replace the entire payload with a payload of their choice.

 Threat Escalation: By overriding elements such as payload
 installation instructions or firmware digest, this threat can be
 escalated to all types.

 Mitigated by: REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure

 Classification: Information Disclosure

 A third party may be able to extract sensitive information from the
 manifest.

 Mitigated by: REQ.SEC.MFST.CONFIDENTIALITY (Section 4.3.14)

4.2.15. THREAT.IMG.EXTRA: Extra data after image

 Classification: All Types

 If a third party modifies the image so that it contains extra code
 after a valid, authentic image, that third party can then use their
 own code in order to make better use of an existing vulnerability.

 Mitigated by: REQ.SEC.IMG.COMPLETE_DIGEST (Section 4.3.15)

4.2.16. THREAT.KEY.EXPOSURE: Exposure of signing keys

 Classification: All Types

 If a third party obtains a key or even indirect access to a key, for
 example in an HSM, then they can perform the same actions as the
 legitimate owner of the key. If the key is trusted for firmware

Moran, et al. Expires May 2, 2020 [Page 22]

Internet-Draft A Firmware Manifest Information Model October 2019

 update, then the third party can perform firmware updates as though
 they were the legitimate owner of the key.

 For example, if manifest signing is performed on a server connected
 to the internet, an attacker may compromise the server and then be
 able to sign manifests, even if the keys for manifest signing are
 held in an HSM that is accessed by the server.

 Mitigated by: REQ.SEC.KEY.PROTECTION (Section 4.3.17)

4.2.17. THREAT.MFST.MODIFICATION: Modification of manifest or payload
 prior to signing

 Classification: All Types

 If an attacker can alter a manifest or payload before it is signed,
 they can perform all the same actions as the manifest author. This
 allows the attacker to deploy firmware updates to any devices that
 trust the manifest author. If an attacker can modify the code of a
 payload before the corresponding manifest is created, they can insert
 their own code. If an attacker can modify the manifest before it is
 signed, they can redirect the manifest to their own payload.

 For example, the attacker deploys malware to the developer's computer
 or signing service that watches manifest creation activities and
 inserts code into any binary that is referenced by a manifest.

 For example, the attacker deploys malware to the developer's computer
 or signing service that replaces the referenced binary (digest) and
 URI with the attacker's binary (digest) and URI.

 Mitigated by: REQ.SEC.MFST.CHECK (Section 4.3.18),
 REQ.SEC.MFST.TRUSTED (Section 4.3.19)

4.3. Security Requirements

 The security requirements here are a set of policies that mitigate
 the threats described in Section 4.1.

4.3.1. REQ.SEC.SEQUENCE: Monotonic Sequence Numbers

 Only an actor with firmware installation authority is permitted to
 decide when device firmware can be installed. To enforce this rule,
 manifests MUST contain monotonically increasing sequence numbers.
 Manifests MAY use UTC epoch timestamps to coordinate monotonically
 increasing sequence numbers across many actors in many locations. If
 UTC epoch timestamps are used, they MUST NOT be treated as times,
 they MUST be treated only as sequence numbers. Devices MUST reject

Moran, et al. Expires May 2, 2020 [Page 23]

Internet-Draft A Firmware Manifest Information Model October 2019

 manifests with sequence numbers smaller than any onboard sequence
 number.

 Note: This is not a firmware version. It is a manifest sequence
 number. A firmware version may be rolled back by creating a new
 manifest for the old firmware version with a later sequence number.

 Mitigates: THREAT.IMG.EXPIRED (Section 4.2.1)

 Implemented by: Monotonic Sequence Number (Section 3.2)

4.3.2. REQ.SEC.COMPATIBLE: Vendor, Device-type Identifiers

 Devices MUST only apply firmware that is intended for them. Devices
 MUST know with fine granularity that a given update applies to their
 vendor, model, hardware revision, software revision. Human-readable
 identifiers are often error-prone in this regard, so unique
 identifiers SHOULD be used.

 Mitigates: THREAT.IMG.INCOMPATIBLE (Section 4.2.3)

 Implemented by: Vendor ID Condition (Section 3.3), Class ID Condition
 (Section 3.4)

4.3.3. REQ.SEC.EXP: Expiration Time

 Firmware MAY expire after a given time. Devices MAY provide a secure
 clock (local or remote). If a secure clock is provided and the
 Firmware manifest has an expiration timestamp, the device MUST reject
 the manifest if current time is later than the expiration time.

 Mitigates: THREAT.IMG.EXPIRED.ROLLBACK (Section 4.2.2)

 Implemented by: Expiration Time (Section 3.7)

4.3.4. REQ.SEC.AUTHENTIC: Cryptographic Authenticity

 The authenticity of an update MUST be demonstrable. Typically, this
 means that updates must be digitally authenticated. Because the
 manifest contains information about how to install the update, the
 manifest's authenticity MUST also be demonstrable. To reduce the
 overhead required for validation, the manifest contains the digest of
 the firmware image, rather than a second digital signature. The
 authenticity of the manifest can be verified with a digital signature
 or Message Authentication Code. The authenticity of the firmware
 image is tied to the manifest by the use of a digest of the firmware
 image.

Moran, et al. Expires May 2, 2020 [Page 24]

Internet-Draft A Firmware Manifest Information Model October 2019

 Mitigates: THREAT.IMG.NON_AUTH (Section 4.2.9), THREAT.NET.MITM
 (Section 4.2.7)

 Implemented by: Signature (Section 3.15), Payload Digest
 (Section 3.13)

4.3.5. REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type

 The type of payload (which may be independent of format) MUST be
 authenticated. For example, the target must know whether the payload
 is XIP firmware, a loadable module, or serialized configuration data.

 Mitigates: THREAT.IMG.FORMAT (Section 4.2.4)

 Implemented by: Payload Format (Section 3.8), Storage Location
 (Section 3.10)

4.3.6. Security Requirement REQ.SEC.AUTH.IMG_LOC: Authenticated Storage
 Location

 The location on the target where the payload is to be stored MUST be
 authenticated.

 Mitigates: THREAT.IMG.LOCATION (Section 4.2.5)

 Implemented by: Storage Location (Section 3.10)

4.3.7. REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Resource Location

 The location where a target should find a payload MUST be
 authenticated.

 Mitigates: THREAT.NET.REDIRECT (Section 4.2.6), THREAT.NET.MITM
 (Section 4.2.7)

 Implemented by: Resource Indicator (Section 3.12)

4.3.8. REQ.SEC.AUTH.EXEC: Secure Execution

 The target SHOULD verify firmware at time of boot. This requires
 authenticated payload size, and digest.

 Mitigates: THREAT.IMG.REPLACE (Section 4.2.8)

 Implemented by: Payload Digest (Section 3.13), Size (Section 3.14)

Moran, et al. Expires May 2, 2020 [Page 25]

Internet-Draft A Firmware Manifest Information Model October 2019

4.3.9. REQ.SEC.AUTH.PRECURSOR: Authenticated precursor images

 If an update uses a differential compression method, it MUST specify
 the digest of the precursor image and that digest MUST be
 authenticated.

 Mitigates: THREAT.UPD.WRONG_PRECURSOR (Section 4.2.10)

 Implemented by: Precursor Image Digest (Section 3.5)

4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs

 The identifiers that specify firmware compatibility MUST be
 authenticated to ensure that only compatible firmware is installed on
 a target device.

 Mitigates: THREAT.IMG.INCOMPATIBLE (Section 4.2.3)

 Implemented By: Vendor ID Condition (Section 3.3), Class ID Condition
 (Section 3.4)

4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity

 If a device grants different rights to different actors, exercising
 those rights MUST be accompanied by proof of those rights, in the
 form of proof of authenticity. Authenticity mechanisms such as those
 required in REQ.SEC.AUTHENTIC (Section 4.3.4) can be used to prove
 authenticity.

 For example, if a device has a policy that requires that firmware
 have both an Authorship right and a Qualification right and if that
 device grants Authorship and Qualification rights to different
 parties, such as a Device Operator and a Network Operator,
 respectively, then the firmware cannot be installed without proof of
 rights from both the Device Operator and the Network Operator.

 Mitigates: THREAT.UPD.UNAPPROVED (Section 4.2.11)

 Implemented by: Signature (Section 3.15)

4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption

 The manifest information model MUST enable encrypted payloads.
 Encryption helps to prevent third parties, including attackers, from
 reading the content of the firmware image. This can protect against
 confidential information disclosures and discovery of vulnerabilities
 through reverse engineering. Therefore the manifest must convey the

Moran, et al. Expires May 2, 2020 [Page 26]

Internet-Draft A Firmware Manifest Information Model October 2019

 information required to allow an intended recipient to decrypt an
 encrypted payload.

 Mitigates: THREAT.IMG.DISCLOSURE (Section 4.2.12), THREAT.NET.MITM
 (Section 4.2.7)

 Implemented by: Encryption Wrapper (Section 3.19)

4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control

 If a device grants different rights to different actors, then an
 exercise of those rights MUST be validated against a list of rights
 for the actor. This typically takes the form of an Access Control
 List (ACL). ACLs are applied to two scenarios:

 1. An ACL decides which elements of the manifest may be overridden
 and by which actors.

 2. An ACL decides which component identifier/storage identifier
 pairs can be written by which actors.

 Mitigates: THREAT.MFST.OVERRIDE (Section 4.2.13),
 THREAT.UPD.UNAPPROVED (Section 4.2.11)

 Implemented by: Client-side code, not specified in manifest.

4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests

 It MUST be possible to encrypt part or all of the manifest. This may
 be accomplished with either transport encryption or with at-rest
 encryption.

 Mitigates: THREAT.MFST.EXPOSURE (Section 4.2.14), THREAT.NET.MITM
 (Section 4.2.7)

 Implemented by: External Encryption Wrapper / Transport Security

4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest

 The digest SHOULD cover all available space in a fixed-size storage
 location. Variable-size storage locations MUST be restricted to
 exactly the size of deployed payload. This prevents any data from
 being distributed without being covered by the digest. For example,
 XIP microcontrollers typically have fixed-size storage. These
 devices should deploy a digest that covers the deployed firmware
 image, concatenated with the default erased value of any remaining
 space.

Moran, et al. Expires May 2, 2020 [Page 27]

Internet-Draft A Firmware Manifest Information Model October 2019

 Mitigates: THREAT.IMG.EXTRA (Section 4.2.15)

 Implemented by: Payload Digests (Section 3.13)

4.3.16. REQ.SEC.REPORTING: Secure Reporting

 Status reports from the device to any remote system SHOULD be
 performed over an authenticated, confidential channel in order to
 prevent modification or spoofing of the reports.

 Mitigates: THREAT.NET.MITM (Section 4.2.7)

4.3.17. REQ.SEC.KEY.PROTECTION: Protected storage of signing keys

 Cryptographic keys for signing manifests SHOULD be stored in a manner
 that is inaccessible to networked devices, for example in an HSM, or
 an air-gapped computer. This protects against an attacker obtaining
 the keys.

 Keys SHOULD be stored in a way that limits the risk of a legitimate,
 but compromised, entity (such as a server or developer computer)
 issuing signing requests.

 Mitigates: THREAT.KEY.EXPOSURE (Section 4.2.16)

4.3.18. REQ.SEC.MFST.CHECK: Validate manifests prior to deployment

 Manifests SHOULD be parsed and examined prior to deployment to
 validate that their contents have not been modified during creation
 and signing.

 Mitigates: THREAT.MFST.MODIFICATION (Section 4.2.17)

4.3.19. REQ.SEC.MFST.TRUSTED: Construct manifests in a trusted
 environment

 For high risk deployments, such as large numbers of devices or
 critical function devices, manifests SHOULD be constructed in an
 environment that is protected from interference, such as an air-
 gapped computer. Note that a networked computer connected to an HSM
 does not fulfill this requirement (see THREAT.MFST.MODIFICATION
 (Section 4.2.17)).

 Mitigates: THREAT.MFST.MODIFICATION (Section 4.2.17)

Moran, et al. Expires May 2, 2020 [Page 28]

Internet-Draft A Firmware Manifest Information Model October 2019

4.4. User Stories

 User stories provide expected use cases. These are used to feed into
 usability requirements.

4.4.1. USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions

 As a Device Operator, I want to provide my devices with additional
 installation instructions so that I can keep process details out of
 my payload data.

 Some installation instructions might be:

 o Use a table of hashes to ensure that each block of the payload is
 validate before writing.

 o Do not report progress.

 o Pre-cache the update, but do not install.

 o Install the pre-cached update matching this manifest.

 o Install this update immediately, overriding any long-running
 tasks.

 Satisfied by: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

4.4.2. USER_STORY.MFST.FAIL_EARLY: Fail Early

 As a designer of a resource-constrained IoT device, I want bad
 updates to fail as early as possible to preserve battery life and
 limit consumed bandwidth.

 Satisfied by: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

4.4.3. USER_STORY.OVERRIDE: Override Non-Critical Manifest Elements

 As a Device Operator, I would like to be able to override the non-
 critical information in the manifest so that I can control my devices
 more precisely. The authority to override this information is
 provided via the installation of a limited trust anchor by another
 authority.

 Some examples of potentially overridable information:

 o URIs (Section 3.12): this allows the Device Operator to direct
 devices to their own infrastructure in order to reduce network
 load.

Moran, et al. Expires May 2, 2020 [Page 29]

Internet-Draft A Firmware Manifest Information Model October 2019

 o Conditions: this allows the Device Operator to pose additional
 constraints on the installation of the manifest.

 o Directives (Section 3.16): this allows the Device Operator to add
 more instructions such as time of installation.

 o Processing Steps (Section 3.9): If an intermediary performs an
 action on behalf of a device, it may need to override the
 processing steps. It is still possible for a device to verify the
 final content and the result of any processing step that specifies
 a digest. Some processing steps should be non-overridable.

 Satisfied by: USER_STORY.OVERRIDE (Section 4.4.3),
 REQ.USE.MFST.COMPONENT (Section 4.5.3)

4.4.4. USER_STORY.COMPONENT: Component Update

 As a Device Operator, I want to divide my firmware into components,
 so that I can reduce the size of updates, make different parties
 responsible for different components, and divide my firmware into
 frequently updated and infrequently updated components.

 Satisfied by: REQ.USE.MFST.COMPONENT (Section 4.5.3)

4.4.5. USER_STORY.MULTI_AUTH: Multiple Authorisations

 As a Device Operator, I want to ensure the quality of a firmware
 update before installing it, so that I can ensure interoperability of
 all devices in my product family. I want to restrict the ability to
 make changes to my devices to require my express approval.

 Satisfied by: REQ.USE.MFST.MULTI_AUTH (Section 4.5.4),
 REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

4.4.6. USER_STORY.IMG.FORMAT: Multiple Payload Formats

 As a Device Operator, I want to be able to send multiple payload
 formats to suit the needs of my update, so that I can optimise the
 bandwidth used by my devices.

 Satisfied by: REQ.USE.IMG.FORMAT (Section 4.5.5)

4.4.7. USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information
 Disclosures

 As a firmware author, I want to prevent confidential information from
 being disclosed during firmware updates. It is assumed that channel

Moran, et al. Expires May 2, 2020 [Page 30]

Internet-Draft A Firmware Manifest Information Model October 2019

 security or at-rest encryption is adequate to protect the manifest
 itself against information disclosure.

 Satisfied by: REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

4.4.8. USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking
 Unknown Formats

 As a Device Operator, I want devices to determine whether they can
 process a payload prior to downloading it.

 In some cases, it may be desirable for a third party to perform some
 processing on behalf of a target. For this to occur, the third party
 MUST indicate what processing occurred and how to verify it against
 the Trust Provisioning Authority's intent.

 This amounts to overriding Processing Steps (Section 3.9) and
 Resource Indicator (Section 3.12).

 Satisfied by: REQ.USE.IMG.FORMAT (Section 4.5.5), REQ.USE.IMG.NESTED
 (Section 4.5.6), REQ.USE.MFST.OVERRIDE_REMOTE (Section 4.5.2)

4.4.9. USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of
 Target Firmware

 As a Device Operator, I want to be able to target devices for updates
 based on their current firmware version, so that I can control which
 versions are replaced with a single manifest.

 Satisfied by: REQ.USE.IMG.VERSIONS (Section 4.5.7)

4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose Between Images

 As a developer, I want to be able to sign two or more versions of my
 firmware in a single manifest so that I can use a very simple
 bootloader that chooses between two or more images that are executed
 in-place.

 Satisfied by: REQ.USE.IMG.SELECT (Section 4.5.8)

4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using Manifests

 As a signer for both secure execution/boot and firmware deployment, I
 would like to use the same signed document for both tasks so that my
 data size is smaller, I can share common code, and I can reduce
 signature verifications.

 Satisfied by: REQ.USE.EXEC (Section 4.5.9)

Moran, et al. Expires May 2, 2020 [Page 31]

Internet-Draft A Firmware Manifest Information Model October 2019

4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load

 As a developer of firmware for a run-from-RAM device, I would like to
 use compressed images and to indicate to the bootloader that I am
 using a compressed image in the manifest so that it can be used with
 secure execution/boot.

 Satisfied by: REQ.USE.LOAD (Section 4.5.10)

4.4.13. USER_STORY.MFST.IMG: Payload in Manifest

 As an operator of devices on a constrained network, I would like the
 manifest to be able to include a small payload in the same packet so
 that I can reduce network traffic.

 Satisfied by: REQ.USE.PAYLOAD (Section 4.5.11)

4.4.14. USER_STORY.MFST.PARSE: Simple Parsing

 As a developer for constrained devices, I want a low complexity
 library for processing updates so that I can fit more application
 code on my device.

 Satisfied by: REQ.USE.PARSE (Section 4.5.12)

4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest

 As a Device Operator that rotates delegated authority more often than
 delivering firmware updates, I would like to delegate a new authority
 when I deliver a firmware update so that I can accomplish both tasks
 in a single transmission.

 Satisfied by: REQ.USE.DELEGATION (Section 4.5.13)

4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation

 As an operator of a constrained network, I would like devices on my
 network to be able to evaluate the suitability of an update prior to
 initiating any large download so that I can prevent unnecessary
 consumption of bandwidth.

 Satisfied by: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

4.5. Usability Requirements

 The following usability requirements satisfy the user stories listed
 above.

Moran, et al. Expires May 2, 2020 [Page 32]

Internet-Draft A Firmware Manifest Information Model October 2019

4.5.1. REQ.USE.MFST.PRE_CHECK: Pre-Installation Checks

 It MUST be possible for a manifest author to place ALL information
 required to process an update in the manifest.

 For example: Information about which precursor image is required for
 a differential update MUST be placed in the manifest, not in the
 differential compression header.

 Satisfies: [USER_STORY.MFST.PRE_CHECK(#user-story-mfst-pre-check),
 USER_STORY.INSTALL.INSTRUCTIONS (Section 4.4.1)

 Implemented by: Additional installation instructions (Section 3.16)

4.5.2. REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location

 It MUST be possible to redirect payload fetches. This applies where
 two manifests are used in conjunction. For example, a Device
 Operator creates a manifest specifying a payload and signs it, and
 provides a URI for that payload. A Network Operator creates a second
 manifest, with a dependency on the first. They use this second
 manifest to override the URIs provided by the Device Operator,
 directing them into their own infrastructure instead. Some devices
 may provide this capability, while others may only look at canonical
 sources of firmware. For this to be possible, the device must fetch
 the payload, whereas a device that accepts payload pushes will ignore
 this feature.

 N.B. If a manifest is delivered over an authenticated channel and
 that manifest contains only override information for which the remote
 is authorised, then it can be considered authenticated by the channel
 authentication.

 Satisfies: USER_STORY.OVERRIDE (Section 4.4.3)

 Implemented by: Aliases (Section 3.17)

4.5.3. REQ.USE.MFST.COMPONENT: Component Updates

 It MUST be possible express the requirement to install one or more
 payloads from one or more authorities so that a multi-payload update
 can be described. This allows multiple parties with different
 permissions to collaborate in creating a single update for the IoT
 device, across multiple components.

 This requirement effectively means that it must be possible to
 construct a tree of manifests on a multi-image target.

Moran, et al. Expires May 2, 2020 [Page 33]

Internet-Draft A Firmware Manifest Information Model October 2019

 In order to enable devices with a heterogeneous storage architecture,
 the manifest must enable specification of both storage system and the
 storage location within that storage system.

 Satisfies: USER_STORY.OVERRIDE (Section 4.4.3), USER_STORY.COMPONENT
 (Section 4.4.4)

 Implemented by Manifest Element: Dependencies, StorageIdentifier,
 ComponentIdentifier

4.5.3.1. Example 1: Multiple Microcontrollers

 An IoT device with multiple microcontrollers in the same physical
 device (HeSA) will likely require multiple payloads with different
 component identifiers.

4.5.3.2. Example 2: Code and Configuration

 A firmware image can be divided into two payloads: code and
 configuration. These payloads may require authorizations from
 different actors in order to install (see REQ.SEC.RIGHTS
 (Section 4.3.11) and REQ.SEC.ACCESS_CONTROL (Section 4.3.13)). This
 structure means that multiple manifests may be required, with a
 dependency structure between them.

4.5.3.3. Example 3: Multiple Software Modules

 A firmware image can be divided into multiple functional blocks for
 separate testing and distribution. This means that code would need
 to be distributed in multiple payloads. For example, this might be
 desirable in order to ensure that common code between devices is
 identical in order to reduce distribution bandwidth.

4.5.4. REQ.USE.MFST.MULTI_AUTH: Multiple authentications

 It MUST be possible to authenticate a manifest multiple times so that
 authorisations from multiple parties with different permissions can
 be required in order to authorise installation of a manifest.

 Satisfies: USER_STORY.MULTI_AUTH (Section 4.4.5)

 Implemented by: Signature (Section 3.15)

4.5.5. REQ.USE.IMG.FORMAT: Format Usability

 The manifest serialisation MUST accommodate any payload format that
 an Operator wishes to use. This enables the recipient to detect

Moran, et al. Expires May 2, 2020 [Page 34]

Internet-Draft A Firmware Manifest Information Model October 2019

 which format the Operator has chosen. Some examples of payload
 format are:

 o Binary

 o Elf

 o Differential

 o Compressed

 o Packed configuration

 o Intel HEX

 o S-Record

 Satisfies: USER_STORY.IMG.FORMAT (Section 4.4.6)
 USER_STORY.IMG.UNKNOWN_FORMAT (Section 4.4.8)

 Implemented by: Payload Format (Section 3.8)

4.5.6. REQ.USE.IMG.NESTED: Nested Formats

 The manifest serialisation MUST accommodate nested formats,
 announcing to the target device all the nesting steps and any
 parameters used by those steps.

 Satisfies: USER_STORY.IMG.CONFIDENTIALITY (Section 4.4.7)

 Implemented by: Processing Steps (Section 3.9)

4.5.7. REQ.USE.IMG.VERSIONS: Target Version Matching

 The manifest serialisation MUST provide a method to specify multiple
 version numbers of firmware to which the manifest applies, either
 with a list or with range matching.

 Satisfies: USER_STORY.IMG.CURRENT_VERSION (Section 4.4.9)

 Implemented by: Required Image Version List (Section 3.6)

4.5.8. REQ.USE.IMG.SELECT: Select Image by Destination

 The manifest serialisation MUST provide a mechanism to list multiple
 equivalent payloads by Execute-In-Place Installation Address,
 including the payload digest and, optionally, payload URIs.

Moran, et al. Expires May 2, 2020 [Page 35]

Internet-Draft A Firmware Manifest Information Model October 2019

 Satisfies: USER_STORY.IMG.SELECT (Section 4.4.10)

 Implemented by: XIP Address (Section 3.20)

4.5.9. REQ.USE.EXEC: Executable Manifest

 It MUST be possible to describe an executable system with a manifest
 on both Execute-In-Place microcontrollers and on complex operating
 systems. This requires the manifest to specify the digest of each
 statically linked dependency. In addition, the manifest
 serialisation MUST be able to express metadata, such as a kernel
 command-line, used by any loader or bootloader.

 Satisfies: USER_STORY.EXEC.MFST (Section 4.4.11)

 Implemented by: Run-time metadata (Section 3.22)

4.5.10. REQ.USE.LOAD: Load-Time Information

 It MUST be possible to specify additional metadata for load time
 processing of a payload, such as cryptographic information, load-
 address, and compression algorithm.

 N.B. load comes before exec/boot.

 Satisfies: USER_STORY.EXEC.DECOMPRESS (Section 4.4.12)

 Implemented by: Load-time metadata (Section 3.21)

4.5.11. REQ.USE.PAYLOAD: Payload in Manifest Superstructure

 It MUST be possible to place a payload in the same structure as the
 manifest. This MAY place the payload in the same packet as the
 manifest.

 Satisfies: USER_STORY.MFST.IMG (Section 4.4.13)

 Implemented by: Payload (Section 3.23)

4.5.12. REQ.USE.PARSE: Simple Parsing

 The structure of the manifest MUST be simple to parse, without need
 for a general-purpose parser.

 Satisfies: USER_STORY.MFST.PARSE (Section 4.4.14)

 Implemented by: N/A

Moran, et al. Expires May 2, 2020 [Page 36]

Internet-Draft A Firmware Manifest Information Model October 2019

4.5.13. REQ.USE.DELEGATION: Delegation of Authority in Manifest

 Any serialisation MUST enable the delivery of a key claim with, but
 not authenticated by, a manifest. This key claim delivers a new key
 with which the recipient can verify the manifest.

 Satisfies: USER_STORY.MFST.DELEGATION (Section 4.4.15)

 Implemented by: Key Claims (Section 3.24)

5. IANA Considerations

 This document does not require any actions by IANA.

6. Acknowledgements

 We would like to thank our working group chairs, Dave Thaler, Russ
 Housley and David Waltermire, for their review comments and their
 support.

 We would like to thank the participants of the 2018 Berlin SUIT
 Hackathon and the June 2018 virtual design team meetings for their
 discussion input. In particular, we would like to thank Koen
 Zandberg, Emmanuel Baccelli, Carsten Bormann, David Brown, Markus
 Gueller, Frank Audun Kvamtro, Oyvind Ronningstad, Michael Richardson,
 Jan-Frederik Rieckers, Francisco Acosta, Anton Gerasimov, Matthias
 Waehlisch, Max Groening, Daniel Petry, Gaetan Harter, Ralph Hamm,
 Steve Patrick, Fabio Utzig, Paul Lambert, Benjamin Kaduk, Said
 Gharout, and Milen Stoychev.

 We would like to thank those who contributed to the development of
 this information model. In particular, we would like to thank
 Milosch Meriac, Jean-Luc Giraud, Dan Ros, Amyas Philips, and Gary
 Thomson.

7. References

7.1. Normative References

 [I-D.ietf-suit-architecture]
 Moran, B., Meriac, M., Tschofenig, H., and D. Brown, "A
 Firmware Update Architecture for Internet of Things
 Devices", draft-ietf-suit-architecture-07 (work in
 progress), October 2019.

https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-07

Moran, et al. Expires May 2, 2020 [Page 37]

Internet-Draft A Firmware Manifest Information Model October 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [STRIDE] Microsoft, "The STRIDE Threat Model", May 2018,
 <https://msdn.microsoft.com/en-us/library/
 ee823878(v=cs.20).aspx>.

7.3. URIs

 [1] mailto:suit@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/suit

 [3] https://www.ietf.org/mail-archive/web/suit/current/index.html

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc5652
https://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://msdn.microsoft.com/en-us/library/
https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires May 2, 2020 [Page 38]

Internet-Draft A Firmware Manifest Information Model October 2019

Appendix A. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/suit [2]

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/suit/current/index.html [3]

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@gmx.net

 Henk Birkholz
 Fraunhofer SIT

 EMail: henk.birkholz@sit.fraunhofer.de

https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires May 2, 2020 [Page 39]

