
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Informational Arm Limited
Expires: October 8, 2021 H. Birkholz
 Fraunhofer SIT
 April 06, 2021

A Manifest Information Model for Firmware Updates in IoT Devices
draft-ietf-suit-information-model-11

Abstract

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a reliable and secure firmware update mechanism that is also
 suitable for constrained devices. Ensuring that devices function and
 remain secure over their service life requires such an update
 mechanism to fix vulnerabilities, to update configuration settings,
 as well as adding new functionality.

 One component of such a firmware update is a concise and machine-
 processable meta-data document, or manifest, that describes the
 firmware image(s) and offers appropriate protection. This document
 describes the information that must be present in the manifest.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 8, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Moran, et al. Expires October 8, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft A Firmware Manifest Information Model April 2021

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
2. Requirements and Terminology 6
2.1. Requirements Notation 6
2.2. Terminology . 6

3. Manifest Information Elements 6
3.1. Version ID of the Manifest Structure 7
3.2. Monotonic Sequence Number 7
3.3. Vendor ID . 7
3.4. Class ID . 8
3.4.1. Example 1: Different Classes 9
3.4.2. Example 2: Upgrading Class ID 9
3.4.3. Example 3: Shared Functionality 9
3.4.4. Example 4: White-labelling 10

3.5. Precursor Image Digest Condition 10
3.6. Required Image Version List 10
3.7. Expiration Time . 11
3.8. Payload Format . 11
3.9. Processing Steps . 11
3.10. Storage Location . 12
3.10.1. Example 1: Two Storage Locations 12
3.10.2. Example 2: File System 12
3.10.3. Example 3: Flash Memory 12

3.11. Component Identifier 12
3.12. Payload Indicator . 13
3.13. Payload Digests . 13
3.14. Size . 13
3.15. Manifest Envelope Element: Signature 14
3.16. Additional Installation Instructions 14
3.17. Aliases . 14
3.18. Dependencies . 15
3.19. Encryption Wrapper 15
3.20. XIP Address . 15
3.21. Load-time Metadata 15
3.22. Run-time metadata . 16
3.23. Payload . 16
3.24. Manifest Envelope Element: Delegation Chain 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Moran, et al. Expires October 8, 2021 [Page 2]

Internet-Draft A Firmware Manifest Information Model April 2021

4. Security Considerations 17
4.1. Threat Model . 17
4.2. Threat Descriptions 17
4.2.1. THREAT.IMG.EXPIRED: Old Firmware 17

 4.2.2. THREAT.IMG.EXPIRED.OFFLINE : Offline device + Old
 Firmware . 18

4.2.3. THREAT.IMG.INCOMPATIBLE: Mismatched Firmware 18
 4.2.4. THREAT.IMG.FORMAT: The target device misinterprets
 the type of payload 19
 4.2.5. THREAT.IMG.LOCATION: The target device installs the
 payload to the wrong location 19
 4.2.6. THREAT.NET.REDIRECT: Redirection to inauthentic
 payload hosting 20

4.2.7. THREAT.NET.ONPATH: Traffic interception 20
4.2.8. THREAT.IMG.REPLACE: Payload Replacement 20
4.2.9. THREAT.IMG.NON_AUTH: Unauthenticated Images 21

 4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor
 images . 21

4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware 21
 4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering Of
 Firmware Image for Vulnerability Analysis 23
 4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest
 Elements . 23
 4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element
 Exposure . 24

4.2.15. THREAT.IMG.EXTRA: Extra data after image 24
4.2.16. THREAT.KEY.EXPOSURE: Exposure of signing keys 24

 4.2.17. THREAT.MFST.MODIFICATION: Modification of manifest or
 payload prior to signing 24
 4.2.18. THREAT.MFST.TOCTOU: Modification of manifest between
 authentication and use 25

4.3. Security Requirements 25
4.3.1. REQ.SEC.SEQUENCE: Monotonic Sequence Numbers 25

 4.3.2. REQ.SEC.COMPATIBLE: Vendor, Device-type Identifiers . 26
4.3.3. REQ.SEC.EXP: Expiration Time 26
4.3.4. REQ.SEC.AUTHENTIC: Cryptographic Authenticity 26
4.3.5. REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type . . 27

 4.3.6. Security Requirement REQ.SEC.AUTH.IMG_LOC:
 Authenticated Storage Location 27
 4.3.7. REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload 27

4.3.8. REQ.SEC.AUTH.EXEC: Secure Execution 27
 4.3.9. REQ.SEC.AUTH.PRECURSOR: Authenticated precursor
 images . 28
 4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and
 Class IDs . 28

4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity 28
4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption . . . 28
4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control 29

Moran, et al. Expires October 8, 2021 [Page 3]

Internet-Draft A Firmware Manifest Information Model April 2021

4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests . . 29
4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest . . . 29
4.3.16. REQ.SEC.REPORTING: Secure Reporting 30

 4.3.17. REQ.SEC.KEY.PROTECTION: Protected storage of signing
 keys . 30
 4.3.18. REQ.SEC.MFST.CHECK: Validate manifests prior to
 deployment . 30
 4.3.19. REQ.SEC.MFST.TRUSTED: Construct manifests in a
 trusted environment 30
 4.3.20. REQ.SEC.MFST.CONST: Manifest kept immutable between
 check and use . 31

4.4. User Stories . 31
 4.4.1. USER_STORY.INSTALL.INSTRUCTIONS: Installation
 Instructions . 31

4.4.2. USER_STORY.MFST.FAIL_EARLY: Fail Early 31
 4.4.3. USER_STORY.OVERRIDE: Override Non-Critical Manifest
 Elements . 32

4.4.4. USER_STORY.COMPONENT: Component Update 32
4.4.5. USER_STORY.MULTI_AUTH: Multiple Authorizations . . . 32
4.4.6. USER_STORY.IMG.FORMAT: Multiple Payload Formats . . . 33

 4.4.7. USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential
 Information Disclosures 33
 4.4.8. USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from
 Unpacking Unknown Formats 33
 4.4.9. USER_STORY.IMG.CURRENT_VERSION: Specify Version
 Numbers of Target Firmware 33
 4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose
 Between Images 34
 4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using
 Manifests . 34

4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load . . . 34
4.4.13. USER_STORY.MFST.IMG: Payload in Manifest 34
4.4.14. USER_STORY.MFST.PARSE: Simple Parsing 34

 4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in
 Manifest . 35

4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation 35
4.5. Usability Requirements 35
4.5.1. REQ.USE.MFST.PRE_CHECK: Pre-Installation Checks . . . 35

 4.5.2. REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote
 Resource Location 35

4.5.3. REQ.USE.MFST.COMPONENT: Component Updates 36
4.5.4. REQ.USE.MFST.MULTI_AUTH: Multiple authentications . . 37
4.5.5. REQ.USE.IMG.FORMAT: Format Usability 37
4.5.6. REQ.USE.IMG.NESTED: Nested Formats 37
4.5.7. REQ.USE.IMG.VERSIONS: Target Version Matching 38
4.5.8. REQ.USE.IMG.SELECT: Select Image by Destination . . . 38
4.5.9. REQ.USE.EXEC: Executable Manifest 38
4.5.10. REQ.USE.LOAD: Load-Time Information 38

Moran, et al. Expires October 8, 2021 [Page 4]

Internet-Draft A Firmware Manifest Information Model April 2021

4.5.11. REQ.USE.PAYLOAD: Payload in Manifest Envelope 38
4.5.12. REQ.USE.PARSE: Simple Parsing 39

 4.5.13. REQ.USE.DELEGATION: Delegation of Authority in
 Manifest . 40

5. IANA Considerations . 40
6. Acknowledgements . 40
7. References . 40
7.1. Normative References 40
7.2. Informative References 41

 Authors' Addresses . 41

1. Introduction

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a reliable and secure firmware update mechanism that is also
 suitable for constrained devices. Ensuring that devices function and
 remain secure over their service life requires such an update
 mechanism to fix vulnerabilities, to update configuration settings,
 as well as adding new functionality.

 One component of such a firmware update is a concise and machine-
 processable meta-data document, or manifest, that describes the
 firmware image(s) and offers appropriate protection. This document
 describes the information that must be present in the manifest.

 This document describes all the information elements required in a
 manifest to secure firmware updates of IoT devices. Each information
 element is motiviated by user stories and threats it aims to
 mitigate. These threats and user stories are not intended to be an
 exhaustive list of the threats against IoT devices, nor of the
 possible user stories that describe how to conduct a firmware update.
 Instead they are intended to describe the threats against firmware
 updates in isolation and provide sufficient motivation to specify the
 information elements that cover a wide range of user stories.

 To distinguish information elements from their encoding and
 serialization over the wire this document presents an information
 model. RFC 3444 [RFC3444] describes the differences between
 information and data models.

 Because this document covers a wide range of user stories and a wide
 range of threats, not all information elements apply to all
 scenarios. As a result, various information elements are optional to
 implement and optional to use, depending on which threats exist in a
 particular domain of application and which user stories are important
 for deployments.

https://datatracker.ietf.org/doc/html/rfc3444
https://datatracker.ietf.org/doc/html/rfc3444

Moran, et al. Expires October 8, 2021 [Page 5]

Internet-Draft A Firmware Manifest Information Model April 2021

2. Requirements and Terminology

2.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Unless otherwise stated these words apply to the design of the
 manifest format, not its implementation or application. Hence,
 whenever an information is declared as "REQUIRED" this implies that
 the manifest format document has to include support for it.

2.2. Terminology

 This document uses terms defined in [I-D.ietf-suit-architecture].
 The term 'Operator' refers to both Device and Network Operator.

 Secure time and secure clock refer to a set of requirements on time
 sources. For local time sources, this primarily means that the clock
 must be monotonically increasing, including across power cycles,
 firmware updates, etc. For remote time sources, the provided time
 must be guaranteed to be correct to within some predetermined bounds,
 whenever the time source is accessible.

 The term Envelope is used to describe an encoding that allows the
 bundling of a manifest with related information elements that are not
 directly contained within the manifest.

 The term Payload is used to describe the data that is delivered to a
 device during an update. This is distinct from a "firmware image",
 as described in [I-D.ietf-suit-architecture], because the payload is
 often in an intermediate state, such as being encrypted, compressed
 and/or encoded as a differential update. The payload, taken in
 isolation, is often not the final firmware image.

3. Manifest Information Elements

 Each manifest information element is anchored in a security
 requirement or a usability requirement. The manifest elements are
 described below, justified by their requirements.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Moran, et al. Expires October 8, 2021 [Page 6]

Internet-Draft A Firmware Manifest Information Model April 2021

3.1. Version ID of the Manifest Structure

 An identifier that describes which iteration of the manifest format
 is contained in the structure. This allows devices to identify the
 version of the manifest data model that is in use.

 This element is REQUIRED.

3.2. Monotonic Sequence Number

 A monotonically increasing sequence number to prevent malicious
 actors from reverting a firmware update against the policies of the
 relevant authority.

 For convenience, the monotonic sequence number may be a UTC
 timestamp. This allows global synchronisation of sequence numbers
 without any additional management.

 This element is REQUIRED.

 Implements: REQ.SEC.SEQUENCE (Section 4.3.1)

3.3. Vendor ID

 The Vendor ID element helps to distinguish between identically named
 products from different vendors. Vendor ID is not intended to be a
 human-readable element. It is intended for binary match/mismatch
 comparison only.

 Recommended practice is to use [RFC4122] version 5 UUIDs with the
 vendor's domain name and the DNS name space ID. Other options
 include type 1 and type 4 UUIDs.

 This element is RECOMMENDED.

 Implements: REQ.SEC.COMPATIBLE (Section 4.3.2),
 REQ.SEC.AUTH.COMPATIBILITY (Section 4.3.10).

 Here is an example for a domain name-based UUID. Vendor A creates a
 UUID based on a domain name it controls, such as vendorId =
 UUID5(DNS, "vendor-a.example")

 Because the DNS infrastructure prevents multiple registrations of the
 same domain name, this UUID is (with very high probability)
 guaranteed to be unique. Because the domain name is known, this UUID
 is reproducible. Type 1 and type 4 UUIDs produce similar guarantees
 of uniqueness, but not reproducibility.

https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires October 8, 2021 [Page 7]

Internet-Draft A Firmware Manifest Information Model April 2021

 This approach creates a contention when a vendor changes its name or
 relinquishes control of a domain name. In this scenario, it is
 possible that another vendor would start using that same domain name.
 However, this UUID is not proof of identity; a device's trust in a
 vendor must be anchored in a cryptographic key, not a UUID.

3.4. Class ID

 A device "Class" is a set of different device types that can accept
 the same firmware update without modification. It thereby allows
 devices to determine applicability of a firmware in an unambiguous
 way. Class IDs must be unique within the scope of a Vendor ID. This
 is to prevent similarly, or identically named devices colliding in
 their customer's infrastructure.

 Recommended practice is to use [RFC4122] version 5 UUIDs with as much
 information as necessary to define firmware compatibility. Possible
 information used to derive the class UUID includes:

 o model name or number

 o hardware revision

 o runtime library version

 o bootloader version

 o ROM revision

 o silicon batch number

 The Class ID UUID should use the Vendor ID as the name space
 identifier. Other options include version 1 and 4 UUIDs. Classes
 may be more fine-grained granular than is required to identify
 firmware compatibility. Classes must not be less granular than is
 required to identify firmware compatibility. Devices may have
 multiple Class IDs.

 Class ID is not intended to be a human-readable element. It is
 intended for binary match/mismatch comparison only.

 If Class ID is not implemented, then each logical device class must
 use a unique trust anchor for authorization.

 This element is RECOMMENDED.

 Implements: Security Requirement REQ.SEC.COMPATIBLE (Section 4.3.2),
 REQ.SEC.AUTH.COMPATIBILITY (Section 4.3.10).

https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires October 8, 2021 [Page 8]

Internet-Draft A Firmware Manifest Information Model April 2021

3.4.1. Example 1: Different Classes

 Vendor A creates product Z and product Y. The firmware images of
 products Z and Y are not interchangeable. Vendor A creates UUIDs as
 follows:

 o vendorId = UUID5(DNS, "vendor-a.com")

 o ZclassId = UUID5(vendorId, "Product Z")

 o YclassId = UUID5(vendorId, "Product Y")

 This ensures that Vendor A's Product Z cannot install firmware for
 Product Y and Product Y cannot install firmware for Product Z.

3.4.2. Example 2: Upgrading Class ID

 Vendor A creates product X. Later, Vendor A adds a new feature to
 product X, creating product X v2. Product X requires a firmware
 update to work with firmware intended for product X v2.

 Vendor A creates UUIDs as follows:

 o vendorId = UUID5(DNS, "vendor-a.com")

 o XclassId = UUID5(vendorId, "Product X")

 o Xv2classId = UUID5(vendorId, "Product X v2")

 When product X receives the firmware update necessary to be
 compatible with product X v2, part of the firmware update changes the
 class ID to Xv2classId.

3.4.3. Example 3: Shared Functionality

 Vendor A produces two products, product X and product Y. These
 components share a common core (such as an operating system), but
 have different applications. The common core and the applications
 can be updated independently. To enable X and Y to receive the same
 common core update, they require the same class ID. To ensure that
 only product X receives application X and only product Y receives
 application Y, product X and product Y must have different class IDs.
 The vendor creates Class IDs as follows:

 o vendorId = UUID5(DNS, "vendor-a.com")

 o XclassId = UUID5(vendorId, "Product X")

Moran, et al. Expires October 8, 2021 [Page 9]

Internet-Draft A Firmware Manifest Information Model April 2021

 o YclassId = UUID5(vendorId, "Product Y")

 o CommonClassId = UUID5(vendorId, "common core")

 Product X matches against both XclassId and CommonClassId. Product Y
 matches against both YclassId and CommonClassId.

3.4.4. Example 4: White-labelling

 Vendor A creates a product A and its firmware. Vendor B sells the
 product under its own name as Product B with some customised
 configuration. The vendors create the Class IDs as follows:

 o vendorIdA = UUID5(DNS, "vendor-a.com")

 o classIdA = UUID5(vendorIdA, "Product A-Unlabelled")

 o vendorIdB = UUID5(DNS, "vendor-b.com")

 o classIdB = UUID5(vendorIdB, "Product B")

 The product will match against each of these class IDs. If Vendor A
 and Vendor B provide different components for the device, the
 implementor may choose to make ID matching scoped to each component.
 Then, the vendorIdA, classIdA match the component ID supplied by
 Vendor A, and the vendorIdB, classIdB match the component ID supplied
 by Vendor B.

3.5. Precursor Image Digest Condition

 This element provides information about the payload that needs to be
 present on the device for an update to apply. This may, for example,
 be the case with differential updates.

 This element is OPTIONAL.

 Implements: REQ.SEC.AUTH.PRECURSOR (Section 4.3.9)

3.6. Required Image Version List

 Payloads may only be applied to a specific firmware version or
 firmware versions. For example, a payload containing a differential
 update may be applied only to a specific firmware version.

 When a payload applies to multiple versions of a firmware, the
 required image version list specifies which firmware versions must be
 present for the update to be applied. This allows the update author

Moran, et al. Expires October 8, 2021 [Page 10]

Internet-Draft A Firmware Manifest Information Model April 2021

 to target specific versions of firmware for an update, while
 excluding those to which it should not or cannot be applied.

 This element is OPTIONAL.

 Implements: REQ.USE.IMG.VERSIONS (Section 4.5.7)

3.7. Expiration Time

 This element tells a device the time at which the manifest expires
 and should no longer be used. This element should be used where a
 secure source of time is provided and firmware is intended to expire
 predictably. This element may also be displayed (e.g. via an app)
 for user confirmation since users typically have a reliable knowledge
 of the date.

 Special consideration is required for end-of-life if a firmware will
 not be updated again, for example if a business stops issuing updates
 to a device. In this case the last valid firmware should not have an
 expiration time.

 This element is OPTIONAL.

 Implements: REQ.SEC.EXP (Section 4.3.3)

3.8. Payload Format

 This element describes the payload format within the signed metadata.
 It is used to enable devices to decode payloads correctly.

 This element is REQUIRED.

 Implements: REQ.SEC.AUTH.IMG_TYPE (Section 4.3.5), REQ.USE.IMG.FORMAT
 (Section 4.5.5)

3.9. Processing Steps

 A representation of the Processing Steps required to decode a
 payload, in particular those that are compressed, packed, or
 encrypted. The representation must describe which algorithms are
 used and must convey any additional parameters required by those
 algorithms.

 A Processing Step may indicate the expected digest of the payload
 after the processing is complete.

 This element is RECOMMENDED.

Moran, et al. Expires October 8, 2021 [Page 11]

Internet-Draft A Firmware Manifest Information Model April 2021

 Implements: REQ.USE.IMG.NESTED (Section 4.5.6)

3.10. Storage Location

 This element tells the device where to store a payload within a given
 component. The device can use this to establish which permissions
 are necessary and the physical storage location to use.

 This element is REQUIRED.

 Implements: REQ.SEC.AUTH.IMG_LOC (Section 4.3.6)

3.10.1. Example 1: Two Storage Locations

 A device supports two components: an OS and an application. These
 components can be updated independently, expressing dependencies to
 ensure compatibility between the components. The Author chooses two
 storage identifiers:

 o "OS"

 o "APP"

3.10.2. Example 2: File System

 A device supports a full-featured filesystem. The Author chooses to
 use the storage identifier as the path at which to install the
 payload. The payload may be a tarball, in which case, it unpacks the
 tarball into the specified path.

3.10.3. Example 3: Flash Memory

 A device supports flash memory. The Author chooses to make the
 storage identifier the offset where the image should be written.

3.11. Component Identifier

 In a device with more than one storage subsystem, a storage
 identifier is insufficient to identify where and how to store a
 payload. To resolve this, a component identifier indicates to which
 part of the storage subsystem the payload shall be placed.

 A serialization may choose to combine Component Identifier and
 Storage Location (Section 3.10).

 This element is OPTIONAL.

 Implements: REQ.USE.MFST.COMPONENT (Section 4.5.3)

Moran, et al. Expires October 8, 2021 [Page 12]

Internet-Draft A Firmware Manifest Information Model April 2021

3.12. Payload Indicator

 This element provides the information required for the device to
 acquire the payload. This functionality is only needed when the
 target device does not intrinsically know where to find the payload.

 This can be encoded in several ways:

 o One URI

 o A list of URIs

 o A prioritised list of URIs

 o A list of signed URIs

 This element is OPTIONAL.

 Implements: REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7)

3.13. Payload Digests

 This element contains one or more digests of one or more payloads.
 This allows the target device to ensure authenticity of the
 payload(s) when combined with the Signature (Section 3.15) element.
 A manifest format must provide a mechanism to select one payload from
 a list based on system parameters, such as Execute-In-Place
 Installation Address.

 This element is REQUIRED. Support for more than one digest is
 OPTIONAL.

 Implements: REQ.SEC.AUTHENTIC (Section 4.3.4), REQ.USE.IMG.SELECT
 (Section 4.5.8)

3.14. Size

 The size of the payload in bytes, which informs the target device how
 big of a payload to expect. Without it, devices are exposed to some
 classes of denial of service attack.

 This element is REQUIRED.

 Implements: REQ.SEC.AUTH.EXEC (Section 4.3.8)

Moran, et al. Expires October 8, 2021 [Page 13]

Internet-Draft A Firmware Manifest Information Model April 2021

3.15. Manifest Envelope Element: Signature

 The Signature element contains all the information necessary to
 protect the contents of the manifest against modification and to
 offer authentication of the signer. Because the Signature element
 authenticates the manifest, it cannot be contained within the
 manifest. Instead, the manifest is either contained within the
 signature element, or the signature element is a member of the
 Manifest Envelope and bundled with the manifest.

 The Signature element represents the foundation of all security
 properties of the manifest. Manifests, which are included as
 dependencies by another manifests, should include a signature so that
 the recipient can distinguish between different actors with different
 permissions.

 The Signature element must support multiple signers and multiple
 signing algorithms. A manifest format may allow multiple manifests
 to be covered by a single Signature element.

 This element is REQUIRED in non-dependency manifests.

 Implements: REQ.SEC.AUTHENTIC (Section 4.3.4), REQ.SEC.RIGHTS
 (Section 4.3.11), REQ.USE.MFST.MULTI_AUTH (Section 4.5.4)

3.16. Additional Installation Instructions

 Additional installation instructions are machine-readable commands
 the device should execute when processing the manifest. This
 information is distinct from the information necessary to process a
 payload. Additional installation instructions include information
 such as update timing (for example, install only on Sunday, at 0200),
 procedural considerations (for example, shut down the equipment under
 control before executing the update), pre- and post-installation
 steps (for example, run a script). Other installation instructions
 could include requesting user confirmation before installing.

 This element is OPTIONAL.

 Implements: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

3.17. Aliases

 A mechanism for a manifest to augment or replace URIs or URI lists
 defined by one or more of its dependencies.

 This element is OPTIONAL.

Moran, et al. Expires October 8, 2021 [Page 14]

Internet-Draft A Firmware Manifest Information Model April 2021

 Implements: REQ.USE.MFST.OVERRIDE_REMOTE (Section 4.5.2)

3.18. Dependencies

 A list of other manifests that are required by the current manifest.
 Manifests are identified an unambiguous way, such as a cryptographic
 digest.

 This element is REQUIRED to support deployments that include both
 multiple authorities and multiple payloads.

 Implements: REQ.USE.MFST.COMPONENT (Section 4.5.3)

3.19. Encryption Wrapper

 Encrypting firmware images requires symmetric content encryption
 keys. The encryption wrapper provides the information needed for a
 device to obtain or locate a key that it uses to decrypt the
 firmware.

 This element is REQUIRED for encrypted payloads.

 Implements: REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

3.20. XIP Address

 In order to support execute in place (XIP) systems with multiple
 possible base addresses, it is necessary to specify which address the
 payload is linked for.

 For example a microcontroller may have a simple bootloader that
 chooses one of two images to boot. That microcontroller then needs
 to choose one of two firmware images to install, based on which of
 its two images is older.

 This element is OPTIONAL.

 Implements: REQ.USE.IMG.SELECT (Section 4.5.8)

3.21. Load-time Metadata

 Load-time metadata provides the device with information that it needs
 in order to load one or more images. This metadata may include any
 of:

 o the source

 o the destination

Moran, et al. Expires October 8, 2021 [Page 15]

Internet-Draft A Firmware Manifest Information Model April 2021

 o cryptographic information

 o decompression information

 o unpacking information

 Typically, loading is done by copying an image from its permanent
 storage location into its active use location. The metadata allows
 operations such as decryption, decompression, and unpacking to be
 performed during that copy.

 This element is OPTIONAL.

 Implements: REQ.USE.LOAD (Section 4.5.10)

3.22. Run-time metadata

 Run-time metadata provides the device with any extra information
 needed to boot the device. This may include the entry-point of an
 XIP image or the kernel command-line to boot a Linux image.

 This element is OPTIONAL.

 Implements: REQ.USE.EXEC (Section 4.5.9)

3.23. Payload

 The Payload element is contained within the manifest or manifest
 envelope and enables the manifest and payload to be delivered
 simultaneously. This is used for delivering small payloads, such as
 cryptographic keys or configuration data.

 This element is OPTIONAL.

 Implements: REQ.USE.PAYLOAD (Section 4.5.11)

3.24. Manifest Envelope Element: Delegation Chain

 The delegation chain offers enhanced authorization functionality via
 authorization tokens. Each token itself is protected and does not
 require another layer of protection. Because the delegation chain is
 needed to verify the signature, it must be placed in the Manifest
 Envelope, rather than the Manifest.

 This element is OPTIONAL.

 Implements: REQ.USE.DELEGATION (Section 4.5.13)

Moran, et al. Expires October 8, 2021 [Page 16]

Internet-Draft A Firmware Manifest Information Model April 2021

4. Security Considerations

 The following sub-sections describe the threat model, user stories,
 security requirements, and usability requirements. This section also
 provides the motivations for each of the manifest information
 elements.

 Note that it is worthwhile to recall that a firmware update is, by
 definition, remote code execution. Hence, if a device is configured
 to trust an entity to provide firmware, it trusts this entity to do
 the "right thing". Many classes of attacks can be mitigated by
 verifying that a firmware update came from a trusted party and that
 no rollback is taking place. However, if the trusted entity has been
 compromised and distributes attacker-provided firmware to devices
 then the possibilities for deference are limited.

4.1. Threat Model

 The following sub-sections aim to provide information about the
 threats that were considered, the security requirements that are
 derived from those threats and the fields that permit implementation
 of the security requirements. This model uses the S.T.R.I.D.E.
 [STRIDE] approach. Each threat is classified according to:

 o Spoofing identity

 o Tampering with data

 o Repudiation

 o Information disclosure

 o Denial of service

 o Elevation of privilege

 This threat model only covers elements related to the transport of
 firmware updates. It explicitly does not cover threats outside of
 the transport of firmware updates. For example, threats to an IoT
 device due to physical access are out of scope.

4.2. Threat Descriptions

4.2.1. THREAT.IMG.EXPIRED: Old Firmware

 Classification: Elevation of Privilege

Moran, et al. Expires October 8, 2021 [Page 17]

Internet-Draft A Firmware Manifest Information Model April 2021

 An attacker sends an old, but valid manifest with an old, but valid
 firmware image to a device. If there is a known vulnerability in the
 provided firmware image, this may allow an attacker to exploit the
 vulnerability and gain control of the device.

 Threat Escalation: If the attacker is able to exploit the known
 vulnerability, then this threat can be escalated to ALL TYPES.

 Mitigated by: REQ.SEC.SEQUENCE (Section 4.3.1)

4.2.2. THREAT.IMG.EXPIRED.OFFLINE : Offline device + Old Firmware

 Classification: Elevation of Privilege

 An attacker targets a device that has been offline for a long time
 and runs an old firmware version. The attacker sends an old, but
 valid manifest to a device with an old, but valid firmware image.
 The attacker-provided firmware is newer than the installed one but
 older than the most recently available firmware. If there is a known
 vulnerability in the provided firmware image then this may allow an
 attacker to gain control of a device. Because the device has been
 offline for a long time, it is unaware of any new updates. As such
 it will treat the old manifest as the most current.

 The exact mitigation for this threat depends on where the threat
 comes from. This requires careful consideration by the implementor.
 If the threat is from a network actor, including an on-path attacker,
 or an intruder into a management system, then a user confirmation can
 mitigate this attack, simply by displaying an expiration date and
 requesting confirmation. On the other hand, if the user is the
 attacker, then an online confirmation system (for example a trusted
 timestamp server) can be used as a mitigation system.

 Threat Escalation: If the attacker is able to exploit the known
 vulnerability, then this threat can be escalated to ALL TYPES.

 Mitigated by: REQ.SEC.EXP (Section 4.3.3), REQ.USE.MFST.PRE_CHECK
 (Section 4.5.1),

4.2.3. THREAT.IMG.INCOMPATIBLE: Mismatched Firmware

 Classification: Denial of Service

 An attacker sends a valid firmware image, for the wrong type of
 device, signed by an actor with firmware installation permission on
 both types of device. The firmware is verified by the device
 positively because it is signed by an actor with the appropriate
 permission. This could have wide-ranging consequences. For devices

Moran, et al. Expires October 8, 2021 [Page 18]

Internet-Draft A Firmware Manifest Information Model April 2021

 that are similar, it could cause minor breakage, or expose security
 vulnerabilities. For devices that are very different, it is likely
 to render devices inoperable.

 Mitigated by: REQ.SEC.COMPATIBLE (Section 4.3.2)

 For example, suppose that two vendors, Vendor A and Vendor B, adopt
 the same trade name in different geographic regions, and they both
 make products with the same names, or product name matching is not
 used. This causes firmware from Vendor A to match devices from
 Vendor B.

 If the vendors are the firmware authorities, then devices from Vendor
 A will reject images signed by Vendor B since they use different
 credentials. However, if both devices trust the same Author, then,
 devices from Vendor A could install firmware intended for devices
 from Vendor B.

4.2.4. THREAT.IMG.FORMAT: The target device misinterprets the type of
 payload

 Classification: Denial of Service

 If a device misinterprets the format of the firmware image, it may
 cause a device to install a firmware image incorrectly. An
 incorrectly installed firmware image would likely cause the device to
 stop functioning.

 Threat Escalation: An attacker that can cause a device to
 misinterpret the received firmware image may gain elevation of
 privilege and potentially expand this to all types of threat.

 Mitigated by: REQ.SEC.AUTH.IMG_TYPE (Section 4.3.5)

4.2.5. THREAT.IMG.LOCATION: The target device installs the payload to
 the wrong location

 Classification: Denial of Service

 If a device installs a firmware image to the wrong location on the
 device, then it is likely to break. For example, a firmware image
 installed as an application could cause a device and/or an
 application to stop functioning.

 Threat Escalation: An attacker that can cause a device to
 misinterpret the received code may gain elevation of privilege and
 potentially expand this to all types of threat.

Moran, et al. Expires October 8, 2021 [Page 19]

Internet-Draft A Firmware Manifest Information Model April 2021

 Mitigated by: REQ.SEC.AUTH.IMG_LOC (Section 4.3.6)

4.2.6. THREAT.NET.REDIRECT: Redirection to inauthentic payload hosting

 Classification: Denial of Service

 If a device is tricked into fetching a payload for an attacker
 controlled site, the attacker may send corrupted payloads to devices.

 Mitigated by: REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7)

4.2.7. THREAT.NET.ONPATH: Traffic interception

 Classification: Spoofing Identity, Tampering with Data

 An attacker intercepts all traffic to and from a device. The
 attacker can monitor or modify any data sent to or received from the
 device. This can take the form of: manifests, payloads, status
 reports, and capability reports being modified or not delivered to
 the intended recipient. It can also take the form of analysis of
 data sent to or from the device, either in content, size, or
 frequency.

 Mitigated by: REQ.SEC.AUTHENTIC (Section 4.3.4),
 REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12), REQ.SEC.AUTH.REMOTE_LOC
 (Section 4.3.7), REQ.SEC.MFST.CONFIDENTIALITY (Section 4.3.14),
 REQ.SEC.REPORTING (Section 4.3.16)

4.2.8. THREAT.IMG.REPLACE: Payload Replacement

 Classification: Elevation of Privilege

 An attacker replaces a newly downloaded firmware after a device
 finishes verifying a manifest. This could cause the device to
 execute the attacker's code. This attack likely requires physical
 access to the device. However, it is possible that this attack is
 carried out in combination with another threat that allows remote
 execution. This is a typical Time Of Check/Time Of Use (TICTOC)
 attack.

 Threat Escalation: If the attacker is able to exploit a known
 vulnerability, or if the attacker can supply their own firmware, then
 this threat can be escalated to ALL TYPES.

 Mitigated by: REQ.SEC.AUTH.EXEC (Section 4.3.8)

Moran, et al. Expires October 8, 2021 [Page 20]

Internet-Draft A Firmware Manifest Information Model April 2021

4.2.9. THREAT.IMG.NON_AUTH: Unauthenticated Images

 Classification: Elevation of Privilege / All Types

 If an attacker can install their firmware on a device, for example by
 manipulating either payload or metadata, then they have complete
 control of the device.

 Mitigated by: REQ.SEC.AUTHENTIC (Section 4.3.4)

4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor images

 Classification: Denial of Service / All Types

 Modifications of payloads and metadata allow an attacker to introduce
 a number of denial of service attacks. Below are some examples.

 An attacker sends a valid, current manifest to a device that has an
 unexpected precursor image. If a payload format requires a precursor
 image (for example, delta updates) and that precursor image is not
 available on the target device, it could cause the update to break.

 An attacker that can cause a device to install a payload against the
 wrong precursor image could gain elevation of privilege and
 potentially expand this to all types of threat. However, it is
 unlikely that a valid differential update applied to an incorrect
 precursor would result in a functional, but vulnerable firmware.

 Mitigated by: REQ.SEC.AUTH.PRECURSOR (Section 4.3.9)

4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware

 Classification: Denial of Service, Elevation of Privilege

 This threat can appear in several ways, however it is ultimately
 about ensuring that devices retain the behaviour required by their
 owner, or operator. The owner or operator of a device typically
 requires that the device maintain certain features, functions,
 capabilities, behaviours, or interoperability constraints (more
 generally, behaviour). If these requirements are broken, then a
 device will not fulfill its purpose. Therefore, if any party other
 than the device's owner or the owner's contracted Device Operator has
 the ability to modify device behaviour without approval, then this
 constitutes an elevation of privilege.

 Similarly, a Network Operator may require that devices behave in a
 particular way in order to maintain the integrity of the network. If
 devices behaviour on a network can be modified without the approval

Moran, et al. Expires October 8, 2021 [Page 21]

Internet-Draft A Firmware Manifest Information Model April 2021

 of the Network Operator, then this constitutes an elevation of
 privilege with respect to the network.

 For example, if the owner of a device has purchased that device
 because of features A, B, and C, and a firmware update is issued by
 the manufacturer, which removes feature A, then the device may not
 fulfill the owner's requirements any more. In certain circumstances,
 this can cause significantly greater threats. Suppose that feature A
 is used to implement a safety-critical system, whether the
 manufacturer intended this behaviour or not. When unapproved
 firmware is installed, the system may become unsafe.

 In a second example, the owner or operator of a system of two or more
 interoperating devices needs to approve firmware for their system in
 order to ensure interoperability with other devices in the system.
 If the firmware is not qualified, the system as a whole may not work.
 Therefore, if a device installs firmware without the approval of the
 device owner or operator, this is a threat to devices or the system
 as a whole.

 Similarly, the operator of a network may need to approve firmware for
 devices attached to the network in order to ensure favourable
 operating conditions within the network. If the firmware is not
 qualified, it may degrade the performance of the network. Therefore,
 if a device installs firmware without the approval of the Network
 Operator, this is a threat to the network itself.

 Threat Escalation: If the firmware expects configuration that is
 present in devices deployed in Network A, but not in devices deployed
 in Network B, then the device may experience degraded security,
 leading to threats of All Types.

 Mitigated by: REQ.SEC.RIGHTS (Section 4.3.11), REQ.SEC.ACCESS_CONTROL
 (Section 4.3.13)

4.2.11.1. Example 1: Multiple Network Operators with a Single Device
 Operator

 In this example, assume that Device Operators expect the rights to
 create firmware but that Network Operators expect the rights to
 qualify firmware as fit-for-purpose on their networks. Additionally,
 assume that Device Operators manage devices that can be deployed on
 any network, including Network A and B in our example.

 An attacker may obtain a manifest for a device on Network A. Then,
 this attacker sends that manifest to a device on Network B. Because
 Network A and Network B are under control of different Operators, and
 the firmware for a device on Network A has not been qualified to be

Moran, et al. Expires October 8, 2021 [Page 22]

Internet-Draft A Firmware Manifest Information Model April 2021

 deployed on Network B, the target device on Network B is now in
 violation of the Operator B's policy and may be disabled by this
 unqualified, but signed firmware.

 This is a denial of service because it can render devices inoperable.
 This is an elevation of privilege because it allows the attacker to
 make installation decisions that should be made by the Operator.

4.2.11.2. Example 2: Single Network Operator with Multiple Device
 Operators

 Multiple devices that interoperate are used on the same network and
 communicate with each other. Some devices are manufactured and
 managed by Device Operator A and other devices by Device Operator B.
 A new firmware is released by Device Operator A that breaks
 compatibility with devices from Device Operator B. An attacker sends
 the new firmware to the devices managed by Device Operator A without
 approval of the Network Operator. This breaks the behaviour of the
 larger system causing denial of service and possibly other threats.
 Where the network is a distributed SCADA system, this could cause
 misbehaviour of the process that is under control.

4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering Of Firmware Image
 for Vulnerability Analysis

 Classification: All Types

 An attacker wants to mount an attack on an IoT device. To prepare
 the attack he or she retrieves the provided firmware image and
 performs reverse engineering of the firmware image to analyze it for
 specific vulnerabilities.

 Mitigated by: REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements

 Classification: Elevation of Privilege

 An authorized actor, but not the Author, uses an override mechanism
 (USER_STORY.OVERRIDE (Section 4.4.3)) to change an information
 element in a manifest signed by the Author. For example, if the
 authorized actor overrides the digest and URI of the payload, the
 actor can replace the entire payload with a payload of their choice.

 Threat Escalation: By overriding elements such as payload
 installation instructions or firmware digest, this threat can be
 escalated to all types.

Moran, et al. Expires October 8, 2021 [Page 23]

Internet-Draft A Firmware Manifest Information Model April 2021

 Mitigated by: REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure

 Classification: Information Disclosure

 A third party may be able to extract sensitive information from the
 manifest.

 Mitigated by: REQ.SEC.MFST.CONFIDENTIALITY (Section 4.3.14)

4.2.15. THREAT.IMG.EXTRA: Extra data after image

 Classification: All Types

 If a third party modifies the image so that it contains extra code
 after a valid, authentic image, that third party can then use their
 own code in order to make better use of an existing vulnerability.

 Mitigated by: REQ.SEC.IMG.COMPLETE_DIGEST (Section 4.3.15)

4.2.16. THREAT.KEY.EXPOSURE: Exposure of signing keys

 Classification: All Types

 If a third party obtains a key or even indirect access to a key, for
 example in an hardware security module (HSM), then they can perform
 the same actions as the legitimate owner of the key. If the key is
 trusted for firmware update, then the third party can perform
 firmware updates as though they were the legitimate owner of the key.

 For example, if manifest signing is performed on a server connected
 to the internet, an attacker may compromise the server and then be
 able to sign manifests, even if the keys for manifest signing are
 held in an HSM that is accessed by the server.

 Mitigated by: REQ.SEC.KEY.PROTECTION (Section 4.3.17)

4.2.17. THREAT.MFST.MODIFICATION: Modification of manifest or payload
 prior to signing

 Classification: All Types

 If an attacker can alter a manifest or payload before it is signed,
 they can perform all the same actions as the manifest author. This
 allows the attacker to deploy firmware updates to any devices that
 trust the manifest author. If an attacker can modify the code of a
 payload before the corresponding manifest is created, they can insert

Moran, et al. Expires October 8, 2021 [Page 24]

Internet-Draft A Firmware Manifest Information Model April 2021

 their own code. If an attacker can modify the manifest before it is
 signed, they can redirect the manifest to their own payload.

 For example, the attacker deploys malware to the developer's computer
 or signing service that watches manifest creation activities and
 inserts code into any binary that is referenced by a manifest.

 For example, the attacker deploys malware to the developer's computer
 or signing service that replaces the referenced binary (digest) and
 URI with the attacker's binary (digest) and URI.

 Mitigated by: REQ.SEC.MFST.CHECK (Section 4.3.18),
 REQ.SEC.MFST.TRUSTED (Section 4.3.19)

4.2.18. THREAT.MFST.TOCTOU: Modification of manifest between
 authentication and use

 Classification: All Types

 If an attacker can modify a manifest after it is authenticated (Time
 Of Check) but before it is used (Time Of Use), then the attacker can
 place any content whatsoever in the manifest.

 Mitigated by: REQ.SEC.MFST.CONST (Section 4.3.20)

4.3. Security Requirements

 The security requirements here are a set of policies that mitigate
 the threats described in Section 4.1.

4.3.1. REQ.SEC.SEQUENCE: Monotonic Sequence Numbers

 Only an actor with firmware installation authority is permitted to
 decide when device firmware can be installed. To enforce this rule,
 manifests MUST contain monotonically increasing sequence numbers.
 Manifests may use UTC epoch timestamps to coordinate monotonically
 increasing sequence numbers across many actors in many locations. If
 UTC epoch timestamps are used, they must not be treated as times,
 they must be treated only as sequence numbers. Devices must reject
 manifests with sequence numbers smaller than any onboard sequence
 number, i.e. there is no sequence number roll over.

 Note: This is not a firmware version field. It is a manifest
 sequence number. A firmware version may be rolled back by creating a
 new manifest for the old firmware version with a later sequence
 number.

 Mitigates: THREAT.IMG.EXPIRED (Section 4.2.1)

Moran, et al. Expires October 8, 2021 [Page 25]

Internet-Draft A Firmware Manifest Information Model April 2021

 Implemented by: Monotonic Sequence Number (Section 3.2)

4.3.2. REQ.SEC.COMPATIBLE: Vendor, Device-type Identifiers

 Devices MUST only apply firmware that is intended for them. Devices
 must know that a given update applies to their vendor, model,
 hardware revision, and software revision. Human-readable identifiers
 are often error-prone in this regard, so unique identifiers should be
 used instead.

 Mitigates: THREAT.IMG.INCOMPATIBLE (Section 4.2.3)

 Implemented by: Vendor ID Condition (Section 3.3), Class ID Condition
 (Section 3.4)

4.3.3. REQ.SEC.EXP: Expiration Time

 A firmware manifest MAY expire after a given time and devices may
 have a secure clock (local or remote). If a secure clock is provided
 and the Firmware manifest has an expiration timestamp, the device
 must reject the manifest if current time is later than the expiration
 time.

 Special consideration is required for end-of-life in case device will
 not be updated again, for example if a business stops issuing updates
 for a device. The last valid firmware should not have an expiration
 time.

 Mitigates: THREAT.IMG.EXPIRED.OFFLINE (Section 4.2.2)

 Implemented by: Expiration Time (Section 3.7)

4.3.4. REQ.SEC.AUTHENTIC: Cryptographic Authenticity

 The authenticity of an update MUST be demonstrable. Typically, this
 means that updates must be digitally signed. Because the manifest
 contains information about how to install the update, the manifest's
 authenticity must also be demonstrable. To reduce the overhead
 required for validation, the manifest contains the cryptographic
 digest of the firmware image, rather than a second digital signature.
 The authenticity of the manifest can be verified with a digital
 signature or Message Authentication Code. The authenticity of the
 firmware image is tied to the manifest by the use of a cryptographic
 digest of the firmware image.

 Mitigates: THREAT.IMG.NON_AUTH (Section 4.2.9), THREAT.NET.ONPATH
 (Section 4.2.7)

Moran, et al. Expires October 8, 2021 [Page 26]

Internet-Draft A Firmware Manifest Information Model April 2021

 Implemented by: Signature (Section 3.15), Payload Digest
 (Section 3.13)

4.3.5. REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type

 The type of payload MUST be authenticated. For example, the target
 must know whether the payload is XIP firmware, a loadable module, or
 configuration data.

 Mitigates: THREAT.IMG.FORMAT (Section 4.2.4)

 Implemented by: Payload Format (Section 3.8), Signature
 (Section 3.15)

4.3.6. Security Requirement REQ.SEC.AUTH.IMG_LOC: Authenticated Storage
 Location

 The location on the target where the payload is to be stored MUST be
 authenticated.

 Mitigates: THREAT.IMG.LOCATION (Section 4.2.5)

 Implemented by: Storage Location (Section 3.10)

4.3.7. REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload

 The location where a target should find a payload MUST be
 authenticated. Remote resources need to receive an equal amount of
 cryptographic protection as the manifest itself, when dereferencing
 URIs. The security considerations of Uniform Resource Identifiers
 (URIs) are applicable [RFC3986].

 Mitigates: THREAT.NET.REDIRECT (Section 4.2.6), THREAT.NET.ONPATH
 (Section 4.2.7)

 Implemented by: Payload Indicator (Section 3.12)

4.3.8. REQ.SEC.AUTH.EXEC: Secure Execution

 The target SHOULD verify firmware at time of boot. This requires
 authenticated payload size, and digest.

 Mitigates: THREAT.IMG.REPLACE (Section 4.2.8)

 Implemented by: Payload Digest (Section 3.13), Size (Section 3.14)

https://datatracker.ietf.org/doc/html/rfc3986

Moran, et al. Expires October 8, 2021 [Page 27]

Internet-Draft A Firmware Manifest Information Model April 2021

4.3.9. REQ.SEC.AUTH.PRECURSOR: Authenticated precursor images

 If an update uses a differential compression method, it MUST specify
 the digest of the precursor image and that digest MUST be
 authenticated.

 Mitigates: THREAT.UPD.WRONG_PRECURSOR (Section 4.2.10)

 Implemented by: Precursor Image Digest (Section 3.5)

4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs

 The identifiers that specify firmware compatibility MUST be
 authenticated to ensure that only compatible firmware is installed on
 a target device.

 Mitigates: THREAT.IMG.INCOMPATIBLE (Section 4.2.3)

 Implemented By: Vendor ID Condition (Section 3.3), Class ID Condition
 (Section 3.4)

4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity

 If a device grants different rights to different actors, exercising
 those rights MUST be accompanied by proof of those rights, in the
 form of proof of authenticity. Authenticity mechanisms, such as
 those required in REQ.SEC.AUTHENTIC (Section 4.3.4), can be used to
 prove authenticity.

 For example, if a device has a policy that requires that firmware
 have both an Authorship right and a Qualification right and if that
 device grants Authorship and Qualification rights to different
 parties, such as a Device Operator and a Network Operator,
 respectively, then the firmware cannot be installed without proof of
 rights from both the Device Operator and the Network Operator.

 Mitigates: THREAT.UPD.UNAPPROVED (Section 4.2.11)

 Implemented by: Signature (Section 3.15)

4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption

 The manifest information model MUST enable encrypted payloads.
 Encryption helps to prevent third parties, including attackers, from
 reading the content of the firmware image. This can protect against
 confidential information disclosures and discovery of vulnerabilities
 through reverse engineering. Therefore the manifest must convey the

Moran, et al. Expires October 8, 2021 [Page 28]

Internet-Draft A Firmware Manifest Information Model April 2021

 information required to allow an intended recipient to decrypt an
 encrypted payload.

 Mitigates: THREAT.IMG.DISCLOSURE (Section 4.2.12), THREAT.NET.ONPATH
 (Section 4.2.7)

 Implemented by: Encryption Wrapper (Section 3.19)

4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control

 If a device grants different rights to different actors, then an
 exercise of those rights MUST be validated against a list of rights
 for the actor. This typically takes the form of an Access Control
 List (ACL). ACLs are applied to two scenarios:

 1. An ACL decides which elements of the manifest may be overridden
 and by which actors.

 2. An ACL decides which component identifier/storage identifier
 pairs can be written by which actors.

 Mitigates: THREAT.MFST.OVERRIDE (Section 4.2.13),
 THREAT.UPD.UNAPPROVED (Section 4.2.11)

 Implemented by: Client-side code, not specified in manifest.

4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests

 A manifest format MUST allow encryption of selected parts of the
 manifest or encryption of the entire manifest to prevent sensitive
 content of the firmware metadata to be leaked.

 Mitigates: THREAT.MFST.EXPOSURE (Section 4.2.14), THREAT.NET.ONPATH
 (Section 4.2.7)

 Implemented by: Manifest Encryption Wrapper / Transport Security

4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest

 The digest SHOULD cover all available space in a fixed-size storage
 location. Variable-size storage locations MUST be restricted to
 exactly the size of deployed payload. This prevents any data from
 being distributed without being covered by the digest. For example,
 XIP microcontrollers typically have fixed-size storage. These
 devices should deploy a digest that covers the deployed firmware
 image, concatenated with the default erased value of any remaining
 space.

Moran, et al. Expires October 8, 2021 [Page 29]

Internet-Draft A Firmware Manifest Information Model April 2021

 Mitigates: THREAT.IMG.EXTRA (Section 4.2.15)

 Implemented by: Payload Digests (Section 3.13)

4.3.16. REQ.SEC.REPORTING: Secure Reporting

 Status reports from the device to any remote system MUST be performed
 over an authenticated, confidential channel in order to prevent
 modification or spoofing of the reports.

 Mitigates: THREAT.NET.ONPATH (Section 4.2.7)

4.3.17. REQ.SEC.KEY.PROTECTION: Protected storage of signing keys

 Cryptographic keys for signing/authenticating manifests SHOULD be
 stored in a manner that is inaccessible to networked devices, for
 example in an HSM, or an air-gapped computer. This protects against
 an attacker obtaining the keys.

 Keys SHOULD be stored in a way that limits the risk of a legitimate,
 but compromised, entity (such as a server or developer computer)
 issuing signing requests.

 Mitigates: THREAT.KEY.EXPOSURE (Section 4.2.16)

4.3.18. REQ.SEC.MFST.CHECK: Validate manifests prior to deployment

 Manifests SHOULD be verified prior to deployment. This reduces
 problems that may arise with devices installing firmware images that
 damage devices unintentionally.

 Mitigates: THREAT.MFST.MODIFICATION (Section 4.2.17)

4.3.19. REQ.SEC.MFST.TRUSTED: Construct manifests in a trusted
 environment

 For high risk deployments, such as large numbers of devices or
 critical function devices, manifests SHOULD be constructed in an
 environment that is protected from interference, such as an air-
 gapped computer. Note that a networked computer connected to an HSM
 does not fulfill this requirement (see THREAT.MFST.MODIFICATION
 (Section 4.2.17)).

 Mitigates: THREAT.MFST.MODIFICATION (Section 4.2.17)

Moran, et al. Expires October 8, 2021 [Page 30]

Internet-Draft A Firmware Manifest Information Model April 2021

4.3.20. REQ.SEC.MFST.CONST: Manifest kept immutable between check and
 use

 Both the manifest and any data extracted from it MUST be held
 immutable between its authenticity verification (time of check) and
 its use (time of use). To make this guarantee, the manifest MUST fit
 within an internal memory or a secure memory, such as encrypted
 memory. The recipient SHOULD defend the manifest from tampering by
 code or hardware resident in the recipient, for example other
 processes or debuggers.

 If an application requires that the manifest is verified before
 storing it, then this means the manifest MUST fit in RAM.

 Mitigates: THREAT.MFST.TOCTOU (Section 4.2.18)

4.4. User Stories

 User stories provide expected use cases. These are used to feed into
 usability requirements.

4.4.1. USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions

 As a Device Operator, I want to provide my devices with additional
 installation instructions so that I can keep process details out of
 my payload data.

 Some installation instructions might be:

 o Use a table of hashes to ensure that each block of the payload is
 validated before writing.

 o Do not report progress.

 o Pre-cache the update, but do not install.

 o Install the pre-cached update matching this manifest.

 o Install this update immediately, overriding any long-running
 tasks.

 Satisfied by: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

4.4.2. USER_STORY.MFST.FAIL_EARLY: Fail Early

 As a designer of a resource-constrained IoT device, I want bad
 updates to fail as early as possible to preserve battery life and
 limit consumed bandwidth.

Moran, et al. Expires October 8, 2021 [Page 31]

Internet-Draft A Firmware Manifest Information Model April 2021

 Satisfied by: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

4.4.3. USER_STORY.OVERRIDE: Override Non-Critical Manifest Elements

 As a Device Operator, I would like to be able to override the non-
 critical information in the manifest so that I can control my devices
 more precisely. The authority to override this information is
 provided via the installation of a limited trust anchor by another
 authority.

 Some examples of potentially overridable information:

 o URIs (Section 3.12): this allows the Device Operator to direct
 devices to their own infrastructure in order to reduce network
 load.

 o Conditions: this allows the Device Operator to pose additional
 constraints on the installation of the manifest.

 o Directives (Section 3.16): this allows the Device Operator to add
 more instructions such as time of installation.

 o Processing Steps (Section 3.9): If an intermediary performs an
 action on behalf of a device, it may need to override the
 processing steps. It is still possible for a device to verify the
 final content and the result of any processing step that specifies
 a digest. Some processing steps should be non-overridable.

 Satisfied by: REQ.USE.MFST.COMPONENT (Section 4.5.3)

4.4.4. USER_STORY.COMPONENT: Component Update

 As a Device Operator, I want to divide my firmware into components,
 so that I can reduce the size of updates, make different parties
 responsible for different components, and divide my firmware into
 frequently updated and infrequently updated components.

 Satisfied by: REQ.USE.MFST.COMPONENT (Section 4.5.3)

4.4.5. USER_STORY.MULTI_AUTH: Multiple Authorizations

 As a Device Operator, I want to ensure the quality of a firmware
 update before installing it, so that I can ensure interoperability of
 all devices in my product family. I want to restrict the ability to
 make changes to my devices to require my express approval.

 Satisfied by: REQ.USE.MFST.MULTI_AUTH (Section 4.5.4),
 REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

Moran, et al. Expires October 8, 2021 [Page 32]

Internet-Draft A Firmware Manifest Information Model April 2021

4.4.6. USER_STORY.IMG.FORMAT: Multiple Payload Formats

 As a Device Operator, I want to be able to send multiple payload
 formats to suit the needs of my update, so that I can optimise the
 bandwidth used by my devices.

 Satisfied by: REQ.USE.IMG.FORMAT (Section 4.5.5)

4.4.7. USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information
 Disclosures

 As a firmware author, I want to prevent confidential information in
 the manifest from being disclosed when distributing manifests and
 firmware images. Confidential information may include information
 about the device these updates are being applied to as well as
 information in the firmware image itself.

 Satisfied by: REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

4.4.8. USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking
 Unknown Formats

 As a Device Operator, I want devices to determine whether they can
 process a payload prior to downloading it.

 In some cases, it may be desirable for a third party to perform some
 processing on behalf of a target. For this to occur, the third party
 MUST indicate what processing occurred and how to verify it against
 the Trust Provisioning Authority's intent.

 This amounts to overriding Processing Steps (Section 3.9) and Payload
 Indicator (Section 3.12).

 Satisfied by: REQ.USE.IMG.FORMAT (Section 4.5.5), REQ.USE.IMG.NESTED
 (Section 4.5.6), REQ.USE.MFST.OVERRIDE_REMOTE (Section 4.5.2)

4.4.9. USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of
 Target Firmware

 As a Device Operator, I want to be able to target devices for updates
 based on their current firmware version, so that I can control which
 versions are replaced with a single manifest.

 Satisfied by: REQ.USE.IMG.VERSIONS (Section 4.5.7)

Moran, et al. Expires October 8, 2021 [Page 33]

Internet-Draft A Firmware Manifest Information Model April 2021

4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose Between Images

 As a developer, I want to be able to sign two or more versions of my
 firmware in a single manifest so that I can use a very simple
 bootloader that chooses between two or more images that are executed
 in-place.

 Satisfied by: REQ.USE.IMG.SELECT (Section 4.5.8)

4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using Manifests

 As a signer for both secure execution/boot and firmware deployment, I
 would like to use the same signed document for both tasks so that my
 data size is smaller, I can share common code, and I can reduce
 signature verifications.

 Satisfied by: REQ.USE.EXEC (Section 4.5.9)

4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load

 As a developer of firmware for a run-from-RAM device, I would like to
 use compressed images and to indicate to the bootloader that I am
 using a compressed image in the manifest so that it can be used with
 secure execution/boot.

 Satisfied by: REQ.USE.LOAD (Section 4.5.10)

4.4.13. USER_STORY.MFST.IMG: Payload in Manifest

 As an operator of devices on a constrained network, I would like the
 manifest to be able to include a small payload in the same packet so
 that I can reduce network traffic.

 Small payloads may include, for example, wrapped content encryption
 keys, configuration information, public keys, authorization tokens,
 or X.509 certificates.

 Satisfied by: REQ.USE.PAYLOAD (Section 4.5.11)

4.4.14. USER_STORY.MFST.PARSE: Simple Parsing

 As a developer for constrained devices, I want a low complexity
 library for processing updates so that I can fit more application
 code on my device.

 Satisfied by: REQ.USE.PARSE (Section 4.5.12)

Moran, et al. Expires October 8, 2021 [Page 34]

Internet-Draft A Firmware Manifest Information Model April 2021

4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest

 As a Device Operator that rotates delegated authority more often than
 delivering firmware updates, I would like to delegate a new authority
 when I deliver a firmware update so that I can accomplish both tasks
 in a single transmission.

 Satisfied by: REQ.USE.DELEGATION (Section 4.5.13)

4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation

 As an operator of a constrained network, I would like devices on my
 network to be able to evaluate the suitability of an update prior to
 initiating any large download so that I can prevent unnecessary
 consumption of bandwidth.

 Satisfied by: REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

4.5. Usability Requirements

 The following usability requirements satisfy the user stories listed
 above.

4.5.1. REQ.USE.MFST.PRE_CHECK: Pre-Installation Checks

 A manifest format MUST be able to carry all information required to
 process an update.

 For example: Information about which precursor image is required for
 a differential update must be placed in the manifest.

 Satisfies: [USER_STORY.MFST.PRE_CHECK(#user-story-mfst-pre-check),
 USER_STORY.INSTALL.INSTRUCTIONS (Section 4.4.1)

 Implemented by: Additional installation instructions (Section 3.16)

4.5.2. REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location

 A manifest format MUST be able to redirect payload fetches. This
 applies where two manifests are used in conjunction. For example, a
 Device Operator creates a manifest specifying a payload and signs it,
 and provides a URI for that payload. A Network Operator creates a
 second manifest, with a dependency on the first. They use this
 second manifest to override the URIs provided by the Device Operator,
 directing them into their own infrastructure instead. Some devices
 may provide this capability, while others may only look at canonical
 sources of firmware. For this to be possible, the device must fetch

Moran, et al. Expires October 8, 2021 [Page 35]

Internet-Draft A Firmware Manifest Information Model April 2021

 the payload, whereas a device that accepts payload pushes will ignore
 this feature.

 Satisfies: USER_STORY.OVERRIDE (Section 4.4.3)

 Implemented by: Aliases (Section 3.17)

4.5.3. REQ.USE.MFST.COMPONENT: Component Updates

 A manifest format MUST be able to express the requirement to install
 one or more payloads from one or more authorities so that a multi-
 payload update can be described. This allows multiple parties with
 different permissions to collaborate in creating a single update for
 the IoT device, across multiple components.

 This requirement implies that it must be possible to construct a tree
 of manifests on a multi-image target.

 In order to enable devices with a heterogeneous storage architecture,
 the manifest must enable specification of both storage system and the
 storage location within that storage system.

 Satisfies: USER_STORY.OVERRIDE (Section 4.4.3), USER_STORY.COMPONENT
 (Section 4.4.4)

 Implemented by: Dependencies, StorageIdentifier, ComponentIdentifier

4.5.3.1. Example 1: Multiple Microcontrollers

 An IoT device with multiple microcontrollers in the same physical
 device will likely require multiple payloads with different component
 identifiers.

4.5.3.2. Example 2: Code and Configuration

 A firmware image can be divided into two payloads: code and
 configuration. These payloads may require authorizations from
 different actors in order to install (see REQ.SEC.RIGHTS
 (Section 4.3.11) and REQ.SEC.ACCESS_CONTROL (Section 4.3.13)). This
 structure means that multiple manifests may be required, with a
 dependency structure between them.

4.5.3.3. Example 3: Multiple Software Modules

 A firmware image can be divided into multiple functional blocks for
 separate testing and distribution. This means that code would need
 to be distributed in multiple payloads. For example, this might be

Moran, et al. Expires October 8, 2021 [Page 36]

Internet-Draft A Firmware Manifest Information Model April 2021

 desirable in order to ensure that common code between devices is
 identical in order to reduce distribution bandwidth.

4.5.4. REQ.USE.MFST.MULTI_AUTH: Multiple authentications

 A manifest format MUST be able to carry multiple signatures so that
 authorizations from multiple parties with different permissions can
 be required in order to authorize installation of a manifest.

 Satisfies: USER_STORY.MULTI_AUTH (Section 4.4.5)

 Implemented by: Signature (Section 3.15)

4.5.5. REQ.USE.IMG.FORMAT: Format Usability

 The manifest format MUST accommodate any payload format that an
 Operator wishes to use. This enables the recipient to detect which
 format the Operator has chosen. Some examples of payload format are:

 o Binary

 o Executable and Linkable Format (ELF)

 o Differential

 o Compressed

 o Packed configuration

 o Intel HEX

 o Motorola S-Record

 Satisfies: USER_STORY.IMG.FORMAT (Section 4.4.6)
 USER_STORY.IMG.UNKNOWN_FORMAT (Section 4.4.8)

 Implemented by: Payload Format (Section 3.8)

4.5.6. REQ.USE.IMG.NESTED: Nested Formats

 The manifest format MUST accommodate nested formats, announcing to
 the target device all the nesting steps and any parameters used by
 those steps.

 Satisfies: USER_STORY.IMG.CONFIDENTIALITY (Section 4.4.7)

 Implemented by: Processing Steps (Section 3.9)

Moran, et al. Expires October 8, 2021 [Page 37]

Internet-Draft A Firmware Manifest Information Model April 2021

4.5.7. REQ.USE.IMG.VERSIONS: Target Version Matching

 The manifest format MUST provide a method to specify multiple version
 numbers of firmware to which the manifest applies, either with a list
 or with range matching.

 Satisfies: USER_STORY.IMG.CURRENT_VERSION (Section 4.4.9)

 Implemented by: Required Image Version List (Section 3.6)

4.5.8. REQ.USE.IMG.SELECT: Select Image by Destination

 The manifest format MUST provide a mechanism to list multiple
 equivalent payloads by Execute-In-Place Installation Address,
 including the payload digest and, optionally, payload URIs.

 Satisfies: USER_STORY.IMG.SELECT (Section 4.4.10)

 Implemented by: XIP Address (Section 3.20)

4.5.9. REQ.USE.EXEC: Executable Manifest

 The manifest format MUST allow to describe an executable system with
 a manifest on both Execute-In-Place microcontrollers and on complex
 operating systems. In addition, the manifest format MUST be able to
 express metadata, such as a kernel command-line, used by any loader
 or bootloader.

 Satisfies: USER_STORY.EXEC.MFST (Section 4.4.11)

 Implemented by: Run-time metadata (Section 3.22)

4.5.10. REQ.USE.LOAD: Load-Time Information

 The manifest format MUST enable carrying additional metadata for load
 time processing of a payload, such as cryptographic information,
 load-address, and compression algorithm. Note that load comes before
 execution/boot.

 Satisfies: USER_STORY.EXEC.DECOMPRESS (Section 4.4.12)

 Implemented by: Load-time metadata (Section 3.21)

4.5.11. REQ.USE.PAYLOAD: Payload in Manifest Envelope

 The manifest format MUST allow placing a payload in the same
 structure as the manifest. This may place the payload in the same
 packet as the manifest.

Moran, et al. Expires October 8, 2021 [Page 38]

Internet-Draft A Firmware Manifest Information Model April 2021

 Integrated payloads may include, for example, binaries as well as
 configuration information, and keying material.

 When an integrated payload is provided, this increases the size of
 the manifest. Manifest size can cause several processing and storage
 concerns that require careful consideration. The payload can prevent
 the whole manifest from being contained in a single network packet,
 which can cause fragmentation and the loss of portions of the
 manifest in lossy networks. This causes the need for reassembly and
 retransmission logic. The manifest MUST be held immutable between
 verification and processing (see REQ.SEC.MFST.CONST
 (Section 4.3.20)), so a larger manifest will consume more memory with
 immutability guarantees, for example internal RAM or NVRAM, or
 external secure memory. If the manifest exceeds the available
 immutable memory, then it MUST be processed modularly, evaluating
 each of: delegation chains, the security container, and the actual
 manifest, which includes verifying the integrated payload. If the
 security model calls for downloading the manifest and validating it
 before storing to NVRAM in order to prevent wear to NVRAM and energy
 expenditure in NVRAM, then either increasing memory allocated to
 manifest storage or modular processing of the received manifest may
 be required. While the manifest has been organised to enable this
 type of processing, it creates additional complexity in the parser.
 If the manifest is stored in NVRAM prior to processing, the
 integrated payload may cause the manifest to exceed the available
 storage. Because the manifest is received prior to validation of
 applicability, authority, or correctness, integrated payloads cause
 the recipient to expend network bandwidth and energy that may not be
 required if the manifest is discarded and these costs vary with the
 size of the integrated payload.

 See also: REQ.SEC.MFST.CONST (Section 4.3.20).

 Satisfies: USER_STORY.MFST.IMG (Section 4.4.13)

 Implemented by: Payload (Section 3.23)

4.5.12. REQ.USE.PARSE: Simple Parsing

 The structure of the manifest MUST be simple to parse to reduce the
 attack vectors against manifest parsers.

 Satisfies: USER_STORY.MFST.PARSE (Section 4.4.14)

 Implemented by: N/A

Moran, et al. Expires October 8, 2021 [Page 39]

Internet-Draft A Firmware Manifest Information Model April 2021

4.5.13. REQ.USE.DELEGATION: Delegation of Authority in Manifest

 A manifest format MUST enable the delivery of delegation information.
 This information delivers a new key with which the recipient can
 verify the manifest.

 Satisfies: USER_STORY.MFST.DELEGATION (Section 4.4.15)

 Implemented by: Delegation Chain (Section 3.24)

5. IANA Considerations

 This document does not require any actions by IANA.

6. Acknowledgements

 We would like to thank our working group chairs, Dave Thaler, Russ
 Housley and David Waltermire, for their review comments and their
 support.

 We would like to thank the participants of the 2018 Berlin SUIT
 Hackathon and the June 2018 virtual design team meetings for their
 discussion input. In particular, we would like to thank Koen
 Zandberg, Emmanuel Baccelli, Carsten Bormann, David Brown, Markus
 Gueller, Frank Audun Kvamtro, Oyvind Ronningstad, Michael Richardson,
 Jan-Frederik Rieckers, Francisco Acosta, Anton Gerasimov, Matthias
 Waehlisch, Max Groening, Daniel Petry, Gaetan Harter, Ralph Hamm,
 Steve Patrick, Fabio Utzig, Paul Lambert, Benjamin Kaduk, Said
 Gharout, and Milen Stoychev.

 We would like to thank those who contributed to the development of
 this information model. In particular, we would like to thank
 Milosch Meriac, Jean-Luc Giraud, Dan Ros, Amyas Philips, and Gary
 Thomson.

 Finally, we would like to thank the following IESG members for their
 review feedback: Erik Kline, Murray Kucherawy, Barry Leiba, Alissa
 Cooper, Stephen Farrell and Benjamin Kaduk.

7. References

7.1. Normative References

 [I-D.ietf-suit-architecture]
 Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A
 Firmware Update Architecture for Internet of Things",

draft-ietf-suit-architecture-15 (work in progress),
 January 2021.

https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-15

Moran, et al. Expires October 8, 2021 [Page 40]

Internet-Draft A Firmware Manifest Information Model April 2021

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between
 Information Models and Data Models", RFC 3444,
 DOI 10.17487/RFC3444, January 2003,
 <https://www.rfc-editor.org/info/rfc3444>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [STRIDE] Microsoft, "The STRIDE Threat Model", May 2018,
 <https://msdn.microsoft.com/en-us/library/
 ee823878(v=cs.20).aspx>.

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@gmx.net

 Henk Birkholz
 Fraunhofer SIT

 EMail: henk.birkholz@sit.fraunhofer.de

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc3444
https://www.rfc-editor.org/info/rfc3444
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://msdn.microsoft.com/en-us/library/

Moran, et al. Expires October 8, 2021 [Page 41]

