
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Standards Track Arm Limited
Expires: December 11, 2020 H. Birkholz
 Fraunhofer SIT
 K. Zandberg
 Inria
 June 09, 2020

A Concise Binary Object Representation (CBOR)-based Serialization Format
 for the Software Updates for Internet of Things (SUIT) Manifest

draft-ietf-suit-manifest-07

Abstract

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about the firmware for an IoT device, where to
 find the firmware, the devices to which it applies, and cryptographic
 information protecting the manifest. Firmware updates and secure
 boot both tend to use sequences of common operations, so the manifest
 encodes those sequences of operations, rather than declaring the
 metadata. The manifest also serves as a building block for secure
 boot.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 11, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Moran, et al. Expires December 11, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-07
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft CBOR-based SUIT Manifest June 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 5
3. How to use this Document 6
4. Background . 7
4.1. IoT Firmware Update Constraints 7
4.2. Update Workflow Model 8

5. Severed Fields . 9
6. Interpreter Behavior . 10
6.1. Interpreter Setup . 10
6.2. Required Checks . 11
6.3. Interpreter Fundamental Properties 12
6.4. Abstract Machine Description 12
6.5. Serialized Processing Interpreter 14
6.6. Parallel Processing Interpreter 14
6.7. Processing Dependencies 15

7. Creating Manifests . 15
7.1. Compatibility Check Template 16
7.2. Secure Boot Template 16
7.3. Firmware Download Template 16
7.4. Load from External Storage Template 17
7.5. Load & Decompress from External Storage Template 17
7.6. Dependency Template 18

8. Envelope . 18
8.1. Authenticated Manifests 19
8.2. Encrypted Manifests 20
8.3. Delegation Info . 20
8.4. Severable Fields . 20
8.5. Human-Readable Text 20
8.6. COSWID . 21
8.7. Encoding Considerations 21

9. Manifest . 22
9.1. suit-manifest-version 22
9.2. suit-manifest-sequence-number 23
9.3. suit-reference-uri 23
9.4. suit-text . 23
9.5. suit-coswid . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Moran, et al. Expires December 11, 2020 [Page 2]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.6. Dependencies . 23
9.7. SUIT_Component_Reference 24
9.8. SUIT_Command_Sequence 24
9.8.1. suit-common . 26
9.8.2. SUIT_Parameters 26
9.8.3. SUIT_Condition 31
9.8.4. SUIT_Directive 36

10. Access Control Lists . 42
11. SUIT Digest Container . 43
12. Creating Conditional Sequences 43
13. IANA Considerations . 45
13.1. SUIT Directives . 45
13.2. SUIT Conditions . 46
13.3. SUIT Parameters . 46
13.4. SUIT Text Values . 48
13.5. SUIT Algorithm Identifiers 48
13.5.1. Hash Algorithms 48
13.5.2. Unpack Algorithms 49

14. Security Considerations 49
15. Acknowledgements . 49
16. References . 50
16.1. Normative References 50
16.2. Informative References 51

A. Full CDDL . 53
B. Examples . 61
B.1. Example 0: Secure Boot 61

 B.2. Example 1: Simultaneous Download and Installation of
 Payload . 63
 B.3. Example 2: Simultaneous Download, Installation, and
 Secure Boot . 66

B.4. Example 3: Load from External Storage 68
B.5. Example 4: Load and Decompress from External Storage . . 71

 B.6. Example 5: Compatibility Test, Download, Installation,
 and Secure Boot . 73

B.7. Example 6: Two Images 76
C. Design Rational . 79
D. Implementation Conformance Matrix 80

 Authors' Addresses . 84

1. Introduction

 A firmware update mechanism is an essential security feature for IoT
 devices to deal with vulnerabilities. While the transport of
 firmware images to the devices themselves is important there are
 already various techniques available. Equally important is the
 inclusion of metadata about the conveyed firmware image (in the form
 of a manifest) and the use of a security wrapper to provide end-to-
 end security protection to detect modifications and (optionally) to

Moran, et al. Expires December 11, 2020 [Page 3]

Internet-Draft CBOR-based SUIT Manifest June 2020

 make reverse engineering more difficult. End-to-end security allows
 the author, who builds the firmware image, to be sure that no other
 party (including potential adversaries) can install firmware updates
 on IoT devices without adequate privileges. For confidentiality
 protected firmware images it is additionally required to encrypt the
 firmware image. Starting security protection at the author is a risk
 mitigation technique so firmware images and manifests can be stored
 on untrusted repositories; it also reduces the scope of a compromise
 of any repository or intermediate system to be no worse than a denial
 of service.

 A manifest is a bundle of metadata about the firmware for an IoT
 device, where to find the firmware, the devices to which it applies,
 and cryptographic information protecting the manifest.

 This specification defines the SUIT manifest format and it is
 intended to meet several goals:

 - Meet the requirements defined in
 [I-D.ietf-suit-information-model].

 - Simple to parse on a constrained node

 - Simple to process on a constrained node

 - Compact encoding

 - Comprehensible by an intermediate system

 - Expressive enough to enable advanced use cases on advanced nodes

 - Extensible

 The SUIT manifest can be used for a variety of purposes throughout
 its lifecycle, such as:

 - the Firmware Author to reason about releasing a firmware.

 - the Network Operator to reason about compatibility of a firmware.

 - the Device Operator to reason about the impact of a firmware.

 - the Device Operator to manage distribution of firmware to devices.

 - the Plant Manager to reason about timing and acceptance of
 firmware updates.

Moran, et al. Expires December 11, 2020 [Page 4]

Internet-Draft CBOR-based SUIT Manifest June 2020

 - the device to reason about the authority & authenticity of a
 firmware prior to installation.

 - the device to reason about the applicability of a firmware.

 - the device to reason about the installation of a firmware.

 - the device to reason about the authenticity & encoding of a
 firmware at boot.

 Each of these uses happens at a different stage of the manifest
 lifecycle, so each has different requirements.

 It is assumed that the reader is familiar with the high-level
 firmware update architecture [I-D.ietf-suit-architecture] and the
 threats, requirements, and user stories in
 [I-D.ietf-suit-information-model].

 A core concept of the SUIT manifest specification are commands.
 Commands are either conditions or directives used to define the
 required behavior. Conceptually, a sequence of commands is like a
 script but the used language is tailored to software updates and
 secure boot.

 The available commands support simple steps, such as copying a
 firmware image from one place to another, checking that a firmware
 image is correct, verifying that the specified firmware is the
 correct firmware for the device, or unpacking a firmware. By using
 these steps in different orders and changing the parameters they use,
 a broad range of use cases can be supported. The SUIT manifest uses
 this observation to heavily optimize metadata for consumption by
 constrained devices.

 While the SUIT manifest is informed by and optimized for firmware
 update and secure boot use cases, there is nothing in the
 [I-D.ietf-suit-information-model] that restricts its use to only
 those use cases. Other use cases include the management of trusted
 applications in a Trusted Execution Environment (TEE), see
 [I-D.ietf-teep-architecture].

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Moran, et al. Expires December 11, 2020 [Page 5]

Internet-Draft CBOR-based SUIT Manifest June 2020

 The following terminology is used throughout this document:

 - SUIT: Software Update for the Internet of Things, the IETF working
 group for this standard.

 - Payload: A piece of information to be delivered. Typically
 Firmware for the purposes of SUIT.

 - Resource: A piece of information that is used to construct a
 payload.

 - Manifest: A manifest is a bundle of metadata about the firmware
 for an IoT device, where to find the firmware, the devices to
 which it applies, and cryptographic information protecting the
 manifest.

 - Envelope: A container with the manifest, an authentication
 wrapper, authorization information, and severed fields.

 - Update: One or more manifests that describe one or more payloads.

 - Update Authority: The owner of a cryptographic key used to sign
 updates, trusted by Recipients.

 - Recipient: The system, typically an IoT device, that receives a
 manifest.

 - Command: A Condition or a Directive.

 - Condition: A test for a property of the Recipient or its
 components.

 - Directive: An action for the Recipient to perform.

 - Trusted Execution: A process by which a system ensures that only
 trusted code is executed, for example secure boot.

 - A/B images: Dividing a device's storage into two or more bootable
 images, at different offsets, such that the active image can write
 to the inactive image(s).

3. How to use this Document

 This specification covers four aspects of firmware update:

 - Section 4 describes the device constraints, use cases, and design
 principles that informed the structure of the manifest.

Moran, et al. Expires December 11, 2020 [Page 6]

Internet-Draft CBOR-based SUIT Manifest June 2020

 - Section 6 describes what actions a manifest processor should take.

 - Section 7 describes the process of creating a manifest.

 - Section 9 specifies the content of the manifest and the envelope.

 To implement an updatable device, see Section 6 and Section 9. To
 implement a tool that generates updates, see Section 7 and Section 9.

 The IANA consideration section, see Section 13, provides instructions
 to IANA to create several registries. This section also provides the
 CBOR labels for the structures defined in this document.

 The complete CDDL description is provided in Appendix A, examples are
 given in Appendix B and a design rational is offered in Appendix C.
 Finally, Appendix D gives a summarize of the mandatory-to-implement
 features of this specification.

4. Background

 Distributing firmware updates to diverse devices with diverse trust
 anchors in a coordinated system presents unique challenges. Devices
 have a broad set of constraints, requiring different metadata to make
 appropriate decisions. There may be many actors in production IoT
 systems, each of whom has some authority. Distributing firmware in
 such a multi-party environment presents additional challenges. Each
 party requires a different subset of data. Some data may not be
 accessible to all parties. Multiple signatures may be required from
 parties with different authorities. This topic is covered in more
 depth in [I-D.ietf-suit-architecture]. The security aspects are
 described in [I-D.ietf-suit-information-model].

4.1. IoT Firmware Update Constraints

 The various constraints of IoT devices and the range of use cases
 that need to be supported create a broad set of urequirements. For
 example, devices with:

 - limited processing power and storage may require a simple
 representation of metadata.

 - bandwidth constraints may require firmware compression or partial
 update support.

 - bootloader complexity constraints may require simple selection
 between two bootable images.

 - small internal storage may require external storage support.

Moran, et al. Expires December 11, 2020 [Page 7]

Internet-Draft CBOR-based SUIT Manifest June 2020

 - multiple microcontrollers may require coordinated update of all
 applications.

 - large storage and complex functionality may require parallel
 update of many software components.

 - extra information may need to be conveyed in the manifest in the
 earlier stages of the device lifecycle before those data items are
 stripped when the manifest is delivery to a constrained device.

 Supporting the requirements introduced by the constraints on IoT
 devices requires the flexibility to represent a diverse set of
 possible metadata, but also requires that the encoding is kept
 simple.

4.2. Update Workflow Model

 There are several fundamental assumptions that inform the model of
 the firmware update workflow:

 - Compatibility must be checked before any other operation is
 performed.

 - All dependency manifests should be present before any payload is
 fetched.

 - In some applications, payloads must be fetched and validated prior
 to installation.

 There are several fundamental assumptions that inform the model of
 the secure boot workflow:

 - Compatibility must be checked before any other operation is
 performed.

 - All dependencies and payloads must be validated prior to loading.

 - All loaded images must be validated prior to execution.

 Based on these assumptions, the manifest is structured to work with a
 pull parser, where each section of the manifest is used in sequence.
 The expected workflow for a device installing an update can be broken
 down into five steps:

 1. Verify the signature of the manifest.

 2. Verify the applicability of the manifest.

Moran, et al. Expires December 11, 2020 [Page 8]

Internet-Draft CBOR-based SUIT Manifest June 2020

 3. Resolve dependencies.

 4. Fetch payload(s).

 5. Install payload(s).

 When installation is complete, similar information can be used for
 validating and running images in a further three steps:

 1. Verify image(s).

 2. Load image(s).

 3. Run image(s).

 If verification and running is implemented in a bootloader, then the
 bootloader must also verify the signature of the manifest and the
 applicability of the manifest in order to implement secure boot
 workflows. The bootloader may add its own authentication, e.g. a
 MAC, to the manifest in order to prevent further verifications.

 When multiple manifests are used for an update, each manifest's steps
 occur in a lockstep fashion; all manifests have dependency resolution
 performed before any manifest performs a payload fetch, etc.

5. Severed Fields

 Because the manifest can be used by different actors at different
 times, some parts of the manifest can be removed without affecting
 later stages of the lifecycle. This is called "Severing." Severing
 of information is achieved by separating that information from the
 signed container so that removing it does not affect the signature.
 This means that ensuring authenticity of severable parts of the
 manifest is a requirement for the signed portion of the manifest.
 Severing some parts makes it possible to discard parts of the
 manifest that are no longer necessary. This is important because it
 allows the storage used by the manifest to be greatly reduced. For
 example, no text size limits are needed if text is removed from the
 manifest prior to delivery to a constrained device.

 Elements are made severable by removing them from the manifest,
 encoding them in a bstr, and placing a SUIT_Digest of the bstr in the
 manifest so that they can still be authenticated. The SUIT_Digest
 typically consumes 4 bytes more than the size of the raw digest,
 therefore elements smaller than (Digest Bits)/8 + 4 should never be
 severable. Elements larger than (Digest Bits)/8 + 4 may be
 severable, while elements that are much larger than (Digest Bits)/8 +
 4 should be severable.

Moran, et al. Expires December 11, 2020 [Page 9]

Internet-Draft CBOR-based SUIT Manifest June 2020

 Because of this, all command sequences in the manifest are encoded in
 a bstr so that there is a single code path needed for all command
 sequences.

6. Interpreter Behavior

 This section describes the behavior of the manifest interpreter and
 focuses primarily on interpreting commands in the manifest. However,
 there are several other important behaviors of the interpreter:
 encoding version detection, rollback protection, and authenticity
 verification are chief among these.

6.1. Interpreter Setup

 Prior to executing any command sequence, the interpreter or its host
 application MUST inspect the manifest version field and fail when it
 encounters an unsupported encoding version. Next, the interpreter or
 its host application MUST extract the manifest sequence number and
 perform a rollback check using this sequence number. The exact logic
 of rollback protection may vary by application, but it has the
 following properties:

 - Whenever the interpreter can choose between several manifests, it
 MUST select the latest valid, authentic manifest.

 - If the latest valid, authentic manifest fails, it MAY select the
 next latest valid, authentic manifest.

 Here, valid means that a manifest has a supported encoding version
 and it has not been excluded for other reasons. Reasons for
 excluding typically involve first executing the manifest and may
 include:

 - Test failed (e.g. Vendor ID/Class ID).

 - Unsupported command encountered.

 - Unsupported parameter encountered.

 - Unsupported component ID encountered.

 - Payload not available.

 - Dependency not available.

 - Application crashed when executed.

 - Watchdog timeout occurred.

Moran, et al. Expires December 11, 2020 [Page 10]

Internet-Draft CBOR-based SUIT Manifest June 2020

 - Dependency or Payload verification failed.

 These failure reasons MAY be combined with retry mechanisms prior to
 marking a manifest as invalid.

 Following these initial tests, the interpreter clears all parameter
 storage. This ensures that the interpreter begins without any leaked
 data.

6.2. Required Checks

 The RECOMMENDED process is to verify the signature of the manifest
 prior to parsing/executing any section of the manifest. This guards
 the parser against arbitrary input by unauthenticated third parties,
 but it costs extra energy when a device receives an incompatible
 manifest.

 A device MAY choose to parse and execute only the SUIT_Common section
 of the manifest prior to signature verification, if - it expects to
 receive many incompatible manifests, and - it has power budget that
 makes signature verification undesirable.

 The guidelines in Creating Manifests (Section 7) require that the
 common section contains the applicability checks, so this section is
 sufficient for applicability verification. The manifest parser MUST
 NOT execute any command with side-effects outside the parser (for
 example, Run, Copy, Swap, or Fetch commands) prior to authentication
 and any such command MUST result in an error.

 Once a valid, authentic manifest has been selected, the interpreter
 MUST examine the component list and verify that its maximum number of
 components is not exceeded and that each listed component ID is
 supported.

 For each listed component, the interpreter MUST provide storage for
 the supported parameters. If the interpreter does not have
 sufficient temporary storage to process the parameters for all
 components, it MAY process components serially for each command
 sequence. See Section 6.5 for more details.

 The interpreter SHOULD check that the common section contains at
 least one vendor ID check and at least one class ID check.

 If the manifest contains more than one component, each command
 sequence MUST begin with a Set Current Component command.

 If a dependency is specified, then the interpreter MUST perform the
 following checks:

Moran, et al. Expires December 11, 2020 [Page 11]

Internet-Draft CBOR-based SUIT Manifest June 2020

 1. At the beginning of each section in the dependent: all previous
 sections of each dependency have been executed.

 2. At the end of each section in the dependent: The corresponding
 section in each dependency has been executed.

 If the interpreter does not support dependencies and a manifest
 specifies a dependency, then the interpreter MUST reject the
 manifest.

6.3. Interpreter Fundamental Properties

 The interpreter has a small set of design goals:

 1. Executing an update MUST either result in an error, or a
 verifiably correct system state.

 2. Executing a secure boot MUST either result in an error, or a
 booted system.

 3. Executing the same manifest on multiple devices MUST result in
 the same system state.

 NOTE: when using A/B images, the manifest functions as two (or more)
 logical manifests, each of which applies to a system in a particular
 starting state. With that provision, design goal 3 holds.

6.4. Abstract Machine Description

 The heart of the manifest is the list of commands, which are
 processed by an interpreter. This interpreter can be modeled as a
 simple abstract machine. This machine consists of several data
 storage locations that are modified by commands.

 There are two types of commands, namely those that modify state
 (directives) and those that perform tests (conditions). Parameters
 are used as the inputs to commands. Some directives offer control
 flow operations. Directives target a specific component. A
 component is a unit of code or data that can be targeted by an
 update. Components are identified by a Component Index, i.e. arrays
 of binary strings.

 The following table describes the behavior of each command. "params"
 represents the parameters for the current component or dependency.

 +--------------------+--+
 | Command Name | Semantic of the Operation |
 +--------------------+--+

Moran, et al. Expires December 11, 2020 [Page 12]

Internet-Draft CBOR-based SUIT Manifest June 2020

Check Vendor	binary-match(component, params[vendor-id])
Identifier	
Check Class	binary-match(component, params[class-id])
Identifier	
Verify Image	binary-match(digest(component),
	params[digest])
Set Component	component := components[arg]
Index	
Override	params[k] := v for k,v in arg
Parameters	
Set Dependency	dependency := dependencies[arg]
Index	
Set Parameters	params[k] := v if not k in params for k,v in
	arg
Process Dependency	exec(dependency[common]); exec(dependency
	[current-segment])
Run	run(component)
Fetch	store(component, fetch(params[uri]))
Use Before	assert(now() < arg)
Check Component	assert(offsetof(component) == arg)
Offset	
Check Device	binary-match(component, params[device-id])
Identifier	
Check Image Not	not binary-match(digest(component),
Match	params[digest])
Check Minimum	assert(battery >= arg)
Battery	
Check Update	assert(isAuthorized())
Authorized	
Check Version	assert(version_check(component, arg))
Abort	assert(0)

Moran, et al. Expires December 11, 2020 [Page 13]

Internet-Draft CBOR-based SUIT Manifest June 2020

Try Each	break if exec(seq) is not error for seq in
	arg
Copy	store(component, params[src-component])
Swap	swap(component, params[src-component])
Wait For Event	until event(arg), wait
Run Sequence	exec(arg)
Run with Arguments	run(component, arg)
 +--------------------+--+

6.5. Serialized Processing Interpreter

 Because each manifest has a list of components and a list of
 components defined by its dependencies, it is possible for the
 manifest processor to handle one component at a time, traversing the
 manifest tree once for each listed component. In this mode, the
 interpreter ignores any commands executed while the component index
 is not the current component. This reduces the overall volatile
 storage required to process the update so that the only limit on
 number of components is the size of the manifest. However, this
 approach requires additional processing power.

6.6. Parallel Processing Interpreter

 Advanced devices may make use of the Strict Order parameter and
 enable parallel processing of some segments, or it may reorder some
 segments. To perform parallel processing, once the Strict Order
 parameter is set to False, the device may fork a process for each
 command until the Strict Order parameter is returned to True or the
 command sequence ends. Then, it joins all forked processes before
 continuing processing of commands. To perform out-of-order
 processing, a similar approach is used, except the device consumes
 all commands after the Strict Order parameter is set to False, then
 it sorts these commands into its preferred order, invokes them all,
 then continues processing.

 Under each of these scenarios the parallel processing must halt:

 - Set Parameters.

 - Override Parameters.

 - Set Strict Order = True.

Moran, et al. Expires December 11, 2020 [Page 14]

Internet-Draft CBOR-based SUIT Manifest June 2020

 - Set Dependency Index.

 - Set Component Index.

 To perform more useful parallel operations, sequences of commands may
 be collected in a suit-directive-run-sequence. Then, each of these
 sequences may be run in parallel. Each sequence defaults to Strict
 Order = True. To isolate each sequence from each other sequence,
 each sequence must declare a single target component. Set Component
 Index is not permitted inside this sequence.

6.7. Processing Dependencies

 As described in Section 6.2, each manifest must invoke each of its
 dependencies sections from the corresponding section of the
 dependent. Any changes made to parameters by the dependency persist
 in the dependent.

 When a Process Dependency command is encountered, the interpreter
 loads the dependency identified by the Current Dependency Index. The
 interpreter first executes the common-sequence section of the
 identified dependency, then it executes the section of the dependency
 that corresponds to the currently executing section of the dependent.

 The interpreter also performs the checks described in Section 6.2 to
 ensure that the dependent is processing the dependency correctly.

7. Creating Manifests

 Manifests are created using tools for constructing COSE structures,
 calculating cryptographic values and compiling desired system state
 into a sequence of operations required to achieve that state. The
 process of constructing COSE structures and the calculation of
 cryptographic values is covered in [RFC8152].

 Compiling desired system state into a sequence of operations can be
 accomplished in many ways. Several templates are provided below to
 cover common use-cases. These templates can be combined to produce
 more complex behavior.

 NOTE: On systems that support only a single component, Set Current
 Component has no effect and can be omitted.

 NOTE: A digest should always be set using Override Parameters, since
 this prevents a less-privileged dependent from replacing the digest.

https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires December 11, 2020 [Page 15]

Internet-Draft CBOR-based SUIT Manifest June 2020

7.1. Compatibility Check Template

 The compatibility check ensures that devices only install compatible
 images. In this template all information is contained in the common
 block and the following sequence of operations are used:

 - Set Component Index directive (see Section 9.8.4.1)

 - Set Parameters directive (see Section 9.8.4.6) for Vendor ID and
 Class ID (see Section 9.8.2)

 - Check Vendor Identifier condition (see Section 9.8.3.1)

 - Check Class Identifier condication (see Section 9.8.3.1)

7.2. Secure Boot Template

 This template performs a secure boot operation.

 The following operations are placed into the common block:

 - Set Component Index directive (see Section 9.8.4.1)

 - Override Parameters directive (see Section 9.8.4.7) for Image
 Digest and Image Size (see Section 9.8.2)

 Then, the run block contains the following operations:

 - Set Component Index directive (see Section 9.8.4.1)

 - Check Image Match condition (see Section 9.8.3.2)

 - Run directive (see Section 9.8.4.12)

 According to Section 6.4, the Run directive applies to the component
 referenced by the current Component Index. Hence, the Set Component
 Index directive has to be used to target a specific component.

7.3. Firmware Download Template

 This template triggers the download of firmware.

 The following operations are placed into the common block:

 - Set Component Index directive (see Section 9.8.4.1)

 - Override Parameters directive (see Section 9.8.4.7) for Image
 Digest and Image Size (see Section 9.8.2)

Moran, et al. Expires December 11, 2020 [Page 16]

Internet-Draft CBOR-based SUIT Manifest June 2020

 Then, the install block contains the following operations:

 - Set Component Index directive (see Section 9.8.4.1)

 - Set Parameters directive (see Section 9.8.4.6) for URI (see
Section 9.8.2)

 - Fetch directive (see Section 9.8.4.8)

 The Fetch directive needs the URI parameter to be set to determine
 where the image is retrieved from. Additionally, the destination of
 where the component shall be stored has to be configured. The URI is
 configured via the Set Parameters directive while the destination is
 configured via the Set Component Index directive.

7.4. Load from External Storage Template

 This directive loads an firmware image from external storage.

 The following operations are placed into the load block:

 - Set Component Index directive (see Section 9.8.4.1)

 - Set Parameters directive (see Section 9.8.4.6) for Component Index
 (see Section 9.8.2)

 - Copy directive (see Section 9.8.4.9)

 As outlined in Section 6.4, the Copy directive needs a source and a
 destination to be configured. The source is configured via Component
 Index (with the Set Parameters directive) and the destination is
 configured via the Set Component Index directive.

7.5. Load & Decompress from External Storage Template

 The following operations are placed into the load block:

 - Set Component Index directive (see Section 9.8.4.1)

 - Set Parameters directive (see Section 9.8.4.6) for Component Index
 and Compression Info (see Section 9.8.2)

 - Copy directive (see Section 9.8.4.9)

 This example is similar to the previous case but additionally
 performs decompression. Hence, the only difference is in setting the
 Compression Info parameter.

Moran, et al. Expires December 11, 2020 [Page 17]

Internet-Draft CBOR-based SUIT Manifest June 2020

7.6. Dependency Template

 The following operations are placed into the dependency resolution
 block:

 - Set Dependency Index directive (see Section 9.8.4.2)

 - Set Parameters directive (see Section 9.8.4.6) for URI (see
Section 9.8.2)

 - Fetch directive (see Section 9.8.4.8)

 - Check Image Match condition (see Section 9.8.3.2)

 - Process Dependency directive (see Section 9.8.4.5)

 Then, the validate block contains the following operations:

 - Set Dependency Index directive (see Section 9.8.4.2)

 - Check Image Match condition (see Section 9.8.3.2)

 - Process Dependency directive (see Section 9.8.4.5)

 NOTE: Any changes made to parameters in a dependency persist in the
 dependent.

8. Envelope

 The diagram below shows high-level structure of the SUIT manifest
 embedded in the envelope, the top-level structure.

Moran, et al. Expires December 11, 2020 [Page 18]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +------------------------+
 | Envelope |
 +------------------------+
 | Delegation Info |
 | Authentication Wrapper |
 | Plaintext or -+---------> +----------------------------+
 | Encrypted Manifest-+ | | Manifest |
 | Severable Fields | +----------------------------+
 | Human-Readable Text | | Version |
 | COSWID | | Sequence Number |
 +------------------------+ +----- Common Structure |
 | +--- Commands |
 | | | Digest of Enveloped Fields |
 +-----------------------+ | | | Reference to Full Manifest |
 | Common Structure | <-+ | +----------------------------+
 +-----------------------+ |
 | Dependencies | +->+-----------------------+
 | Components IDs | +->| Commands |
 | Component References | | +-----------------------+
 | Common Commands ------------+ | List of (pairs of (|
 +-----------------------+ | * command code |
 | * argument |
 |)) |
 +-----------------------

8.1. Authenticated Manifests

 The suit-authentication-wrapper contains a list of 1 or more
 cryptographic authentication wrappers for the core part of the
 manifest. These are implemented as COSE_Mac_Tagged or
 COSE_Sign_Tagged blocks. Each of these blocks contains a SUIT_Digest
 of the manifest. This enables modular processing of the manifest.
 The COSE_Mac_Tagged and COSE_Sign_Tagged blocks are described in RFC

8152 [RFC8152]. The suit-authentication-wrapper MUST come before any
 element in the SUIT_Envelope, except for the OPTIONAL suit-
 delegation, regardless of canonical encoding of CBOR. All validators
 MUST reject any SUIT_Envelope that begins with any element other than
 a suit-authentication-wrapper or suit-delegation.

 A SUIT_Envelope that has not had authentication information added
 MUST still contain the suit-authentication-wrapper element, but the
 content MUST be nil.

 For manifests that are only authenticated the envelope MUST contain
 the plaintext manifest in SUIT_Manifest structure.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires December 11, 2020 [Page 19]

Internet-Draft CBOR-based SUIT Manifest June 2020

8.2. Encrypted Manifests

 For encrypted manifest both a SUIT_Encryption_Wrapper and the
 ciphertext of a manifest is included in the envelope.

 When the envelope contains the SUIT_Encryption_Wrapper, the suit-
 authentication-wrapper MUST authenticate the plaintext of suit-
 manifest-encrypted. This ensures that the manifest can be stored
 decrypted and that a recipient MAY convert the suit-manifest-
 encrypted element to a suit-manifest element.

 The SUIT_Manifest structure describes the payload(s) to be installed
 and any dependencies on other manifests.

 The suit-manifest-encryption-info structure contains information
 required to decrypt a ciphertext manifest and the suit-manifest-
 encrypted structure contains the ciphertext.

8.3. Delegation Info

 The suit-delegation field may carry one or multiple CBOR Web Tokens
 (CWTs) [RFC8392]. They can be used to perform enhanced authorization
 decisions.

8.4. Severable Fields

 Each of suit-dependency-resolution, suit-payload-fetch, and suit-
 payload-installation contain the severable contents of the
 identically named portions of the manifest, described in Section 9.

8.5. Human-Readable Text

 suit-text contains all the human-readable information that describes
 any and all parts of the manifest, its payload(s) and its
 resource(s). The text section is typically severable, allowing
 manifests to be distributed without the text, since end-nodes do not
 require text. The meaning of each field is described below.

 Each section MAY be present. If present, each section MUST be as
 described. Negative integer IDs are reserved for application-
 specific text values.

https://datatracker.ietf.org/doc/html/rfc8392

Moran, et al. Expires December 11, 2020 [Page 20]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +---------------------------------+---------------------------------+
 | CDDL Structure | Description |
 +---------------------------------+---------------------------------+
suit-text-manifest-description	Free text description of the
	manifest
suit-text-update-description	Free text description of the
	update
suit-text-vendor-name	Free text vendor name
suit-text-model-name	Free text model name
suit-text-vendor-domain	The domain used to create the
	vendor-id condition
suit-text-model-info	The information used to create
	the class-id condition
suit-text-component-description	Free text description of each
	component in the manifest
suit-text-manifest-json-source	The JSON-formatted document
	that was used to create the
	manifest
suit-text-manifest-yaml-source	The yaml-formatted document
	that was used to create the
	manifest
suit-text-version-dependencies	List of component versions
	required by the manifest
 +---------------------------------+---------------------------------+

8.6. COSWID

 suit-coswid contains a Concise Software Identifier. This may be
 discarded by the Recipient, if not needed.

8.7. Encoding Considerations

 The map indices in the envelope encoding are reset to 1 for each map
 within the structure. This is to keep the indices as small as
 possible. The goal is to keep the index objects to single bytes
 (CBOR positive integers 1-23).

 Wherever enumerations are used, they are started at 1. This allows
 detection of several common software errors that are caused by

Moran, et al. Expires December 11, 2020 [Page 21]

Internet-Draft CBOR-based SUIT Manifest June 2020

 uninitialised variables. Positive numbers in enumerations are
 reserved for IANA registration. Negative numbers are used to
 identify application-specific implementations.

 All elements of the envelope must be wrapped in a bstr to minimize
 the complexity of the code that evaluates the cryptographic integrity
 of the element and to ensure correct serialization for integrity and
 authenticity checks.

9. Manifest

 The manifest contains:

 - a version number (see Section 9.1)

 - a sequence number (see Section 9.2)

 - a common structure with information that is shared between command
 sequences (see Section 9.8.1)

 - a list of commands that the Recipient should perform (see
Section 9.8)

 - a reference to the full manifest (see Section 9.3)

 - a digest of human-readable text describing the manifest found in
 the SUIT_Envelope (see Section 9.4)

 - a digest of the Concise Software Identifier found in the
 SUIT_Envelope (see Section 9.5)

 Several fields in the Manifest can be either a CBOR structure or a
 SUIT_Digest. In each of these cases, the SUIT_Digest provides for a
 severable field. Severable fields are RECOMMENDED to implement. In
 particular, the human-readable text SHOULD be severable, since most
 useful text elements occupy more space than a SUIT_Digest, but are
 not needed by the Recipient. Because SUIT_Digest is a CBOR Array and
 each severable element is a CBOR bstr, it is straight-forward for a
 Recipient to determine whether an element has been severed. The key
 used for a severable element is the same in the SUIT_Manifest and in
 the SUIT_Envelope so that a Recipient can easily identify the correct
 data in the envelope.

9.1. suit-manifest-version

 The suit-manifest-version indicates the version of serialization used
 to encode the manifest. Version 1 is the version described in this
 document. suit-manifest-version is REQUIRED to implement.

Moran, et al. Expires December 11, 2020 [Page 22]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.2. suit-manifest-sequence-number

 The suit-manifest-sequence-number is a monotonically increasing anti-
 rollback counter. It also helps devices to determine which in a set
 of manifests is the "root" manifest in a given update. Each manifest
 MUST have a sequence number higher than each of its dependencies.
 Each Recipient MUST reject any manifest that has a sequence number
 lower than its current sequence number. It MAY be convenient to use
 a UTC timestamp in seconds as the sequence number. suit-manifest-
 sequence-number is REQUIRED to implement.

9.3. suit-reference-uri

 suit-reference-uri is a text string that encodes a URI where a full
 version of this manifest can be found. This is convenient for
 allowing management systems to show the severed elements of a
 manifest when this URI is reported by a device after installation.

9.4. suit-text

 suit-text is a digest that uniquely identifies the content of the
 Text that is packaged in the SUIT_Envelope. suit-text is OPTIONAL to
 implement.

9.5. suit-coswid

 suit-coswid is a digest that uniquely identifies the content of the
 concise-software-identifier that is packaged in the SUIT_Envelope.
 suit-coswid is OPTIONAL to implement.

9.6. Dependencies

 SUIT_Dependency specifies a manifest that describes a dependency of
 the current manifest.

 The suit-dependency-digest specifies the dependency manifest uniquely
 by identifying a particular Manifest structure. The digest is
 calculated over the Manifest structure instead of the COSE
 Sig_structure or Mac_structure. This means that a digest may need to
 be calculated more than once, however this is necessary to ensure
 that removing a signature from a manifest does not break dependencies
 due to missing signature elements. This is also necessary to support
 the trusted intermediary use case, where an intermediary re-signs the
 Manifest, removing the original signature, potentially with a
 different algorithm, or trading COSE_Sign for COSE_Mac.

 The suit-dependency-prefix element contains a
 SUIT_Component_Identifier. This specifies the scope at which the

Moran, et al. Expires December 11, 2020 [Page 23]

Internet-Draft CBOR-based SUIT Manifest June 2020

 dependency operates. This allows the dependency to be forwarded on
 to a component that is capable of parsing its own manifests. It also
 allows one manifest to be deployed to multiple dependent devices
 without those devices needing consistent component hierarchy. This
 element is OPTIONAL.

9.7. SUIT_Component_Reference

 The SUIT_Component_Reference describes an image that is defined by
 another manifest. This is useful for overriding the behavior of
 another manifest, for example by directing the recipient to look at a
 different URI for the image or by changing the expected format, such
 as when a gateway performs decryption on behalf of a constrained
 device.

9.8. SUIT_Command_Sequence

 A SUIT_Command_Sequence defines a series of actions that the
 Recipient MUST take to accomplish a particular goal. These goals are
 defined in the manifest and include:

 1. Dependency Resolution: suit-dependency-resolution is a
 SUIT_Command_Sequence to execute in order to perform dependency
 resolution. Typical actions include configuring URIs of
 dependency manifests, fetching dependency manifests, and
 validating dependency manifests' contents. suit-dependency-
 resolution is REQUIRED to implement and to use when suit-
 dependencies is present.

 2. Payload Fetch: suit-payload-fetch is a SUIT_Command_Sequence to
 execute in order to obtain a payload. Some manifests may include
 these actions in the suit-install section instead if they operate
 in a streaming installation mode. This is particularly relevant
 for constrained devices without any temporary storage for staging
 the update. suit-payload-fetch is OPTIONAL to implement.

 3. Payload Installation: suit-install is a SUIT_Command_Sequence to
 execute in order to install a payload. Typical actions include
 verifying a payload stored in temporary storage, copying a staged
 payload from temporary storage, and unpacking a payload. suit-
 install is OPTIONAL to implement.

 4. Image Validation: suit-validate is a SUIT_Command_Sequence to
 execute in order to validate that the result of applying the
 update is correct. Typical actions involve image validation and
 manifest validation. suit-validate is REQUIRED to implement. If
 the manifest contains dependencies, one process-dependency

Moran, et al. Expires December 11, 2020 [Page 24]

Internet-Draft CBOR-based SUIT Manifest June 2020

 invocation per dependency or one process-dependency invocation
 targeting all dependencies SHOULD be present in validate.

 5. Image Loading: suit-load is a SUIT_Command_Sequence to execute in
 order to prepare a payload for execution. Typical actions
 include copying an image from permanent storage into RAM,
 optionally including actions such as decryption or decompression.
 suit-load is OPTIONAL to implement.

 6. Run or Boot: suit-run is a SUIT_Command_Sequence to execute in
 order to run an image. suit-run typically contains a single
 instruction: either the "run" directive for the bootable manifest
 or the "process dependencies" directive for any dependents of the
 bootable manifest. suit-run is OPTIONAL to implement. Only one
 manifest in an update may contain the "run" directive.

 Each of these follows exactly the same structure to ensure that the
 parser is as simple as possible.

 Lists of commands are constructed from two kinds of element:

 1. Conditions that MUST be true-any failure is treated as a failure
 of the update/load/boot

 2. Directives that MUST be executed.

 Each condition is a command code identifier, followed by Nil.

 Each directive is composed of:

 1. A command code identifier

 2. An argument block or Nil

 Argument blocks are defined for each type of directive.

 Many conditions and directives apply to a given component, and these
 generally grouped together. Therefore, a special command to set the
 current component index is provided with a matching command to set
 the current dependency index. This index is a numeric index into the
 component ID tables defined at the beginning of the document. For
 the purpose of setting the index, the two component ID tables are
 considered to be concatenated together.

 To facilitate optional conditions, a special directive is provided.
 It runs several new lists of conditions/directives, one after
 another, that are contained as an argument to the directive. By
 default, it assumes that a failure of a condition should not indicate

Moran, et al. Expires December 11, 2020 [Page 25]

Internet-Draft CBOR-based SUIT Manifest June 2020

 a failure of the update/boot, but a parameter is provided to override
 this behavior.

9.8.1. suit-common

 suit-common encodes all the information that is shared between each
 of the command sequences, including: suit-dependencies, suit-
 components, suit-dependency-components, and suit-common-sequence.
 suit-common is REQUIRED to implement.

 suit-dependencies is a list of SUIT_Dependency blocks that specify
 manifests that must be present before the current manifest can be
 processed. suit-dependencies is OPTIONAL to implement.

 In order to distinguish between components that are affected by the
 current manifest and components that are affected by a dependency,
 they are kept in separate lists. Components affected by the current
 manifest only list the component identifier. Components affected by
 a dependency include the component identifier and the index of the
 dependency that defines the component.

 suit-components is a list of SUIT_Component blocks that specify the
 component identifiers that will be affected by the content of the
 current manifest. suit-components is OPTIONAL to implement, but at
 least one manifest MUST contain a suit-components block.

 suit-dependency-components is a list of SUIT_Component_Reference
 blocks that specify component identifiers that will be affected by
 the content of a dependency of the current manifest. suit-dependency-
 components is OPTIONAL to implement.

 suit-common-sequence is a SUIT_Command_Sequence to execute prior to
 executing any other command sequence. Typical actions in suit-
 common-sequence include setting expected device identity and image
 digests when they are conditional (see Section 12 for more
 information on conditional sequences). suit-common-sequence is
 RECOMMENDED to implement.

9.8.2. SUIT_Parameters

 Many conditions and directives require additional information. That
 information is contained within parameters that can be set in a
 consistent way. This allows reduction of manifest size and
 replacement of parameters from one manifest to the next.

 The defined manifest parameters are described below.

 +----------------+----------------------------------+---------------+

Moran, et al. Expires December 11, 2020 [Page 26]

Internet-Draft CBOR-based SUIT Manifest June 2020

 | Name | CDDL Structure | Reference |
 +----------------+----------------------------------+---------------+
Vendor ID	suit-parameter-vendor-identifier	Section
		9.8.2.1
Class ID	suit-parameter-class-identifier	Section
		9.8.2.2
Image Digest	suit-parameter-image-digest	Section
		9.8.2.3
Image Size	suit-parameter-image-size	Section
		9.8.2.4
Use Before	suit-parameter-use-before	Section
		9.8.2.5
Component	suit-parameter-component-offset	Section
Offset		9.8.2.6
Encryption	suit-parameter-encryption-info	Section
Info		9.8.2.7
Compression	suit-parameter-compression-info	Section
Info		9.8.2.8
Unpack Info	suit-parameter-unpack-info	Section
		9.8.2.9
URI	suit-parameter-uri	Section
		9.8.2.10
Source	suit-parameter-source-component	Section
Component		9.8.2.11
Run Args	suit-parameter-run-args	Section
		9.8.2.12
Device ID	suit-parameter-device-identifier	Section
		9.8.2.13
Minimum	suit-parameter-minimum-battery	Section
Battery		9.8.2.14
Update	suit-parameter-update-priority	Section
Priority		9.8.2.15
Version	suit-parameter-version	Section

Moran, et al. Expires December 11, 2020 [Page 27]

Internet-Draft CBOR-based SUIT Manifest June 2020

		9.8.2.16
Wait Info	suit-parameter-wait-info	Section
		9.8.2.17
URI List	suit-parameter-uri-list	Section
		9.8.2.18
Strict Order	suit-parameter-strict-order	Section
		9.8.2.19
Soft Failure	suit-parameter-soft-failure	Section
		9.8.2.20
Custom	suit-parameter-custom	Section
		9.8.2.21
 +----------------+----------------------------------+---------------+

 CBOR-encoded object parameters are still wrapped in a bstr. This is
 because it allows a parser that is aggregating parameters to
 reference the object with a single pointer and traverse it without
 understanding the contents. This is important for modularization and
 division of responsibility within a pull parser. The same
 consideration does not apply to Directives because those elements are
 invoked with their arguments immediately

9.8.2.1. suit-parameter-vendor-identifier

 A RFC 4122 UUID representing the vendor of the device or component.

9.8.2.2. suit-parameter-class-identifier

 A RFC 4122 UUID representing the class of the device or component

9.8.2.3. suit-parameter-image-digest

 A fingerprint computed over the image itself encoded in the
 SUIT_Digest structure.

9.8.2.4. suit-parameter-image-size

 The size of the firmware image in bytes.

9.8.2.5. suit-parameter-use-before

 An expire date for the use of the manifest encoded as a POSIX
 timestamp.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires December 11, 2020 [Page 28]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.8.2.6. suit-parameter-component-offset

 This parameter sets the offset in a component.

9.8.2.7. suit-parameter-encryption-info

 Encryption Info defines the mechanism that Fetch or Copy should use
 to decrypt the data they transfer. SUIT_Parameter_Encryption_Info is
 encoded as a COSE_Encrypt_Tagged or a COSE_Encrypt0_Tagged, wrapped
 in a bstr.

9.8.2.8. suit-parameter-compression-info

 Compression Info defines any information that is required for a
 device to perform decompression operations. Typically, this includes
 the algorithm identifier. This document defines the use of ZLIB
 [RFC1950], Brotli [RFC7932], and ZSTD [I-D.kucherawy-rfc8478bis].

 Additional compression formats can be registered through the IANA-
 maintained registry.

9.8.2.9. suit-parameter-unpack-info

 SUIT_Unpack_Info defines the information required for a device to
 interpret a packed format. This document defines the use of the
 following binary encodings: Intel HEX [HEX], Motorola S-record
 [SREC], Executable and Linkable Format (ELF) [ELF], and Common Object
 File Format (COFF) [COFF].

 Additional packing formats can be registered through the IANA-
 maintained registry.

9.8.2.10. suit-parameter-uri

 A URI from which to fetch a resource.

9.8.2.11. suit-parameter-source-component

 This parameter sets the source component.

9.8.2.12. suit-parameter-run-args

 This parameter contains an encoded set of arguments for Run.

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc7932

Moran, et al. Expires December 11, 2020 [Page 29]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.8.2.13. suit-parameter-device-identifier

 A RFC 4122 UUID representing the device or component.

9.8.2.14. suit-parameter-minimum-battery

 This parameter sets the minimum battery level in mWh.

9.8.2.15. suit-parameter-update-priority

 This parameter sets the priority of the update.

9.8.2.16. suit-parameter-version

 Allows to indicate the version numbers of firmware to which the
 manifest applies, either with a list or with range matching.

9.8.2.17. suit-parameter-wait-info

 suit-directive-wait Section 9.8.4.11 directs the manifest processor
 to pause until a specified event occurs. The suit-parameter-wait-
 info encodes the parameters needed for the directive.

9.8.2.18. suit-parameter-uri-list

 Indicates a list of URIs from which to fetch a resource.

9.8.2.19. suit-parameter-strict-order

 The Strict Order Parameter allows a manifest to govern when
 directives can be executed out-of-order. This allows for systems
 that have a sensitivity to order of updates to choose the order in
 which they are executed. It also allows for more advanced systems to
 parallelize their handling of updates. Strict Order defaults to
 True. It MAY be set to False when the order of operations does not
 matter. When arriving at the end of a command sequence, ALL commands
 MUST have completed, regardless of the state of
 SUIT_Parameter_Strict_Order. If SUIT_Parameter_Strict_Order is
 returned to True, ALL preceding commands MUST complete before the
 next command is executed.

9.8.2.20. suit-parameter-soft-failure

 When executing a command sequence inside SUIT_Directive_Try_Each and
 a condition failure occurs, the manifest processor aborts the
 sequence. If Soft Failure is True, it returns Success. Otherwise,
 it returns the original condition failure.
 SUIT_Parameter_Soft_Failure is scoped to the enclosing

https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires December 11, 2020 [Page 30]

Internet-Draft CBOR-based SUIT Manifest June 2020

 SUIT_Command_Sequence. Its value is discarded when
 SUIT_Command_Sequence terminates.

9.8.2.21. suit-parameter-custom

 This parameter is an extension point for any proprietary, application
 specific conditions and directives.

9.8.3. SUIT_Condition

 Conditions are used to define mandatory properties of a system in
 order for an update to be applied. They can be pre-conditions or
 post-conditions of any directive or series of directives, depending
 on where they are placed in the list. Conditions never take
 arguments; conditions should test using parameters instead.
 Conditions include:

Moran, et al. Expires December 11, 2020 [Page 31]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +----------------+----------------------------------+---------------+
 | Name | CDDL Structure | Reference |
 +----------------+----------------------------------+---------------+
Vendor	suit-condition-vendor-identifier	Section
Identifier		9.8.3.1
Class	suit-condition-class-identifier	Section
Identifier		9.8.3.1
Device	suit-condition-device-identifier	Section
Identifier		9.8.3.1
Image Match	suit-condition-image-match	Section
		9.8.3.2
Image Not	suit-condition-image-not-match	Section
Match		9.8.3.3
Use Before	suit-condition-use-before	Section
		9.8.3.4
Component	suit-condition-component-offset	Section
Offset		9.8.3.5
Minimum	suit-condition-minimum-battery	Section
Battery		9.8.3.6
Update	suit-condition-update-authorized	Section
Authorized		9.8.3.7
Version	suit-condition-version	Section
		9.8.3.8
Custom	SUIT_Condition_Custom	Section
Condition		9.8.3.9
 +----------------+----------------------------------+---------------+

 Each condition MUST report a result code on completion. If a
 condition reports failure, then the current sequence of commands MUST
 terminate. If a condition requires additional information, this MUST
 be specified in one or more parameters before the condition is
 executed. If a Recipient attempts to process a condition that
 expects additional information and that information has not been set,
 it MUST report a failure. If a Recipient encounters an unknown
 condition, it MUST report a failure.

Moran, et al. Expires December 11, 2020 [Page 32]

Internet-Draft CBOR-based SUIT Manifest June 2020

 Condition labels in the positive number range are reserved for IANA
 registration while those in the negative range are custom conditions
 reserved for proprietary use.

 Several conditions use identifiers to determine whether a manifest
 matches a given Recipient or not. These identifiers are defined to
 be RFC 4122 [RFC4122] UUIDs. These UUIDs are not human-readable and
 are therefore used for machine-based processing only.

 A device may match any number of UUIDs for vendor or class
 identifier. This may be relevant to physical or software modules.
 For example, a device that has an OS and one or more applications
 might list one Vendor ID for the OS and one or more additional Vendor
 IDs for the applications. This device might also have a Class ID
 that must be matched for the OS and one or more Class IDs for the
 applications.

 A more complete example: Imagine a device has the following physical
 components: 1. A host MCU 2. A WiFi module

 This same device has three software modules: 1. An operating system
 2. A WiFi module interface driver 3. An application

 Suppose that the WiFi module's firmware has a proprietary update
 mechanism and doesn't support manifest processing. This device can
 report four class IDs:

 1. hardware model/revision

 2. OS

 3. WiFi module model/revision

 4. Application

 This allows the OS, WiFi module, and application to be updated
 independently. To combat possible incompatibilities, the OS class ID
 can be changed each time the OS has a change to its API.

 This approach allows a vendor to target, for example, all devices
 with a particular WiFi module with an update, which is a very
 powerful mechanism, particularly when used for security updates.

 UUIDs MUST be created according to RFC 4122 [RFC4122]. UUIDs SHOULD
 use versions 3, 4, or 5, as described in RFC4122. Versions 1 and 2
 do not provide a tangible benefit over version 4 for this
 application.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires December 11, 2020 [Page 33]

Internet-Draft CBOR-based SUIT Manifest June 2020

 The RECOMMENDED method to create a vendor ID is: Vendor ID =
 UUID5(DNS_PREFIX, vendor domain name)

 The RECOMMENDED method to create a class ID is: Class ID =
 UUID5(Vendor ID, Class-Specific-Information)

 Class-specific information is composed of a variety of data, for
 example:

 - Model number.

 - Hardware revision.

 - Bootloader version (for immutable bootloaders).

9.8.3.1. suit-condition-vendor-identifier, suit-condition-class-
 identifier, and suit-condition-device-identifier

 There are three identifier-based conditions: suit-condition-vendor-
 identifier, suit-condition-class-identifier, and suit-condition-
 device-identifier. Each of these conditions match a RFC 4122
 [RFC4122] UUID that MUST have already been set as a parameter. The
 installing device MUST match the specified UUID in order to consider
 the manifest valid. These identifiers MAY be scoped by component.

 The Recipient uses the ID parameter that has already been set using
 the Set Parameters directive. If no ID has been set, this condition
 fails. suit-condition-class-identifier and suit-condition-vendor-
 identifier are REQUIRED to implement. suit-condition-device-
 identifier is OPTIONAL to implement.

9.8.3.2. suit-condition-image-match

 Verify that the current component matches the digest parameter for
 the current component. The digest is verified against the digest
 specified in the Component's parameters list. If no digest is
 specified, the condition fails. suit-condition-image-match is
 REQUIRED to implement.

9.8.3.3. suit-condition-image-not-match

 Verify that the current component does not match the supplied digest.
 If no digest is specified, then the digest is compared against the
 digest specified in the Component's parameters list. If no digest is
 specified, the condition fails. suit-condition-image-not-match is
 OPTIONAL to implement.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires December 11, 2020 [Page 34]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.8.3.4. suit-condition-use-before

 Verify that the current time is BEFORE the specified time. suit-
 condition-use-before is used to specify the last time at which an
 update should be installed. The recipient evaluates the current time
 against the suit-parameter-use-before parameter, which must have
 already been set as a parameter, encoded as a POSIX timestamp, that
 is seconds after 1970-01-01 00:00:00. Timestamp conditions MUST be
 evaluated in 64 bits, regardless of encoded CBOR size. suit-
 condition-use-before is OPTIONAL to implement.

9.8.3.5. suit-condition-component-offset

 TBD.

9.8.3.6. suit-condition-minimum-battery

 suit-condition-minimum-battery provides a mechanism to test a
 device's battery level before installing an update. This condition
 is for use in primary-cell applications, where the battery is only
 ever discharged. For batteries that are charged, suit-directive-wait
 is more appropriate, since it defines a "wait" until the battery
 level is sufficient to install the update. suit-condition-minimum-
 battery is specified in mWh. suit-condition-minimum-battery is
 OPTIONAL to implement.

9.8.3.7. suit-condition-update-authorized

 Request Authorization from the application and fail if not
 authorized. This can allow a user to decline an update. Argument is
 an integer priority level. Priorities are application defined. suit-
 condition-update-authorized is OPTIONAL to implement.

9.8.3.8. suit-condition-version

 suit-condition-version allows comparing versions of firmware.
 Verifying image digests is preferred to version checks because
 digests are more precise. The image can be compared as:

 - Greater.

 - Greater or Equal.

 - Equal.

 - Lesser or Equal.

 - Lesser.

Moran, et al. Expires December 11, 2020 [Page 35]

Internet-Draft CBOR-based SUIT Manifest June 2020

 Versions are encoded as a CBOR list of integers. Comparisons are
 done on each integer in sequence. Comparison stops after all
 integers in the list defined by the manifest have been consumed OR
 after a non-equal match has occurred. For example, if the manifest
 defines a comparison, "Equal [1]", then this will match all version
 sequences starting with 1. If a manifest defines both "Greater or
 Equal [1,0]" and "Lesser [1,10]", then it will match versions 1.0.x
 up to, but not including 1.10.

 While the exact encoding of versions is application-defined, semantic
 versions map conveniently. For example,

 - 1.2.3 = [1,2,3].

 - 1.2-rc3 = [1,2,-1,3].

 - 1.2-beta = [1,2,-2].

 - 1.2-alpha = [1,2,-3].

 - 1.2-alpha4 = [1,2,-3,4].

 suit-condition-version is OPTIONAL to implement.

9.8.3.9. SUIT_Condition_Custom

 SUIT_Condition_Custom describes any proprietary, application specific
 condition. This is encoded as a negative integer, chosen by the
 firmware developer. If additional information must be provided to
 the condition, it should be encoded in a custom parameter (a nint) as
 described in Section 9.8.2. SUIT_Condition_Custom is OPTIONAL to
 implement.

9.8.4. SUIT_Directive

 Directives are used to define the behavior of the recipient.
 Directives include:

Moran, et al. Expires December 11, 2020 [Page 36]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +---------------+-------------------------------------+-------------+
 | Name | CDDL Structure | Reference |
 +---------------+-------------------------------------+-------------+
Set Component	suit-directive-set-component-index	Section
Index		9.8.4.1
Set	suit-directive-set-dependency-index	Section
Dependency		9.8.4.2
Index		
Abort	suit-directive-abort	Section
		9.8.4.3
Try Each	suit-directive-try-each	Section
		9.8.4.4
Process	suit-directive-process-dependency	Section
Dependency		9.8.4.5
Set	suit-directive-set-parameters	Section
Parameters		9.8.4.6
Override	suit-directive-override-parameters	Section
Parameters		9.8.4.7
Fetch	suit-directive-fetch	Section
		9.8.4.8
Copy	suit-directive-copy	Section
		9.8.4.9
Run	suit-directive-run	Section
		9.8.4.10
Wait For	suit-directive-wait	Section
Event		9.8.4.11
Run Sequence	suit-directive-run-sequence	Section
		9.8.4.12
Swap	suit-directive-swap	Section
		9.8.4.13
 +---------------+-------------------------------------+-------------+

 When a Recipient executes a Directive, it MUST report a result code.
 If the Directive reports failure, then the current Command Sequence
 MUST terminate.

Moran, et al. Expires December 11, 2020 [Page 37]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.8.4.1. suit-directive-set-component-index

 Set Component Index defines the component to which successive
 directives and conditions will apply. The supplied argument MUST be
 either a boolean or an unsigned integer index into the concatenation
 of suit-components and suit-dependency-components. If the following
 directives apply to ALL components, then the boolean value "True" is
 used instead of an index. True does not apply to dependency
 components. If the following directives apply to NO components, then
 the boolean value "False" is used. When suit-directive-set-
 dependency-index is used, suit-directive-set-component-index = False
 is implied. When suit-directive-set-component-index is used, suit-
 directive-set-dependency-index = False is implied.

9.8.4.2. suit-directive-set-dependency-index

 Set Dependency Index defines the manifest to which successive
 directives and conditions will apply. The supplied argument MUST be
 either a boolean or an unsigned integer index into the dependencies.
 If the following directives apply to ALL dependencies, then the
 boolean value "True" is used instead of an index. If the following
 directives apply to NO dependencies, then the boolean value "False"
 is used. When suit-directive-set-component-index is used, suit-
 directive-set-dependency-index = False is implied. When suit-
 directive-set-dependency-index is used, suit-directive-set-component-
 index = False is implied.

 Typical operations that require suit-directive-set-dependency-index
 include setting a source URI, invoking "Fetch," or invoking "Process
 Dependency" for an individual dependency.

9.8.4.3. suit-directive-abort

 Unconditionally fail. This operation is typically used in
 conjunction with suit-directive-try-each.

9.8.4.4. suit-directive-try-each

 This command runs several SUIT_Command_Sequence, one after another,
 in a strict order. Use this command to implement a "try/catch-try/
 catch" sequence. Manifest processors MAY implement this command.

 SUIT_Parameter_Soft_Failure is initialized to True at the beginning
 of each sequence. If one sequence aborts due to a condition failure,
 the next is started. If no sequence completes without condition
 failure, then suit-directive-try-each returns an error. If a
 particular application calls for all sequences to fail and still

Moran, et al. Expires December 11, 2020 [Page 38]

Internet-Draft CBOR-based SUIT Manifest June 2020

 continue, then an empty sequence (nil) can be added to the Try Each
 Argument.

9.8.4.5. suit-directive-process-dependency

 Execute the commands in the common section of the current dependency,
 followed by the commands in the equivalent section of the current
 dependency. For example, if the current section is "fetch payload,"
 this will execute "common" in the current dependency, then "fetch
 payload" in the current dependency. Once this is complete, the
 command following suit-directive-process-dependency will be
 processed.

 If the current dependency is False, this directive has no effect. If
 the current dependency is True, then this directive applies to all
 dependencies. If the current section is "common," this directive
 MUST have no effect.

 When SUIT_Process_Dependency completes, it forwards the last status
 code that occurred in the dependency.

9.8.4.6. suit-directive-set-parameters

 suit-directive-set-parameters allows the manifest to configure
 behavior of future directives by changing parameters that are read by
 those directives. When dependencies are used, suit-directive-set-
 parameters also allows a manifest to modify the behavior of its
 dependencies.

 Available parameters are defined in Section 9.8.2.

 If a parameter is already set, suit-directive-set-parameters will
 skip setting the parameter to its argument. This provides the core
 of the override mechanism, allowing dependent manifests to change the
 behavior of a manifest.

9.8.4.7. suit-directive-override-parameters

 suit-directive-override-parameters replaces any listed parameters
 that are already set with the values that are provided in its
 argument. This allows a manifest to prevent replacement of critical
 parameters.

 Available parameters are defined in Section 9.8.2.

Moran, et al. Expires December 11, 2020 [Page 39]

Internet-Draft CBOR-based SUIT Manifest June 2020

9.8.4.8. suit-directive-fetch

 suit-directive-fetch instructs the manifest processor to obtain one
 or more manifests or payloads, as specified by the manifest index and
 component index, respectively.

 suit-directive-fetch can target one or more manifests and one or more
 payloads. suit-directive-fetch retrieves each component and each
 manifest listed in component-index and manifest-index, respectively.
 If component-index or manifest-index is True, instead of an integer,
 then all current manifest components/manifests are fetched. The
 current manifest's dependent-components are not automatically
 fetched. In order to pre-fetch these, they MUST be specified in a
 component-index integer.

 suit-directive-fetch typically takes no arguments unless one is
 needed to modify fetch behavior. If an argument is needed, it must
 be wrapped in a bstr.

 suit-directive-fetch reads the URI or URI List parameter to find the
 source of the fetch it performs.

 The behavior of suit-directive-fetch can be modified by setting one
 or more of SUIT_Parameter_Encryption_Info,
 SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info. These
 three parameters each activate and configure a processing step that
 can be applied to the data that is transferred during suit-directive-
 fetch.

9.8.4.9. suit-directive-copy

 suit-directive-copy instructs the manifest processor to obtain one or
 more payloads, as specified by the component index. suit-directive-
 copy retrieves each component listed in component-index,
 respectively. If component-index is True, instead of an integer,
 then all current manifest components are copied. The current
 manifest's dependent-components are not automatically copied. In
 order to copy these, they MUST be specified in a component-index
 integer.

 The behavior of suit-directive-copy can be modified by setting one or
 more of SUIT_Parameter_Encryption_Info,
 SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info. These
 three parameters each activate and configure a processing step that
 can be applied to the data that is transferred during suit-directive-
 copy.

Moran, et al. Expires December 11, 2020 [Page 40]

Internet-Draft CBOR-based SUIT Manifest June 2020

 N.B. Fetch and Copy are very similar. Merging them into one
 command may be appropriate.

 suit-directive-copy reads its source from
 SUIT_Parameter_Source_Component.

9.8.4.10. suit-directive-run

 suit-directive-run directs the manifest processor to transfer
 execution to the current Component Index. When this is invoked, the
 manifest processor MAY be unloaded and execution continues in the
 Component Index. Arguments provided to Run are forwarded to the
 executable code located in Component Index, in an application-
 specific way. For example, this could form the Linux Kernel Command
 Line if booting a Linux device.

 If the executable code at Component Index is constructed in such a
 way that it does not unload the manifest processor, then the manifest
 processor may resume execution after the executable completes. This
 allows the manifest processor to invoke suitable helpers and to
 verify them with image conditions.

9.8.4.11. suit-directive-wait

 suit-directive-wait directs the manifest processor to pause until a
 specified event occurs. Some possible events include:

 1. Authorization

 2. External Power

 3. Network availability

 4. Other Device Firmware Version

 5. Time

 6. Time of Day

 7. Day of Week

9.8.4.12. suit-directive-run-sequence

 To enable conditional commands, and to allow several strictly ordered
 sequences to be executed out-of-order, suit-directive-run-sequence
 allows the manifest processor to execute its argument as a
 SUIT_Command_Sequence. The argument must be wrapped in a bstr.

Moran, et al. Expires December 11, 2020 [Page 41]

Internet-Draft CBOR-based SUIT Manifest June 2020

 When a sequence is executed, any failure of a condition causes
 immediate termination of the sequence.

 When suit-directive-run-sequence completes, it forwards the last
 status code that occurred in the sequence. If the Soft Failure
 parameter is true, then suit-directive-run-sequence only fails when a
 directive in the argument sequence fails.

 SUIT_Parameter_Soft_Failure defaults to False when suit-directive-
 run-sequence begins. Its value is discarded when suit-directive-run-
 sequence terminates.

9.8.4.13. suit-directive-swap

 suit-directive-swap instructs the manifest processor to move the
 source to the destination and the destination to the source
 simultaneously. Swap has nearly identical semantics to suit-
 directive-copy except that suit-directive-swap replaces the source
 with the current contents of the destination in an application-
 defined way. If SUIT_Parameter_Compression_Info or
 SUIT_Parameter_Encryption_Info are present, they must be handled in a
 symmetric way, so that the source is decompressed into the
 destination and the destination is compressed into the source. The
 source is decrypted into the destination and the destination is
 encrypted into the source. suit-directive-swap is OPTIONAL to
 implement.

10. Access Control Lists

 To manage permissions in the manifest, there are three models that
 can be used.

 First, the simplest model requires that all manifests are
 authenticated by a single trusted key. This mode has the advantage
 that only a root manifest needs to be authenticated, since all of its
 dependencies have digests included in the root manifest.

 This simplest model can be extended by adding key delegation without
 much increase in complexity.

 A second model requires an ACL to be presented to the device,
 authenticated by a trusted party or stored on the device. This ACL
 grants access rights for specific component IDs or component ID
 prefixes to the listed identities or identity groups. Any identity
 may verify an image digest, but fetching into or fetching from a
 component ID requires approval from the ACL.

Moran, et al. Expires December 11, 2020 [Page 42]

Internet-Draft CBOR-based SUIT Manifest June 2020

 A third model allows a device to provide even more fine-grained
 controls: The ACL lists the component ID or component ID prefix that
 an identity may use, and also lists the commands that the identity
 may use in combination with that component ID.

11. SUIT Digest Container

RFC 8152 [RFC8152] provides containers for signature, MAC, and
 encryption, but no basic digest container. The container needed for
 a digest requires a type identifier and a container for the raw
 digest data. Some forms of digest may require additional parameters.
 These can be added following the digest.

 The algorithms listed are sufficient for verifying integrity of
 Firmware Updates as of this writing, however this may change over
 time.

12. Creating Conditional Sequences

 For some use cases, it is important to provide a sequence that can
 fail without terminating an update. For example, a dual-image XIP
 MCU may require an update that can be placed at one of two offsets.
 This has two implications, first, the digest of each offset will be
 different. Second, the image fetched for each offset will have a
 different URI. Conditional sequences allow this to be resolved in a
 simple way.

 The following JSON representation of a manifest demonstrates how this
 would be represented. It assumes that the bootloader and manifest
 processor take care of A/B switching and that the manifest is not
 aware of this distinction.

 {
 "structure-version" : 1,
 "sequence-number" : 7,
 "common" :{
 "components" : [
 [b'0']
],
 "common-sequence" : [
 {
 "directive-set-var" : {
 "size": 32567
 },
 },
 {
 "try-each" : [
 [

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires December 11, 2020 [Page 43]

Internet-Draft CBOR-based SUIT Manifest June 2020

 {"condition-component-offset" : "<offset A>"},
 {
 "directive-set-var": {
 "digest" : "<SHA256 A>"
 }
 }
],
 [
 {"condition-component-offset" : "<offset B>"},
 {
 "directive-set-var": {
 "digest" : "<SHA256 B>"
 }
 }
],
 [{ "abort" : null }]
]
 }
]
 }
 "fetch" : [
 {
 "try-each" : [
 [
 {"condition-component-offset" : "<offset A>"},
 {
 "directive-set-var": {
 "uri" : "<URI A>"
 }
 }
],
 [
 {"condition-component-offset" : "<offset B>"},
 {
 "directive-set-var": {
 "uri" : "<URI B>"
 }
 }
],
 [{ "directive-abort" : null }]
]
 },
 "fetch" : null
]
 }

Moran, et al. Expires December 11, 2020 [Page 44]

Internet-Draft CBOR-based SUIT Manifest June 2020

13. IANA Considerations

 IANA is requested to setup a registry for SUIT manifests. Several
 registries defined in the subsections below need to be created.

 For each registry, values 0-23 are Standards Action, 24-255 are IETF
 Review, 256-65535 are Expert Review, and 65536 or greater are First
 Come First Served.

 Negative values -23 to 0 are Experimental Use, -24 and lower are
 Private Use.

13.1. SUIT Directives

 +-------+----------------------+
 | Label | Name |
 +-------+----------------------+
 | 12 | Set Component Index |
 | | |
 | 13 | Set Dependency Index |
 | | |
 | 14 | Abort |
 | | |
 | 15 | Try Each |
 | | |
 | 16 | Reserved |
 | | |
 | 17 | Reserved |
 | | |
 | 18 | Process Dependency |
 | | |
 | 19 | Set Parameters |
 | | |
 | 20 | Override Parameters |
 | | |
 | 21 | Fetch |
 | | |
 | 22 | Copy |
 | | |
 | 23 | Run |
 | | |
 | 29 | Wait For Event |
 | | |
 | 30 | Run Sequence |
 | | |
 | 32 | Swap |
 +-------+----------------------+

Moran, et al. Expires December 11, 2020 [Page 45]

Internet-Draft CBOR-based SUIT Manifest June 2020

13.2. SUIT Conditions

 +-------+-------------------+
 | Label | Name |
 +-------+-------------------+
 | 1 | Vendor Identifier |
 | | |
 | 2 | Class Identifier |
 | | |
 | 24 | Device Identifier |
 | | |
 | 3 | Image Match |
 | | |
 | 25 | Image Not Match |
 | | |
 | 4 | Use Before |
 | | |
 | 5 | Component Offset |
 | | |
 | 26 | Minimum Battery |
 | | |
 | 27 | Update Authorized |
 | | |
 | 28 | Version |
 | | |
 | nint | Custom Condition |
 +-------+-------------------+

13.3. SUIT Parameters

Moran, et al. Expires December 11, 2020 [Page 46]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +-------+------------------+
 | Label | Name |
 +-------+------------------+
 | 1 | Vendor ID |
 | | |
 | 2 | Class ID |
 | | |
 | 3 | Image Digest |
 | | |
 | 4 | Use Before |
 | | |
 | 5 | Component Offset |
 | | |
 | 12 | Strict Order |
 | | |
 | 13 | Soft Failure |
 | | |
 | 14 | Image Size |
 | | |
 | 18 | Encryption Info |
 | | |
 | 19 | Compression Info |
 | | |
 | 20 | Unpack Info |
 | | |
 | 21 | URI |
 | | |
 | 22 | Source Component |
 | | |
 | 23 | Run Args |
 | | |
 | 24 | Device ID |
 | | |
 | 26 | Minimum Battery |
 | | |
 | 27 | Update Priority |
 | | |
 | 28 | Version |
 | | |
 | 29 | Wait Info |
 | | |
 | 30 | URI List |
 | | |
 | 31 | Component Index |
 | | |
 | nint | Custom |
 +-------+------------------+

Moran, et al. Expires December 11, 2020 [Page 47]

Internet-Draft CBOR-based SUIT Manifest June 2020

13.4. SUIT Text Values

 +-------+--------------------------------+
 | Label | Name |
 +-------+--------------------------------+
 | 1 | Manifest Description |
 | | |
 | 2 | Update Description |
 | | |
 | 3 | Vendor Name |
 | | |
 | 4 | Model Name |
 | | |
 | 5 | Vendor Domain |
 | | |
 | 6 | Model Info |
 | | |
 | 7 | Component Description |
 | | |
 | 8 | Manifest JSON Source |
 | | |
 | 9 | Manifest YAML Source |
 | | |
 | 10 | Component Version Dependencies |
 +-------+--------------------------------+

13.5. SUIT Algorithm Identifiers

13.5.1. Hash Algorithms

Moran, et al. Expires December 11, 2020 [Page 48]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +-------+----------+
 | Label | Name |
 +-------+----------+
 | 1 | SHA224 |
 | | |
 | 2 | SHA256 |
 | | |
 | 3 | SHA384 |
 | | |
 | 4 | SHA512 |
 | | |
 | 5 | SHA3-224 |
 | | |
 | 6 | SHA3-256 |
 | | |
 | 7 | SHA3-384 |
 | | |
 | 8 | SHA3-512 |
 +-------+----------+

13.5.2. Unpack Algorithms

 +-------+------+
 | Label | Name |
 +-------+------+
 | 1 | HEX |
 | | |
 | 2 | ELF |
 | | |
 | 3 | COFF |
 | | |
 | 4 | SREC |
 +-------+------+

14. Security Considerations

 This document is about a manifest format describing and protecting
 firmware images and as such it is part of a larger solution for
 offering a standardized way of delivering firmware updates to IoT
 devices. A detailed security treatment can be found in the
 architecture [I-D.ietf-suit-architecture] and in the information
 model [I-D.ietf-suit-information-model] documents.

15. Acknowledgements

 We would like to thank the following persons for their support in
 designing this mechanism:

Moran, et al. Expires December 11, 2020 [Page 49]

Internet-Draft CBOR-based SUIT Manifest June 2020

 - Milosch Meriac

 - Geraint Luff

 - Dan Ros

 - John-Paul Stanford

 - Hugo Vincent

 - Carsten Bormann

 - Oeyvind Roenningstad

 - Frank Audun Kvamtroe

 - Krzysztof Chruściński

 - Andrzej Puzdrowski

 - Michael Richardson

 - David Brown

 - Emmanuel Baccelli

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Moran, et al. Expires December 11, 2020 [Page 50]

Internet-Draft CBOR-based SUIT Manifest June 2020

16.2. Informative References

 [COFF] Wikipedia, ., "Common Object File Format (COFF)", 2020,
 <https://en.wikipedia.org/wiki/COFF>.

 [ELF] Wikipedia, ., "Executable and Linkable Format (ELF)",
 2020, <https://en.wikipedia.org/wiki/

Executable_and_Linkable_Format>.

 [HEX] Wikipedia, ., "Intel HEX", 2020,
 <https://en.wikipedia.org/wiki/Intel_HEX>.

 [I-D.ietf-suit-architecture]
 Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A
 Firmware Update Architecture for Internet of Things",

draft-ietf-suit-architecture-11 (work in progress), May
 2020.

 [I-D.ietf-suit-information-model]
 Moran, B., Tschofenig, H., and H. Birkholz, "An
 Information Model for Firmware Updates in IoT Devices",

draft-ietf-suit-information-model-07 (work in progress),
 June 2020.

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-08 (work in
 progress), April 2020.

 [I-D.kucherawy-rfc8478bis]
 Collet, Y. and M. Kucherawy, "Zstandard Compression and
 the application/zstd Media Type", draft-kucherawy-

rfc8478bis-05 (work in progress), April 2020.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <https://www.rfc-editor.org/info/rfc1950>.

 [RFC7932] Alakuijala, J. and Z. Szabadka, "Brotli Compressed Data
 Format", RFC 7932, DOI 10.17487/RFC7932, July 2016,
 <https://www.rfc-editor.org/info/rfc7932>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

https://en.wikipedia.org/wiki/COFF
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Intel_HEX
https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-11
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-07
https://datatracker.ietf.org/doc/html/draft-ietf-teep-architecture-08
https://datatracker.ietf.org/doc/html/draft-kucherawy-rfc8478bis-05
https://datatracker.ietf.org/doc/html/draft-kucherawy-rfc8478bis-05
https://datatracker.ietf.org/doc/html/rfc1950
https://www.rfc-editor.org/info/rfc1950
https://datatracker.ietf.org/doc/html/rfc7932
https://www.rfc-editor.org/info/rfc7932
https://datatracker.ietf.org/doc/html/rfc8392
https://www.rfc-editor.org/info/rfc8392

Moran, et al. Expires December 11, 2020 [Page 51]

Internet-Draft CBOR-based SUIT Manifest June 2020

 [SREC] Wikipedia, ., "SREC (file format)", 2020,
 <https://en.wikipedia.org/wiki/SREC_(file_format)>.

Moran, et al. Expires December 11, 2020 [Page 52]

https://en.wikipedia

Internet-Draft CBOR-based SUIT Manifest June 2020

A. Full CDDL

 In order to create a valid SUIT Manifest document the structure of
 the corresponding CBOR message MUST adhere to the following CDDL data
 definition.

SUIT_Envelope = {
 ? suit-delegation => bstr .cbor SUIT_Delegation
 ? suit-authentication-wrapper
 => bstr .cbor SUIT_Authentication_Wrapper / nil,
 $$SUIT_Manifest_Wrapped,
 * $$SUIT_Severed_Fields,
}

SUIT_Delegation = [+ [+ CWT]]

CWT = SUIT_Authentication_Block

SUIT_Authentication_Wrapper = [+ bstr .cbor SUIT_Authentication_Block]

SUIT_Authentication_Block /= COSE_Mac_Tagged
SUIT_Authentication_Block /= COSE_Sign_Tagged
SUIT_Authentication_Block /= COSE_Mac0_Tagged
SUIT_Authentication_Block /= COSE_Sign1_Tagged

$$SUIT_Manifest_Wrapped //= (suit-manifest => bstr .cbor SUIT_Manifest)
$$SUIT_Manifest_Wrapped //= (
 suit-manifest-encryption-info => bstr .cbor SUIT_Encryption_Wrapper,
 suit-manifest-encrypted => bstr
)

SUIT_Encryption_Wrapper = COSE_Encrypt_Tagged / COSE_Encrypt0_Tagged

$$SUIT_Severed_Fields //= (suit-dependency-resolution =>
 bstr .cbor SUIT_Command_Sequence)
$$SUIT_Severed_Fields //= (suit-payload-fetch =>
 bstr .cbor SUIT_Command_Sequence)
$$SUIT_Severed_Fields //= (suit-install =>
 bstr .cbor SUIT_Command_Sequence)
$$SUIT_Severed_Fields //= (suit-text =>
 bstr .cbor SUIT_Text_Map)
$$SUIT_Severed_Fields //= (suit-coswid =>
 bstr .cbor concise-software-identity)

COSE_Mac_Tagged = any
COSE_Sign_Tagged = any
COSE_Mac0_Tagged = any
COSE_Sign1_Tagged = any

Moran, et al. Expires December 11, 2020 [Page 53]

Internet-Draft CBOR-based SUIT Manifest June 2020

COSE_Encrypt_Tagged = any
COSE_Encrypt0_Tagged = any

SUIT_Digest = [
 suit-digest-algorithm-id : suit-digest-algorithm-ids,
 suit-digest-bytes : bstr,
 ? suit-digest-parameters : any
]

; Named Information Hash Algorithm Identifiers
suit-digest-algorithm-ids /= algorithm-id-sha224
suit-digest-algorithm-ids /= algorithm-id-sha256
suit-digest-algorithm-ids /= algorithm-id-sha384
suit-digest-algorithm-ids /= algorithm-id-sha512
suit-digest-algorithm-ids /= algorithm-id-sha3-224
suit-digest-algorithm-ids /= algorithm-id-sha3-256
suit-digest-algorithm-ids /= algorithm-id-sha3-384
suit-digest-algorithm-ids /= algorithm-id-sha3-512

algorithm-id-sha224 = 1
algorithm-id-sha256 = 2
algorithm-id-sha384 = 3
algorithm-id-sha512 = 4
algorithm-id-sha3-224 = 5
algorithm-id-sha3-256 = 6
algorithm-id-sha3-384 = 7
algorithm-id-sha3-512 = 8

SUIT_Manifest = {
 suit-manifest-version => 1,
 suit-manifest-sequence-number => uint,
 suit-common => bstr .cbor SUIT_Common,
 ? suit-reference-uri => #6.32(tstr),
 * $$SUIT_Severable_Command_Sequences,
 * $$SUIT_Command_Sequences,
 * $$SUIT_Protected_Elements,
}

$$SUIT_Severable_Command_Sequences //= (suit-dependency-resolution =>
 SUIT_Severable_Command_Sequence)
$$SUIT_Severable_Command_Sequences //= (suit-payload-fetch =>
 SUIT_Severable_Command_Sequence)
$$SUIT_Severable_Command_Sequences //= (suit-install =>
 SUIT_Severable_Command_Sequence)

SUIT_Severable_Command_Sequence =
 SUIT_Digest / bstr .cbor SUIT_Command_Sequence

Moran, et al. Expires December 11, 2020 [Page 54]

Internet-Draft CBOR-based SUIT Manifest June 2020

$$SUIT_Command_Sequences //= (suit-validate =>
 bstr .cbor SUIT_Command_Sequence)
$$SUIT_Command_Sequences //= (suit-load =>
 bstr .cbor SUIT_Command_Sequence)
$$SUIT_Command_Sequences //= (suit-run =>
 bstr .cbor SUIT_Command_Sequence)

$$SUIT_Protected_Elements //= (suit-text => SUIT_Digest)
$$SUIT_Protected_Elements //= (suit-coswid => SUIT_Digest)

SUIT_Common = {
 ? suit-dependencies => bstr .cbor SUIT_Dependencies,
 ? suit-components => bstr .cbor SUIT_Components,
 ? suit-dependency-components
 => bstr .cbor SUIT_Component_References,
 ? suit-common-sequence => bstr .cbor SUIT_Command_Sequence,
}

SUIT_Dependencies = [+ SUIT_Dependency]
SUIT_Components = [+ SUIT_Component_Identifier]
SUIT_Component_References = [+ SUIT_Component_Reference]

concise-software-identity = any

SUIT_Dependency = {
 suit-dependency-digest => SUIT_Digest,
 suit-dependency-prefix => SUIT_Component_Identifier,
}

SUIT_Component_Identifier = [* bstr]

SUIT_Component_Reference = {
 suit-component-identifier => SUIT_Component_Identifier,
 suit-component-dependency-index => uint
}

SUIT_Command_Sequence = [+ (
 SUIT_Condition // SUIT_Directive // SUIT_Command_Custom
)]

SUIT_Command_Custom = (suit-command-custom, bstr/tstr/int/nil)
SUIT_Condition //= (suit-condition-vendor-identifier, nil)
SUIT_Condition //= (suit-condition-class-identifier, nil)
SUIT_Condition //= (suit-condition-device-identifier, nil)
SUIT_Condition //= (suit-condition-image-match, nil)
SUIT_Condition //= (suit-condition-image-not-match, nil)
SUIT_Condition //= (suit-condition-use-before, nil)

Moran, et al. Expires December 11, 2020 [Page 55]

Internet-Draft CBOR-based SUIT Manifest June 2020

SUIT_Condition //= (suit-condition-minimum-battery, nil)
SUIT_Condition //= (suit-condition-update-authorized, nil)
SUIT_Condition //= (suit-condition-version, nil)
SUIT_Condition //= (suit-condition-component-offset, nil)

SUIT_Directive //= (suit-directive-set-component-index, uint/bool)
SUIT_Directive //= (suit-directive-set-dependency-index, uint/bool)
SUIT_Directive //= (suit-directive-run-sequence,
 bstr .cbor SUIT_Command_Sequence)
SUIT_Directive //= (suit-directive-try-each,
 SUIT_Directive_Try_Each_Argument)
SUIT_Directive //= (suit-directive-process-dependency, nil)
SUIT_Directive //= (suit-directive-set-parameters,
 {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-override-parameters,
 {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-fetch, nil)
SUIT_Directive //= (suit-directive-copy, nil)
SUIT_Directive //= (suit-directive-swap, nil)
SUIT_Directive //= (suit-directive-run, nil)
SUIT_Directive //= (suit-directive-wait, nil)
SUIT_Directive //= (suit-directive-abort, nil)

SUIT_Directive_Try_Each_Argument = [
 + bstr .cbor SUIT_Command_Sequence,
 nil / bstr .cbor SUIT_Command_Sequence
]

SUIT_Wait_Event = { + SUIT_Wait_Events }

SUIT_Wait_Events //= (suit-wait-event-authorization => int)
SUIT_Wait_Events //= (suit-wait-event-power => int)
SUIT_Wait_Events //= (suit-wait-event-network => int)
SUIT_Wait_Events //= (suit-wait-event-other-device-version
 => SUIT_Wait_Event_Argument_Other_Device_Version)
SUIT_Wait_Events //= (suit-wait-event-time => uint); Timestamp
SUIT_Wait_Events //= (suit-wait-event-time-of-day
 => uint); Time of Day (seconds since 00:00:00)
SUIT_Wait_Events //= (suit-wait-event-day-of-week
 => uint); Days since Sunday

SUIT_Wait_Event_Argument_Other_Device_Version = [
 other-device: bstr,
 other-device-version: [+int]
]

SUIT_Parameters //= (suit-parameter-vendor-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-class-identifier => RFC4122_UUID)

Moran, et al. Expires December 11, 2020 [Page 56]

Internet-Draft CBOR-based SUIT Manifest June 2020

SUIT_Parameters //= (suit-parameter-image-digest
 => bstr .cbor SUIT_Digest)
SUIT_Parameters //= (suit-parameter-image-size => uint)
SUIT_Parameters //= (suit-parameter-use-before => uint)
SUIT_Parameters //= (suit-parameter-component-offset => uint)

SUIT_Parameters //= (suit-parameter-encryption-info
 => bstr .cbor SUIT_Encryption_Info)
SUIT_Parameters //= (suit-parameter-compression-info
 => bstr .cbor SUIT_Compression_Info)
SUIT_Parameters //= (suit-parameter-unpack-info
 => bstr .cbor SUIT_Unpack_Info)

SUIT_Parameters //= (suit-parameter-uri => tstr)
SUIT_Parameters //= (suit-parameter-source-component => uint)
SUIT_Parameters //= (suit-parameter-run-args => bstr)

SUIT_Parameters //= (suit-parameter-device-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-minimum-battery => uint)
SUIT_Parameters //= (suit-parameter-update-priority => uint)
SUIT_Parameters //= (suit-parameter-version =>
 SUIT_Parameter_Version_Match)
SUIT_Parameters //= (suit-parameter-wait-info =>
 bstr .cbor SUIT_Wait_Event)

SUIT_Parameters //= (suit-parameter-custom => int/bool/tstr/bstr)

SUIT_Parameters //= (suit-parameter-strict-order => bool)
SUIT_Parameters //= (suit-parameter-soft-failure => bool)

RFC4122_UUID = bstr .size 16

SUIT_Parameter_Version_Match = [
 suit-condition-version-comparison-type:
 SUIT_Condition_Version_Comparison_Types,
 suit-condition-version-comparison-value:
 SUIT_Condition_Version_Comparison_Value
]
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-greater
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-greater-equal
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-equal
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-lesser-equal
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-lesser

Moran, et al. Expires December 11, 2020 [Page 57]

Internet-Draft CBOR-based SUIT Manifest June 2020

suit-condition-version-comparison-greater = 1
suit-condition-version-comparison-greater-equal = 2
suit-condition-version-comparison-equal = 3
suit-condition-version-comparison-lesser-equal = 4
suit-condition-version-comparison-lesser = 5

SUIT_Condition_Version_Comparison_Value = [+int]

SUIT_Encryption_Info = COSE_Encrypt_Tagged/COSE_Encrypt0_Tagged
SUIT_Compression_Info = {
 suit-compression-algorithm => SUIT_Compression_Algorithms,
 ? suit-compression-parameters => bstr
}

SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_zlib
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_brotli
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_zstd

SUIT_Compression_Algorithm_zlib = 1
SUIT_Compression_Algorithm_brotli = 2
SUIT_Compression_Algorithm_zstd = 3

SUIT_Unpack_Info = {
 suit-unpack-algorithm => SUIT_Unpack_Algorithms,
 ? suit-unpack-parameters => bstr
}

SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Hex
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Elf
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Coff
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Srec

SUIT_Unpack_Algorithm_Hex = 1
SUIT_Unpack_Algorithm_Elf = 2
SUIT_Unpack_Algorithm_Coff = 3
SUIT_Unpack_Algorithm_Srec = 4

SUIT_Text_Map = {SUIT_Text_Keys => tstr}

SUIT_Text_Keys /= suit-text-manifest-description
SUIT_Text_Keys /= suit-text-update-description
SUIT_Text_Keys /= suit-text-vendor-name
SUIT_Text_Keys /= suit-text-model-name
SUIT_Text_Keys /= suit-text-vendor-domain
SUIT_Text_Keys /= suit-text-model-info
SUIT_Text_Keys /= suit-text-component-description
SUIT_Text_Keys /= suit-text-manifest-json-source
SUIT_Text_Keys /= suit-text-manifest-yaml-source

Moran, et al. Expires December 11, 2020 [Page 58]

Internet-Draft CBOR-based SUIT Manifest June 2020

SUIT_Text_Keys /= suit-text-version-dependencies

suit-delegation = 1
suit-authentication-wrapper = 2
suit-manifest = 3

suit-manifest-encryption-info = 4
suit-manifest-encrypted = 5

suit-manifest-version = 1
suit-manifest-sequence-number = 2
suit-common = 3
suit-reference-uri = 4
suit-dependency-resolution = 7
suit-payload-fetch = 8
suit-install = 9
suit-validate = 10
suit-load = 11
suit-run = 12
suit-text = 13
suit-coswid = 14

suit-dependencies = 1
suit-components = 2
suit-dependency-components = 3
suit-common-sequence = 4

suit-dependency-digest = 1
suit-dependency-prefix = 2

suit-component-identifier = 1
suit-component-dependency-index = 2

suit-command-custom = nint

suit-condition-vendor-identifier = 1
suit-condition-class-identifier = 2
suit-condition-image-match = 3
suit-condition-use-before = 4
suit-condition-component-offset = 5

suit-condition-device-identifier = 24
suit-condition-image-not-match = 25
suit-condition-minimum-battery = 26
suit-condition-update-authorized = 27
suit-condition-version = 28

suit-directive-set-component-index = 12

Moran, et al. Expires December 11, 2020 [Page 59]

Internet-Draft CBOR-based SUIT Manifest June 2020

suit-directive-set-dependency-index = 13
suit-directive-abort = 14
suit-directive-try-each = 15
;suit-directive-do-each = 16 ; TBD
;suit-directive-map-filter = 17 ; TBD
suit-directive-process-dependency = 18
suit-directive-set-parameters = 19
suit-directive-override-parameters = 20
suit-directive-fetch = 21
suit-directive-copy = 22
suit-directive-run = 23

suit-directive-wait = 29
suit-directive-run-sequence = 30
suit-directive-swap = 32

suit-wait-event-authorization = 1
suit-wait-event-power = 2
suit-wait-event-network = 3
suit-wait-event-other-device-version = 4
suit-wait-event-time = 5
suit-wait-event-time-of-day = 6
suit-wait-event-day-of-week = 7

suit-parameter-vendor-identifier = 1
suit-parameter-class-identifier = 2
suit-parameter-image-digest = 3
suit-parameter-use-before = 4
suit-parameter-component-offset = 5

suit-parameter-strict-order = 12
suit-parameter-soft-failure = 13
suit-parameter-image-size = 14

suit-parameter-encryption-info = 18
suit-parameter-compression-info = 19
suit-parameter-unpack-info = 20
suit-parameter-uri = 21
suit-parameter-source-component = 22
suit-parameter-run-args = 23

suit-parameter-device-identifier = 24
suit-parameter-minimum-battery = 26
suit-parameter-update-priority = 27
suit-parameter-version = 28
suit-parameter-wait-info = 29
suit-parameter-uri-list = 30

Moran, et al. Expires December 11, 2020 [Page 60]

Internet-Draft CBOR-based SUIT Manifest June 2020

suit-parameter-custom = nint

suit-compression-algorithm = 1
suit-compression-parameters = 2

suit-unpack-algorithm = 1
suit-unpack-parameters = 2

suit-text-manifest-description = 1
suit-text-update-description = 2
suit-text-vendor-name = 3
suit-text-model-name = 4
suit-text-vendor-domain = 5
suit-text-model-info = 6
suit-text-component-description = 7
suit-text-manifest-json-source = 8
suit-text-manifest-yaml-source = 9
suit-text-version-dependencies = 10

B. Examples

 The following examples demonstrate a small subset of the
 functionality of the manifest. However, despite this, even a simple
 manifest processor can execute most of these manifests.

 The examples are signed using the following ECDSA secp256r1 key:

 -----BEGIN PRIVATE KEY-----
 MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgApZYjZCUGLM50VBC
 CjYStX+09jGmnyJPrpDLTz/hiXOhRANCAASEloEarguqq9JhVxie7NomvqqL8Rtv
 P+bitWWchdvArTsfKktsCYExwKNtrNHXi9OB3N+wnAUtszmR23M4tKiW
 -----END PRIVATE KEY-----

 The corresponding public key can be used to verify these examples:

 -----BEGIN PUBLIC KEY-----
 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhJaBGq4LqqvSYVcYnuzaJr6qi/Eb
 bz/m4rVlnIXbwK07HypLbAmBMcCjbazR14vTgdzfsJwFLbM5kdtzOLSolg==
 -----END PUBLIC KEY-----

 Each example uses SHA256 as the digest function.

B.1. Example 0: Secure Boot

 Secure boot and compatibility check.

 {
 / authentication-wrapper / 2:h'81586fd28443a10126a0582482025820655

Moran, et al. Expires December 11, 2020 [Page 61]

Internet-Draft CBOR-based SUIT Manifest June 2020

 f1230fd3833ca828c18200498fd1cd90656a9a2620c6989921c06623703515840a0416
 20607b7765a51fe0566e5d8fed95491ee6df622132524fdbe67607bf7f2794d7a71dad
 7230d3cab86c5091a226d00061b0a74a01b3d371e07d5b3eca3d4' / [
 h'd28443a10126a0582482025820655f1230fd3833ca828c18200498fd1cd9
 0656a9a2620c6989921c06623703515840a041620607b7765a51fe0566e5d8fed95491
 ee6df622132524fdbe67607bf7f2794d7a71dad7230d3cab86c5091a226d00061b0a74
 a01b3d371e07d5b3eca3d4' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'82025820655f1230fd3833ca828c18200498fd1c
 d90656a9a2620c6989921c0662370351' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"655f1230fd3833ca828c18200498fd1cd90656a9a2620c6989921c0662370351"'
] /,
 / signature / h'"a041620607b7765a51fe0566e5d8fed95491e
 e6df622132524fdbe67607bf7f2794d7a71dad7230d3cab86c5091a226d00061b0a74a
 01b3d371e07d5b3eca3d4"'
]) /
] /,
 / manifest / 3:h'a501010201035860a20244818141000458568614a40150fa6
 b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582
 48202582000112233445566778899aabbccddeeff0123456789abcdeffedcba9876543
 2100e1987d001f602f60a438203f60c438217f6' / {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:1,
 / common / 3:h'a20244818141000458568614a40150fa6b4a53d5ad5fdfb
 e9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112
 233445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f
 602f6' / {
 / components / 2:h'81814100' / [
 [h'"00"']
] /,
 / common-sequence / 4:h'8614a40150fa6b4a53d5ad5fdfbe9de663
 e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025820001122334455
 66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602f6'
 / [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:h'8202582000112233445566778899a

Moran, et al. Expires December 11, 2020 [Page 62]

Internet-Draft CBOR-based SUIT Manifest June 2020

 abbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / validate / 10:h'8203f6' / [
 / condition-image-match / 3,F6 / nil /
] /,
 / run / 12:h'8217f6' / [
 / directive-run / 23,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 118

 Manifest:

 a1035872a501010201035860a20244818141000458568614a40150fa6b4a
 53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab
 450358248202582000112233445566778899aabbccddeeff0123456789ab
 cdeffedcba98765432100e1987d001f602f60a438203f60c438217f6

 Total size of manifest with COSE authentication object: 235

 Manifest with COSE authentication object:

 a202587281586fd28443a10126a0582482025820655f1230fd3833ca828c
 18200498fd1cd90656a9a2620c6989921c06623703515840a041620607b7
 765a51fe0566e5d8fed95491ee6df622132524fdbe67607bf7f2794d7a71
 dad7230d3cab86c5091a226d00061b0a74a01b3d371e07d5b3eca3d40358
 72a501010201035860a20244818141000458568614a40150fa6b4a53d5ad
 5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358
 248202582000112233445566778899aabbccddeeff0123456789abcdeffe
 dcba98765432100e1987d001f602f60a438203f60c438217f6

B.2. Example 1: Simultaneous Download and Installation of Payload

 Simultaneous download and installation of payload.

 {
 / authentication-wrapper / 2:h'81586fd28443a10126a0582482025820815

Moran, et al. Expires December 11, 2020 [Page 63]

Internet-Draft CBOR-based SUIT Manifest June 2020

 32771898e4ebcccf12c607420eba62b5086192cac4c99692835b58ee62f7b584081592
 1e5148e9b81e79d8be570de6bb42ba2e903c8549f0e13dee4d0ee420d90dd9f8537ebe
 ad3f92b37df703539879129183b0beaf3ba75cacd8a91e075a24e' / [
 h'd28443a10126a058248202582081532771898e4ebcccf12c607420eba62b
 5086192cac4c99692835b58ee62f7b5840815921e5148e9b81e79d8be570de6bb42ba2
 e903c8549f0e13dee4d0ee420d90dd9f8537ebead3f92b37df703539879129183b0bea
 f3ba75cacd8a91e075a24e' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'8202582081532771898e4ebcccf12c607420eba6
 2b5086192cac4c99692835b58ee62f7b' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"81532771898e4ebcccf12c607420eba62b5086192cac4c99692835b58ee62f7b"'
] /,
 / signature / h'"815921e5148e9b81e79d8be570de6bb42ba2e
 903c8549f0e13dee4d0ee420d90dd9f8537ebead3f92b37df703539879129183b0beaf
 3ba75cacd8a91e075a24e"'
]) /
] /,
 / manifest / 3:h'a501010202035860a20244818141000458568614a40150fa6
 b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582
 48202582000112233445566778899aabbccddeeff0123456789abcdeffedcba9876543
 2100e1987d001f602f60958258613a115781b687474703a2f2f6578616d706c652e636
 f6d2f66696c652e62696e15f603f60a438203f6' / {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:2,
 / common / 3:h'a20244818141000458568614a40150fa6b4a53d5ad5fdfb
 e9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112
 233445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f
 602f6' / {
 / components / 2:h'81814100' / [
 [h'"00"']
] /,
 / common-sequence / 4:h'8614a40150fa6b4a53d5ad5fdfbe9de663
 e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025820001122334455
 66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602f6'
 / [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,

Moran, et al. Expires December 11, 2020 [Page 64]

Internet-Draft CBOR-based SUIT Manifest June 2020

 / image-digest / 3:h'8202582000112233445566778899a
 abbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / install / 9:h'8613a115781b687474703a2f2f6578616d706c652e636f
 6d2f66696c652e62696e15f603f6' / [
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 } ,
 / directive-fetch / 21,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / validate / 10:h'8203f6' / [
 / condition-image-match / 3,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 153

 Manifest:

 a1035895a501010202035860a20244818141000458568614a40150fa6b4a
 53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab
 450358248202582000112233445566778899aabbccddeeff0123456789ab
 cdeffedcba98765432100e1987d001f602f60958258613a115781b687474
 703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f603f60a43
 8203f6

 Total size of manifest with COSE authentication object: 270

 Manifest with COSE authentication object:

Moran, et al. Expires December 11, 2020 [Page 65]

Internet-Draft CBOR-based SUIT Manifest June 2020

 a202587281586fd28443a10126a058248202582081532771898e4ebcccf1
 2c607420eba62b5086192cac4c99692835b58ee62f7b5840815921e5148e
 9b81e79d8be570de6bb42ba2e903c8549f0e13dee4d0ee420d90dd9f8537
 ebead3f92b37df703539879129183b0beaf3ba75cacd8a91e075a24e0358
 95a501010202035860a20244818141000458568614a40150fa6b4a53d5ad
 5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358
 248202582000112233445566778899aabbccddeeff0123456789abcdeffe
 dcba98765432100e1987d001f602f60958258613a115781b687474703a2f
 2f6578616d706c652e636f6d2f66696c652e62696e15f603f60a438203f6

B.3. Example 2: Simultaneous Download, Installation, and Secure Boot

 Compatibility test, simultaneous download and installation, and
 secure boot.

 {
 / authentication-wrapper / 2:h'81586fd28443a10126a0582482025820883
 90f8988639d8a2cfb6da969fce488333ac5ba77aaf0d66b5623009bbf341158401929f
 fd488c455ab40eaf1aa96a7df4a9c16c658221055c3a113232fb81c5751a23a74b5efc
 06c459eb47a07028ef3c6a0d9051185dd78899c654249f9070dea' / [
 h'd28443a10126a058248202582088390f8988639d8a2cfb6da969fce48833
 3ac5ba77aaf0d66b5623009bbf341158401929ffd488c455ab40eaf1aa96a7df4a9c16
 c658221055c3a113232fb81c5751a23a74b5efc06c459eb47a07028ef3c6a0d9051185
 dd78899c654249f9070dea' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'8202582088390f8988639d8a2cfb6da969fce488
 333ac5ba77aaf0d66b5623009bbf3411' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"88390f8988639d8a2cfb6da969fce488333ac5ba77aaf0d66b5623009bbf3411"'
] /,
 / signature / h'"1929ffd488c455ab40eaf1aa96a7df4a9c16c
 658221055c3a113232fb81c5751a23a74b5efc06c459eb47a07028ef3c6a0d9051185d
 d78899c654249f9070dea"'
]) /
] /,
 / manifest / 3:h'a601010203035860a20244818141000458568614a40150fa6
 b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582
 48202582000112233445566778899aabbccddeeff0123456789abcdeffedcba9876543
 2100e1987d001f602f60958258613a115781b687474703a2f2f6578616d706c652e636
 f6d2f66696c652e62696e15f603f60a438203f60c438217f6' / {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:3,
 / common / 3:h'a20244818141000458568614a40150fa6b4a53d5ad5fdfb

Moran, et al. Expires December 11, 2020 [Page 66]

Internet-Draft CBOR-based SUIT Manifest June 2020

 e9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112
 233445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f
 602f6' / {
 / components / 2:h'81814100' / [
 [h'"00"']
] /,
 / common-sequence / 4:h'8614a40150fa6b4a53d5ad5fdfbe9de663
 e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025820001122334455
 66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602f6'
 / [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:h'8202582000112233445566778899a
 abbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / install / 9:h'8613a115781b687474703a2f2f6578616d706c652e636f
 6d2f66696c652e62696e15f603f6' / [
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 } ,
 / directive-fetch / 21,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / validate / 10:h'8203f6' / [
 / condition-image-match / 3,F6 / nil /
] /,
 / run / 12:h'8217f6' / [
 / directive-run / 23,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 158

Moran, et al. Expires December 11, 2020 [Page 67]

Internet-Draft CBOR-based SUIT Manifest June 2020

 Manifest:

 a103589aa601010203035860a20244818141000458568614a40150fa6b4a
 53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab
 450358248202582000112233445566778899aabbccddeeff0123456789ab
 cdeffedcba98765432100e1987d001f602f60958258613a115781b687474
 703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f603f60a43
 8203f60c438217f6

 Total size of manifest with COSE authentication object: 275

 Manifest with COSE authentication object:

 a202587281586fd28443a10126a058248202582088390f8988639d8a2cfb
 6da969fce488333ac5ba77aaf0d66b5623009bbf341158401929ffd488c4
 55ab40eaf1aa96a7df4a9c16c658221055c3a113232fb81c5751a23a74b5
 efc06c459eb47a07028ef3c6a0d9051185dd78899c654249f9070dea0358
 9aa601010203035860a20244818141000458568614a40150fa6b4a53d5ad
 5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358
 248202582000112233445566778899aabbccddeeff0123456789abcdeffe
 dcba98765432100e1987d001f602f60958258613a115781b687474703a2f
 2f6578616d706c652e636f6d2f66696c652e62696e15f603f60a438203f6
 0c438217f6

B.4. Example 3: Load from External Storage

 Compatibility test, simultaneous download and installation, load from
 external storage, and secure boot.

 {
 / authentication-wrapper / 2:h'81586fd28443a10126a0582482025820568
 56a72f9ac0ee73b4ea3a866cf2e5c990e8ed8c6056608bc221efd42172b2758402a9d7
 573ef6dcf5653b39027fdf87b81adeb0f03122bef0ecf5af9c7d77323c32827230f660
 8342b7bf5c125f17148bd67880420ab0d03e235e6ca1d15127499' / [
 h'd28443a10126a058248202582056856a72f9ac0ee73b4ea3a866cf2e5c99
 0e8ed8c6056608bc221efd42172b2758402a9d7573ef6dcf5653b39027fdf87b81adeb
 0f03122bef0ecf5af9c7d77323c32827230f6608342b7bf5c125f17148bd67880420ab
 0d03e235e6ca1d15127499' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'8202582056856a72f9ac0ee73b4ea3a866cf2e5c
 990e8ed8c6056608bc221efd42172b27' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"56856a72f9ac0ee73b4ea3a866cf2e5c990e8ed8c6056608bc221efd42172b27"'

Moran, et al. Expires December 11, 2020 [Page 68]

Internet-Draft CBOR-based SUIT Manifest June 2020

] /,
 / signature / h'"2a9d7573ef6dcf5653b39027fdf87b81adeb0
 f03122bef0ecf5af9c7d77323c32827230f6608342b7bf5c125f17148bd67880420ab0
 d03e235e6ca1d15127499"'
]) /
] /,
 / manifest / 3:h'a701010204035865a2024782814100814101045858880c001
 4a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f
 2ab450358248202582000112233445566778899aabbccddeeff0123456789abcdeffed
 cba98765432100e1987d001f602f6095827880c0013a115781b687474703a2f2f65786
 16d706c652e636f6d2f66696c652e62696e15f603f60a45840c0003f60b4b880c0113a
 1160016f603f60c45840c0117f6' / {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:4,
 / common / 3:h'a2024782814100814101045858880c0014a40150fa6b4a5
 3d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824820
 2582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100
 e1987d001f602f6' / {
 / components / 2:h'82814100814101' / [
 [h'"00"'] ,
 [h'"01"']
] /,
 / common-sequence / 4:h'880c0014a40150fa6b4a53d5ad5fdfbe9d
 e663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112233
 445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602
 f6' / [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:h'8202582000112233445566778899a
 abbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / install / 9:h'880c0013a115781b687474703a2f2f6578616d706c652e
 636f6d2f66696c652e62696e15f603f6' / [

Moran, et al. Expires December 11, 2020 [Page 69]

Internet-Draft CBOR-based SUIT Manifest June 2020

 / directive-set-component-index / 12,0 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 } ,
 / directive-fetch / 21,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / validate / 10:h'840c0003f6' / [
 / directive-set-component-index / 12,0 ,
 / condition-image-match / 3,F6 / nil /
] /,
 / load / 11:h'880c0113a1160016f603f6' / [
 / directive-set-component-index / 12,1 ,
 / directive-set-parameters / 19,{
 / source-component / 22:0 / [h'"00"'] /,
 } ,
 / directive-copy / 22,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / run / 12:h'840c0117f6' / [
 / directive-set-component-index / 12,1 ,
 / directive-run / 23,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 182

 Manifest:

 a10358b2a701010204035865a2024782814100814101045858880c0014a4
 0150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf42
 9b2d51f2ab450358248202582000112233445566778899aabbccddeeff01
 23456789abcdeffedcba98765432100e1987d001f602f6095827880c0013
 a115781b687474703a2f2f6578616d706c652e636f6d2f66696c652e6269
 6e15f603f60a45840c0003f60b4b880c0113a1160016f603f60c45840c01
 17f6

 Total size of manifest with COSE authentication object: 299

 Manifest with COSE authentication object:

Moran, et al. Expires December 11, 2020 [Page 70]

Internet-Draft CBOR-based SUIT Manifest June 2020

 a202587281586fd28443a10126a058248202582056856a72f9ac0ee73b4e
 a3a866cf2e5c990e8ed8c6056608bc221efd42172b2758402a9d7573ef6d
 cf5653b39027fdf87b81adeb0f03122bef0ecf5af9c7d77323c32827230f
 6608342b7bf5c125f17148bd67880420ab0d03e235e6ca1d151274990358
 b2a701010204035865a2024782814100814101045858880c0014a40150fa
 6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51
 f2ab450358248202582000112233445566778899aabbccddeeff01234567
 89abcdeffedcba98765432100e1987d001f602f6095827880c0013a11578
 1b687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f6
 03f60a45840c0003f60b4b880c0113a1160016f603f60c45840c0117f6

B.5. Example 4: Load and Decompress from External Storage

 Compatibility test, simultaneous download and installation, load and
 decompress from external storage, and secure boot.

 {
 / authentication-wrapper / 2:h'81586fd28443a10126a058248202582057b
 edc0076919ba83908365faf6d205e95c71268d29a94dc5e82698edd3a48225840e0a4d
 c500266518742802f2364b65f983175f060c1555d3d0b186f447500ba60c66e3231674
 1c3b642c68fed73d47542c3375c0ab72e0f4b94ec392ab398599d' / [
 h'd28443a10126a058248202582057bedc0076919ba83908365faf6d205e95
 c71268d29a94dc5e82698edd3a48225840e0a4dc500266518742802f2364b65f983175
 f060c1555d3d0b186f447500ba60c66e32316741c3b642c68fed73d47542c3375c0ab7
 2e0f4b94ec392ab398599d' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'8202582057bedc0076919ba83908365faf6d205e
 95c71268d29a94dc5e82698edd3a4822' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"57bedc0076919ba83908365faf6d205e95c71268d29a94dc5e82698edd3a4822"'
] /,
 / signature / h'"e0a4dc500266518742802f2364b65f983175f
 060c1555d3d0b186f447500ba60c66e32316741c3b642c68fed73d47542c3375c0ab72
 e0f4b94ec392ab398599d"'
]) /
] /,
 / manifest / 3:h'a701010205035865a2024782814100814101045858880c001
 4a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f
 2ab450358248202582000112233445566778899aabbccddeeff0123456789abcdeffed
 cba98765432100e1987d001f602f6095827880c0013a115781b687474703a2f2f65786
 16d706c652e636f6d2f66696c652e62696e15f603f60a45840c0003f60b4d880c0113a
 21301160016f603f60c45840c0117f6' / {
 / manifest-version / 1:1,

Moran, et al. Expires December 11, 2020 [Page 71]

Internet-Draft CBOR-based SUIT Manifest June 2020

 / manifest-sequence-number / 2:5,
 / common / 3:h'a2024782814100814101045858880c0014a40150fa6b4a5
 3d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824820
 2582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100
 e1987d001f602f6' / {
 / components / 2:h'82814100814101' / [
 [h'"00"'] ,
 [h'"01"']
] /,
 / common-sequence / 4:h'880c0014a40150fa6b4a53d5ad5fdfbe9d
 e663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112233
 445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602
 f6' / [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:h'8202582000112233445566778899a
 abbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / install / 9:h'880c0013a115781b687474703a2f2f6578616d706c652e
 636f6d2f66696c652e62696e15f603f6' / [
 / directive-set-component-index / 12,0 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 } ,
 / directive-fetch / 21,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / validate / 10:h'840c0003f6' / [
 / directive-set-component-index / 12,0 ,
 / condition-image-match / 3,F6 / nil /
] /,
 / load / 11:h'880c0113a21301160016f603f6' / [
 / directive-set-component-index / 12,1 ,

Moran, et al. Expires December 11, 2020 [Page 72]

Internet-Draft CBOR-based SUIT Manifest June 2020

 / directive-set-parameters / 19,{
 / source-component / 22:0 / [h'"00"'] /,
 / compression-info / 19:1 / "gzip" /,
 } ,
 / directive-copy / 22,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / run / 12:h'840c0117f6' / [
 / directive-set-component-index / 12,1 ,
 / directive-run / 23,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 184

 Manifest:

 a10358b4a701010205035865a2024782814100814101045858880c0014a4
 0150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf42
 9b2d51f2ab450358248202582000112233445566778899aabbccddeeff01
 23456789abcdeffedcba98765432100e1987d001f602f6095827880c0013
 a115781b687474703a2f2f6578616d706c652e636f6d2f66696c652e6269
 6e15f603f60a45840c0003f60b4d880c0113a21301160016f603f60c4584
 0c0117f6

 Total size of manifest with COSE authentication object: 301

 Manifest with COSE authentication object:

 a202587281586fd28443a10126a058248202582057bedc0076919ba83908
 365faf6d205e95c71268d29a94dc5e82698edd3a48225840e0a4dc500266
 518742802f2364b65f983175f060c1555d3d0b186f447500ba60c66e3231
 6741c3b642c68fed73d47542c3375c0ab72e0f4b94ec392ab398599d0358
 b4a701010205035865a2024782814100814101045858880c0014a40150fa
 6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51
 f2ab450358248202582000112233445566778899aabbccddeeff01234567
 89abcdeffedcba98765432100e1987d001f602f6095827880c0013a11578
 1b687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f6
 03f60a45840c0003f60b4d880c0113a21301160016f603f60c45840c0117
 f6

B.6. Example 5: Compatibility Test, Download, Installation, and Secure
 Boot

 Compatibility test, download, installation, and secure boot.

 {

Moran, et al. Expires December 11, 2020 [Page 73]

Internet-Draft CBOR-based SUIT Manifest June 2020

 / authentication-wrapper / 2:h'81586fd28443a10126a0582482025820ecc
 95235f2ab00b9912f8189b213b3e4ade42b792f491644e76004cd2ba87dc8584093952
 6b77d63dac2e138bf074aac757c5f010e8b2cf3ae9fcbba4cafc2d0f81c9ae46bc973c
 c0565410a1cb6bf10d2b3d0a2865392255cc4288d0337af3de837' / [
 h'd28443a10126a0582482025820ecc95235f2ab00b9912f8189b213b3e4ad
 e42b792f491644e76004cd2ba87dc85840939526b77d63dac2e138bf074aac757c5f01
 0e8b2cf3ae9fcbba4cafc2d0f81c9ae46bc973cc0565410a1cb6bf10d2b3d0a2865392
 255cc4288d0337af3de837' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'82025820ecc95235f2ab00b9912f8189b213b3e4
 ade42b792f491644e76004cd2ba87dc8' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"ecc95235f2ab00b9912f8189b213b3e4ade42b792f491644e76004cd2ba87dc8"'
] /,
 / signature / h'"939526b77d63dac2e138bf074aac757c5f010
 e8b2cf3ae9fcbba4cafc2d0f81c9ae46bc973cc0565410a1cb6bf10d2b3d0a28653922
 55cc4288d0337af3de837"'
]) /
] /,
 / manifest / 3:h'a701010205035865a2024782814100814101045858880c001
 4a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f
 2ab450358248202582000112233445566778899aabbccddeeff0123456789abcdeffed
 cba98765432100e1987d001f602f6085823840c0113a115781b687474703a2f2f65786
 16d706c652e636f6d2f66696c652e62696e094b880c0013a1160116f603f60a45840c0
 003f60c45840c0017f6' / {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:5,
 / common / 3:h'a2024782814100814101045858880c0014a40150fa6b4a5
 3d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824820
 2582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100
 e1987d001f602f6' / {
 / components / 2:h'82814100814101' / [
 [h'"00"'] ,
 [h'"01"']
] /,
 / common-sequence / 4:h'880c0014a40150fa6b4a53d5ad5fdfbe9d
 e663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112233
 445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602
 f6' / [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-

Moran, et al. Expires December 11, 2020 [Page 74]

Internet-Draft CBOR-based SUIT Manifest June 2020

 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:h'8202582000112233445566778899a
 abbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / payload-fetch / 8:h'840c0113a115781b687474703a2f2f6578616d70
 6c652e636f6d2f66696c652e62696e' / [
 / directive-set-component-index / 12,1 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 }
] /,
 / install / 9:h'880c0013a1160116f603f6' / [
 / directive-set-component-index / 12,0 ,
 / directive-set-parameters / 19,{
 / source-component / 22:1 / [h'"01"'] /,
 } ,
 / directive-copy / 22,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / validate / 10:h'840c0003f6' / [
 / directive-set-component-index / 12,0 ,
 / condition-image-match / 3,F6 / nil /
] /,
 / run / 12:h'840c0017f6' / [
 / directive-set-component-index / 12,0 ,
 / directive-run / 23,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 178

 Manifest:

Moran, et al. Expires December 11, 2020 [Page 75]

Internet-Draft CBOR-based SUIT Manifest June 2020

 a10358aea701010205035865a2024782814100814101045858880c0014a4
 0150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf42
 9b2d51f2ab450358248202582000112233445566778899aabbccddeeff01
 23456789abcdeffedcba98765432100e1987d001f602f6085823840c0113
 a115781b687474703a2f2f6578616d706c652e636f6d2f66696c652e6269
 6e094b880c0013a1160116f603f60a45840c0003f60c45840c0017f6

 Total size of manifest with COSE authentication object: 295

 Manifest with COSE authentication object:

 a202587281586fd28443a10126a0582482025820ecc95235f2ab00b9912f
 8189b213b3e4ade42b792f491644e76004cd2ba87dc85840939526b77d63
 dac2e138bf074aac757c5f010e8b2cf3ae9fcbba4cafc2d0f81c9ae46bc9
 73cc0565410a1cb6bf10d2b3d0a2865392255cc4288d0337af3de8370358
 aea701010205035865a2024782814100814101045858880c0014a40150fa
 6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51
 f2ab450358248202582000112233445566778899aabbccddeeff01234567
 89abcdeffedcba98765432100e1987d001f602f6085823840c0113a11578
 1b687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e094b
 880c0013a1160116f603f60a45840c0003f60c45840c0017f6

B.7. Example 6: Two Images

 Compatibility test, 2 images, simultaneous download and installation,
 and secure boot.

 {
 / authentication-wrapper / 2:h'81586fd28443a10126a0582482025820732
 5a7d3acf130d161810c4874f275f658970b7bc5a63cda56e9920a4aaba3a3584088cb9
 6211bcc4cdb59cb0022cb213017b2d117bac1a5460ae92903acc196282f7888368bf0a
 065756e43f53cdbeee367e9523312063e8eaad0889a7cee371859' / [
 h'd28443a10126a05824820258207325a7d3acf130d161810c4874f275f658
 970b7bc5a63cda56e9920a4aaba3a3584088cb96211bcc4cdb59cb0022cb213017b2d1
 17bac1a5460ae92903acc196282f7888368bf0a065756e43f53cdbeee367e952331206
 3e8eaad0889a7cee371859' / 18([
 / protected / h'a10126' / {
 / alg / 1:-7 / "ES256" /,
 } /,
 / unprotected / {
 },
 / payload / h'820258207325a7d3acf130d161810c4874f275f6
 58970b7bc5a63cda56e9920a4aaba3a3' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"7325a7d3acf130d161810c4874f275f658970b7bc5a63cda56e9920a4aaba3a3"'
] /,
 / signature / h'"88cb96211bcc4cdb59cb0022cb213017b2d11

Moran, et al. Expires December 11, 2020 [Page 76]

Internet-Draft CBOR-based SUIT Manifest June 2020

 7bac1a5460ae92903acc196282f7888368bf0a065756e43f53cdbeee367e9523312063
 e8eaad0889a7cee371859"'
]) /
] /,
 / manifest / 3:h'a50101020303589da20244818141000458938814a20150fa6
 b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450f825
 8308405f614a20358248202582000112233445566778899aabbccddeeff0123456789a
 bcdeffedcba98765432100e1987d058328405f614a2035824820258200123456789abc
 deffedcba987654321000112233445566778899aabbccddeeff0e1a00012c2201f602f
 6095853860f8258248405f613a115781c687474703a2f2f6578616d706c652e636f6d2
 f66696c65312e62696e58248405f613a115781c687474703a2f2f6578616d706c652e6
 36f6d2f66696c65322e62696e15f603f60a438203f6' / {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:3,
 / common / 3:h'a20244818141000458938814a20150fa6b4a53d5ad5fdfb
 e9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450f8258308405f614a20
 358248202582000112233445566778899aabbccddeeff0123456789abcdeffedcba987
 65432100e1987d058328405f614a2035824820258200123456789abcdeffedcba98765
 4321000112233445566778899aabbccddeeff0e1a00012c2201f602f6' / {
 / components / 2:h'81814100' / [
 [h'"00"']
] /,
 / common-sequence / 4:h'8814a20150fa6b4a53d5ad5fdfbe9de663
 e4d41ffe02501492af1425695e48bf429b2d51f2ab450f8258308405f614a203582482
 02582000112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210
 0e1987d058328405f614a2035824820258200123456789abcdeffedcba987654321000
 112233445566778899aabbccddeeff0e1a00012c2201f602f6' / [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'"fa6b4a53d5ad5fdfbe9de663e4d41ffe"' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'"1492af1425695e48bf429b2d51f2ab45"' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 } ,
 / directive-try-each / 15,[
 h'8405f614a20358248202582000112233445566778899aabb
 ccddeeff0123456789abcdeffedcba98765432100e1987d0' / [
 / condition-component-offset / 5,F6 / nil / ,
 / directive-override-parameters / 20,{
 / image-digest / 3:h'820258200011223344556
 6778899aabbccddeeff0123456789abcdeffedcba9876543210' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"'
] /,
 / image-size / 14:34768,
 }

Moran, et al. Expires December 11, 2020 [Page 77]

Internet-Draft CBOR-based SUIT Manifest June 2020

] / ,
 h'8405f614a2035824820258200123456789abcdeffedcba98
 7654321000112233445566778899aabbccddeeff0e1a00012c22' / [
 / condition-component-offset / 5,F6 / nil / ,
 / directive-override-parameters / 20,{
 / image-digest / 3:h'820258200123456789abc
 deffedcba987654321000112233445566778899aabbccddeeff' / [
 / algorithm-id / 2 / "sha256" /,
 / digest-bytes /
 h'"0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff"'
] /,
 / image-size / 14:76834,
 }
] /
] ,
 / condition-vendor-identifier / 1,F6 / nil / ,
 / condition-class-identifier / 2,F6 / nil /
] /,
 } /,
 / install / 9:h'860f8258248405f613a115781c687474703a2f2f657861
 6d706c652e636f6d2f66696c65312e62696e58248405f613a115781c687474703a2f2f
 6578616d706c652e636f6d2f66696c65322e62696e15f603f6' / [
 / directive-try-each / 15,[
 h'8405f613a115781c687474703a2f2f6578616d706c652e636f6d
 2f66696c65312e62696e' / [
 / condition-component-offset / 5,F6 / nil / ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file1.bin',
 }
] / ,
 h'8405f613a115781c687474703a2f2f6578616d706c652e636f6d
 2f66696c65322e62696e' / [
 / condition-component-offset / 5,F6 / nil / ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file2.bin',
 }
] /
] ,
 / directive-fetch / 21,F6 / nil / ,
 / condition-image-match / 3,F6 / nil /
] /,
 / validate / 10:h'8203f6' / [
 / condition-image-match / 3,F6 / nil /
] /,
 } /,
 }

 Total size of manifest without COSE authentication object: 261

Moran, et al. Expires December 11, 2020 [Page 78]

Internet-Draft CBOR-based SUIT Manifest June 2020

 Manifest:

 a103590100a50101020303589da20244818141000458938814a20150fa6b
 4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2
 ab450f8258308405f614a20358248202582000112233445566778899aabb
 ccddeeff0123456789abcdeffedcba98765432100e1987d058328405f614
 a2035824820258200123456789abcdeffedcba9876543210001122334455
 66778899aabbccddeeff0e1a00012c2201f602f6095853860f8258248405
 f613a115781c687474703a2f2f6578616d706c652e636f6d2f66696c6531
 2e62696e58248405f613a115781c687474703a2f2f6578616d706c652e63
 6f6d2f66696c65322e62696e15f603f60a438203f6

 Total size of manifest with COSE authentication object: 378

 Manifest with COSE authentication object:

 a202587281586fd28443a10126a05824820258207325a7d3acf130d16181
 0c4874f275f658970b7bc5a63cda56e9920a4aaba3a3584088cb96211bcc
 4cdb59cb0022cb213017b2d117bac1a5460ae92903acc196282f7888368b
 f0a065756e43f53cdbeee367e9523312063e8eaad0889a7cee3718590359
 0100a50101020303589da20244818141000458938814a20150fa6b4a53d5
 ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450f
 8258308405f614a20358248202582000112233445566778899aabbccddee
 ff0123456789abcdeffedcba98765432100e1987d058328405f614a20358
 24820258200123456789abcdeffedcba9876543210001122334455667788
 99aabbccddeeff0e1a00012c2201f602f6095853860f8258248405f613a1
 15781c687474703a2f2f6578616d706c652e636f6d2f66696c65312e6269
 6e58248405f613a115781c687474703a2f2f6578616d706c652e636f6d2f
 66696c65322e62696e15f603f60a438203f6

C. Design Rational

 In order to provide flexible behavior to constrained devices, while
 still allowing more powerful devices to use their full capabilities,
 the SUIT manifest encodes the required behavior of a Recipient
 device. Behavior is encoded as a specialized byte code, contained in
 a CBOR list. This promotes a flat encoding, which simplifies the
 parser. The information encoded by this byte code closely matches
 the operations that a device will perform, which promotes ease of
 processing. The core operations used by most update and trusted
 execution operations are represented in the byte code. The byte code
 can be extended by registering new operations.

 The specialized byte code approach gives benefits equivalent to those
 provided by a scripting language or conventional byte code, with two
 substantial differences. First, the language is extremely high
 level, consisting of only the operations that a device may perform
 during update and trusted execution of a firmware image. Second, the

Moran, et al. Expires December 11, 2020 [Page 79]

Internet-Draft CBOR-based SUIT Manifest June 2020

 language specifies linear behavior, without reverse branches.
 Conditional processing is supported, and parallel and out-of-order
 processing may be performed by sufficiently capable devices.

 By structuring the data in this way, the manifest processor becomes a
 very simple engine that uses a pull parser to interpret the manifest.
 This pull parser invokes a series of command handlers that evaluate a
 Condition or execute a Directive. Most data is structured in a
 highly regular pattern, which simplifies the parser.

 The results of this allow a Recipient to implement a very small
 parser for constrained applications. If needed, such a parser also
 allows the Recipient to perform complex updates with reduced
 overhead. Conditional execution of commands allows a simple device
 to perform important decisions at validation-time.

 Dependency handling is vastly simplified as well. Dependencies
 function like subroutines of the language. When a manifest has a
 dependency, it can invoke that dependency's commands and modify their
 behavior by setting parameters. Because some parameters come with
 security implications, the dependencies also have a mechanism to
 reject modifications to parameters on a fine-grained level.

 Developing a robust permissions system works in this model too. The
 Recipient can use a simple ACL that is a table of Identities and
 Component Identifier permissions to ensure that operations on
 components fail unless they are permitted by the ACL. This table can
 be further refined with individual parameters and commands.

 Capability reporting is similarly simplified. A Recipient can report
 the Commands, Parameters, Algorithms, and Component Identifiers that
 it supports. This is sufficiently precise for a manifest author to
 create a manifest that the Recipient can accept.

 The simplicity of design in the Recipient due to all of these
 benefits allows even a highly constrained platform to use advanced
 update capabilities.

D. Implementation Conformance Matrix

 This section summarizes the functionality a minimal implementation
 needs to offer to claim conformance to this specification, in the
 absence of an application profile standard specifying otherwise.

 The subsequent table shows the conditions.

Moran, et al. Expires December 11, 2020 [Page 80]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +-------------------+-----------------+----------------+
 | Name | Reference | Implementation |
 +-------------------+-----------------+----------------+
 | Vendor Identifier | Section 9.8.3.1 | REQUIRED |
 | | | |
 | Class Identifier | Section 9.8.3.1 | REQUIRED |
 | | | |
 | Device Identifier | Section 9.8.3.1 | OPTIONAL |
 | | | |
 | Image Match | Section 9.8.3.2 | REQUIRED |
 | | | |
 | Image Not Match | Section 9.8.3.3 | OPTIONAL |
 | | | |
 | Use Before | Section 9.8.3.4 | OPTIONAL |
 | | | |
 | Component Offset | Section 9.8.3.5 | OPTIONAL |
 | | | |
 | Minimum Battery | Section 9.8.3.6 | OPTIONAL |
 | | | |
 | Update Authorized | Section 9.8.3.7 | OPTIONAL |
 | | | |
 | Version | Section 9.8.3.8 | OPTIONAL |
 | | | |
 | Custom Condition | Section 9.8.3.9 | OPTIONAL |
 +-------------------+-----------------+----------------+

 The subsequent table shows the directives.

Moran, et al. Expires December 11, 2020 [Page 81]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +-------------------+----------------+------------------------------+
 | Name | Reference | Implementation |
 +-------------------+----------------+------------------------------+
Set Component	Section	REQUIRED if more than one
Index	9.8.4.1	component
Set Dependency	Section	REQUIRED if dependencies
Index	9.8.4.2	used
Abort	Section	OPTIONAL
	9.8.4.3	
Try Each	Section	OPTIONAL
	9.8.4.4	
Process	Section	OPTIONAL
Dependency	9.8.4.5	
Set Parameters	Section	OPTIONAL
	9.8.4.6	
Override	Section	REQUIRED
Parameters	9.8.4.7	
Fetch	Section	REQUIRED for Updater
	9.8.4.8	
Copy	Section	OPTIONAL
	9.8.4.9	
Run	Section	REQUIRED for Bootloader
	9.8.4.10	
Wait For Event	Section	OPTIONAL
	9.8.4.11	
Run Sequence	Section	OPTIONAL
	9.8.4.12	
Swap	Section	OPTIONAL
	9.8.4.13	
 +-------------------+----------------+------------------------------+

 The subsequent table shows the parameters.

Moran, et al. Expires December 11, 2020 [Page 82]

Internet-Draft CBOR-based SUIT Manifest June 2020

 +------------------+------------------+----------------+
 | Name | Reference | Implementation |
 +------------------+------------------+----------------+
 | Vendor ID | Section 9.8.2.1 | REQUIRED |
 | | | |
 | Class ID | Section 9.8.2.2 | REQUIRED |
 | | | |
 | Image Digest | Section 9.8.2.3 | REQUIRED |
 | | | |
 | Image Size | Section 9.8.2.4 | REQUIRED |
 | | | |
 | Use Before | Section 9.8.2.5 | OPTIONAL |
 | | | |
 | Component Offset | Section 9.8.2.6 | OPTIONAL |
 | | | |
 | Encryption Info | Section 9.8.2.7 | OPTIONAL |
 | | | |
 | Compression Info | Section 9.8.2.8 | OPTIONAL |
 | | | |
 | Unpack Info | Section 9.8.2.9 | OPTIONAL |
 | | | |
 | URI | Section 9.8.2.10 | OPTIONAL |
 | | | |
 | Source Component | Section 9.8.2.11 | OPTIONAL |
 | | | |
 | Run Args | Section 9.8.2.12 | OPTIONAL |
 | | | |
 | Device ID | Section 9.8.2.13 | OPTIONAL |
 | | | |
 | Minimum Battery | Section 9.8.2.14 | OPTIONAL |
 | | | |
 | Update Priority | Section 9.8.2.15 | OPTIONAL |
 | | | |
 | Version | Section 9.8.2.16 | OPTIONAL |
 | | | |
 | Wait Info | Section 9.8.2.17 | OPTIONAL |
 | | | |
 | URI List | Section 9.8.2.18 | OPTIONAL |
 | | | |
 | Strict Order | Section 9.8.2.19 | OPTIONAL |
 | | | |
 | Soft Failure | Section 9.8.2.20 | OPTIONAL |
 | | | |
 | Custom | Section 9.8.2.21 | OPTIONAL |
 +------------------+------------------+----------------+

Moran, et al. Expires December 11, 2020 [Page 83]

Internet-Draft CBOR-based SUIT Manifest June 2020

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 Henk Birkholz
 Fraunhofer SIT

 EMail: henk.birkholz@sit.fraunhofer.de

 Koen Zandberg
 Inria

 EMail: koen.zandberg@inria.fr

Moran, et al. Expires December 11, 2020 [Page 84]

