
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Standards Track Arm Limited
Expires: January 13, 2022 H. Birkholz
 Fraunhofer SIT
 K. Zandberg
 Inria
 July 12, 2021

A Concise Binary Object Representation (CBOR)-based Serialization Format
 for the Software Updates for Internet of Things (SUIT) Manifest

draft-ietf-suit-manifest-14

Abstract

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about code/data obtained by a recipient (chiefly
 the firmware for an IoT device), where to find the that code/data,
 the devices to which it applies, and cryptographic information
 protecting the manifest. Software updates and Trusted Invocation
 both tend to use sequences of common operations, so the manifest
 encodes those sequences of operations, rather than declaring the
 metadata.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Moran, et al. Expires January 13, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-14
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft CBOR-based SUIT Manifest July 2021

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 6
3. How to use this Document 8
4. Background . 9
4.1. IoT Firmware Update Constraints 9
4.2. SUIT Workflow Model 10

5. Metadata Structure Overview 11
5.1. Envelope . 12
5.2. Delegation Chains . 13
5.3. Authentication Block 13
5.4. Manifest . 13
5.4.1. Critical Metadata 14
5.4.2. Common . 14
5.4.3. Command Sequences 14
5.4.4. Integrity Check Values 15
5.4.5. Human-Readable Text 15

5.5. Severable Elements 15
5.6. Integrated Dependencies and Payloads 16

6. Manifest Processor Behavior 16
6.1. Manifest Processor Setup 16
6.2. Required Checks . 17
6.2.1. Minimizing Signature Verifications 19

6.3. Interpreter Fundamental Properties 20
6.4. Abstract Machine Description 20
6.5. Special Cases of Component Index and Dependency Index . . 23
6.6. Serialized Processing Interpreter 24
6.7. Parallel Processing Interpreter 25
6.8. Processing Dependencies 25
6.9. Multiple Manifest Processors 26

7. Creating Manifests . 27
7.1. Compatibility Check Template 28
7.2. Trusted Invocation Template 28
7.3. Component Download Template 28
7.4. Install Template . 29
7.5. Install and Transform Template 30
7.6. Integrated Payload Template 31

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Moran, et al. Expires January 13, 2022 [Page 2]

Internet-Draft CBOR-based SUIT Manifest July 2021

7.7. Load from Nonvolatile Storage Template 31
7.8. Load & Decompress from Nonvolatile Storage Template . . . 31
7.9. Dependency Template 32
7.9.1. Composite Manifests 33

7.10. Encrypted Manifest Template 33
7.11. A/B Image Template 34

8. Metadata Structure . 35
8.1. Encoding Considerations 35
8.2. Envelope . 36
8.3. Delegation Chains . 36
8.4. Authenticated Manifests 36
8.5. Encrypted Manifests 37
8.6. Manifest . 37
8.6.1. suit-manifest-version 38
8.6.2. suit-manifest-sequence-number 38
8.6.3. suit-reference-uri 38
8.6.4. suit-text . 38

8.7. text-version-required 40
8.7.1. suit-coswid . 41
8.7.2. suit-common . 41
8.7.3. SUIT_Command_Sequence 43
8.7.4. Reporting Policy 45
8.7.5. SUIT_Parameters 46
8.7.6. SUIT_Condition 57
8.7.7. SUIT_Directive 61
8.7.8. suit-directive-unlink 68
8.7.9. Integrity Check Values 69

8.8. Severable Elements 69
9. Access Control Lists . 70
10. SUIT Digest Container . 70
11. IANA Considerations . 71
11.1. SUIT Commands . 71
11.2. SUIT Parameters . 73
11.3. SUIT Text Values . 75
11.4. SUIT Component Text Values 75
11.5. SUIT Algorithm Identifiers 75
11.5.1. SUIT Compression Algorithm Identifiers 75
11.5.2. Unpack Algorithms 76

12. Security Considerations 76
13. Acknowledgements . 76
14. References . 77
14.1. Normative References 77
14.2. Informative References 78

Appendix A. A. Full CDDL . 80
Appendix B. B. Examples . 89
B.1. Example 0: Secure Boot 90

 B.2. Example 1: Simultaneous Download and Installation of
 Payload . 92

Moran, et al. Expires January 13, 2022 [Page 3]

Internet-Draft CBOR-based SUIT Manifest July 2021

 B.3. Example 2: Simultaneous Download, Installation, Secure
 Boot, Severed Fields 94

B.4. Example 3: A/B images 98
B.5. Example 4: Load and Decompress from External Storage . . 101
B.6. Example 5: Two Images 104

Appendix C. C. Design Rational 107
C.1. C.1 Design Rationale: Envelope 108
C.2. C.2 Byte String Wrappers 109

Appendix D. D. Implementation Conformance Matrix 109
 Authors' Addresses . 113

1. Introduction

 A firmware update mechanism is an essential security feature for IoT
 devices to deal with vulnerabilities. While the transport of
 firmware images to the devices themselves is important there are
 already various techniques available. Equally important is the
 inclusion of metadata about the conveyed firmware image (in the form
 of a manifest) and the use of a security wrapper to provide end-to-
 end security protection to detect modifications and (optionally) to
 make reverse engineering more difficult. End-to-end security allows
 the author, who builds the firmware image, to be sure that no other
 party (including potential adversaries) can install firmware updates
 on IoT devices without adequate privileges. For confidentiality
 protected firmware images it is additionally required to encrypt the
 firmware image. Starting security protection at the author is a risk
 mitigation technique so firmware images and manifests can be stored
 on untrusted repositories; it also reduces the scope of a compromise
 of any repository or intermediate system to be no worse than a denial
 of service.

 A manifest is a bundle of metadata describing one or more code or
 data payloads and how to:

 - Obtain any dependencies

 - Obtain the payload(s)

 - Install them

 - Verify them

 - Load them into memory

 - Invoke them

 This specification defines the SUIT manifest format and it is
 intended to meet several goals:

Moran, et al. Expires January 13, 2022 [Page 4]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - Meet the requirements defined in
 [I-D.ietf-suit-information-model].

 - Simple to parse on a constrained node

 - Simple to process on a constrained node

 - Compact encoding

 - Comprehensible by an intermediate system

 - Expressive enough to enable advanced use cases on advanced nodes

 - Extensible

 The SUIT manifest can be used for a variety of purposes throughout
 its lifecycle, such as:

 - a Firmware Author to reason about releasing a firmware.

 - a Network Operator to reason about compatibility of a firmware.

 - a Device Operator to reason about the impact of a firmware.

 - the Device Operator to manage distribution of firmware to devices.

 - a Plant Manager to reason about timing and acceptance of firmware
 updates.

 - a device to reason about the authority & authenticity of a
 firmware prior to installation.

 - a device to reason about the applicability of a firmware.

 - a device to reason about the installation of a firmware.

 - a device to reason about the authenticity & encoding of a firmware
 at boot.

 Each of these uses happens at a different stage of the manifest
 lifecycle, so each has different requirements.

 It is assumed that the reader is familiar with the high-level
 firmware update architecture [I-D.ietf-suit-architecture] and the
 threats, requirements, and user stories in
 [I-D.ietf-suit-information-model].

Moran, et al. Expires January 13, 2022 [Page 5]

Internet-Draft CBOR-based SUIT Manifest July 2021

 The design of this specification is based on an observation that the
 vast majority of operations that a device can perform during an
 update or Trusted Invocation are composed of a small group of
 operations:

 - Copy some data from one place to another

 - Transform some data

 - Digest some data and compare to an expected value

 - Compare some system parameters to an expected value

 - Run some code

 In this document, these operations are called commands. Commands are
 classed as either conditions or directives. Conditions have no side-
 effects, while directives do have side-effects. Conceptually, a
 sequence of commands is like a script but the used language is
 tailored to software updates and Trusted Invocation.

 The available commands support simple steps, such as copying a
 firmware image from one place to another, checking that a firmware
 image is correct, verifying that the specified firmware is the
 correct firmware for the device, or unpacking a firmware. By using
 these steps in different orders and changing the parameters they use,
 a broad range of use cases can be supported. The SUIT manifest uses
 this observation to optimize metadata for consumption by constrained
 devices.

 While the SUIT manifest is informed by and optimized for firmware
 update and Trusted Invocation use cases, there is nothing in the
 [I-D.ietf-suit-information-model] that restricts its use to only
 those use cases. Other use cases include the management of trusted
 applications (TAs) in a Trusted Execution Environment (TEE), as
 discussed in [I-D.ietf-teep-architecture].

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, the following terminology is used throughout this
 document:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Moran, et al. Expires January 13, 2022 [Page 6]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - SUIT: Software Update for the Internet of Things, also the IETF
 working group for this standard.

 - Payload: A piece of information to be delivered. Typically
 Firmware for the purposes of SUIT.

 - Resource: A piece of information that is used to construct a
 payload.

 - Manifest: A manifest is a bundle of metadata about the firmware
 for an IoT device, where to find the firmware, and the devices to
 which it applies.

 - Envelope: A container with the manifest, an authentication wrapper
 with cryptographic information protecting the manifest,
 authorization information, and severable elements (see: TBD).

 - Update: One or more manifests that describe one or more payloads.

 - Update Authority: The owner of a cryptographic key used to sign
 updates, trusted by Recipients.

 - Recipient: The system, typically an IoT device, that receives and
 processes a manifest.

 - Manifest Processor: A component of the Recipient that consumes
 Manifests and executes the commands in the Manifest.

 - Component: An updatable logical block of the Firmware, Software,
 configuration, or data of the Recipient.

 - Component Set: A group of interdependent Components that must be
 updated simultaneously.

 - Command: A Condition or a Directive.

 - Condition: A test for a property of the Recipient or its
 Components.

 - Directive: An action for the Recipient to perform.

 - Trusted Invocation: A process by which a system ensures that only
 trusted code is executed, for example secure boot or launching a
 Trusted Application.

 - A/B images: Dividing a Recipient's storage into two or more
 bootable images, at different offsets, such that the active image
 can write to the inactive image(s).

Moran, et al. Expires January 13, 2022 [Page 7]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - Record: The result of a Command and any metadata about it.

 - Report: A list of Records.

 - Procedure: The process of invoking one or more sequences of
 commands.

 - Update Procedure: A procedure that updates a Recipient by fetching
 dependencies and images, and installing them.

 - Invocation Procedure: A procedure in which a Recipient verifies
 dependencies and images, loading images, and invokes one or more
 image.

 - Software: Instructions and data that allow a Recipient to perform
 a useful function.

 - Firmware: Software that is typically changed infrequently, stored
 in nonvolatile memory, and small enough to apply to [RFC7228]
 Class 0-2 devices.

 - Image: Information that a Recipient uses to perform its function,
 typically firmware/software, configuration, or resource data such
 as text or images. Also, a Payload, once installed is an Image.

 - Slot: One of several possible storage locations for a given
 Component, typically used in A/B image systems

 - Abort: An event in which the Manifest Processor immediately halts
 execution of the current Procedure. It creates a Record of an
 error condition.

3. How to use this Document

 This specification covers five aspects of firmware update:

 - Section 4 describes the device constraints, use cases, and design
 principles that informed the structure of the manifest.

 - Section 5 gives a general overview of the metadata structure to
 inform the following sections

 - Section 6 describes what actions a Manifest processor should take.

 - Section 7 describes the process of creating a Manifest.

 - Section 8 specifies the content of the Envelope and the Manifest.

https://datatracker.ietf.org/doc/html/rfc7228

Moran, et al. Expires January 13, 2022 [Page 8]

Internet-Draft CBOR-based SUIT Manifest July 2021

 To implement an updatable device, see Section 6 and Section 8. To
 implement a tool that generates updates, see Section 7 and Section 8.

 The IANA consideration section, see Section 11, provides instructions
 to IANA to create several registries. This section also provides the
 CBOR labels for the structures defined in this document.

 The complete CDDL description is provided in Appendix A, examples are
 given in Appendix B and a design rational is offered in Appendix C.
 Finally, Appendix D gives a summarize of the mandatory-to-implement
 features of this specification.

4. Background

 Distributing software updates to diverse devices with diverse trust
 anchors in a coordinated system presents unique challenges. Devices
 have a broad set of constraints, requiring different metadata to make
 appropriate decisions. There may be many actors in production IoT
 systems, each of whom has some authority. Distributing firmware in
 such a multi-party environment presents additional challenges. Each
 party requires a different subset of data. Some data may not be
 accessible to all parties. Multiple signatures may be required from
 parties with different authorities. This topic is covered in more
 depth in [I-D.ietf-suit-architecture]. The security aspects are
 described in [I-D.ietf-suit-information-model].

4.1. IoT Firmware Update Constraints

 The various constraints of IoT devices and the range of use cases
 that need to be supported create a broad set of requirements. For
 example, devices with:

 - limited processing power and storage may require a simple
 representation of metadata.

 - bandwidth constraints may require firmware compression or partial
 update support.

 - bootloader complexity constraints may require simple selection
 between two bootable images.

 - small internal storage may require external storage support.

 - multiple microcontrollers may require coordinated update of all
 applications.

 - large storage and complex functionality may require parallel
 update of many software components.

Moran, et al. Expires January 13, 2022 [Page 9]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - extra information may need to be conveyed in the manifest in the
 earlier stages of the device lifecycle before those data items are
 stripped when the manifest is delivered to a constrained device.

 Supporting the requirements introduced by the constraints on IoT
 devices requires the flexibility to represent a diverse set of
 possible metadata, but also requires that the encoding is kept
 simple.

4.2. SUIT Workflow Model

 There are several fundamental assumptions that inform the model of
 Update Procedure workflow:

 - Compatibility must be checked before any other operation is
 performed.

 - All dependency manifests should be present before any payload is
 fetched.

 - In some applications, payloads must be fetched and validated prior
 to installation.

 There are several fundamental assumptions that inform the model of
 the Invocation Procedure workflow:

 - Compatibility must be checked before any other operation is
 performed.

 - All dependencies and payloads must be validated prior to loading.

 - All loaded images must be validated prior to execution.

 Based on these assumptions, the manifest is structured to work with a
 pull parser, where each section of the manifest is used in sequence.
 The expected workflow for a Recipient installing an update can be
 broken down into five steps:

 1. Verify the signature of the manifest.

 2. Verify the applicability of the manifest.

 3. Resolve dependencies.

 4. Fetch payload(s).

 5. Install payload(s).

Moran, et al. Expires January 13, 2022 [Page 10]

Internet-Draft CBOR-based SUIT Manifest July 2021

 When installation is complete, similar information can be used for
 validating and running images in a further three steps:

 1. Verify image(s).

 2. Load image(s).

 3. Run image(s).

 If verification and running is implemented in a bootloader, then the
 bootloader MUST also verify the signature of the manifest and the
 applicability of the manifest in order to implement secure boot
 workflows. The bootloader may add its own authentication, e.g. a
 Message Authentication Code (MAC), to the manifest in order to
 prevent further verifications.

 When multiple manifests are used for an update, each manifest's steps
 occur in a lockstep fashion; all manifests have dependency resolution
 performed before any manifest performs a payload fetch, etc.

5. Metadata Structure Overview

 This section provides a high level overview of the manifest
 structure. The full description of the manifest structure is in

Section 8.6

 The manifest is structured from several key components:

 1. The Envelope (see Section 5.1) contains Delegation Chains, the
 Authentication Block, the Manifest, any Severable Elements, and
 any Integrated Payloads or Dependencies.

 2. Delegation Chains (see Section 5.2) allow a Recipient to work
 from one of its Trust Anchors to an authority of the
 Authentication Block.

 3. The Authentication Block (see Section 5.3) contains a list of
 signatures or MACs of the manifest..

 4. The Manifest (see Section 5.4) contains all critical, non-
 severable metadata that the Recipient requires. It is further
 broken down into:

 1. Critical metadata, such as sequence number.

 2. Common metadata, including lists of dependencies and affected
 components.

Moran, et al. Expires January 13, 2022 [Page 11]

Internet-Draft CBOR-based SUIT Manifest July 2021

 3. Command sequences, directing the Recipient how to install and
 use the payload(s).

 4. Integrity check values for severable elements.

 5. Severable elements (see Section 5.5).

 6. Integrated dependencies (see Section 5.6).

 7. Integrated payloads (see Section 5.6).

 The diagram below illustrates the hierarchy of the Envelope.

 +-------------------------+
 | Envelope |
 +-------------------------+
 | Delegation Chains |
 | Authentication Block |
 | Manifest --------------> +------------------------------+
 | Severable Elements | | Manifest |
 | Human-Readable Text | +------------------------------+
COSWID		Structure Version
Integrated Dependencies		Sequence Number
Integrated Payloads		Reference to Full Manifest
 +-------------------------+ +------ Common Structure |
 | +---- Command Sequences |
 +-------------------------+ | | | Digests of Envelope Elements |
 | Common Structure | <--+ | +------------------------------+
 +-------------------------+ |
 | Dependencies | +-> +-----------------------+
 | Components IDs | | Command Sequence |
 | Common Command Sequence ---------> +-----------------------+
 +-------------------------+ | List of (pairs of (|
 | * command code |
 | * argument / |
 | reporting policy |
 |)) |
 +-----------------------+

5.1. Envelope

 The SUIT Envelope is a container that encloses Delegation Chains, the
 Authentication Block, the Manifest, any Severable Elements, and any
 integrated payloads or dependencies. The Envelope is used instead of
 conventional cryptographic envelopes, such as COSE_Envelope because
 it allows modular processing, severing of elements, and integrated
 payloads in a way that would add substantial complexity with existing

Moran, et al. Expires January 13, 2022 [Page 12]

Internet-Draft CBOR-based SUIT Manifest July 2021

 solutions. See Appendix C.1 for a description of the reasoning for
 this.

 See Section 8.2 for more detail.

5.2. Delegation Chains

 Delegation Chains allow a Recipient to establish a chain of trust
 from a Trust Anchor to the signer of a manifest by validating
 delegation claims. Each delegation claim is a [RFC8392] CBOR Web
 Tokens (CWTs). The first claim in each list is signed by a Trust
 Anchor. Each subsequent claim in a list is signed by the public key
 claimed in the preceding list element. The last element in each list
 claims a public key that can be used to verify a signature in the
 Authentication Block (Section 5.3).

 See Section 8.3 for more detail.

5.3. Authentication Block

 The Authentication Block contains a bstr-wrapped SUIT Digest
 Container, see Section 10, and one or more [RFC8152] CBOR Object
 Signing and Encryption (COSE) authentication blocks. These blocks
 are one of:

 - COSE_Sign_Tagged

 - COSE_Sign1_Tagged

 - COSE_Mac_Tagged

 - COSE_Mac0_Tagged

 Each of these objects is used in detached payload mode. The payload
 is the bstr-wrapped SUIT_Digest.

 See Section 8.4 for more detail.

5.4. Manifest

 The Manifest contains most metadata about one or more images. The
 Manifest is divided into Critical Metadata, Common Metadata, Command
 Sequences, and Integrity Check Values.

 See Section 8.6 for more detail.

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires January 13, 2022 [Page 13]

Internet-Draft CBOR-based SUIT Manifest July 2021

5.4.1. Critical Metadata

 Some metadata needs to be accessed before the manifest is processed.
 This metadata can be used to determine which manifest is newest and
 whether the structure version is supported. It also MAY provide a
 URI for obtaining a canonical copy of the manifest and Envelope.

 See Section 8.6.1, Section 8.6.2, and Section 8.6.3 for more detail.

5.4.2. Common

 Some metadata is used repeatedly and in more than one command
 sequence. In order to reduce the size of the manifest, this metadata
 is collected into the Common section. Common is composed of three
 parts: a list of dependencies, a list of components referenced by the
 manifest, and a command sequence to execute prior to each other
 command sequence. The common command sequence is typically used to
 set commonly used values and perform compatibility checks. The
 common command sequence MUST NOT have any side-effects outside of
 setting parameter values.

 See Section 8.7.2, and Section 8.7.2.1 for more detail.

5.4.3. Command Sequences

 Command sequences provide the instructions that a Recipient requires
 in order to install or use an image. These sequences tell a device
 to set parameter values, test system parameters, copy data from one
 place to another, transform data, digest data, and run code.

 Command sequences are broken up into three groups: Common Command
 Sequence (see Section 5.4.2), update commands, and secure boot
 commands.

 Update Command Sequences are: Dependency Resolution, Payload Fetch,
 and Payload Installation. An Update Procedure is the complete set of
 each Update Command Sequence, each preceded by the Common Command
 Sequence.

 Invocation Command Sequences are: System Validation, Image Loading,
 and Image Invocation. A Invocation Procedure is the complete set of
 each Invocation Command Sequence, each preceded by the Common Command
 Sequence.

 Command Sequences are grouped into these sets to ensure that there is
 common coordination between dependencies and dependents on when to
 execute each command.

Moran, et al. Expires January 13, 2022 [Page 14]

Internet-Draft CBOR-based SUIT Manifest July 2021

 See Section 8.7.3 for more detail.

5.4.4. Integrity Check Values

 To enable Section 5.5, there needs to be a mechanism to verify
 integrity of any metadata outside the manifest. Integrity Check
 Values are used to verify the integrity of metadata that is not
 contained in the manifest. This MAY include Severable Command
 Sequences, Concise Software Identifiers (CoSWID
 [I-D.ietf-sacm-coswid]), or Text data. Integrated Dependencies and
 Integrated Payloads are integrity-checked using Command Sequences, so
 they do not have Integrity Check Values present in the Manifest.

 See Section 8.7.9 for more detail.

5.4.5. Human-Readable Text

 Text is typically a Severable Element (Section 5.5). It contains all
 the text that describes the update. Because text is explicitly for
 human consumption, it is all grouped together so that it can be
 Severed easily. The text section has space both for describing the
 manifest as a whole and for describing each individual component.

 See Section 8.6.4 for more detail.

5.5. Severable Elements

 Severable Elements are elements of the Envelope (Section 5.1) that
 have Integrity Check Values (Section 5.4.4) in the Manifest
 (Section 5.4).

 Because of this organisation, these elements can be discarded or
 "Severed" from the Envelope without changing the signature of the
 Manifest. This allows savings based on the size of the Envelope in
 several scenarios, for example:

 - A management system severs the Text and CoSWID sections before
 sending an Envelope to a constrained Recipient, which saves
 Recipient bandwidth.

 - A Recipient severs the Installation section after installing the
 Update, which saves storage space.

 See Section 8.8 for more detail.

Moran, et al. Expires January 13, 2022 [Page 15]

Internet-Draft CBOR-based SUIT Manifest July 2021

5.6. Integrated Dependencies and Payloads

 In some cases, it is beneficial to include a dependency or a payload
 in the Envelope of a manifest. For example:

 - When an update is delivered via a comparatively unconstrained
 medium, such as a removable mass storage device, it may be
 beneficial to bundle updates into single files.

 - When a manifest requires encryption, it must be referenced as a
 dependency, so a trivial manifest may be used to enclose the
 encrypted manifest. The encrypted manifest may be contained in
 the dependent manifest's envelope.

 - When a manifest transports a small payload, such as an encrypted
 key, that payload may be placed in the manifest's envelope.

 See Section 7.9.1, Section 8.5 for more detail.

6. Manifest Processor Behavior

 This section describes the behavior of the manifest processor and
 focuses primarily on interpreting commands in the manifest. However,
 there are several other important behaviors of the manifest
 processor: encoding version detection, rollback protection, and
 authenticity verification are chief among these.

6.1. Manifest Processor Setup

 Prior to executing any command sequence, the manifest processor or
 its host application MUST inspect the manifest version field and fail
 when it encounters an unsupported encoding version. Next, the
 manifest processor or its host application MUST extract the manifest
 sequence number and perform a rollback check using this sequence
 number. The exact logic of rollback protection may vary by
 application, but it has the following properties:

 - Whenever the manifest processor can choose between several
 manifests, it MUST select the latest valid, authentic manifest.

 - If the latest valid, authentic manifest fails, it MAY select the
 next latest valid, authentic manifest, according to application-
 specific policy.

 Here, valid means that a manifest has a supported encoding version
 and it has not been excluded for other reasons. Reasons for
 excluding typically involve first executing the manifest and may
 include:

Moran, et al. Expires January 13, 2022 [Page 16]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - Test failed (e.g. Vendor ID/Class ID).

 - Unsupported command encountered.

 - Unsupported parameter encountered.

 - Unsupported Component Identifier encountered.

 - Payload not available.

 - Dependency not available.

 - Application crashed when executed.

 - Watchdog timeout occurred.

 - Dependency or Payload verification failed.

 - Missing component from a set.

 - Required parameter not supplied.

 These failure reasons MAY be combined with retry mechanisms prior to
 marking a manifest as invalid.

 Selecting an older manifest in the event of failure of the latest
 valid manifest is a robustness mechanism that is necessary for
 supporting the requirements in [I-D.ietf-suit-architecture], section

3.5. It may not be appropriate for all applications. In particular
 Trusted Execution Environments MAY require a failure to invoke a new
 installation, rather than a rollback approach. See
 [I-D.ietf-suit-information-model], Section 4.2.1 for more discussion
 on the security considerations that apply to rollback.

 Following these initial tests, the manifest processor clears all
 parameter storage. This ensures that the manifest processor begins
 without any leaked data.

6.2. Required Checks

 The RECOMMENDED process is to verify the signature of the manifest
 prior to parsing/executing any section of the manifest. This guards
 the parser against arbitrary input by unauthenticated third parties,
 but it costs extra energy when a Recipient receives an incompatible
 manifest.

 When validating authenticity of manifests, the manifest processor MAY
 use an ACL (see Section 9) to determine the extent of the rights

Moran, et al. Expires January 13, 2022 [Page 17]

Internet-Draft CBOR-based SUIT Manifest July 2021

 conferred by that authenticity. Where a device supports only one
 level of access, it MAY choose to skip signature verification of
 dependencies, since they are referenced by digest. Where a device
 supports more than one trusted party, it MAY choose to defer the
 verification of signatures of dependencies until the list of affected
 components is known so that it can skip redundant signature
 verifications. For example, a dependency signed by the same author
 as the dependent does not require a signature verification.
 Similarly, if the signer of the dependent has full rights to the
 device, according to the ACL, then no signature verification is
 necessary on the dependency.

 Once a valid, authentic manifest has been selected, the manifest
 processor MUST examine the component list and verify that its maximum
 number of components is not exceeded and that each listed component
 is supported.

 For each listed component, the manifest processor MUST provide
 storage for the supported parameters. If the manifest processor does
 not have sufficient temporary storage to process the parameters for
 all components, it MAY process components serially for each command
 sequence. See Section 6.6 for more details.

 The manifest processor SHOULD check that the common sequence contains
 at least Check Vendor Identifier command and at least one Check Class
 Identifier command.

 Because the common sequence contains Check Vendor Identifier and
 Check Class Identifier command(s), no custom commands are permitted
 in the common sequence. This ensures that any custom commands are
 only executed by devices that understand them.

 If the manifest contains more than one component and/or dependency,
 each command sequence MUST begin with a Set Component Index or Set
 Dependency Index command.

 If a dependency is specified, then the manifest processor MUST
 perform the following checks:

 1. At the beginning of each section in the dependent: all previous
 sections of each dependency have been executed.

 2. At the end of each section in the dependent: The corresponding
 section in each dependency has been executed.

 If the interpreter does not support dependencies and a manifest
 specifies a dependency, then the interpreter MUST reject the
 manifest.

Moran, et al. Expires January 13, 2022 [Page 18]

Internet-Draft CBOR-based SUIT Manifest July 2021

 If a Recipient supports groups of interdependent components (a
 Component Set), then it SHOULD verify that all Components in the
 Component Set are specified by one update, that is: a single manifest
 and all its dependencies that together:

 1. have sufficient permissions imparted by their signatures

 2. specify a digest and a payload for every Component in the
 Component Set.

 The single dependent manifest is sometimes called a Root Manifest.

6.2.1. Minimizing Signature Verifications

 Signature verification can be energy and time expensive on a
 constrained device. MAC verification is typically unaffected by
 these concerns. A Recipient MAY choose to parse and execute only the
 SUIT_Common section of the manifest prior to signature verification,
 if all of the below apply:

 - The Authentication Block contains a COSE_Sign_Tagged or
 COSE_Sign1_Tagged

 - The Recipient receives manifests over an unauthenticated channel,
 exposing it to more inauthentic or incompatible manifests, and

 - The Recipient has a power budget that makes signature verification
 undesirable

 The guidelines in Creating Manifests (Section 7) require that the
 common section contains the applicability checks, so this section is
 sufficient for applicability verification. The parser MUST restrict
 acceptable commands to conditions and the following directives:
 Override Parameters, Set Parameters, Try Each, and Run Sequence ONLY.
 The manifest parser MUST NOT execute any command with side-effects
 outside the parser (for example, Run, Copy, Swap, or Fetch commands)
 prior to authentication and any such command MUST Abort. The Common
 Sequence MUST be executed again in its entirety after authenticity
 validation.

 When executing Common prior to authenticity validation, the Manifest
 Processor MUST evaluate the integrity of the manifest using the
 SUIT_Digest present in the authentication block.

 Alternatively, a Recipient MAY rely on network infrastructure to
 filter inapplicable manifests.

Moran, et al. Expires January 13, 2022 [Page 19]

Internet-Draft CBOR-based SUIT Manifest July 2021

6.3. Interpreter Fundamental Properties

 The interpreter has a small set of design goals:

 1. Executing an update MUST either result in an error, or a
 verifiably correct system state.

 2. Executing a Trusted Invocation MUST either result in an error, or
 an invoked image.

 3. Executing the same manifest on multiple Recipients MUST result in
 the same system state.

 NOTE: when using A/B images, the manifest functions as two (or more)
 logical manifests, each of which applies to a system in a particular
 starting state. With that provision, design goal 3 holds.

6.4. Abstract Machine Description

 The heart of the manifest is the list of commands, which are
 processed by a Manifest Processor-a form of interpreter. This
 Manifest Processor can be modeled as a simple abstract machine. This
 machine consists of several data storage locations that are modified
 by commands.

 There are two types of commands, namely those that modify state
 (directives) and those that perform tests (conditions). Parameters
 are used as the inputs to commands. Some directives offer control
 flow operations. Directives target a specific component or
 dependency. A dependency is another SUIT_Envelope that describes
 additional components. Dependencies are identified by digest, but
 referenced in commands by Dependency Index, the index into the array
 of Dependencies. A component is a unit of code or data that can be
 targeted by an update. Components are identified by Component
 Identifiers, but referenced in commands by Component Index; Component
 Identifiers are arrays of binary strings and a Component Index is an
 index into the array of Component Identifiers.

 Conditions MUST NOT have any side-effects other than informing the
 interpreter of success or failure. The Interpreter does not Abort if
 the Soft Failure flag (Section 8.7.5.23) is set when a Condition
 reports failure.

 Directives MAY have side-effects in the parameter table, the
 interpreter state, or the current component. The Interpreter MUST
 Abort if a Directive reports failure regardless of the Soft Failure
 flag.

Moran, et al. Expires January 13, 2022 [Page 20]

Internet-Draft CBOR-based SUIT Manifest July 2021

 To simplify the logic describing the command semantics, the object
 "current" is used. It represents the component identified by the
 Component Index or the dependency identified by the Dependency Index:

 current := components\[component-index\]
 if component-index is not false
 else dependencies\[dependency-index\]

 As a result, Set Component Index is described as current :=
 components[arg]. The actual operation performed for Set Component
 Index is described by the following pseudocode, however, because of
 the definition of current (above), these are semantically equivalent.

 component-index := arg
 dependency-index := false

 Similarly, Set Dependency Index is semantically equivalent to current
 := dependencies[arg]

 The following table describes the behavior of each command. "params"
 represents the parameters for the current component or dependency.
 Most commands operate on either a component or a dependency. Setting
 the Component Index clears the Dependency Index. Setting the
 Dependency Index clears the Component Index.

 +-------------------+---+
 | Command Name | Semantic of the Operation |
 +-------------------+---+
Check Vendor	assert(binary-match(current,
Identifier	current.params[vendor-id]))
Check Class	assert(binary-match(current,
Identifier	current.params[class-id]))
Verify Image	assert(binary-match(digest(current),
	current.params[digest]))
Set Component	current := components[arg]
Index	
Override	current.params[k] := v for-each k,v in arg
Parameters	
Set Dependency	current := dependencies[arg]
Index	
Set Parameters	current.params[k] := v if not k in params
	for-each k,v in arg

Moran, et al. Expires January 13, 2022 [Page 21]

Internet-Draft CBOR-based SUIT Manifest July 2021

Process	exec(current[common]); exec(current[current-
Dependency	segment])
Run	run(current)
Fetch	store(current, fetch(current.params[uri]))
Use Before	assert(now() < arg)
Check Component	assert(current.slot-index == arg)
Slot	
Check Device	assert(binary-match(current,
Identifier	current.params[device-id]))
Check Image Not	assert(not binary-match(digest(current),
Match	current.params[digest]))
Check Minimum	assert(battery >= arg)
Battery	
Check Update	assert(isAuthorized())
Authorized	
Check Version	assert(version_check(current, arg))
Abort	assert(0)
Try Each	try-each-done if exec(seq) is not error for-
	each seq in arg
Copy	store(current, current.params[src-component])
Swap	swap(current, current.params[src-component])
Wait For Event	until event(arg), wait
Run Sequence	exec(arg)
Run with	run(current, arg)
Arguments	
Unlink	unlink(current)
 +-------------------+---+

Moran, et al. Expires January 13, 2022 [Page 22]

Internet-Draft CBOR-based SUIT Manifest July 2021

6.5. Special Cases of Component Index and Dependency Index

 Component Index and Dependency Index can each take on one of three
 types:

 1. Integer

 2. Array of integers

 3. True

 Integers MUST always be supported by Set Component Index and Set
 Dependency Index. Arrays of integers MUST be supported by Set
 Component Index and Set Dependency Index if the Recipient supports 3
 or more components or 3 or more dependencies, respectively. True
 MUST be supported by Set Component Index and Set Dependency Index if
 the Recipient supports 2 or more components or 2 or more
 dependencies, respectively. Each of these operates on the list of
 components or list of dependencies declared in the manifest.

 Integer indices are the default case as described in the previous
 section. An array of integers represents a list of the components
 (Set Component Index) or a list of dependencies (Set Dependency
 Index) to which each subsequent command applies. The value True
 replaces the list of component indices or dependency indices with the
 full list of components or the full list of dependencies,
 respectively, as defined in the manifest.

 When a command is executed, it either 1. operates on the component or
 dependency identified by the component index or dependency index if
 that index is an integer, or 2. it operates on each component or
 dependency identified by an array of indicies, or 3. it operates on
 every component or every dependency if the index is the boolean True.
 This is described by the following pseudocode:

Moran, et al. Expires January 13, 2022 [Page 23]

Internet-Draft CBOR-based SUIT Manifest July 2021

 if component-index is true:
 current-list = components
 else if component-index is array:
 current-list = [components[idx] for idx in component-index]
 else if component-index is integer:
 current-list = [components[component-index]]
 else if dependency-index is true:
 current-list = dependencies
 else if dependency-index is array:
 current-list = [dependencies[idx] for idx in dependency-index]
 else:
 current-list = [dependencies[dependency-index]]
 for current in current-list:
 cmd(current)

 Try Each and Run Sequence are affected in the same way as other
 commands: they are invoked once for each possible Component or
 Dependency. This means that the sequences that are arguments to Try
 Each and Run Sequence are NOT invoked with Component Index = True or
 Dependency Index = True, nor are they invoked with array indices.
 They are only invoked with integer indices. The interpreter loops
 over the whole sequence, setting the Component Index or Dependency
 Index to each index in turn.

6.6. Serialized Processing Interpreter

 In highly constrained devices, where storage for parameters is
 limited, the manifest processor MAY handle one component at a time,
 traversing the manifest tree once for each listed component. In this
 mode, the interpreter ignores any commands executed while the
 component index is not the current component. This reduces the
 overall volatile storage required to process the update so that the
 only limit on number of components is the size of the manifest.
 However, this approach requires additional processing power.

 In order to operate in this mode, the manifest processor loops on
 each section for every supported component, simply ignoring commands
 when the current component is not selected.

 When a serialized Manifest Processor encounters a component or
 dependency index of True, it does not ignore any commands. It
 applies them to the current component or dependency on each
 iteration.

Moran, et al. Expires January 13, 2022 [Page 24]

Internet-Draft CBOR-based SUIT Manifest July 2021

6.7. Parallel Processing Interpreter

 Advanced Recipients MAY make use of the Strict Order parameter and
 enable parallel processing of some Command Sequences, or it may
 reorder some Command Sequences. To perform parallel processing, once
 the Strict Order parameter is set to False, the Recipient may issue
 each or every command concurrently until the Strict Order parameter
 is returned to True or the Command Sequence ends. Then, it waits for
 all issued commands to complete before continuing processing of
 commands. To perform out-of-order processing, a similar approach is
 used, except the Recipient consumes all commands after the Strict
 Order parameter is set to False, then it sorts these commands into
 its preferred order, invokes them all, then continues processing.

 Under each of these scenarios the parallel processing MUST halt until
 all issued commands have completed:

 - Set Parameters.

 - Override Parameters.

 - Set Strict Order = True.

 - Set Dependency Index.

 - Set Component Index.

 To perform more useful parallel operations, a manifest author may
 collect sequences of commands in a Run Sequence command. Then, each
 of these sequences MAY be run in parallel. Each sequence defaults to
 Strict Order = True. To isolate each sequence from each other
 sequence, each sequence MUST begin with a Set Component Index or Set
 Dependency Index directive with the following exception: when the
 index is either True or an array of indices, the Set Component Index
 or Set Dependency Index is implied. Any further Set Component Index
 directives MUST cause an Abort. This allows the interpreter that
 issues Run Sequence commands to check that the first element is
 correct, then issue the sequence to a parallel execution context to
 handle the remainder of the sequence.

6.8. Processing Dependencies

 As described in Section 6.2, each manifest must invoke each of its
 dependencies sections from the corresponding section of the
 dependent. Any changes made to parameters by the dependency persist
 in the dependent.

Moran, et al. Expires January 13, 2022 [Page 25]

Internet-Draft CBOR-based SUIT Manifest July 2021

 When a Process Dependency command is encountered, the interpreter
 loads the dependency identified by the Current Dependency Index. The
 interpreter first executes the common-sequence section of the
 identified dependency, then it executes the section of the dependency
 that corresponds to the currently executing section of the dependent.

 If the specified dependency does not contain the current section,
 Process Dependency succeeds immediately.

 The Manifest Processor MUST also support a Dependency Index of True,
 which applies to every dependency, as described in Section 6.5

 The interpreter also performs the checks described in Section 6.2 to
 ensure that the dependent is processing the dependency correctly.

6.9. Multiple Manifest Processors

 When a system has multiple security domains, each domain might
 require independent verification of authenticity or security
 policies. Security domains might be divided by separation technology
 such as Arm TrustZone, Intel SGX, or another TEE technology.
 Security domains might also be divided into separate processors and
 memory spaces, with a communication interface between them.

 For example, an application processor may have an attached
 communications module that contains a processor. The communications
 module might require metadata signed by a specific Trust Authority
 for regulatory approval. This may be a different Trust Authority
 than the application processor.

 When there are two or more security domains (see
 [I-D.ietf-teep-architecture]), a manifest processor might be required
 in each. The first manifest processor is the normal manifest
 processor as described for the Recipient in Section 6.4. The second
 manifest processor only executes sections when the first manifest
 processor requests it. An API interface is provided from the second
 manifest processor to the first. This allows the first manifest
 processor to request a limited set of operations from the second.
 These operations are limited to: setting parameters, inserting an
 Envelope, invoking a Manifest Command Sequence. The second manifest
 processor declares a prefix to the first, which tells the first
 manifest processor when it should delegate to the second. These
 rules are enforced by underlying separation of privilege
 infrastructure, such as TEEs, or physical separation.

 When the first manifest processor encounters a dependency prefix,
 that informs the first manifest processor that it should provide the
 second manifest processor with the corresponding dependency Envelope.

Moran, et al. Expires January 13, 2022 [Page 26]

Internet-Draft CBOR-based SUIT Manifest July 2021

 This is done when the dependency is fetched. The second manifest
 processor immediately verifies any authentication information in the
 dependency Envelope. When a parameter is set for any component that
 matches the prefix, this parameter setting is passed to the second
 manifest processor via an API. As the first manifest processor works
 through the Procedure (set of command sequences) it is executing,
 each time it sees a Process Dependency command that is associated
 with the prefix declared by the second manifest processor, it uses
 the API to ask the second manifest processor to invoke that
 dependency section instead.

 This mechanism ensures that the two or more manifest processors do
 not need to trust each other, except in a very limited case. When
 parameter setting across security domains is used, it must be very
 carefully considered. Only parameters that do not have an effect on
 security properties should be allowed. The dependency manifest MAY
 control which parameters are allowed to be set by using the Override
 Parameters directive. The second manifest processor MAY also control
 which parameters may be set by the first manifest processor by means
 of an ACL that lists the allowed parameters. For example, a URI may
 be set by a dependent without a substantial impact on the security
 properties of the manifest.

7. Creating Manifests

 Manifests are created using tools for constructing COSE structures,
 calculating cryptographic values and compiling desired system state
 into a sequence of operations required to achieve that state. The
 process of constructing COSE structures and the calculation of
 cryptographic values is covered in [RFC8152].

 Compiling desired system state into a sequence of operations can be
 accomplished in many ways. Several templates are provided below to
 cover common use-cases. These templates can be combined to produce
 more complex behavior.

 The author MUST ensure that all parameters consumed by a command are
 set prior to invoking that command. Where Component Index = True or
 Dependency Index = True, this means that the parameters consumed by
 each command MUST have been set for each Component or Dependency,
 respectively.

 This section details a set of templates for creating manifests.
 These templates explain which parameters, commands, and orders of
 commands are necessary to achieve a stated goal.

 NOTE: On systems that support only a single component and no
 dependencies, Set Component Index has no effect and can be omitted.

https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires January 13, 2022 [Page 27]

Internet-Draft CBOR-based SUIT Manifest July 2021

 NOTE: *A digest MUST always be set using Override Parameters, since
 this prevents a less-privileged dependent from replacing the digest.*

7.1. Compatibility Check Template

 The goal of the compatibility check template ensure that Recipients
 only install compatible images.

 In this template all information is contained in the common sequence
 and the following sequence of commands is used:

 - Set Component Index directive (see Section 8.7.7.1)

 - Set Parameters directive (see Section 8.7.7.5) for Vendor ID and
 Class ID (see Section 8.7.5)

 - Check Vendor Identifier condition (see Section 8.7.5.2)

 - Check Class Identifier condition (see Section 8.7.5.2)

7.2. Trusted Invocation Template

 The goal of the Trusted Invocation template is to ensure that only
 authorized code is invoked; such as in Secure Boot or when a Trusted
 Application is loaded into a TEE.

 The following commands are placed into the common sequence:

 - Set Component Index directive (see Section 8.7.7.1)

 - Override Parameters directive (see Section 8.7.7.6) for Image
 Digest and Image Size (see Section 8.7.5)

 Then, the run sequence contains the following commands:

 - Set Component Index directive (see Section 8.7.7.1)

 - Check Image Match condition (see Section 8.7.6.2)

 - Run directive (see Section 8.7.7.12)

7.3. Component Download Template

 The goal of the Component Download template is to acquire and store
 an image.

 The following commands are placed into the common sequence:

Moran, et al. Expires January 13, 2022 [Page 28]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - Set Component Index directive (see Section 8.7.7.1)

 - Override Parameters directive (see Section 8.7.7.6) for Image
 Digest and Image Size (see Section 8.7.5)

 Then, the install sequence contains the following commands:

 - Set Component Index directive (see Section 8.7.7.1)

 - Set Parameters directive (see Section 8.7.7.5) for URI (see
Section 8.7.5.13)

 - Fetch directive (see Section 8.7.7.7)

 - Check Image Match condition (see Section 8.7.6.2)

 The Fetch directive needs the URI parameter to be set to determine
 where the image is retrieved from. Additionally, the destination of
 where the component shall be stored has to be configured. The URI is
 configured via the Set Parameters directive while the destination is
 configured via the Set Component Index directive.

 Optionally, the Set Parameters directive in the install sequence MAY
 also contain Encryption Info (see Section 8.7.5.10), Compression Info
 (see Section 8.7.5.11), or Unpack Info (see Section 8.7.5.12) to
 perform simultaneous download and decryption, decompression, or
 unpacking, respectively.

7.4. Install Template

 The goal of the Install template is to use an image already stored in
 an identified component to copy into a second component.

 This template is typically used with the Component Download template,
 however a modification to that template is required: the Component
 Download operations are moved from the Payload Install sequence to
 the Payload Fetch sequence.

 Then, the install sequence contains the following commands:

 - Set Component Index directive (see Section 8.7.7.1)

 - Set Parameters directive (see Section 8.7.7.5) for Source
 Component (see Section 8.7.5.14)

 - Copy directive (see Section 8.7.7.9)

 - Check Image Match condition (see Section 8.7.6.2)

Moran, et al. Expires January 13, 2022 [Page 29]

Internet-Draft CBOR-based SUIT Manifest July 2021

7.5. Install and Transform Template

 The goal of the Install and Transform template is to use an image
 already stored in an identified component to decompress, decrypt, or
 unpack at time of installation.

 This template is typically used with the Component Download template,
 however a modification to that template is required: all Component
 Download operations are moved from the common sequence and the
 install sequence to the fetch sequence. The Component Download
 template targets a download component identifier, while the Install
 and Transform template uses an install component identifier. In-
 place unpacking, decompression, and decryption is complex and
 vulnerable to power failure. Therefore, these identifiers SHOULD be
 different; in-place installation SHOULD NOT be used without
 establishing guarantees of robustness to power failure.

 The following commands are placed into the common sequence:

 - Set Component Index directive for install component identifier
 (see Section 8.7.7.1)

 - Override Parameters directive (see Section 8.7.7.6) for Image
 Digest and Image Size (see Section 8.7.5)

 Then, the install sequence contains the following commands:

 - Set Component Index directive for install component identifier
 (see Section 8.7.7.1)

 - Set Parameters directive (see Section 8.7.7.5) for:

 o Source Component for download component identifier (see
Section 8.7.5.14)

 o Encryption Info (see Section 8.7.5.10)

 o Compression Info (see Section 8.7.5.11)

 o Unpack Info (see Section 8.7.5.12)

 - Copy directive (see Section 8.7.7.9)

 - Check Image Match condition (see Section 8.7.6.2)

Moran, et al. Expires January 13, 2022 [Page 30]

Internet-Draft CBOR-based SUIT Manifest July 2021

7.6. Integrated Payload Template

 The goal of the Integrated Payload template is to install a payload
 that is included in the manifest envelope. It is identical to the
 Component Download template (Section 7.3) except that it places an
 added restriction on the URI passed to the Set Parameters directive.

 An implementer MAY choose to place a payload in the envelope of a
 manifest. The payload envelope key MAY be a positive or negative
 integer. The payload envelope key MUST NOT be a value between 0 and
 24 and it MUST NOT be used by any other envelope element in the
 manifest. The payload MUST be serialized in a bstr element.

 The URI for a payload enclosed in this way MUST be expressed as a
 fragment-only reference, as defined in [RFC3986], Section 4.4. The
 fragment identifier is the stringified envelope key of the payload.
 For example, an envelope that contains a payload a key 42 would use a
 URI "#42", key -73 would use a URI "#-73".

7.7. Load from Nonvolatile Storage Template

 The goal of the Load from Nonvolatile Storage template is to load an
 image from a non-volatile component into a volatile component, for
 example loading a firmware image from external Flash into RAM.

 The following commands are placed into the load sequence:

 - Set Component Index directive (see Section 8.7.7.1)

 - Set Parameters directive (see Section 8.7.7.5) for Component Index
 (see Section 8.7.5)

 - Copy directive (see Section 8.7.7.9)

 As outlined in Section 6.4, the Copy directive needs a source and a
 destination to be configured. The source is configured via Component
 Index (with the Set Parameters directive) and the destination is
 configured via the Set Component Index directive.

7.8. Load & Decompress from Nonvolatile Storage Template

 The goal of the Load & Decompress from Nonvolatile Storage template
 is to load an image from a non-volatile component into a volatile
 component, decompressing on-the-fly, for example loading a firmware
 image from external Flash into RAM.

 The following commands are placed into the load sequence:

https://datatracker.ietf.org/doc/html/rfc3986#section-4.4

Moran, et al. Expires January 13, 2022 [Page 31]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - Set Component Index directive (see Section 8.7.7.1)

 - Set Parameters directive (see Section 8.7.7.5) for Source
 Component Index and Compression Info (see Section 8.7.5)

 - Copy directive (see Section 8.7.7.9)

 This template is similar to Section 7.7 but additionally performs
 decompression. Hence, the only difference is in setting the
 Compression Info parameter.

 This template can be modified for decryption or unpacking by adding
 Decryption Info or Unpack Info to the Set Parameters directive.

7.9. Dependency Template

 The goal of the Dependency template is to obtain, verify, and process
 a dependency manifest as appropriate.

 The following commands are placed into the dependency resolution
 sequence:

 - Set Dependency Index directive (see Section 8.7.7.2)

 - Set Parameters directive (see Section 8.7.7.5) for URI (see
Section 8.7.5)

 - Fetch directive (see Section 8.7.7.7)

 - Check Image Match condition (see Section 8.7.6.2)

 - Process Dependency directive (see Section 8.7.7.4)

 Then, the validate sequence contains the following operations:

 - Set Dependency Index directive (see Section 8.7.7.2)

 - Check Image Match condition (see Section 8.7.6.2)

 - Process Dependency directive (see Section 8.7.7.4)

 NOTE: Any changes made to parameters in a dependency persist in the
 dependent.

Moran, et al. Expires January 13, 2022 [Page 32]

Internet-Draft CBOR-based SUIT Manifest July 2021

7.9.1. Composite Manifests

 An implementer MAY choose to place a dependency's envelope in the
 envelope of its dependent. The dependent envelope key for the
 dependency envelope MUST NOT be a value between 0 and 24 and it MUST
 NOT be used by any other envelope element in the dependent manifest.

 The URI for a dependency enclosed in this way MUST be expressed as a
 fragment-only reference, as defined in [RFC3986], Section 4.4. The
 fragment identifier is the stringified envelope key of the
 dependency. For example, an envelope that contains a dependency at
 key 42 would use a URI "#42", key -73 would use a URI "#-73".

7.10. Encrypted Manifest Template

 The goal of the Encrypted Manifest template is to fetch and decrypt a
 manifest so that it can be used as a dependency. To use an encrypted
 manifest, create a plaintext dependent, and add the encrypted
 manifest as a dependency. The dependent can include very little
 information.

 The following operations are placed into the dependency resolution
 block:

 - Set Dependency Index directive (see Section 8.7.7.2)

 - Set Parameters directive (see Section 8.7.7.5) for

 o URI (see Section 8.7.5)

 o Encryption Info (see Section 8.7.5)

 - Fetch directive (see Section 8.7.7.7)

 - Check Image Match condition (see Section 8.7.6.2)

 - Process Dependency directive (see Section 8.7.7.4)

 Then, the validate block contains the following operations:

 - Set Dependency Index directive (see Section 8.7.7.2)

 - Check Image Match condition (see Section 8.7.6.2)

 - Process Dependency directive (see Section 8.7.7.4)

 A plaintext manifest and its encrypted dependency may also form a
 composite manifest (Section 7.9.1).

https://datatracker.ietf.org/doc/html/rfc3986#section-4.4

Moran, et al. Expires January 13, 2022 [Page 33]

Internet-Draft CBOR-based SUIT Manifest July 2021

7.11. A/B Image Template

 The goal of the A/B Image Template is to acquire, validate, and
 invoke one of two images, based on a test.

 The following commands are placed in the common block:

 - Set Component Index directive (see Section 8.7.7.1)

 - Try Each

 o First Sequence:

 * Override Parameters directive (see Section 8.7.7.6,
Section 8.7.5) for Slot A

 * Check Slot Condition (see Section 8.7.6.5)

 * Override Parameters directive (see Section 8.7.7.6) for
 Image Digest A and Image Size A (see Section 8.7.5)

 o Second Sequence:

 * Override Parameters directive (see Section 8.7.7.6,
Section 8.7.5) for Slot B

 * Check Slot Condition (see Section 8.7.6.5)

 * Override Parameters directive (see Section 8.7.7.6) for
 Image Digest B and Image Size B (see Section 8.7.5)

 The following commands are placed in the fetch block or install block

 - Set Component Index directive (see Section 8.7.7.1)

 - Try Each

 o First Sequence:

 * Override Parameters directive (see Section 8.7.7.6,
Section 8.7.5) for Slot A

 * Check Slot Condition (see Section 8.7.6.5)

 * Set Parameters directive (see Section 8.7.7.6) for URI A
 (see Section 8.7.5)

 o Second Sequence:

Moran, et al. Expires January 13, 2022 [Page 34]

Internet-Draft CBOR-based SUIT Manifest July 2021

 * Override Parameters directive (see Section 8.7.7.6,
Section 8.7.5) for Slot B

 * Check Slot Condition (see Section 8.7.6.5)

 * Set Parameters directive (see Section 8.7.7.6) for URI B
 (see Section 8.7.5)

 - Fetch

 If Trusted Invocation (Section 7.2) is used, only the run sequence is
 added to this template, since the common sequence is populated by
 this template.

 NOTE: Any test can be used to select between images, Check Slot
 Condition is used in this template because it is a typical test for
 execute-in-place devices.

8. Metadata Structure

 The metadata for SUIT updates is composed of several primary
 constituent parts: the Envelope, Delegation Chains, Authentication
 Information, Manifest, and Severable Elements.

 For a diagram of the metadata structure, see Section 5.

8.1. Encoding Considerations

 The map indices in the envelope encoding are reset to 1 for each map
 within the structure. This is to keep the indices as small as
 possible. The goal is to keep the index objects to single bytes
 (CBOR positive integers 1-23).

 Wherever enumerations are used, they are started at 1. This allows
 detection of several common software errors that are caused by
 uninitialized variables. Positive numbers in enumerations are
 reserved for IANA registration. Negative numbers are used to
 identify application-specific values, as described in Section 11.

 All elements of the envelope must be wrapped in a bstr to minimize
 the complexity of the code that evaluates the cryptographic integrity
 of the element and to ensure correct serialization for integrity and
 authenticity checks.

Moran, et al. Expires January 13, 2022 [Page 35]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.2. Envelope

 The Envelope contains each of the other primary constituent parts of
 the SUIT metadata. It allows for modular processing of the manifest
 by ordering components in the expected order of processing.

 The Envelope is encoded as a CBOR Map. Each element of the Envelope
 is enclosed in a bstr, which allows computation of a message digest
 against known bounds.

8.3. Delegation Chains

 The suit-delegation element MAY carry one or more CBOR Web Tokens
 (CWTs) [RFC8392], with [RFC8747] cnf claims. They can be used to
 perform enhanced authorization decisions. The CWTs are arranged into
 a list of lists. Each list starts with a CWT authorized by a Trust
 Anchor, and finishes with a key used to authenticate the Manifest
 (see Section 8.4). This allows an Update Authority to delegate from
 a long term Trust Anchor, down through intermediaries, to a delegate
 without any out-of-band provisioning of Trust Anchors or intermediary
 keys.

 A Recipient MAY choose to cache intermediaries and/or delegates. If
 an Update Distributor knows that a targeted Recipient has cached some
 intermediaries or delegates, it MAY choose to strip any cached
 intermediaries or delegates from the Delegation Chains in order to
 reduce bandwidth and energy.

8.4. Authenticated Manifests

 The suit-authentication-wrapper contains a list containing a SUIT
 Digest Container (see Section 10) and one or more cryptographic
 authentication wrappers for the Manifest. These blocks are
 implemented as COSE_Mac_Tagged or COSE_Sign_Tagged structures. Each
 of these blocks contains a SUIT_Digest of the Manifest. This enables
 modular processing of the manifest. The COSE_Mac_Tagged and
 COSE_Sign_Tagged blocks are described in RFC 8152 [RFC8152]. The
 suit-authentication-wrapper MUST come before any element in the
 SUIT_Envelope, except for the OPTIONAL suit-delegation, regardless of
 canonical encoding of CBOR. All validators MUST reject any
 SUIT_Envelope that begins with any element other than a suit-
 authentication-wrapper or suit-delegation.

 A SUIT_Envelope that has not had authentication information added
 MUST still contain the suit-authentication-wrapper element, but the
 content MUST be a list containing only the SUIT_Digest.

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8747
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Moran, et al. Expires January 13, 2022 [Page 36]

Internet-Draft CBOR-based SUIT Manifest July 2021

 A signing application MUST verify the suit-manifest element against
 the SUIT_Digest prior to signing.

8.5. Encrypted Manifests

 To use an encrypted manifest, it must be a dependency of a plaintext
 manifest. This allows fine-grained control of what information is
 accessible to intermediate systems for the purposes of management,
 while still preserving the confidentiality of the manifest contents.
 This also means that a Recipient can process an encrypted manifest in
 the same way as an encrypted payload, allowing code reuse.

 A template for using an encrypted manifest is covered in Encrypted
 Manifest Template (Section 7.10).

8.6. Manifest

 The manifest contains:

 - a version number (see Section 8.6.1)

 - a sequence number (see Section 8.6.2)

 - a reference URI (see Section 8.6.3)

 - a common structure with information that is shared between command
 sequences (see Section 8.7.2)

 - one or more lists of commands that the Recipient should perform
 (see Section 8.7.3)

 - a reference to the full manifest (see Section 8.6.3)

 - human-readable text describing the manifest found in the
 SUIT_Envelope (see Section 8.6.4)

 - a Concise Software Identifier (CoSWID) found in the SUIT_Envelope
 (see Section 8.7.1)

 The CoSWID, Text section, or any Command Sequence of the Update
 Procedure (Dependency Resolution, Image Fetch, Image Installation)
 can be either a CBOR structure or a SUIT_Digest. In each of these
 cases, the SUIT_Digest provides for a severable element. Severable
 elements are RECOMMENDED to implement. In particular, the human-
 readable text SHOULD be severable, since most useful text elements
 occupy more space than a SUIT_Digest, but are not needed by the
 Recipient. Because SUIT_Digest is a CBOR Array and each severable
 element is a CBOR bstr, it is straight-forward for a Recipient to

Moran, et al. Expires January 13, 2022 [Page 37]

Internet-Draft CBOR-based SUIT Manifest July 2021

 determine whether an element has been severed. The key used for a
 severable element is the same in the SUIT_Manifest and in the
 SUIT_Envelope so that a Recipient can easily identify the correct
 data in the envelope. See Section 8.7.9 for more detail.

8.6.1. suit-manifest-version

 The suit-manifest-version indicates the version of serialization used
 to encode the manifest. Version 1 is the version described in this
 document. suit-manifest-version is REQUIRED to implement.

8.6.2. suit-manifest-sequence-number

 The suit-manifest-sequence-number is a monotonically increasing anti-
 rollback counter. It also helps Recipients to determine which in a
 set of manifests is the "root" manifest in a given update. Each
 manifest MUST have a sequence number higher than each of its
 dependencies. Each Recipient MUST reject any manifest that has a
 sequence number lower than its current sequence number. For
 convenience, an implementer MAY use a UTC timestamp in seconds as the
 sequence number. suit-manifest-sequence-number is REQUIRED to
 implement.

8.6.3. suit-reference-uri

 suit-reference-uri is a text string that encodes a URI where a full
 version of this manifest can be found. This is convenient for
 allowing management systems to show the severed elements of a
 manifest when this URI is reported by a Recipient after installation.

8.6.4. suit-text

 suit-text SHOULD be a severable element. suit-text is a map
 containing two different types of pair:

 - integer => text

 - SUIT_Component_Identifier => map

 Each SUIT_Component_Identifier => map entry contains a map of integer
 => text values. All SUIT_Component_Identifiers present in suit-text
 MUST also be present in suit-common (Section 8.7.2) or the suit-
 common of a dependency.

 suit-text contains all the human-readable information that describes
 any and all parts of the manifest, its payload(s) and its
 resource(s). The text section is typically severable, allowing

Moran, et al. Expires January 13, 2022 [Page 38]

Internet-Draft CBOR-based SUIT Manifest July 2021

 manifests to be distributed without the text, since end-nodes do not
 require text. The meaning of each field is described below.

 Each section MAY be present. If present, each section MUST be as
 described. Negative integer IDs are reserved for application-
 specific text values.

 The following table describes the text fields available in suit-text:

 +--------------------------------+----------------------------------+
 | CDDL Structure | Description |
 +--------------------------------+----------------------------------+
suit-text-manifest-description	Free text description of the
	manifest
suit-text-update-description	Free text description of the
	update
suit-text-manifest-json-source	The JSON-formatted document that
	was used to create the manifest
suit-text-manifest-yaml-source	The YAML ([YAML])-formatted
	document that was used to create
	the manifest
 +--------------------------------+----------------------------------+

 The following table describes the text fields available in each map
 identified by a SUIT_Component_Identifier.

Moran, et al. Expires January 13, 2022 [Page 39]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +---------------------------------+---------------------------------+
 | CDDL Structure | Description |
 +---------------------------------+---------------------------------+
suit-text-vendor-name	Free text vendor name
suit-text-model-name	Free text model name
suit-text-vendor-domain	The domain used to create the
	vendor-id condition
suit-text-model-info	The information used to create
	the class-id condition
suit-text-component-description	Free text description of each
	component in the manifest
suit-text-component-version	A free text representation of
	the component version
suit-text-version-required	A free text expression of the
	required version number
 +---------------------------------+---------------------------------+

 suit-text is OPTIONAL to implement.

8.7. text-version-required

 suit-text-version-required is used to represent a version-based
 dependency on suit-parameter-version as described in Section 8.7.5.18
 and Section 8.7.6.8. To describe a version dependency, a Manifest
 Author SHOULD populate the suit-text map with a
 SUIT_Component_Identifier key for the dependency component, and place
 in the corresponding map a suit-text-version-required key with a free
 text expression that is representative of the version constraints
 placed on the dependency. This text SHOULD be expressive enough that
 a device operator can be expected to understand the dependency. This
 is a free text field and there are no specific formatting rules.

 By way of example only, to express a dependency on a component "['x',
 'y']", where the version should be any v1.x later than v1.2.5, but
 not v2.0 or above, the author would add the following structure to
 the suit-text element. Note that this text is in cbor-diag notation.

 [h'78',h'79'] : {
 7 : ">=1.2.5,<2"
 }

Moran, et al. Expires January 13, 2022 [Page 40]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.1. suit-coswid

 suit-coswid contains a Concise Software Identifier (CoSWID) as
 defined in [I-D.ietf-sacm-coswid]. This element SHOULD be made
 severable so that it can be discarded by the Recipient or an
 intermediary if it is not required by the Recipient.

 suit-coswid typically requires no processing by the Recipient.
 However all Recipients MUST NOT fail if a suit-coswid is present.

8.7.2. suit-common

 suit-common encodes all the information that is shared between each
 of the command sequences, including: suit-dependencies, suit-
 components, and suit-common-sequence. suit-common is REQUIRED to
 implement.

 suit-dependencies is a list of Section 8.7.2.1 blocks that specify
 manifests that must be present before the current manifest can be
 processed. suit-dependencies is OPTIONAL to implement.

 suit-components is a list of SUIT_Component_Identifier
 (Section 8.7.2.2) blocks that specify the component identifiers that
 will be affected by the content of the current manifest. suit-
 components is REQUIRED to implement; at least one manifest in a
 dependency tree MUST contain a suit-components block.

 suit-common-sequence is a SUIT_Command_Sequence to execute prior to
 executing any other command sequence. Typical actions in suit-
 common-sequence include setting expected Recipient identity and image
 digests when they are conditional (see Section 8.7.7.3 and

Section 7.11 for more information on conditional sequences). suit-
 common-sequence is RECOMMENDED to implement. It is REQUIRED if the
 optimizations described in Section 6.2.1 will be used. Whenever a
 parameter or Try Each command is required by more than one Command
 Sequence, placing that parameter or command in suit-common-sequence
 results in a smaller encoding.

8.7.2.1. Dependencies

 SUIT_Dependency specifies a manifest that describes a dependency of
 the current manifest. The Manifest is identified, but the Recipient
 should expect an Envelope when it acquires the dependency. This is
 because the Manifest is the one invariant element of the Envelope,
 where other elements may change by countersigning, adding
 authentication blocks, or severing elements.

Moran, et al. Expires January 13, 2022 [Page 41]

Internet-Draft CBOR-based SUIT Manifest July 2021

 The suit-dependency-digest specifies the dependency manifest uniquely
 by identifying a particular Manifest structure. This is identical to
 the digest that would be present as the payload of any suit-
 authentication-block in the dependency's Envelope. The digest is
 calculated over the Manifest structure instead of the COSE
 Sig_structure or Mac_structure. This is necessary to ensure that
 removing a signature from a manifest does not break dependencies due
 to missing signature elements. This is also necessary to support the
 trusted intermediary use case, where an intermediary re-signs the
 Manifest, removing the original signature, potentially with a
 different algorithm, or trading COSE_Sign for COSE_Mac.

 The suit-dependency-prefix element contains a
 SUIT_Component_Identifier (see Section 8.7.2.2). This specifies the
 scope at which the dependency operates. This allows the dependency
 to be forwarded on to a component that is capable of parsing its own
 manifests. It also allows one manifest to be deployed to multiple
 dependent Recipients without those Recipients needing consistent
 component hierarchy. This element is OPTIONAL for Recipients to
 implement.

 A dependency prefix can be used with a component identifier. This
 allows complex systems to understand where dependencies need to be
 applied. The dependency prefix can be used in one of two ways. The
 first simply prepends the prefix to all Component Identifiers in the
 dependency.

 A dependency prefix can also be used to indicate when a dependency
 manifest needs to be processed by a secondary manifest processor, as
 described in Section 6.9.

8.7.2.2. SUIT_Component_Identifier

 A component is a unit of code or data that can be targeted by an
 update. To facilitate composite devices, components are identified
 by a list of CBOR byte strings, which allows construction of
 hierarchical component structures. A dependency MAY declare a prefix
 to the components defined in the dependency manifest. Components are
 identified by Component Identifiers, but referenced in commands by
 Component Index; Component Identifiers are arrays of binary strings
 and a Component Index is an index into the array of Component
 Identifiers.

 A Component Identifier can be trivial, such as the simple array
 [h'00']. It can also represent a filesystem path by encoding each
 segment of the path as an element in the list. For example, the path
 "/usr/bin/env" would encode to ['usr','bin','env'].

Moran, et al. Expires January 13, 2022 [Page 42]

Internet-Draft CBOR-based SUIT Manifest July 2021

 This hierarchical construction allows a component identifier to
 identify any part of a complex, multi-component system.

8.7.3. SUIT_Command_Sequence

 A SUIT_Command_Sequence defines a series of actions that the
 Recipient MUST take to accomplish a particular goal. These goals are
 defined in the manifest and include:

 1. Dependency Resolution: suit-dependency-resolution is a
 SUIT_Command_Sequence to execute in order to perform dependency
 resolution. Typical actions include configuring URIs of
 dependency manifests, fetching dependency manifests, and
 validating dependency manifests' contents. suit-dependency-
 resolution is REQUIRED to implement and to use when suit-
 dependencies is present.

 2. Payload Fetch: suit-payload-fetch is a SUIT_Command_Sequence to
 execute in order to obtain a payload. Some manifests may include
 these actions in the suit-install section instead if they operate
 in a streaming installation mode. This is particularly relevant
 for constrained devices without any temporary storage for staging
 the update. suit-payload-fetch is OPTIONAL to implement.

 3. Payload Installation: suit-install is a SUIT_Command_Sequence to
 execute in order to install a payload. Typical actions include
 verifying a payload stored in temporary storage, copying a staged
 payload from temporary storage, and unpacking a payload. suit-
 install is OPTIONAL to implement.

 4. Image Validation: suit-validate is a SUIT_Command_Sequence to
 execute in order to validate that the result of applying the
 update is correct. Typical actions involve image validation and
 manifest validation. suit-validate is REQUIRED to implement. If
 the manifest contains dependencies, one process-dependency
 invocation per dependency or one process-dependency invocation
 targeting all dependencies SHOULD be present in validate.

 5. Image Loading: suit-load is a SUIT_Command_Sequence to execute in
 order to prepare a payload for execution. Typical actions
 include copying an image from permanent storage into RAM,
 optionally including actions such as decryption or decompression.
 suit-load is OPTIONAL to implement.

 6. Run or Boot: suit-run is a SUIT_Command_Sequence to execute in
 order to run an image. suit-run typically contains a single
 instruction: either the "run" directive for the invocable
 manifest or the "process dependencies" directive for any

Moran, et al. Expires January 13, 2022 [Page 43]

Internet-Draft CBOR-based SUIT Manifest July 2021

 dependents of the invocable manifest. suit-run is OPTIONAL to
 implement.

 Goals 1,2,3 form the Update Procedure. Goals 4,5,6 form the
 Invocation Procedure.

 Each Command Sequence follows exactly the same structure to ensure
 that the parser is as simple as possible.

 Lists of commands are constructed from two kinds of element:

 1. Conditions that MUST be true and any failure is treated as a
 failure of the update/load/invocation

 2. Directives that MUST be executed.

 Each condition is composed of:

 1. A command code identifier

 2. A SUIT_Reporting_Policy (Section 8.7.4)

 Each directive is composed of:

 1. A command code identifier

 2. An argument block or a SUIT_Reporting_Policy (Section 8.7.4)

 Argument blocks are consumed only by flow-control directives:

 - Set Component/Dependency Index

 - Set/Override Parameters

 - Try Each

 - Run Sequence

 Reporting policies provide a hint to the manifest processor of
 whether to add the success or failure of a command to any report that
 it generates.

 Many conditions and directives apply to a given component, and these
 generally grouped together. Therefore, a special command to set the
 current component index is provided with a matching command to set
 the current dependency index. This index is a numeric index into the
 Component Identifier tables defined at the beginning of the manifest.

Moran, et al. Expires January 13, 2022 [Page 44]

Internet-Draft CBOR-based SUIT Manifest July 2021

 For the purpose of setting the index, the two Component Identifier
 tables are considered to be concatenated together.

 To facilitate optional conditions, a special directive, suit-
 directive-try-each (Section 8.7.7.3), is provided. It runs several
 new lists of conditions/directives, one after another, that are
 contained as an argument to the directive. By default, it assumes
 that a failure of a condition should not indicate a failure of the
 update/invocation, but a parameter is provided to override this
 behavior. See suit-parameter-soft-failure (Section 8.7.5.23).

8.7.4. Reporting Policy

 To facilitate construction of Reports that describe the success, or
 failure of a given Procedure, each command is given a Reporting
 Policy. This is an integer bitfield that follows the command and
 indicates what the Recipient should do with the Record of executing
 the command. The options are summarized in the table below.

 +-----------------------------+-------------------------------------+
 | Policy | Description |
 +-----------------------------+-------------------------------------+
suit-send-record-on-success	Record when the command succeeds
suit-send-record-on-failure	Record when the command fails
suit-send-sysinfo-success	Add system information when the
	command succeeds
suit-send-sysinfo-failure	Add system information when the
	command fails
 +-----------------------------+-------------------------------------+

 Any or all of these policies may be enabled at once.

 At the completion of each command, a Manifest Processor MAY forward
 information about the command to a Reporting Engine, which is
 responsible for reporting boot or update status to a third party.
 The Reporting Engine is entirely implementation-defined, the
 reporting policy simply facilitates the Reporting Engine's interface
 to the SUIT Manifest Processor.

 The information elements provided to the Reporting Engine are:

 - The reporting policy

 - The result of the command

Moran, et al. Expires January 13, 2022 [Page 45]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - The values of parameters consumed by the command

 - The system information consumed by the command

 Together, these elements are called a Record. A group of Records is
 a Report.

 If the component index is set to True or an array when a command is
 executed with a non-zero reporting policy, then the Reporting Engine
 MUST receive one Record for each Component, in the order expressed in
 the Components list or the component index array. If the dependency
 index is set to True or an array when a command is executed with a
 non-zero reporting policy, then the Reporting Engine MUST receive one
 Record for each Dependency, in the order expressed in the
 Dependencies list or the component index array, respectively.

 This specification does not define a particular format of Records or
 Reports. This specification only defines hints to the Reporting
 Engine for which Records it should aggregate into the Report. The
 Reporting Engine MAY choose to ignore these hints and apply its own
 policy instead.

 When used in a Invocation Procedure, the report MAY form the basis of
 an attestation report. When used in an Update Process, the report
 MAY form the basis for one or more log entries.

8.7.5. SUIT_Parameters

 Many conditions and directives require additional information. That
 information is contained within parameters that can be set in a
 consistent way. This allows reduction of manifest size and
 replacement of parameters from one manifest to the next.

 Most parameters are scoped to a specific component. This means that
 setting a parameter for one component has no effect on the parameters
 of any other component. The only exceptions to this are two Manifest
 Processor parameters: Strict Order and Soft Failure.

 The defined manifest parameters are described below.

 +----------------+----------------------------------+---------------+
 | Name | CDDL Structure | Reference |
 +----------------+----------------------------------+---------------+
Vendor ID	suit-parameter-vendor-identifier	Section 8.7.5
		.3
Class ID	suit-parameter-class-identifier	Section 8.7.5
		.4

Moran, et al. Expires January 13, 2022 [Page 46]

Internet-Draft CBOR-based SUIT Manifest July 2021

Device ID	suit-parameter-device-identifier	Section 8.7.5
		.5
Image Digest	suit-parameter-image-digest	Section 8.7.5
		.6
Image Size	suit-parameter-image-size	Section 8.7.5
		.7
Use Before	suit-parameter-use-before	Section 8.7.5
		.8
Component Slot	suit-parameter-component-slot	Section 8.7.5
		.9
Encryption	suit-parameter-encryption-info	Section 8.7.5
Info		.10
Compression	suit-parameter-compression-info	Section 8.7.5
Info		.11
Unpack Info	suit-parameter-unpack-info	Section 8.7.5
		.12
URI	suit-parameter-uri	Section 8.7.5
		.13
Source	suit-parameter-source-component	Section 8.7.5
Component		.14
Run Args	suit-parameter-run-args	Section 8.7.5
		.15
Minimum	suit-parameter-minimum-battery	Section 8.7.5
Battery		.16
Update	suit-parameter-update-priority	Section 8.7.5
Priority		.17
Version	suit-parameter-version	Section 8.7.5
		.18
Wait Info	suit-parameter-wait-info	Section 8.7.5
		.19
URI List	suit-parameter-uri-list	Section 8.7.5
		.20

Moran, et al. Expires January 13, 2022 [Page 47]

Internet-Draft CBOR-based SUIT Manifest July 2021

Fetch	suit-parameter-fetch-arguments	Section 8.7.5
Arguments		.21
Strict Order	suit-parameter-strict-order	Section 8.7.5
		.22
Soft Failure	suit-parameter-soft-failure	Section 8.7.5
		.23
Custom	suit-parameter-custom	Section 8.7.5
		.24
 +----------------+----------------------------------+---------------+

 CBOR-encoded object parameters are still wrapped in a bstr. This is
 because it allows a parser that is aggregating parameters to
 reference the object with a single pointer and traverse it without
 understanding the contents. This is important for modularization and
 division of responsibility within a pull parser. The same
 consideration does not apply to Directives because those elements are
 invoked with their arguments immediately

8.7.5.1. CBOR PEN UUID Namespace Identifier

 The CBOR PEN UUID Namespace Identifier is constructed as follows:

 It uses the OID Namespace as a starting point, then uses the CBOR OID
 encoding for the IANA PEN OID (1.3.6.1.4.1):

 D8 DE # tag(111)
 45 # bytes(5)
 2B 06 01 04 01 # X.690 Clause 8.19
 # 1.3 6 1 4 1 show component encoding

 Computing a type 5 UUID from these produces:

 NAMESPACE_CBOR_PEN = UUID5(NAMESPACE_OID, h'D86F452B06010401')
 NAMESPACE_CBOR_PEN = 08cfcc43-47d9-5696-85b1-9c738465760e

8.7.5.2. Constructing UUIDs

 Several conditions use identifiers to determine whether a manifest
 matches a given Recipient or not. These identifiers are defined to
 be RFC 4122 [RFC4122] UUIDs. These UUIDs are not human-readable and
 are therefore used for machine-based processing only.

 A Recipient MAY match any number of UUIDs for vendor or class
 identifier. This may be relevant to physical or software modules.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires January 13, 2022 [Page 48]

Internet-Draft CBOR-based SUIT Manifest July 2021

 For example, a Recipient that has an OS and one or more applications
 might list one Vendor ID for the OS and one or more additional Vendor
 IDs for the applications. This Recipient might also have a Class ID
 that must be matched for the OS and one or more Class IDs for the
 applications.

 Identifiers are used for compatibility checks. They MUST NOT be used
 as assertions of identity. They are evaluated by identifier
 conditions (Section 8.7.6.1).

 A more complete example: Imagine a device has the following physical
 components: 1. A host MCU 2. A WiFi module

 This same device has three software modules: 1. An operating system
 2. A WiFi module interface driver 3. An application

 Suppose that the WiFi module's firmware has a proprietary update
 mechanism and doesn't support manifest processing. This device can
 report four class IDs:

 1. Hardware model/revision

 2. OS

 3. WiFi module model/revision

 4. Application

 This allows the OS, WiFi module, and application to be updated
 independently. To combat possible incompatibilities, the OS class ID
 can be changed each time the OS has a change to its API.

 This approach allows a vendor to target, for example, all devices
 with a particular WiFi module with an update, which is a very
 powerful mechanism, particularly when used for security updates.

 UUIDs MUST be created according to RFC 4122 [RFC4122]. UUIDs SHOULD
 use versions 3, 4, or 5, as described in RFC4122. Versions 1 and 2
 do not provide a tangible benefit over version 4 for this
 application.

 The RECOMMENDED method to create a vendor ID is:

 Vendor ID = UUID5(DNS_PREFIX, vendor domain name)

 If the Vendor ID is a UUID, the RECOMMENDED method to create a Class
 ID is:

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires January 13, 2022 [Page 49]

Internet-Draft CBOR-based SUIT Manifest July 2021

 Class ID = UUID5(Vendor ID, Class-Specific-Information)

 If the Vendor ID is a CBOR PEN (see Section 8.7.5.3), the RECOMMENDED
 method to create a Class ID is:

 Class ID = UUID5(
 UUID5(NAMESPACE_CBOR_PEN, CBOR_PEN),
 Class-Specific-Information)

 Class-specific-information is composed of a variety of data, for
 example:

 - Model number.

 - Hardware revision.

 - Bootloader version (for immutable bootloaders).

8.7.5.3. suit-parameter-vendor-identifier

 suit-parameter-vendor-identifier may be presented in one of two ways:

 - A Private Enterprise Number

 - A byte string containing a UUID ([RFC4122])

 Private Enterprise Numbers are encoded as a relative OID, according
 to the definition in [I-D.ietf-cbor-tags-oid]. All PENs are relative
 to the IANA PEN: 1.3.6.1.4.1.

8.7.5.4. suit-parameter-class-identifier

 A RFC 4122 UUID representing the class of the device or component.
 The UUID is encoded as a 16 byte bstr, containing the raw bytes of
 the UUID. It MUST be constructed as described in Section 8.7.5.2

8.7.5.5. suit-parameter-device-identifier

 A RFC 4122 UUID representing the specific device or component. The
 UUID is encoded as a 16 byte bstr, containing the raw bytes of the
 UUID. It MUST be constructed as described in Section 8.7.5.2

8.7.5.6. suit-parameter-image-digest

 A fingerprint computed over the component itself, encoded in the
 SUIT_Digest Section 10 structure. The SUIT_Digest is wrapped in a
 bstr, as required in Section 8.7.5.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires January 13, 2022 [Page 50]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.5.7. suit-parameter-image-size

 The size of the firmware image in bytes. This size is encoded as a
 positive integer.

8.7.5.8. suit-parameter-use-before

 An expiry date for the use of the manifest encoded as the positive
 integer number of seconds since 1970-01-01. Implementations that use
 this parameter MUST use a 64-bit internal representation of the
 integer.

8.7.5.9. suit-parameter-component-slot

 This parameter sets the slot index of a component. Some components
 support multiple possible Slots (offsets into a storage area). This
 parameter describes the intended Slot to use, identified by its index
 into the component's storage area. This slot MUST be encoded as a
 positive integer.

8.7.5.10. suit-parameter-encryption-info

 Encryption Info defines the keys and algorithm information Fetch or
 Copy has to use to decrypt the confidentiality protected data.
 SUIT_Parameter_Encryption_Info is encoded as a COSE_Encrypt_Tagged
 structure wrapped in a bstr. A separate document will profile the
 COSE specification for use of manifest and firmware encrytion.

8.7.5.11. suit-parameter-compression-info

 SUIT_Compression_Info defines any information that is required for a
 Recipient to perform decompression operations. SUIT_Compression_Info
 is a map containing this data. The only element defined for the map
 in this specification is the suit-compression-algorithm. This
 document defines the following suit-compression-algorithm's: ZLIB
 [RFC1950], Brotli [RFC7932], and ZSTD [RFC8878].

 Additional suit-compression-algorithm's can be registered through the
 IANA-maintained registry. If such a format requires more data than
 an algorithm identifier, one or more new elements MUST be introduced
 by specifying an element for SUIT_Compression_Info-extensions.

8.7.5.12. suit-parameter-unpack-info

 SUIT_Unpack_Info defines the information required for a Recipient to
 interpret a packed format. This document defines the use of the
 following binary encodings: Intel HEX [HEX], Motorola S-record

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc8878

Moran, et al. Expires January 13, 2022 [Page 51]

Internet-Draft CBOR-based SUIT Manifest July 2021

 [SREC], Executable and Linkable Format (ELF) [ELF], and Common Object
 File Format (COFF) [COFF].

 Additional packing formats can be registered through the IANA-
 maintained registry.

8.7.5.13. suit-parameter-uri

 A URI from which to fetch a resource, encoded as a text string. CBOR
 Tag 32 is not used because the meaning of the text string is
 unambiguous in this context.

8.7.5.14. suit-parameter-source-component

 This parameter sets the source component to be used with either suit-
 directive-copy (Section 8.7.7.9) or with suit-directive-swap
 (Section 8.7.7.13). The current Component, as set by suit-directive-
 set-component-index defines the destination, and suit-parameter-
 source-component defines the source.

8.7.5.15. suit-parameter-run-args

 This parameter contains an encoded set of arguments for suit-
 directive-run (Section 8.7.7.10). The arguments MUST be provided as
 an implementation-defined bstr.

8.7.5.16. suit-parameter-minimum-battery

 This parameter sets the minimum battery level in mWh. This parameter
 is encoded as a positive integer. Used with suit-condition-minimum-
 battery (Section 8.7.6.6).

8.7.5.17. suit-parameter-update-priority

 This parameter sets the priority of the update. This parameter is
 encoded as an integer. It is used along with suit-condition-update-
 authorized (Section 8.7.6.7) to ask an application for permission to
 initiate an update. This does not constitute a privilege inversion
 because an explicit request for authorization has been provided by
 the Update Authority in the form of the suit-condition-update-
 authorized command.

 Applications MAY define their own meanings for the update priority.
 For example, critical reliability & vulnerability fixes MAY be given
 negative numbers, while bug fixes MAY be given small positive
 numbers, and feature additions MAY be given larger positive numbers,
 which allows an application to make an informed decision about
 whether and when to allow an update to proceed.

Moran, et al. Expires January 13, 2022 [Page 52]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.5.18. suit-parameter-version

 Indicates allowable versions for the specified component. Allowable
 versions can be specified, either with a list or with range matching.
 This parameter is compared with version asserted by the current
 component when suit-condition-version (Section 8.7.6.8) is invoked.
 The current component may assert the current version in many ways,
 including storage in a parameter storage database, in a metadata
 object, or in a known location within the component itself.

 The component version can be compared as:

 - Greater.

 - Greater or Equal.

 - Equal.

 - Lesser or Equal.

 - Lesser.

 Versions are encoded as a CBOR list of integers. Comparisons are
 done on each integer in sequence. Comparison stops after all
 integers in the list defined by the manifest have been consumed OR
 after a non-equal match has occurred. For example, if the manifest
 defines a comparison, "Equal [1]", then this will match all version
 sequences starting with 1. If a manifest defines both "Greater or
 Equal [1,0]" and "Lesser [1,10]", then it will match versions 1.0.x
 up to, but not including 1.10.

 While the exact encoding of versions is application-defined, semantic
 versions map conveniently. For example,

 - 1.2.3 = [1,2,3].

 - 1.2-rc3 = [1,2,-1,3].

 - 1.2-beta = [1,2,-2].

 - 1.2-alpha = [1,2,-3].

 - 1.2-alpha4 = [1,2,-3,4].

 suit-condition-version is OPTIONAL to implement.

 Versions SHOULD be provided as follows:

Moran, et al. Expires January 13, 2022 [Page 53]

Internet-Draft CBOR-based SUIT Manifest July 2021

 1. The first integer represents the major number. This indicates
 breaking changes to the component.

 2. The second integer represents the minor number. This is
 typically reserved for new features or large, non-breaking
 changes.

 3. The third integer is the patch version. This is typically
 reserved for bug fixes.

 4. The fourth integer is the build number.

 Where Alpha (-3), Beta (-2), and Release Candidate (-1) are used,
 they are inserted as a negative number between Minor and Patch
 numbers. This allows these releases to compare correctly with final
 releases. For example, Version 2.0, RC1 should be lower than Version
 2.0.0 and higher than any Version 1.x. By encoding RC as -1, this
 works correctly: [2,0,-1,1] compares as lower than [2,0,0].
 Similarly, beta (-2) is lower than RC and alpha (-3) is lower than
 RC.

8.7.5.19. suit-parameter-wait-info

 suit-directive-wait (Section 8.7.7.11) directs the manifest processor
 to pause until a specified event occurs. The suit-parameter-wait-
 info encodes the parameters needed for the directive.

 The exact implementation of the pause is implementation-defined. For
 example, this could be done by blocking on a semaphore, registering
 an event handler and suspending the manifest processor, polling for a
 notification, or aborting the update entirely, then restarting when a
 notification is received.

 suit-parameter-wait-info is encoded as a map of wait events. When
 ALL wait events are satisfied, the Manifest Processor continues. The
 wait events currently defined are described in the following table.

Moran, et al. Expires January 13, 2022 [Page 54]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +------------------------------+---------+--------------------------+
 | Name | Encodin | Description |
 | | g | |
 +------------------------------+---------+--------------------------+
suit-wait-event-	int	Same as suit-parameter-
authorization		update-priority
suit-wait-event-power	int	Wait until power state
suit-wait-event-network	int	Wait until network state
suit-wait-event-other-	See	Wait for other device to
device-version	below	match version
suit-wait-event-time	uint	Wait until time (seconds
		since 1970-01-01)
suit-wait-event-time-of-day	uint	Wait until seconds since
		00:00:00
suit-wait-event-time-of-day-	uint	Wait until seconds since
utc		00:00:00 UTC
suit-wait-event-day-of-week	uint	Wait until days since
		Sunday
suit-wait-event-day-of-week-	uint	Wait until days since
utc		Sunday UTC
 +------------------------------+---------+--------------------------+

 suit-wait-event-other-device-version reuses the encoding of suit-
 parameter-version-match. It is encoded as a sequence that contains
 an implementation-defined bstr identifier for the other device, and a
 list of one or more SUIT_Parameter_Version_Match.

8.7.5.20. suit-parameter-uri-list

 Indicates a list of URIs from which to fetch a resource. The URI
 list is encoded as a list of text string, in priority order. CBOR
 Tag 32 is not used because the meaning of the text string is
 unambiguous in this context. The Recipient should attempt to fetch
 the resource from each URI in turn, ruling out each, in order, if the
 resource is inaccessible or it is otherwise undesirable to fetch from
 that URI. suit-parameter-uri-list is consumed by suit-directive-
 fetch-uri-list (Section 8.7.7.8).

Moran, et al. Expires January 13, 2022 [Page 55]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.5.21. suit-parameter-fetch-arguments

 An implementation-defined set of arguments to suit-directive-fetch
 (Section 8.7.7.7). Arguments are encoded in a bstr.

8.7.5.22. suit-parameter-strict-order

 The Strict Order Parameter allows a manifest to govern when
 directives can be executed out-of-order. This allows for systems
 that have a sensitivity to order of updates to choose the order in
 which they are executed. It also allows for more advanced systems to
 parallelize their handling of updates. Strict Order defaults to
 True. It MAY be set to False when the order of operations does not
 matter. When arriving at the end of a command sequence, ALL commands
 MUST have completed, regardless of the state of
 SUIT_Parameter_Strict_Order. SUIT_Process_Dependency must preserve
 and restore the state of SUIT_Parameter_Strict_Order. If
 SUIT_Parameter_Strict_Order is returned to True, ALL preceding
 commands MUST complete before the next command is executed.

 See Section 6.7 for behavioral description of Strict Order.

8.7.5.23. suit-parameter-soft-failure

 When executing a command sequence inside suit-directive-try-each
 (Section 8.7.7.3) or suit-directive-run-sequence (Section 8.7.7.12)
 and a condition failure occurs, the manifest processor aborts the
 sequence. For suit-directive-try-each, if Soft Failure is True, the
 next sequence in Try Each is invoked, otherwise suit-directive-try-
 each fails with the condition failure code. In suit-directive-run-
 sequence, if Soft Failure is True the suit-directive-run-sequence
 simply halts with no side-effects and the Manifest Processor
 continues with the following command, otherwise, the suit-directive-
 run-sequence fails with the condition failure code.

 suit-parameter-soft-failure is scoped to the enclosing
 SUIT_Command_Sequence. Its value is discarded when
 SUIT_Command_Sequence terminates. It MUST NOT be set outside of
 suit-directive-try-each or suit-directive-run-sequence.

 When suit-directive-try-each is invoked, Soft Failure defaults to
 True. An Update Author may choose to set Soft Failure to False if
 they require a failed condition in a sequence to force an Abort.

 When suit-directive-run-sequence is invoked, Soft Failure defaults to
 False. An Update Author may choose to make failures soft within a
 suit-directive-run-sequence.

Moran, et al. Expires January 13, 2022 [Page 56]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.5.24. suit-parameter-custom

 This parameter is an extension point for any proprietary, application
 specific conditions and directives. It MUST NOT be used in the
 common sequence. This effectively scopes each custom command to a
 particular Vendor Identifier/Class Identifier pair.

8.7.6. SUIT_Condition

 Conditions are used to define mandatory properties of a system in
 order for an update to be applied. They can be pre-conditions or
 post-conditions of any directive or series of directives, depending
 on where they are placed in the list. All Conditions specify a
 Reporting Policy as described Section 8.7.4. Conditions include:

Moran, et al. Expires January 13, 2022 [Page 57]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +----------------+----------------------------------+---------------+
 | Name | CDDL Structure | Reference |
 +----------------+----------------------------------+---------------+
Vendor	suit-condition-vendor-identifier	Section 8.7.6
Identifier		.1
Class	suit-condition-class-identifier	Section 8.7.6
Identifier		.1
Device	suit-condition-device-identifier	Section 8.7.6
Identifier		.1
Image Match	suit-condition-image-match	Section 8.7.6
		.2
Image Not	suit-condition-image-not-match	Section 8.7.6
Match		.3
Use Before	suit-condition-use-before	Section 8.7.6
		.4
Component Slot	suit-condition-component-slot	Section 8.7.6
		.5
Minimum	suit-condition-minimum-battery	Section 8.7.6
Battery		.6
Update	suit-condition-update-authorized	Section 8.7.6
Authorized		.7
Version	suit-condition-version	Section 8.7.6
		.8
Abort	suit-condition-abort	Section 8.7.6
		.9
Custom	suit-condition-custom	Section 8.7.6
Condition		.10
 +----------------+----------------------------------+---------------+

 The abstract description of these conditions is defined in
Section 6.4.

 Conditions compare parameters against properties of the system.
 These properties may be asserted in many different ways, including:
 calculation on-demand, volatile definition in memory, static
 definition within the manifest processor, storage in known location
 within an image, storage within a key storage system, storage in One-

Moran, et al. Expires January 13, 2022 [Page 58]

Internet-Draft CBOR-based SUIT Manifest July 2021

 Time-Programmable memory, inclusion in mask ROM, or inclusion as a
 register in hardware. Some of these assertion methods are global in
 scope, such as a hardware register, some are scoped to an individual
 component, such as storage at a known location in an image, and some
 assertion methods can be either global or component-scope, based on
 implementation.

 Each condition MUST report a result code on completion. If a
 condition reports failure, then the current sequence of commands MUST
 terminate. A subsequent command or command sequence MAY continue
 executing if suit-parameter-soft-failure (Section 8.7.5.23) is set.
 If a condition requires additional information, this MUST be
 specified in one or more parameters before the condition is executed.
 If a Recipient attempts to process a condition that expects
 additional information and that information has not been set, it MUST
 report a failure. If a Recipient encounters an unknown condition, it
 MUST report a failure.

 Condition labels in the positive number range are reserved for IANA
 registration while those in the negative range are custom conditions
 reserved for proprietary definition by the author of a manifest
 processor. See Section 11 for more details.

8.7.6.1. suit-condition-vendor-identifier, suit-condition-class-
 identifier, and suit-condition-device-identifier

 There are three identifier-based conditions: suit-condition-vendor-
 identifier, suit-condition-class-identifier, and suit-condition-
 device-identifier. Each of these conditions match a RFC 4122
 [RFC4122] UUID that MUST have already been set as a parameter. The
 installing Recipient MUST match the specified UUID in order to
 consider the manifest valid. These identifiers are scoped by
 component in the manifest. Each component MAY match more than one
 identifier. Care is needed to ensure that manifests correctly
 identify their targets using these conditions. Using only a generic
 class ID for a device-specific firmware could result in matching
 devices that are not compatible.

 The Recipient uses the ID parameter that has already been set using
 the Set Parameters directive. If no ID has been set, this condition
 fails. suit-condition-class-identifier and suit-condition-vendor-
 identifier are REQUIRED to implement. suit-condition-device-
 identifier is OPTIONAL to implement.

 Each identifier condition compares the corresponding identifier
 parameter to a parameter asserted to the Manifest Processor by the
 Recipient. Identifiers MUST be known to the Manifest Processor in
 order to evaluate compatibility.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires January 13, 2022 [Page 59]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.6.2. suit-condition-image-match

 Verify that the current component matches the suit-parameter-image-
 digest (Section 8.7.5.6) for the current component. The digest is
 verified against the digest specified in the Component's parameters
 list. If no digest is specified, the condition fails. suit-
 condition-image-match is REQUIRED to implement.

8.7.6.3. suit-condition-image-not-match

 Verify that the current component does not match the suit-parameter-
 image-digest (Section 8.7.5.6). If no digest is specified, the
 condition fails. suit-condition-image-not-match is OPTIONAL to
 implement.

8.7.6.4. suit-condition-use-before

 Verify that the current time is BEFORE the specified time. suit-
 condition-use-before is used to specify the last time at which an
 update should be installed. The recipient evaluates the current time
 against the suit-parameter-use-before parameter (Section 8.7.5.8),
 which must have already been set as a parameter, encoded as seconds
 after 1970-01-01 00:00:00 UTC. Timestamp conditions MUST be
 evaluated in 64 bits, regardless of encoded CBOR size. suit-
 condition-use-before is OPTIONAL to implement.

8.7.6.5. suit-condition-component-slot

 Verify that the slot index of the current component matches the slot
 index set in suit-parameter-component-slot (Section 8.7.5.9). This
 condition allows a manifest to select between several images to match
 a target slot.

8.7.6.6. suit-condition-minimum-battery

 suit-condition-minimum-battery provides a mechanism to test a
 Recipient's battery level before installing an update. This
 condition is primarily for use in primary-cell applications, where
 the battery is only ever discharged. For batteries that are charged,
 suit-directive-wait is more appropriate, since it defines a "wait"
 until the battery level is sufficient to install the update. suit-
 condition-minimum-battery is specified in mWh. suit-condition-
 minimum-battery is OPTIONAL to implement. suit-condition-minimum-
 battery consumes suit-parameter-minimum-battery (Section 8.7.5.16).

Moran, et al. Expires January 13, 2022 [Page 60]

Internet-Draft CBOR-based SUIT Manifest July 2021

8.7.6.7. suit-condition-update-authorized

 Request Authorization from the application and fail if not
 authorized. This can allow a user to decline an update. suit-
 parameter-update-priority (Section 8.7.5.17) provides an integer
 priority level that the application can use to determine whether or
 not to authorize the update. Priorities are application defined.
 suit-condition-update-authorized is OPTIONAL to implement.

8.7.6.8. suit-condition-version

 suit-condition-version allows comparing versions of firmware.
 Verifying image digests is preferred to version checks because
 digests are more precise. suit-condition-version examines a
 component's version against the version info specified in suit-
 parameter-version (Section 8.7.5.18)

8.7.6.9. suit-condition-abort

 Unconditionally fail. This operation is typically used in
 conjunction with suit-directive-try-each (Section 8.7.7.3).

8.7.6.10. suit-condition-custom

 suit-condition-custom describes any proprietary, application specific
 condition. This is encoded as a negative integer, chosen by the
 firmware developer. If additional information must be provided to
 the condition, it should be encoded in a custom parameter (a nint) as
 described in Section 8.7.5. SUIT_Condition_Custom is OPTIONAL to
 implement.

8.7.7. SUIT_Directive

 Directives are used to define the behavior of the recipient.
 Directives include:

Moran, et al. Expires January 13, 2022 [Page 61]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +---------------+-------------------------------------+-------------+
 | Name | CDDL Structure | Reference |
 +---------------+-------------------------------------+-------------+
Set Component	suit-directive-set-component-index	Section 8.7
Index		.7.1
Set	suit-directive-set-dependency-index	Section 8.7
Dependency		.7.2
Index		
Try Each	suit-directive-try-each	Section 8.7
		.7.3
Process	suit-directive-process-dependency	Section 8.7
Dependency		.7.4
Set	suit-directive-set-parameters	Section 8.7
Parameters		.7.5
Override	suit-directive-override-parameters	Section 8.7
Parameters		.7.6
Fetch	suit-directive-fetch	Section 8.7
		.7.7
Fetch URI	suit-directive-fetch-uri-list	Section 8.7
list		.7.8
Copy	suit-directive-copy	Section 8.7
		.7.9
Run	suit-directive-run	Section 8.7
		.7.10
Wait For	suit-directive-wait	Section 8.7
Event		.7.11
Run Sequence	suit-directive-run-sequence	Section 8.7
		.7.12
Swap	suit-directive-swap	Section 8.7
		.7.13
Unlink	suit-directive-unlink	Section 8.7
		.8
 +---------------+-------------------------------------+-------------+

 The abstract description of these commands is defined in Section 6.4.

Moran, et al. Expires January 13, 2022 [Page 62]

Internet-Draft CBOR-based SUIT Manifest July 2021

 When a Recipient executes a Directive, it MUST report a result code.
 If the Directive reports failure, then the current Command Sequence
 MUST be terminated.

8.7.7.1. suit-directive-set-component-index

 Set Component Index defines the component to which successive
 directives and conditions will apply. The supplied argument MUST be
 one of three types:

 1. An unsigned integer (REQUIRED to implement in parser)

 2. A boolean (REQUIRED to implement in parser ONLY IF 2 or more
 components supported)

 3. An array of unsigned integers (REQUIRED to implement in parser
 ONLY IF 3 or more components supported)

 If the following commands apply to ONE component, an unsigned integer
 index into the component list is used. If the following commands
 apply to ALL components, then the boolean value "True" is used
 instead of an index. If the following commands apply to more than
 one, but not all components, then an array of unsigned integer
 indices into the component list is used. See Section 6.5 for more
 details.

 If the following commands apply to NO components, then the boolean
 value "False" is used. When suit-directive-set-dependency-index is
 used, suit-directive-set-component-index = False is implied. When
 suit-directive-set-component-index is used, suit-directive-set-
 dependency-index = False is implied.

 If component index is set to True when a command is invoked, then the
 command applies to all components, in the order they appear in suit-
 common-components. When the Manifest Processor invokes a command
 while the component index is set to True, it must execute the command
 once for each possible component index, ensuring that the command
 receives the parameters corresponding to that component index.

8.7.7.2. suit-directive-set-dependency-index

 Set Dependency Index defines the manifest to which successive
 directives and conditions will apply. The supplied argument MUST be
 either a boolean or an unsigned integer index into the dependencies,
 or an array of unsigned integer indices into the list of
 dependencies. If the following directives apply to ALL dependencies,
 then the boolean value "True" is used instead of an index. If the
 following directives apply to NO dependencies, then the boolean value

Moran, et al. Expires January 13, 2022 [Page 63]

Internet-Draft CBOR-based SUIT Manifest July 2021

 "False" is used. When suit-directive-set-component-index is used,
 suit-directive-set-dependency-index = False is implied. When suit-
 directive-set-dependency-index is used, suit-directive-set-component-
 index = False is implied.

 If dependency index is set to True when a command is invoked, then
 the command applies to all dependencies, in the order they appear in
 suit-common-components. When the Manifest Processor invokes a
 command while the dependency index is set to True, the Manifest
 Processor MUST execute the command once for each possible dependency
 index, ensuring that the command receives the parameters
 corresponding to that dependency index. If the dependency index is
 set to an array of unsigned integers, then the Manifest Processor
 MUST execute the command once for each listed dependency index,
 ensuring that the command receives the parameters corresponding to
 that dependency index.

 See Section 6.5 for more details.

 Typical operations that require suit-directive-set-dependency-index
 include setting a source URI or Encryption Information, invoking
 "Fetch," or invoking "Process Dependency" for an individual
 dependency.

8.7.7.3. suit-directive-try-each

 This command runs several SUIT_Command_Sequence instances, one after
 another, in a strict order. Use this command to implement a "try/
 catch-try/catch" sequence. Manifest processors MAY implement this
 command.

 suit-parameter-soft-failure (Section 8.7.5.23) is initialized to True
 at the beginning of each sequence. If one sequence aborts due to a
 condition failure, the next is started. If no sequence completes
 without condition failure, then suit-directive-try-each returns an
 error. If a particular application calls for all sequences to fail
 and still continue, then an empty sequence (nil) can be added to the
 Try Each Argument.

 The argument to suit-directive-try-each is a list of
 SUIT_Command_Sequence. suit-directive-try-each does not specify a
 reporting policy.

8.7.7.4. suit-directive-process-dependency

 Execute the commands in the common section of the current dependency,
 followed by the commands in the equivalent section of the current
 dependency. For example, if the current section is "fetch payload,"

Moran, et al. Expires January 13, 2022 [Page 64]

Internet-Draft CBOR-based SUIT Manifest July 2021

 this will execute "common" in the current dependency, then "fetch
 payload" in the current dependency. Once this is complete, the
 command following suit-directive-process-dependency will be
 processed.

 If the current dependency is False, this directive has no effect. If
 the current dependency is True, then this directive applies to all
 dependencies. If the current section is "common," then the command
 sequence MUST be terminated with an error.

 When SUIT_Process_Dependency completes, it forwards the last status
 code that occurred in the dependency.

8.7.7.5. suit-directive-set-parameters

 suit-directive-set-parameters allows the manifest to configure
 behavior of future directives by changing parameters that are read by
 those directives. When dependencies are used, suit-directive-set-
 parameters also allows a manifest to modify the behavior of its
 dependencies.

 Available parameters are defined in Section 8.7.5.

 If a parameter is already set, suit-directive-set-parameters will
 skip setting the parameter to its argument. This provides the core
 of the override mechanism, allowing dependent manifests to change the
 behavior of a manifest.

 suit-directive-set-parameters does not specify a reporting policy.

8.7.7.6. suit-directive-override-parameters

 suit-directive-override-parameters replaces any listed parameters
 that are already set with the values that are provided in its
 argument. This allows a manifest to prevent replacement of critical
 parameters.

 Available parameters are defined in Section 8.7.5.

 suit-directive-override-parameters does not specify a reporting
 policy.

8.7.7.7. suit-directive-fetch

 suit-directive-fetch instructs the manifest processor to obtain one
 or more manifests or payloads, as specified by the manifest index and
 component index, respectively.

Moran, et al. Expires January 13, 2022 [Page 65]

Internet-Draft CBOR-based SUIT Manifest July 2021

 suit-directive-fetch can target one or more manifests and one or more
 payloads. suit-directive-fetch retrieves each component and each
 manifest listed in component-index and dependency-index,
 respectively. If component-index or dependency-index is True,
 instead of an integer, then all current manifest components/manifests
 are fetched. The current manifest's dependent-components are not
 automatically fetched. In order to pre-fetch these, they MUST be
 specified in a component-index integer.

 suit-directive-fetch typically takes no arguments unless one is
 needed to modify fetch behavior. If an argument is needed, it must
 be wrapped in a bstr and set in suit-parameter-fetch-arguments.

 suit-directive-fetch reads the URI parameter to find the source of
 the fetch it performs.

 The behavior of suit-directive-fetch can be modified by setting one
 or more of SUIT_Parameter_Encryption_Info,
 SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info. These
 three parameters each activate and configure a processing step that
 can be applied to the data that is transferred during suit-directive-
 fetch.

8.7.7.8. suit-directive-fetch-uri-list

 suit-directive-fetch-uri-list uses the same semantics as suit-
 directive-fetch (Section 8.7.7.7), except that it iterates over the
 URI List (Section 8.7.5.20) to select a URI to fetch from.

8.7.7.9. suit-directive-copy

 suit-directive-copy instructs the manifest processor to obtain one or
 more payloads, as specified by the component index. As described in

Section 6.5 component index may be a single integer, a list of
 integers, or True. suit-directive-copy retrieves each component
 specified by the current component-index, respectively. The current
 manifest's dependent-components are not automatically copied. In
 order to copy these, they MUST be specified in a component-index
 integer.

 The behavior of suit-directive-copy can be modified by setting one or
 more of SUIT_Parameter_Encryption_Info,
 SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info. These
 three parameters each activate and configure a processing step that
 can be applied to the data that is transferred during suit-directive-
 copy.

Moran, et al. Expires January 13, 2022 [Page 66]

Internet-Draft CBOR-based SUIT Manifest July 2021

 suit-directive-copy reads its source from suit-parameter-source-
 component (Section 8.7.5.14).

 If either the source component parameter or the source component
 itself is absent, this command fails.

8.7.7.10. suit-directive-run

 suit-directive-run directs the manifest processor to transfer
 execution to the current Component Index. When this is invoked, the
 manifest processor MAY be unloaded and execution continues in the
 Component Index. Arguments are provided to suit-directive-run
 through suit-parameter-run-arguments (Section 8.7.5.15) and are
 forwarded to the executable code located in Component Index in an
 application-specific way. For example, this could form the Linux
 Kernel Command Line if booting a Linux device.

 If the executable code at Component Index is constructed in such a
 way that it does not unload the manifest processor, then the manifest
 processor may resume execution after the executable completes. This
 allows the manifest processor to invoke suitable helpers and to
 verify them with image conditions.

8.7.7.11. suit-directive-wait

 suit-directive-wait directs the manifest processor to pause until a
 specified event occurs. Some possible events include:

 1. Authorization

 2. External Power

 3. Network availability

 4. Other Device Firmware Version

 5. Time

 6. Time of Day

 7. Day of Week

8.7.7.12. suit-directive-run-sequence

 To enable conditional commands, and to allow several strictly ordered
 sequences to be executed out-of-order, suit-directive-run-sequence
 allows the manifest processor to execute its argument as a
 SUIT_Command_Sequence. The argument must be wrapped in a bstr.

Moran, et al. Expires January 13, 2022 [Page 67]

Internet-Draft CBOR-based SUIT Manifest July 2021

 When a sequence is executed, any failure of a condition causes
 immediate termination of the sequence.

 When suit-directive-run-sequence completes, it forwards the last
 status code that occurred in the sequence. If the Soft Failure
 parameter is true, then suit-directive-run-sequence only fails when a
 directive in the argument sequence fails.

 suit-parameter-soft-failure (Section 8.7.5.23) defaults to False when
 suit-directive-run-sequence begins. Its value is discarded when
 suit-directive-run-sequence terminates.

8.7.7.13. suit-directive-swap

 suit-directive-swap instructs the manifest processor to move the
 source to the destination and the destination to the source
 simultaneously. Swap has nearly identical semantics to suit-
 directive-copy except that suit-directive-swap replaces the source
 with the current contents of the destination in an application-
 defined way. As with suit-directive-copy, if the source component is
 missing, this command fails.

 If SUIT_Parameter_Compression_Info or SUIT_Parameter_Encryption_Info
 are present, they MUST be handled in a symmetric way, so that the
 source is decompressed into the destination and the destination is
 compressed into the source. The source is decrypted into the
 destination and the destination is encrypted into the source. suit-
 directive-swap is OPTIONAL to implement.

8.7.8. suit-directive-unlink

 suit-directive-unlink marks the current component as unused in the
 current manifest. This can be used to remove temporary storage or
 remove components that are no longer needed. Example use cases:

 - Temporary storage for encrypted download

 - Temporary storage for verifying decompressed file before writing
 to flash

 - Removing Trusted Service no longer needed by Trusted Application

 Once the current Command Sequence is complete, the manifest
 processors checks each marked component to see whether any other
 manifests have referenced it. Those marked components with no other
 references are deleted. The manifest processor MAY choose to ignore
 a Unlink directive depending on device policy.

Moran, et al. Expires January 13, 2022 [Page 68]

Internet-Draft CBOR-based SUIT Manifest July 2021

 suit-directive-unlink is OPTIONAL to implement in manifest
 processors.

8.7.9. Integrity Check Values

 When the CoSWID, Text section, or any Command Sequence of the Update
 Procedure is made severable, it is moved to the Envelope and replaced
 with a SUIT_Digest. The SUIT_Digest is computed over the entire bstr
 enclosing the Manifest element that has been moved to the Envelope.
 Each element that is made severable from the Manifest is placed in
 the Envelope. The keys for the envelope elements have the same
 values as the keys for the manifest elements.

 Each Integrity Check Value covers the corresponding Envelope Element
 as described in Section 8.8.

8.8. Severable Elements

 Because the manifest can be used by different actors at different
 times, some parts of the manifest can be removed or "Severed" without
 affecting later stages of the lifecycle. Severing of information is
 achieved by separating that information from the signed container so
 that removing it does not affect the signature. This means that
 ensuring integrity of severable parts of the manifest is a
 requirement for the signed portion of the manifest. Severing some
 parts makes it possible to discard parts of the manifest that are no
 longer necessary. This is important because it allows the storage
 used by the manifest to be greatly reduced. For example, no text
 size limits are needed if text is removed from the manifest prior to
 delivery to a constrained device.

 Elements are made severable by removing them from the manifest,
 encoding them in a bstr, and placing a SUIT_Digest of the bstr in the
 manifest so that they can still be authenticated. The SUIT_Digest
 typically consumes 4 bytes more than the size of the raw digest,
 therefore elements smaller than (Digest Bits)/8 + 4 SHOULD NOT be
 severable. Elements larger than (Digest Bits)/8 + 4 MAY be
 severable, while elements that are much larger than (Digest Bits)/8 +
 4 SHOULD be severable.

 Because of this, all command sequences in the manifest are encoded in
 a bstr so that there is a single code path needed for all command
 sequences.

Moran, et al. Expires January 13, 2022 [Page 69]

Internet-Draft CBOR-based SUIT Manifest July 2021

9. Access Control Lists

 To manage permissions in the manifest, there are three models that
 can be used.

 First, the simplest model requires that all manifests are
 authenticated by a single trusted key. This mode has the advantage
 that only a root manifest needs to be authenticated, since all of its
 dependencies have digests included in the root manifest.

 This simplest model can be extended by adding key delegation without
 much increase in complexity.

 A second model requires an ACL to be presented to the Recipient,
 authenticated by a trusted party or stored on the Recipient. This
 ACL grants access rights for specific component IDs or Component
 Identifier prefixes to the listed identities or identity groups. Any
 identity can verify an image digest, but fetching into or fetching
 from a Component Identifier requires approval from the ACL.

 A third model allows a Recipient to provide even more fine-grained
 controls: The ACL lists the Component Identifier or Component
 Identifier prefix that an identity can use, and also lists the
 commands and parameters that the identity can use in combination with
 that Component Identifier.

10. SUIT Digest Container

 The SUIT digest is a CBOR List containing two elements: an algorithm
 identifier and a bstr containing the bytes of the digest. Some forms
 of digest may require additional parameters. These can be added
 following the digest.

 The values of the algorithm identifier are defined by
 [I-D.ietf-cose-hash-algs]. The following algorithms MUST be
 implemented by all Manifest Processors:

 - SHA-256 (-16)

 The following algorithms MAY be implemented in a Manifest Processor:

 - SHAKE128 (-18)

 - SHA-384 (-43)

 - SHA-512 (-44)

 - SHAKE256 (-45)

Moran, et al. Expires January 13, 2022 [Page 70]

Internet-Draft CBOR-based SUIT Manifest July 2021

11. IANA Considerations

 IANA is requested to:

 - allocate CBOR tag 107 in the CBOR Tags registry for the SUIT
 Envelope.

 - allocate CBOR tag 1070 in the CBOR Tags registry for the SUIT
 Manifest.

 - allocate media type application/suit-envelope in the Media Types
 registry.

 - setup several registries as described below.

 IANA is requested to setup a registry for SUIT manifests. Several
 registries defined in the subsections below need to be created.

 For each registry, values 0-23 are Standards Action, 24-255 are IETF
 Review, 256-65535 are Expert Review, and 65536 or greater are First
 Come First Served.

 Negative values -23 to 0 are Experimental Use, -24 and lower are
 Private Use.

11.1. SUIT Commands

 +-------+------------+-----------------------------------+----------+
 | Label | Name | Reference | |
 +-------+------------+-----------------------------------+----------+
1	Vendor	Section 8.7.6.1	
	Identifier		
2	Class	Section 8.7.6.1	
	Identifier		
3	Image	Section 8.7.6.2	
	Match		
4	Use Before	Section 8.7.6.4	
5	Component	Section 8.7.6.5	
	Slot		
12	Set	Section 8.7.7.1	
	Component		
	Index		

Moran, et al. Expires January 13, 2022 [Page 71]

Internet-Draft CBOR-based SUIT Manifest July 2021

13	Set	Section 8.7.7.2	
	Dependency		
	Index		
14	Abort		
15	Try Each	Section 8.7.7.3	
16	Reserved		
17	Reserved		
18	Process	suit-directive-process-dependency	Section
	Dependency		8.7.7.4
19	Set	Section 8.7.7.5	
	Parameters		
20	Override	Section 8.7.7.6	
	Parameters		
21	Fetch	Section 8.7.7.7	
22	Copy	Section 8.7.7.9	
23	Run	Section 8.7.7.10	
24	Device	Section 8.7.6.1	
	Identifier		
25	Image Not	Section 8.7.6.3	
	Match		
26	Minimum	Section 8.7.6.6	
	Battery		
27	Update	Section 8.7.6.7	
	Authorized		
28	Version	Section 8.7.6.8	
29	Wait For	Section 8.7.7.11	
	Event		
30	Fetch URI	Section 8.7.7.8	
	List		
31	Swap	Section 8.7.7.13	

Moran, et al. Expires January 13, 2022 [Page 72]

Internet-Draft CBOR-based SUIT Manifest July 2021

32	Run	Section 8.7.7.12	
	Sequence		
33	Unlink	Section 8.7.8	
nint	Custom	Section 8.7.6.10	
	Condition		
 +-------+------------+-----------------------------------+----------+

11.2. SUIT Parameters

Moran, et al. Expires January 13, 2022 [Page 73]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +-------+------------------+---------------------------+
 | Label | Name | Reference |
 +-------+------------------+---------------------------+
 | 1 | Vendor ID | Section 8.7.5.3 |
 | | | |
 | 2 | Class ID | Section 8.7.5.4 |
 | | | |
 | 3 | Image Digest | Section 8.7.5.6 |
 | | | |
 | 4 | Use Before | Section 8.7.5.8 |
 | | | |
 | 5 | Component Slot | Section 8.7.5.9 |
 | | | |
 | 12 | Strict Order | Section 8.7.5.22 |
 | | | |
 | 13 | Soft Failure | Section 8.7.5.23 |
 | | | |
 | 14 | Image Size | Section 8.7.5.7 |
 | | | |
 | 18 | Encryption Info | Section 8.7.5.10 |
 | | | |
 | 19 | Compression Info | Section 8.7.5.11 |
 | | | |
 | 20 | Unpack Info | Section 8.7.5.12 |
 | | | |
 | 21 | URI | Section 8.7.5.13 |
 | | | |
 | 22 | Source Component | Section 8.7.5.14 |
 | | | |
 | 23 | Run Args | Section 8.7.5.15 |
 | | | |
 | 24 | Device ID | Section 8.7.5.5 |
 | | | |
 | 26 | Minimum Battery | Section 8.7.5.16 |
 | | | |
 | 27 | Update Priority | Section 8.7.5.17 |
 | | | |
 | 28 | Version | {{suit-parameter-version} |
 | | | |
 | 29 | Wait Info | Section 8.7.5.19 |
 | | | |
 | 30 | URI List | Section 8.7.5.20 |
 | | | |
 | nint | Custom | Section 8.7.5.24 |
 +-------+------------------+---------------------------+

Moran, et al. Expires January 13, 2022 [Page 74]

Internet-Draft CBOR-based SUIT Manifest July 2021

11.3. SUIT Text Values

 +-------+----------------------+---------------+
 | Label | Name | Reference |
 +-------+----------------------+---------------+
 | 1 | Manifest Description | Section 8.6.4 |
 | | | |
 | 2 | Update Description | Section 8.6.4 |
 | | | |
 | 3 | Manifest JSON Source | Section 8.6.4 |
 | | | |
 | 4 | Manifest YAML Source | Section 8.6.4 |
 | | | |
 | nint | Custom | Section 8.6.4 |
 +-------+----------------------+---------------+

11.4. SUIT Component Text Values

 +-------+----------------------------+---------------+
 | Label | Name | Reference |
 +-------+----------------------------+---------------+
 | 1 | Vendor Name | Section 8.6.4 |
 | | | |
 | 2 | Model Name | Section 8.6.4 |
 | | | |
 | 3 | Vendor Domain | Section 8.6.4 |
 | | | |
 | 4 | Model Info | Section 8.6.4 |
 | | | |
 | 5 | Component Description | Section 8.6.4 |
 | | | |
 | 6 | Component Version | Section 8.6.4 |
 | | | |
 | 7 | Component Version Required | Section 8.6.4 |
 | | | |
 | nint | Custom | Section 8.6.4 |
 +-------+----------------------------+---------------+

11.5. SUIT Algorithm Identifiers

11.5.1. SUIT Compression Algorithm Identifiers

Moran, et al. Expires January 13, 2022 [Page 75]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +-------+--------+------------------+
 | Label | Name | Reference |
 +-------+--------+------------------+
 | 1 | zlib | Section 8.7.5.11 |
 | | | |
 | 2 | Brotli | Section 8.7.5.11 |
 | | | |
 | 3 | zstd | Section 8.7.5.11 |
 +-------+--------+------------------+

11.5.2. Unpack Algorithms

 +-------+------+------------------+
 | Label | Name | Reference |
 +-------+------+------------------+
 | 1 | HEX | Section 8.7.5.12 |
 | | | |
 | 2 | ELF | Section 8.7.5.12 |
 | | | |
 | 3 | COFF | Section 8.7.5.12 |
 | | | |
 | 4 | SREC | Section 8.7.5.12 |
 +-------+------+------------------+

12. Security Considerations

 This document is about a manifest format protecting and describing
 how to retrieve, install, and invoke firmware images and as such it
 is part of a larger solution for delivering firmware updates to IoT
 devices. A detailed security treatment can be found in the
 architecture [I-D.ietf-suit-architecture] and in the information
 model [I-D.ietf-suit-information-model] documents.

13. Acknowledgements

 We would like to thank the following persons for their support in
 designing this mechanism:

 - Milosch Meriac

 - Geraint Luff

 - Dan Ros

 - John-Paul Stanford

 - Hugo Vincent

Moran, et al. Expires January 13, 2022 [Page 76]

Internet-Draft CBOR-based SUIT Manifest July 2021

 - Carsten Bormann

 - Oeyvind Roenningstad

 - Frank Audun Kvamtroe

 - Krzysztof Chruściński

 - Andrzej Puzdrowski

 - Michael Richardson

 - David Brown

 - Emmanuel Baccelli

14. References

14.1. Normative References

 [I-D.ietf-cose-hash-algs]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Hash Algorithms", draft-ietf-cose-hash-algs-09 (work in
 progress), September 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-hash-algs-09
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Moran, et al. Expires January 13, 2022 [Page 77]

Internet-Draft CBOR-based SUIT Manifest July 2021

14.2. Informative References

 [COFF] Wikipedia, ., "Common Object File Format (COFF)", 2020,
 <https://en.wikipedia.org/wiki/COFF>.

 [ELF] Wikipedia, ., "Executable and Linkable Format (ELF)",
 2020, <https://en.wikipedia.org/wiki/

Executable_and_Linkable_Format>.

 [HEX] Wikipedia, ., "Intel HEX", 2020,
 <https://en.wikipedia.org/wiki/Intel_HEX>.

 [I-D.ietf-cbor-tags-oid]
 Bormann, C., "Concise Binary Object Representation (CBOR)
 Tags for Object Identifiers", draft-ietf-cbor-tags-oid-06
 (work in progress), March 2021.

 [I-D.ietf-sacm-coswid]
 Birkholz, H., Fitzgerald-McKay, J., Schmidt, C., and D.
 Waltermire, "Concise Software Identification Tags", draft-

ietf-sacm-coswid-17 (work in progress), February 2021.

 [I-D.ietf-suit-architecture]
 Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A
 Firmware Update Architecture for Internet of Things",

draft-ietf-suit-architecture-16 (work in progress),
 January 2021.

 [I-D.ietf-suit-information-model]
 Moran, B., Tschofenig, H., and H. Birkholz, "A Manifest
 Information Model for Firmware Updates in IoT Devices",

draft-ietf-suit-information-model-11 (work in progress),
 April 2021.

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-14 (work in
 progress), February 2021.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <https://www.rfc-editor.org/info/rfc1950>.

https://en.wikipedia.org/wiki/COFF
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Intel_HEX
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-tags-oid-06
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-17
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-17
https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-16
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-11
https://datatracker.ietf.org/doc/html/draft-ietf-teep-architecture-14
https://datatracker.ietf.org/doc/html/rfc1950
https://www.rfc-editor.org/info/rfc1950

Moran, et al. Expires January 13, 2022 [Page 78]

Internet-Draft CBOR-based SUIT Manifest July 2021

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7932] Alakuijala, J. and Z. Szabadka, "Brotli Compressed Data
 Format", RFC 7932, DOI 10.17487/RFC7932, July 2016,
 <https://www.rfc-editor.org/info/rfc7932>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

 [RFC8878] Collet, Y. and M. Kucherawy, Ed., "Zstandard Compression
 and the 'application/zstd' Media Type", RFC 8878,
 DOI 10.17487/RFC8878, February 2021,
 <https://www.rfc-editor.org/info/rfc8878>.

 [SREC] Wikipedia, ., "SREC (file format)", 2020,
 <https://en.wikipedia.org/wiki/SREC_(file_format)>.

 [YAML] "YAML Ain't Markup Language", 2020, <https://yaml.org/>.

https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7932
https://www.rfc-editor.org/info/rfc7932
https://datatracker.ietf.org/doc/html/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://datatracker.ietf.org/doc/html/rfc8747
https://www.rfc-editor.org/info/rfc8747
https://datatracker.ietf.org/doc/html/rfc8878
https://www.rfc-editor.org/info/rfc8878
https://en.wikipedia
https://yaml.org/

Moran, et al. Expires January 13, 2022 [Page 79]

Internet-Draft CBOR-based SUIT Manifest July 2021

Appendix A. A. Full CDDL

 In order to create a valid SUIT Manifest document the structure of
 the corresponding CBOR message MUST adhere to the following CDDL data
 definition.

 To be valid, the following CDDL MUST have the COSE CDDL appended to
 it. The COSE CDDL can be obtained by following the directions in

[RFC8152], section 1.4.

SUIT_Envelope_Tagged = #6.107(SUIT_Envelope)
SUIT_Envelope = {
 ? suit-delegation => bstr .cbor SUIT_Delegation,
 suit-authentication-wrapper => bstr .cbor SUIT_Authentication,
 suit-manifest => bstr .cbor SUIT_Manifest,
 SUIT_Severable_Manifest_Members,
 * SUIT_Integrated_Payload,
 * SUIT_Integrated_Dependency,
 * $$SUIT_Envelope_Extensions,
 * (int => bstr)
}

SUIT_Delegation = [+ [+ bstr .cbor CWT]]

CWT = SUIT_Authentication_Block

SUIT_Authentication = [
 bstr .cbor SUIT_Digest,
 * bstr .cbor SUIT_Authentication_Block
]

SUIT_Digest = [
 suit-digest-algorithm-id : suit-cose-hash-algs,
 suit-digest-bytes : bstr,
 * $$SUIT_Digest-extensions
]

SUIT_Authentication_Block /= COSE_Mac_Tagged
SUIT_Authentication_Block /= COSE_Sign_Tagged
SUIT_Authentication_Block /= COSE_Mac0_Tagged
SUIT_Authentication_Block /= COSE_Sign1_Tagged

SUIT_Severable_Manifest_Members = (
 ? suit-dependency-resolution => bstr .cbor SUIT_Command_Sequence,
 ? suit-payload-fetch => bstr .cbor SUIT_Command_Sequence,
 ? suit-install => bstr .cbor SUIT_Command_Sequence,
 ? suit-text => bstr .cbor SUIT_Text_Map,
 ? suit-coswid => bstr .cbor concise-software-identity,

https://datatracker.ietf.org/doc/html/rfc8152#section-1.4

Moran, et al. Expires January 13, 2022 [Page 80]

Internet-Draft CBOR-based SUIT Manifest July 2021

 * $$SUIT_severable-members-extensions,
)

SUIT_Integrated_Payload = (suit-integrated-payload-key => bstr)
SUIT_Integrated_Dependency = (
 suit-integrated-dependency-key => bstr .cbor SUIT_Envelope
)
suit-integrated-payload-key = nint / uint .ge 24
suit-integrated-dependency-key = suit-integrated-payload-key

SUIT_Manifest_Tagged = #6.1070(SUIT_Manifest)

SUIT_Manifest = {
 suit-manifest-version => 1,
 suit-manifest-sequence-number => uint,
 suit-common => bstr .cbor SUIT_Common,
 ? suit-reference-uri => tstr,
 SUIT_Severable_Members_Choice,
 SUIT_Unseverable_Members,
 * $$SUIT_Manifest_Extensions,
}

SUIT_Unseverable_Members = (
 ? suit-validate => bstr .cbor SUIT_Command_Sequence,
 ? suit-load => bstr .cbor SUIT_Command_Sequence,
 ? suit-run => bstr .cbor SUIT_Command_Sequence,
 * $$unseverable-manifest-member-extensions,
)

SUIT_Severable_Members_Choice = (
 ? suit-dependency-resolution => \
 bstr .cbor SUIT_Command_Sequence / SUIT_Digest,
 ? suit-payload-fetch => \
 bstr .cbor SUIT_Command_Sequence / SUIT_Digest,
 ? suit-install => bstr .cbor SUIT_Command_Sequence / SUIT_Digest,
 ? suit-text => bstr .cbor SUIT_Command_Sequence / SUIT_Digest,
 ? suit-coswid => bstr .cbor SUIT_Command_Sequence / SUIT_Digest,
 * $$severable-manifest-members-choice-extensions
)

SUIT_Common = {
 ? suit-dependencies => SUIT_Dependencies,
 ? suit-components => SUIT_Components,
 ? suit-common-sequence => bstr .cbor SUIT_Common_Sequence,
 * $$SUIT_Common-extensions,
}

SUIT_Dependencies = [+ SUIT_Dependency]

Moran, et al. Expires January 13, 2022 [Page 81]

Internet-Draft CBOR-based SUIT Manifest July 2021

SUIT_Components = [+ SUIT_Component_Identifier]

concise-software-identity = any

SUIT_Dependency = {
 suit-dependency-digest => SUIT_Digest,
 ? suit-dependency-prefix => SUIT_Component_Identifier,
 * $$SUIT_Dependency-extensions,
}

;REQUIRED to implement:
suit-cose-hash-algs /= cose-alg-sha-256

;OPTIONAL to implement:
suit-cose-hash-algs /= cose-alg-shake128
suit-cose-hash-algs /= cose-alg-sha-384
suit-cose-hash-algs /= cose-alg-sha-512
suit-cose-hash-algs /= cose-alg-shake256

SUIT_Component_Identifier = [* bstr]

SUIT_Common_Sequence = [
 + (SUIT_Condition // SUIT_Common_Commands)
]

SUIT_Common_Commands //= (suit-directive-set-component-index, IndexArg)
SUIT_Common_Commands //= (suit-directive-set-dependency-index, IndexArg)
SUIT_Common_Commands //= (suit-directive-run-sequence,
 bstr .cbor SUIT_Command_Sequence)
SUIT_Common_Commands //= (suit-directive-try-each,
 SUIT_Directive_Try_Each_Argument)
SUIT_Common_Commands //= (suit-directive-set-parameters,
 {+ SUIT_Parameters})
SUIT_Common_Commands //= (suit-directive-override-parameters,
 {+ SUIT_Parameters})

IndexArg /= uint
IndexArg /= bool
IndexArg /= [+uint]

SUIT_Command_Sequence = [+ (
 SUIT_Condition // SUIT_Directive // SUIT_Command_Custom
)]

SUIT_Command_Custom = (suit-command-custom, bstr/tstr/int/nil)
SUIT_Condition //= (suit-condition-vendor-identifier, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-class-identifier, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-device-identifier, SUIT_Rep_Policy)

Moran, et al. Expires January 13, 2022 [Page 82]

Internet-Draft CBOR-based SUIT Manifest July 2021

SUIT_Condition //= (suit-condition-image-match, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-image-not-match, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-use-before, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-minimum-battery, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-update-authorized, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-version, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-component-slot, SUIT_Rep_Policy)
SUIT_Condition //= (suit-condition-abort, SUIT_Rep_Policy)

SUIT_Directive //= (suit-directive-set-component-index, IndexArg)
SUIT_Directive //= (suit-directive-set-dependency-index, IndexArg)
SUIT_Directive //= (suit-directive-run-sequence,
 bstr .cbor SUIT_Command_Sequence)
SUIT_Directive //= (suit-directive-try-each,
 SUIT_Directive_Try_Each_Argument)
SUIT_Directive //= (suit-directive-process-dependency, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-set-parameters,
 {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-override-parameters,
 {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-fetch, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-copy, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-swap, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-run, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-wait, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-fetch-uri-list, SUIT_Rep_Policy)
SUIT_Directive //= (suit-directive-unlink, SUIT_Rep_Policy)

SUIT_Directive_Try_Each_Argument = [
 2* bstr .cbor SUIT_Command_Sequence,
 ?nil
]

SUIT_Rep_Policy = uint .bits suit-reporting-bits

suit-reporting-bits = &(
 suit-send-record-success : 0,
 suit-send-record-failure : 1,
 suit-send-sysinfo-success : 2,
 suit-send-sysinfo-failure : 3
)

SUIT_Wait_Event = { + SUIT_Wait_Events }

SUIT_Wait_Events //= (suit-wait-event-authorization => int)
SUIT_Wait_Events //= (suit-wait-event-power => int)
SUIT_Wait_Events //= (suit-wait-event-network => int)
SUIT_Wait_Events //= (suit-wait-event-other-device-version

Moran, et al. Expires January 13, 2022 [Page 83]

Internet-Draft CBOR-based SUIT Manifest July 2021

 => SUIT_Wait_Event_Argument_Other_Device_Version)
SUIT_Wait_Events //= (suit-wait-event-time => uint); Timestamp
SUIT_Wait_Events //= (suit-wait-event-time-of-day
 => uint); Time of Day (seconds since 00:00:00)
SUIT_Wait_Events //= (suit-wait-event-day-of-week
 => uint); Days since Sunday

SUIT_Wait_Event_Argument_Other_Device_Version = [
 other-device: bstr,
 other-device-version: [+ SUIT_Parameter_Version_Match]
]

SUIT_Parameters //= (suit-parameter-vendor-identifier =>
 (RFC4122_UUID / cbor-pen))
cbor-pen = #6.112(bstr)

SUIT_Parameters //= (suit-parameter-class-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-image-digest
 => bstr .cbor SUIT_Digest)
SUIT_Parameters //= (suit-parameter-image-size => uint)
SUIT_Parameters //= (suit-parameter-use-before => uint)
SUIT_Parameters //= (suit-parameter-component-slot => uint)

SUIT_Parameters //= (suit-parameter-encryption-info
 => bstr .cbor SUIT_Encryption_Info)
SUIT_Parameters //= (suit-parameter-compression-info
 => bstr .cbor SUIT_Compression_Info)
SUIT_Parameters //= (suit-parameter-unpack-info
 => bstr .cbor SUIT_Unpack_Info)

SUIT_Parameters //= (suit-parameter-uri => tstr)
SUIT_Parameters //= (suit-parameter-source-component => uint)
SUIT_Parameters //= (suit-parameter-run-args => bstr)

SUIT_Parameters //= (suit-parameter-device-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-minimum-battery => uint)
SUIT_Parameters //= (suit-parameter-update-priority => uint)
SUIT_Parameters //= (suit-parameter-version =>
 SUIT_Parameter_Version_Match)
SUIT_Parameters //= (suit-parameter-wait-info =>
 bstr .cbor SUIT_Wait_Event)

SUIT_Parameters //= (suit-parameter-custom => int/bool/tstr/bstr)

SUIT_Parameters //= (suit-parameter-strict-order => bool)
SUIT_Parameters //= (suit-parameter-soft-failure => bool)

SUIT_Parameters //= (suit-parameter-uri-list =>

Moran, et al. Expires January 13, 2022 [Page 84]

Internet-Draft CBOR-based SUIT Manifest July 2021

 bstr .cbor SUIT_URI_List)

RFC4122_UUID = bstr .size 16

SUIT_Parameter_Version_Match = [
 suit-condition-version-comparison-type:
 SUIT_Condition_Version_Comparison_Types,
 suit-condition-version-comparison-value:
 SUIT_Condition_Version_Comparison_Value
]
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-greater
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-greater-equal
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-equal
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-lesser-equal
SUIT_Condition_Version_Comparison_Types /=
 suit-condition-version-comparison-lesser

suit-condition-version-comparison-greater = 1
suit-condition-version-comparison-greater-equal = 2
suit-condition-version-comparison-equal = 3
suit-condition-version-comparison-lesser-equal = 4
suit-condition-version-comparison-lesser = 5

SUIT_Condition_Version_Comparison_Value = [+int]

SUIT_Encryption_Info = COSE_Encrypt_Tagged/COSE_Encrypt0_Tagged
SUIT_Compression_Info = {
 suit-compression-algorithm => SUIT_Compression_Algorithms,
 * $$SUIT_Compression_Info-extensions,
}

SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_zlib
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_brotli
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_zstd

SUIT_Compression_Algorithm_zlib = 1
SUIT_Compression_Algorithm_brotli = 2
SUIT_Compression_Algorithm_zstd = 3

SUIT_Unpack_Info = {
 suit-unpack-algorithm => SUIT_Unpack_Algorithms,
 * $$SUIT_Unpack_Info-extensions,

}

Moran, et al. Expires January 13, 2022 [Page 85]

Internet-Draft CBOR-based SUIT Manifest July 2021

SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Hex
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Elf
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Coff
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Srec

SUIT_Unpack_Algorithm_Hex = 1
SUIT_Unpack_Algorithm_Elf = 2
SUIT_Unpack_Algorithm_Coff = 3
SUIT_Unpack_Algorithm_Srec = 4

SUIT_URI_List = [+ tstr]

SUIT_Text_Map = {
 SUIT_Text_Keys,
 * SUIT_Component_Identifier => {
 SUIT_Text_Component_Keys
 }
}

SUIT_Text_Component_Keys = (
 ? suit-text-vendor-name => tstr,
 ? suit-text-model-name => tstr,
 ? suit-text-vendor-domain => tstr,
 ? suit-text-model-info => tstr,
 ? suit-text-component-description => tstr,
 ? suit-text-component-version => tstr,
 ? suit-text-version-required => tstr,
 * $$suit-text-component-key-extensions
)

SUIT_Text_Keys = (
 ? suit-text-manifest-description => tstr,
 ? suit-text-update-description => tstr,
 ? suit-text-manifest-json-source => tstr,
 ? suit-text-manifest-yaml-source => tstr,
 * $$suit-text-key-extensions
)

suit-delegation = 1
suit-authentication-wrapper = 2
suit-manifest = 3

;REQUIRED to implement:
cose-alg-sha-256 = -16

;OPTIONAL to implement:
cose-alg-shake128 = -18
cose-alg-sha-384 = -43

Moran, et al. Expires January 13, 2022 [Page 86]

Internet-Draft CBOR-based SUIT Manifest July 2021

cose-alg-sha-512 = -44
cose-alg-shake256 = -45

suit-manifest-version = 1
suit-manifest-sequence-number = 2
suit-common = 3
suit-reference-uri = 4
suit-dependency-resolution = 7
suit-payload-fetch = 8
suit-install = 9
suit-validate = 10
suit-load = 11
suit-run = 12
suit-text = 13
suit-coswid = 14

suit-dependencies = 1
suit-components = 2
suit-common-sequence = 4

suit-dependency-digest = 1
suit-dependency-prefix = 2

suit-command-custom = nint

suit-condition-vendor-identifier = 1
suit-condition-class-identifier = 2
suit-condition-image-match = 3
suit-condition-use-before = 4
suit-condition-component-slot = 5

suit-condition-abort = 14
suit-condition-device-identifier = 24
suit-condition-image-not-match = 25
suit-condition-minimum-battery = 26
suit-condition-update-authorized = 27
suit-condition-version = 28

suit-directive-set-component-index = 12
suit-directive-set-dependency-index = 13
suit-directive-try-each = 15
suit-directive-process-dependency = 18
suit-directive-set-parameters = 19
suit-directive-override-parameters = 20
suit-directive-fetch = 21
suit-directive-copy = 22
suit-directive-run = 23

Moran, et al. Expires January 13, 2022 [Page 87]

Internet-Draft CBOR-based SUIT Manifest July 2021

suit-directive-wait = 29
suit-directive-fetch-uri-list = 30
suit-directive-swap = 31
suit-directive-run-sequence = 32
suit-directive-unlink = 33

suit-wait-event-authorization = 1
suit-wait-event-power = 2
suit-wait-event-network = 3
suit-wait-event-other-device-version = 4
suit-wait-event-time = 5
suit-wait-event-time-of-day = 6
suit-wait-event-day-of-week = 7

suit-parameter-vendor-identifier = 1
suit-parameter-class-identifier = 2
suit-parameter-image-digest = 3
suit-parameter-use-before = 4
suit-parameter-component-slot = 5

suit-parameter-strict-order = 12
suit-parameter-soft-failure = 13
suit-parameter-image-size = 14

suit-parameter-encryption-info = 18
suit-parameter-compression-info = 19
suit-parameter-unpack-info = 20
suit-parameter-uri = 21
suit-parameter-source-component = 22
suit-parameter-run-args = 23

suit-parameter-device-identifier = 24
suit-parameter-minimum-battery = 26
suit-parameter-update-priority = 27
suit-parameter-version = 28
suit-parameter-wait-info = 29
suit-parameter-uri-list = 30

suit-parameter-custom = nint

suit-compression-algorithm = 1

suit-unpack-algorithm = 1

suit-text-manifest-description = 1
suit-text-update-description = 2
suit-text-manifest-json-source = 3
suit-text-manifest-yaml-source = 4

Moran, et al. Expires January 13, 2022 [Page 88]

Internet-Draft CBOR-based SUIT Manifest July 2021

suit-text-vendor-name = 1
suit-text-model-name = 2
suit-text-vendor-domain = 3
suit-text-model-info = 4
suit-text-component-description = 5
suit-text-component-version = 6
suit-text-version-required = 7

Appendix B. B. Examples

 The following examples demonstrate a small subset of the
 functionality of the manifest. Even a simple manifest processor can
 execute most of these manifests.

 The examples are signed using the following ECDSA secp256r1 key:

 -----BEGIN PRIVATE KEY-----
 MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgApZYjZCUGLM50VBC
 CjYStX+09jGmnyJPrpDLTz/hiXOhRANCAASEloEarguqq9JhVxie7NomvqqL8Rtv
 P+bitWWchdvArTsfKktsCYExwKNtrNHXi9OB3N+wnAUtszmR23M4tKiW
 -----END PRIVATE KEY-----

 The corresponding public key can be used to verify these examples:

 -----BEGIN PUBLIC KEY-----
 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhJaBGq4LqqvSYVcYnuzaJr6qi/Eb
 bz/m4rVlnIXbwK07HypLbAmBMcCjbazR14vTgdzfsJwFLbM5kdtzOLSolg==
 -----END PUBLIC KEY-----

 Each example uses SHA256 as the digest function.

 Note that reporting policies are declared for each non-flow-control
 command in these examples. The reporting policies used in the
 examples are described in the following tables.

 +-----------------------------+----------+
 | Policy | Label |
 +-----------------------------+----------+
 | suit-send-record-on-success | Rec-Pass |
 | | |
 | suit-send-record-on-failure | Rec-Fail |
 | | |
 | suit-send-sysinfo-success | Sys-Pass |
 | | |
 | suit-send-sysinfo-failure | Sys-Fail |
 +-----------------------------+----------+

Moran, et al. Expires January 13, 2022 [Page 89]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +----------------------------+--------+---------+---------+---------+
 | Command | Sys- | Sys- | Rec- | Rec- |
 | | Fail | Pass | Fail | Pass |
 +----------------------------+--------+---------+---------+---------+
suit-condition-vendor-	1	1	1	1
identifier				
suit-condition-class-	1	1	1	1
identifier				
suit-condition-image-match	1	1	1	1
suit-condition-component-	0	1	0	1
slot				
suit-directive-fetch	0	0	1	0
suit-directive-copy	0	0	1	0
suit-directive-run	0	0	1	0
 +----------------------------+--------+---------+---------+---------+

B.1. Example 0: Secure Boot

 This example covers the following templates:

 - Compatibility Check (Section 7.1)

 - Secure Boot (Section 7.2)

 It also serves as the minimum example.

 107({
 / authentication-wrapper / 2:<<[
 digest: <<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'a6c4590ac53043a98e8c4106e1e31b305516d7cf0a655eddfac6d45c810e036a'
]>>,
 signature: <<18([
 / protected / <<{
 / alg / 1:-7 / "ES256" /,
 }>>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h'd11a2dd9610fb62a707335f58407922570
 9f96e8117e7eeed98a2f207d05c8ecfba1755208f6abea977b8a6efe3bc2ca3215e119

Moran, et al. Expires January 13, 2022 [Page 90]

Internet-Draft CBOR-based SUIT Manifest July 2021

 3be201467d052b42db6b7287'
])>>
]
]>>,
 / manifest / 3:<<{
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:0,
 / common / 3:<<{
 / components / 2:[
 [h'00']
],
 / common-sequence / 4:<<[
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'1492af1425695e48bf429b2d51f2ab45' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
]>>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
]>>,
 }>>,
 / validate / 10:<<[
 / condition-image-match / 3,15
]>>,
 / run / 12:<<[
 / directive-run / 23,2
]>>,
 }>>,
 })

 Total size of Envelope without COSE authentication object: 161

 Envelope:

Moran, et al. Expires January 13, 2022 [Page 91]

Internet-Draft CBOR-based SUIT Manifest July 2021

 d86ba2025827815824822f5820a6c4590ac53043a98e8c4106e1e31b3055
 16d7cf0a655eddfac6d45c810e036a035871a50101020003585fa2028181
 41000458568614a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492
 af1425695e48bf429b2d51f2ab45035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
 0f0a4382030f0c43821702

 Total size of Envelope with COSE authentication object: 237

 Envelope with COSE authentication object:

 d86ba2025873825824822f5820a6c4590ac53043a98e8c4106e1e31b3055
 16d7cf0a655eddfac6d45c810e036a584ad28443a10126a0f65840d11a2d
 d9610fb62a707335f584079225709f96e8117e7eeed98a2f207d05c8ecfb
 a1755208f6abea977b8a6efe3bc2ca3215e1193be201467d052b42db6b72
 87035871a50101020003585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f0a4382030f0c43821702

B.2. Example 1: Simultaneous Download and Installation of Payload

 This example covers the following templates:

 - Compatibility Check (Section 7.1)

 - Firmware Download (Section 7.3)

 Simultaneous download and installation of payload. No secure boot is
 present in this example to demonstrate a download-only manifest.

 107({
 / authentication-wrapper / 2:<<[
 digest: <<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'60c61d6eb7a1aaeddc49ce8157a55cff0821537eeee77a4ded44155b03045132'
]>>,
 signature: <<18([
 / protected / <<{
 / alg / 1:-7 / "ES256" /,
 }>>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h'5249dacaf0ffc8326931b09586eb7e3769
 e71a0e6a40ad8153db4980db9b05bd1742ddb46085fa11e62b65a79895c12ac7abe266
 8ccc5afdd74466aed7bca389'

Moran, et al. Expires January 13, 2022 [Page 92]

Internet-Draft CBOR-based SUIT Manifest July 2021

])>>
]
]>>,
 / manifest / 3:<<{
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:1,
 / common / 3:<<{
 / components / 2:[
 [h'00']
],
 / common-sequence / 4:<<[
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'1492af1425695e48bf429b2d51f2ab45' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
]>>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
]>>,
 }>>,
 / install / 9:<<[
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
]>>,
 / validate / 10:<<[
 / condition-image-match / 3,15
]>>,
 }>>,
 })

 Total size of Envelope without COSE authentication object: 196

 Envelope:

Moran, et al. Expires January 13, 2022 [Page 93]

Internet-Draft CBOR-based SUIT Manifest July 2021

 d86ba2025827815824822f582060c61d6eb7a1aaeddc49ce8157a55cff08
 21537eeee77a4ded44155b03045132035894a50101020103585fa2028181
 41000458568614a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492
 af1425695e48bf429b2d51f2ab45035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
 0f0958258613a115781b687474703a2f2f6578616d706c652e636f6d2f66
 696c652e62696e1502030f0a4382030f

 Total size of Envelope with COSE authentication object: 272

 Envelope with COSE authentication object:

 d86ba2025873825824822f582060c61d6eb7a1aaeddc49ce8157a55cff08
 21537eeee77a4ded44155b03045132584ad28443a10126a0f658405249da
 caf0ffc8326931b09586eb7e3769e71a0e6a40ad8153db4980db9b05bd17
 42ddb46085fa11e62b65a79895c12ac7abe2668ccc5afdd74466aed7bca3
 89035894a50101020103585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f0958258613a115781b68747470
 3a2f2f6578616d706c652e636f6d2f66696c652e62696e1502030f0a4382
 030f

B.3. Example 2: Simultaneous Download, Installation, Secure Boot,
 Severed Fields

 This example covers the following templates:

 - Compatibility Check (Section 7.1)

 - Secure Boot (Section 7.2)

 - Firmware Download (Section 7.3)

 This example also demonstrates severable elements (Section 5.5), and
 text (Section 8.6.4).

 107({
 / authentication-wrapper / 2:<<[
 digest: <<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'e45dcdb2074b951f1c88b866469939c2a83ed433a31fc7dfcb3f63955bd943ec'
]>>,
 signature: <<18([
 / protected / <<{
 / alg / 1:-7 / "ES256" /,
 }>>,

Moran, et al. Expires January 13, 2022 [Page 94]

Internet-Draft CBOR-based SUIT Manifest July 2021

 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h'b4fd3a6a18fe1062573488cf24ac96ef9f
 30ac746696e50be96533b356b8156e4332587fe6f4e8743ae525d72005fddd4c1213d5
 5a8061b2ce67b83640f4777c'
])>>
]
]>>,
 / manifest / 3:<<{
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:2,
 / common / 3:<<{
 / components / 2:[
 [h'00']
],
 / common-sequence / 4:<<[
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'1492af1425695e48bf429b2d51f2ab45' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
]>>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
]>>,
 }>>,
 / install / 9:[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'3ee96dc79641970ae46b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d2'
],
 / validate / 10:<<[
 / condition-image-match / 3,15
]>>,
 / run / 12:<<[
 / directive-run / 23,2
]>>,
 / text / 13:[
 / algorithm-id / -16 / "sha256" /,

Moran, et al. Expires January 13, 2022 [Page 95]

Internet-Draft CBOR-based SUIT Manifest July 2021

 / digest-bytes /
 h'2bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de33d54101b80e2ca49faf918'
],
 }>>,
 / install / 9:<<[
 / directive-set-parameters / 19,{
 / uri /
 21:'http://example.com/very/long/path/to/file/file.bin',
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
]>>,
 / text / 13:<<{
 [h'00']:{
 / vendor-domain / 3:'arm.com',
 / component-description / 5:'This component is a
 demonstration. The digest is a sample pattern, not a real one.',
 }
 }>>,
 })

 Total size of the Envelope without COSE authentication object or
 Severable Elements: 235

 Envelope:

 d86ba2025827815824822f5820e45dcdb2074b951f1c88b866469939c2a8
 3ed433a31fc7dfcb3f63955bd943ec0358bba70101020203585fa2028181
 41000458568614a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492
 af1425695e48bf429b2d51f2ab45035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
 0f09822f58203ee96dc79641970ae46b929ccf0b72ba9536dd846020dbdc
 9f949d84ea0e18d20a4382030f0c438217020d822f58202bfc4d0cc6680b
 e7dd9f5ca30aa2bb5d1998145de33d54101b80e2ca49faf918

 Total size of the Envelope with COSE authentication object but
 without Severable Elements: 311

 Envelope:

Moran, et al. Expires January 13, 2022 [Page 96]

Internet-Draft CBOR-based SUIT Manifest July 2021

 d86ba2025873825824822f5820e45dcdb2074b951f1c88b866469939c2a8
 3ed433a31fc7dfcb3f63955bd943ec584ad28443a10126a0f65840b4fd3a
 6a18fe1062573488cf24ac96ef9f30ac746696e50be96533b356b8156e43
 32587fe6f4e8743ae525d72005fddd4c1213d55a8061b2ce67b83640f477
 7c0358bba70101020203585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f09822f58203ee96dc79641970a
 e46b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d20a4382030f0c
 438217020d822f58202bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de3
 3d54101b80e2ca49faf918

 Total size of Envelope with COSE authentication object and Severable
 Elements: 894

 Envelope with COSE authentication object:

 d86ba4025873825824822f5820e45dcdb2074b951f1c88b866469939c2a8
 3ed433a31fc7dfcb3f63955bd943ec584ad28443a10126a0f65840b4fd3a
 6a18fe1062573488cf24ac96ef9f30ac746696e50be96533b356b8156e43
 32587fe6f4e8743ae525d72005fddd4c1213d55a8061b2ce67b83640f477
 7c0358bba70101020203585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f09822f58203ee96dc79641970a
 e46b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d20a4382030f0c
 438217020d822f58202bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de3
 3d54101b80e2ca49faf91809583c8613a1157832687474703a2f2f657861
 6d706c652e636f6d2f766572792f6c6f6e672f706174682f746f2f66696c
 652f66696c652e62696e1502030f0d590204a20179019d2323204578616d
 706c6520323a2053696d756c74616e656f757320446f776e6c6f61642c20
 496e7374616c6c6174696f6e2c2053656375726520426f6f742c20536576
 65726564204669656c64730a0a2020202054686973206578616d706c6520
 636f766572732074686520666f6c6c6f77696e672074656d706c61746573
 3a0a202020200a202020202a20436f6d7061746962696c69747920436865
 636b20287b7b74656d706c6174652d636f6d7061746962696c6974792d63
 6865636b7d7d290a202020202a2053656375726520426f6f7420287b7b74
 656d706c6174652d7365637572652d626f6f747d7d290a202020202a2046
 69726d7761726520446f776e6c6f616420287b7b6669726d776172652d64
 6f776e6c6f61642d74656d706c6174657d7d290a202020200a2020202054
 686973206578616d706c6520616c736f2064656d6f6e7374726174657320
 736576657261626c6520656c656d656e747320287b7b6f76722d73657665
 7261626c657d7d292c20616e64207465787420287b7b6d616e6966657374
 2d6469676573742d746578747d7d292e814100a2036761726d2e636f6d05
 78525468697320636f6d706f6e656e7420697320612064656d6f6e737472
 6174696f6e2e205468652064696765737420697320612073616d706c6520
 7061747465726e2c206e6f742061207265616c206f6e652e

Moran, et al. Expires January 13, 2022 [Page 97]

Internet-Draft CBOR-based SUIT Manifest July 2021

B.4. Example 3: A/B images

 This example covers the following templates:

 - Compatibility Check (Section 7.1)

 - Secure Boot (Section 7.2)

 - Firmware Download (Section 7.3)

 - A/B Image Template (Section 7.11)

 107({
 / authentication-wrapper / 2:<<[
 digest: <<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'7c9b3cb72c262608a42f944d59d659ff2b801c78af44def51b8ff51e9f45721b'
]>>,
 signature: <<18([
 / protected / <<{
 / alg / 1:-7 / "ES256" /,
 }>>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h'e33d618df0ad21e609529ab1a876afb231
 faff1d6a3189b5360324c2794250b87cf00cf83be50ea17dc721ca85393cd8e839a066
 d5dec0ad87a903ab31ea9afa'
])>>
]
]>>,
 / manifest / 3:<<{
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:3,
 / common / 3:<<{
 / components / 2:[
 [h'00']
],
 / common-sequence / 4:<<[
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'1492af1425695e48bf429b2d51f2ab45' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 } ,

Moran, et al. Expires January 13, 2022 [Page 98]

Internet-Draft CBOR-based SUIT Manifest July 2021

 / directive-try-each / 15,[
 <<[
 / directive-override-parameters / 20,{
 / offset / 5:33792,
 } ,
 / condition-component-offset / 5,5 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
]>>,
 / image-size / 14:34768,
 }
]>> ,
 <<[
 / directive-override-parameters / 20,{
 / offset / 5:541696,
 } ,
 / condition-component-offset / 5,5 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff'
]>>,
 / image-size / 14:76834,
 }
]>>
] ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
]>>,
 }>>,
 / install / 9:<<[
 / directive-try-each / 15,[
 <<[
 / directive-set-parameters / 19,{
 / offset / 5:33792,
 } ,
 / condition-component-offset / 5,5 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file1.bin',
 }
]>> ,
 <<[
 / directive-set-parameters / 19,{
 / offset / 5:541696,

Moran, et al. Expires January 13, 2022 [Page 99]

Internet-Draft CBOR-based SUIT Manifest July 2021

 } ,
 / condition-component-offset / 5,5 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file2.bin',
 }
]>>
] ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
]>>,
 / validate / 10:<<[
 / condition-image-match / 3,15
]>>,
 }>>,
 })

 Total size of Envelope without COSE authentication object: 332

 Envelope:

 d86ba2025827815824822f58207c9b3cb72c262608a42f944d59d659ff2b
 801c78af44def51b8ff51e9f45721b0359011ba5010102030358aaa20281
 8141000458a18814a20150fa6b4a53d5ad5fdfbe9de663e4d41ffe025014
 92af1425695e48bf429b2d51f2ab450f8258368614a105198400050514a2
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0583a8614a1051a00084400050514a20358
 24822f58200123456789abcdeffedcba9876543210001122334455667788
 99aabbccddeeff0e1a00012c22010f020f095861860f82582a8613a10519
 8400050513a115781c687474703a2f2f6578616d706c652e636f6d2f6669
 6c65312e62696e582c8613a1051a00084400050513a115781c687474703a
 2f2f6578616d706c652e636f6d2f66696c65322e62696e1502030f0a4382
 030f

 Total size of Envelope with COSE authentication object: 408

 Envelope with COSE authentication object:

Moran, et al. Expires January 13, 2022 [Page 100]

Internet-Draft CBOR-based SUIT Manifest July 2021

 d86ba2025873825824822f58207c9b3cb72c262608a42f944d59d659ff2b
 801c78af44def51b8ff51e9f45721b584ad28443a10126a0f65840e33d61
 8df0ad21e609529ab1a876afb231faff1d6a3189b5360324c2794250b87c
 f00cf83be50ea17dc721ca85393cd8e839a066d5dec0ad87a903ab31ea9a
 fa0359011ba5010102030358aaa202818141000458a18814a20150fa6b4a
 53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab
 450f8258368614a105198400050514a2035824822f582000112233445566
 778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d058
 3a8614a1051a00084400050514a2035824822f58200123456789abcdeffe
 dcba987654321000112233445566778899aabbccddeeff0e1a00012c2201
 0f020f095861860f82582a8613a105198400050513a115781c687474703a
 2f2f6578616d706c652e636f6d2f66696c65312e62696e582c8613a1051a
 00084400050513a115781c687474703a2f2f6578616d706c652e636f6d2f
 66696c65322e62696e1502030f0a4382030f

B.5. Example 4: Load and Decompress from External Storage

 This example covers the following templates:

 - Compatibility Check (Section 7.1)

 - Secure Boot (Section 7.2)

 - Firmware Download (Section 7.3)

 - Install (Section 7.4)

 - Load & Decompress (Section 7.8)

 107({
 / authentication-wrapper / 2:<<[
 digest: <<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'15736702a00f510805dcf89d6913a2cfb417ed414faa760f974d6755c68ba70a'
]>>,
 signature: <<18([
 / protected / <<{
 / alg / 1:-7 / "ES256" /,
 }>>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h'3ada2532326d512132c388677798c24ffd
 cc979bfae2a26b19c8c8bbf511fd7dd85f1501662c1a9e1976b759c4019bab44ba5434
 efb45d3868aedbca593671f3'
])>>
]

Moran, et al. Expires January 13, 2022 [Page 101]

Internet-Draft CBOR-based SUIT Manifest July 2021

]>>,
 / manifest / 3:<<{
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:4,
 / common / 3:<<{
 / components / 2:[
 [h'00'] ,
 [h'02'] ,
 [h'01']
],
 / common-sequence / 4:<<[
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'1492af1425695e48bf429b2d51f2ab45' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
]>>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
]>>,
 }>>,
 / payload-fetch / 8:<<[
 / directive-set-component-index / 12,1 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file.bin',
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
]>>,
 / install / 9:<<[
 / directive-set-component-index / 12,0 ,
 / directive-set-parameters / 19,{
 / source-component / 22:1 / [h'02'] /,
 } ,
 / directive-copy / 22,2 ,
 / condition-image-match / 3,15
]>>,
 / validate / 10:<<[
 / directive-set-component-index / 12,0 ,

Moran, et al. Expires January 13, 2022 [Page 102]

Internet-Draft CBOR-based SUIT Manifest July 2021

 / condition-image-match / 3,15
]>>,
 / load / 11:<<[
 / directive-set-component-index / 12,2 ,
 / directive-set-parameters / 19,{
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff'
]>>,
 / image-size / 14:76834,
 / source-component / 22:0 / [h'00'] /,
 / compression-info / 19:<<{
 / compression-algorithm / 1:1 / "gzip" /,
 }>>,
 } ,
 / directive-copy / 22,2 ,
 / condition-image-match / 3,15
]>>,
 / run / 12:<<[
 / directive-set-component-index / 12,2 ,
 / directive-run / 23,2
]>>,
 }>>,
 })

 Total size of Envelope without COSE authentication object: 292

 Envelope:

 d86ba2025827815824822f582015736702a00f510805dcf89d6913a2cfb4
 17ed414faa760f974d6755c68ba70a0358f4a801010204035867a2028381
 4100814102814101045858880c0014a40150fa6b4a53d5ad5fdfbe9de663
 e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824822f582000
 112233445566778899aabbccddeeff0123456789abcdeffedcba98765432
 100e1987d0010f020f085827880c0113a115781b687474703a2f2f657861
 6d706c652e636f6d2f66696c652e62696e1502030f094b880c0013a11601
 1602030f0a45840c00030f0b583d880c0213a4035824822f582001234567
 89abcdeffedcba987654321000112233445566778899aabbccddeeff0e1a
 00012c221343a1010116001602030f0c45840c021702

 Total size of Envelope with COSE authentication object: 368

 Envelope with COSE authentication object:

Moran, et al. Expires January 13, 2022 [Page 103]

Internet-Draft CBOR-based SUIT Manifest July 2021

 d86ba2025873825824822f582015736702a00f510805dcf89d6913a2cfb4
 17ed414faa760f974d6755c68ba70a584ad28443a10126a0f658403ada25
 32326d512132c388677798c24ffdcc979bfae2a26b19c8c8bbf511fd7dd8
 5f1501662c1a9e1976b759c4019bab44ba5434efb45d3868aedbca593671
 f30358f4a801010204035867a20283814100814102814101045858880c00
 14a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48
 bf429b2d51f2ab45035824822f582000112233445566778899aabbccddee
 ff0123456789abcdeffedcba98765432100e1987d0010f020f085827880c
 0113a115781b687474703a2f2f6578616d706c652e636f6d2f66696c652e
 62696e1502030f094b880c0013a116011602030f0a45840c00030f0b583d
 880c0213a4035824822f58200123456789abcdeffedcba98765432100011
 2233445566778899aabbccddeeff0e1a00012c221343a101011600160203
 0f0c45840c021702

B.6. Example 5: Two Images

 This example covers the following templates:

 - Compatibility Check (Section 7.1)

 - Secure Boot (Section 7.2)

 - Firmware Download (Section 7.3)

 Furthermore, it shows using these templates with two images.

 107({
 / authentication-wrapper / 2:<<[
 digest: <<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'd1e73f16e4126007bc4d804cd33b0209fbab34728e60ee8c00f3387126748dd2'
]>>,
 signature: <<18([
 / protected / <<{
 / alg / 1:-7 / "ES256" /,
 }>>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h'b7ae0a46a28f02e25cda6d9a255bbaf863
 30141831fae5a78012d648bc6cee55102e0f1890bdeacc3adaa4fae0560f83a45eecae
 65cabce642f56d84ab97ef8d'
])>>
]
]>>,
 / manifest / 3:<<{
 / manifest-version / 1:1,

Moran, et al. Expires January 13, 2022 [Page 104]

Internet-Draft CBOR-based SUIT Manifest July 2021

 / manifest-sequence-number / 2:5,
 / common / 3:<<{
 / components / 2:[
 [h'00'] ,
 [h'01']
],
 / common-sequence / 4:<<[
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h'1492af1425695e48bf429b2d51f2ab45' /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
]>>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15 ,
 / directive-set-component-index / 12,1 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h'0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff'
]>>,
 / image-size / 14:76834,
 }
]>>,
 }>>,
 / install / 9:<<[
 / directive-set-component-index / 12,0 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file1.bin',
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15 ,
 / directive-set-component-index / 12,1 ,
 / directive-set-parameters / 19,{
 / uri / 21:'http://example.com/file2.bin',
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15

Moran, et al. Expires January 13, 2022 [Page 105]

Internet-Draft CBOR-based SUIT Manifest July 2021

]>>,
 / validate / 10:<<[
 / directive-set-component-index / 12,0 ,
 / condition-image-match / 3,15 ,
 / directive-set-component-index / 12,1 ,
 / condition-image-match / 3,15
]>>,
 / run / 12:<<[
 / directive-set-component-index / 12,0 ,
 / directive-run / 23,2
]>>,
 }>>,
 })

 Total size of Envelope without COSE authentication object: 306

 Envelope:

 d86ba2025827815824822f5820d1e73f16e4126007bc4d804cd33b0209fb
 ab34728e60ee8c00f3387126748dd203590101a601010205035895a20282
 8141008141010458898c0c0014a40150fa6b4a53d5ad5fdfbe9de663e4d4
 1ffe02501492af1425695e48bf429b2d51f2ab45035824822f5820001122
 33445566778899aabbccddeeff0123456789abcdeffedcba98765432100e
 1987d0010f020f0c0114a2035824822f58200123456789abcdeffedcba98
 7654321000112233445566778899aabbccddeeff0e1a00012c2209584f90
 0c0013a115781c687474703a2f2f6578616d706c652e636f6d2f66696c65
 312e62696e1502030f0c0113a115781c687474703a2f2f6578616d706c65
 2e636f6d2f66696c65322e62696e1502030f0a49880c00030f0c01030f0c
 45840c001702

 Total size of Envelope with COSE authentication object: 382

 Envelope with COSE authentication object:

 d86ba2025873825824822f5820d1e73f16e4126007bc4d804cd33b0209fb
 ab34728e60ee8c00f3387126748dd2584ad28443a10126a0f65840b7ae0a
 46a28f02e25cda6d9a255bbaf86330141831fae5a78012d648bc6cee5510
 2e0f1890bdeacc3adaa4fae0560f83a45eecae65cabce642f56d84ab97ef
 8d03590101a601010205035895a202828141008141010458898c0c0014a4
 0150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf42
 9b2d51f2ab45035824822f582000112233445566778899aabbccddeeff01
 23456789abcdeffedcba98765432100e1987d0010f020f0c0114a2035824
 822f58200123456789abcdeffedcba987654321000112233445566778899
 aabbccddeeff0e1a00012c2209584f900c0013a115781c687474703a2f2f
 6578616d706c652e636f6d2f66696c65312e62696e1502030f0c0113a115
 781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62696e
 1502030f0a49880c00030f0c01030f0c45840c001702

Moran, et al. Expires January 13, 2022 [Page 106]

Internet-Draft CBOR-based SUIT Manifest July 2021

Appendix C. C. Design Rational

 In order to provide flexible behavior to constrained devices, while
 still allowing more powerful devices to use their full capabilities,
 the SUIT manifest encodes the required behavior of a Recipient
 device. Behavior is encoded as a specialized byte code, contained in
 a CBOR list. This promotes a flat encoding, which simplifies the
 parser. The information encoded by this byte code closely matches
 the operations that a device will perform, which promotes ease of
 processing. The core operations used by most update and trusted
 invocation operations are represented in the byte code. The byte
 code can be extended by registering new operations.

 The specialized byte code approach gives benefits equivalent to those
 provided by a scripting language or conventional byte code, with two
 substantial differences. First, the language is extremely high
 level, consisting of only the operations that a device may perform
 during update and trusted invocation of a firmware image. Second,
 the language specifies linear behavior, without reverse branches.
 Conditional processing is supported, and parallel and out-of-order
 processing may be performed by sufficiently capable devices.

 By structuring the data in this way, the manifest processor becomes a
 very simple engine that uses a pull parser to interpret the manifest.
 This pull parser invokes a series of command handlers that evaluate a
 Condition or execute a Directive. Most data is structured in a
 highly regular pattern, which simplifies the parser.

 The results of this allow a Recipient to implement a very small
 parser for constrained applications. If needed, such a parser also
 allows the Recipient to perform complex updates with reduced
 overhead. Conditional execution of commands allows a simple device
 to perform important decisions at validation-time.

 Dependency handling is vastly simplified as well. Dependencies
 function like subroutines of the language. When a manifest has a
 dependency, it can invoke that dependency's commands and modify their
 behavior by setting parameters. Because some parameters come with
 security implications, the dependencies also have a mechanism to
 reject modifications to parameters on a fine-grained level.

 Developing a robust permissions system works in this model too. The
 Recipient can use a simple ACL that is a table of Identities and
 Component Identifier permissions to ensure that operations on
 components fail unless they are permitted by the ACL. This table can
 be further refined with individual parameters and commands.

Moran, et al. Expires January 13, 2022 [Page 107]

Internet-Draft CBOR-based SUIT Manifest July 2021

 Capability reporting is similarly simplified. A Recipient can report
 the Commands, Parameters, Algorithms, and Component Identifiers that
 it supports. This is sufficiently precise for a manifest author to
 create a manifest that the Recipient can accept.

 The simplicity of design in the Recipient due to all of these
 benefits allows even a highly constrained platform to use advanced
 update capabilities.

C.1. C.1 Design Rationale: Envelope

 The Envelope is used instead of a COSE structure for several reasons:

 1. This enables the use of Severable Elements (Section 8.8)

 2. This enables modular processing of manifests, particularly with
 large signatures.

 3. This enables multiple authentication schemes.

 4. This allows integrity verification by a dependent to be
 unaffected by adding or removing authentication structures.

 Modular processing is important because it allows a Manifest
 Processor to iterate forward over an Envelope, processing Delegation
 Chains and Authentication Blocks, retaining only intermediate values,
 without any need to seek forward and backwards in a stream until it
 gets to the Manifest itself. This allows the use of large, Post-
 Quantum signatures without requiring retention of the signature
 itself, or seeking forward and back.

 Four authentication objects are supported by the Envelope:

 - COSE_Sign_Tagged

 - COSE_Sign1_Tagged

 - COSE_Mac_Tagged

 - COSE_Mac0_Tagged

 The SUIT Envelope allows an Update Authority or intermediary to mix
 and match any number of different authentication blocks it wants
 without any concern for modifying the integrity of another
 authentication block. This also allows the addition or removal of an
 authentication blocks without changing the integrity check of the
 Manifest, which is important for dependency handling. See

Section 6.2

Moran, et al. Expires January 13, 2022 [Page 108]

Internet-Draft CBOR-based SUIT Manifest July 2021

C.2. C.2 Byte String Wrappers

 Byte string wrappers are used in several places in the suit manifest.
 The primary reason for wrappers it to limit the parser extent when
 invoked at different times, with a possible loss of context.

 The elements of the suit envelope are wrapped both to set the extents
 used by the parser and to simplify integrity checks by clearly
 defining the length of each element.

 The common block is re-parsed in order to find components identifiers
 from their indices, to find dependency prefixes and digests from
 their identifiers, and to find the common sequence. The common
 sequence is wrapped so that it matches other sequences, simplifying
 the code path.

 A severed SUIT command sequence will appear in the envelope, so it
 must be wrapped as with all envelope elements. For consistency,
 command sequences are also wrapped in the manifest. This also allows
 the parser to discern the difference between a command sequence and a
 SUIT_Digest.

 Parameters that are structured types (arrays and maps) are also
 wrapped in a bstr. This is so that parser extents can be set
 correctly using only a reference to the beginning of the parameter.
 This enables a parser to store a simple list of references to
 parameters that can be retrieved when needed.

Appendix D. D. Implementation Conformance Matrix

 This section summarizes the functionality a minimal manifest
 processor implementation needs to offer to claim conformance to this
 specification, in the absence of an application profile standard
 specifying otherwise.

 The subsequent table shows the conditions.

Moran, et al. Expires January 13, 2022 [Page 109]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +-------------------+------------------+----------------+
 | Name | Reference | Implementation |
 +-------------------+------------------+----------------+
 | Vendor Identifier | Section 8.7.5.2 | REQUIRED |
 | | | |
 | Class Identifier | Section 8.7.5.2 | REQUIRED |
 | | | |
 | Device Identifier | Section 8.7.5.2 | OPTIONAL |
 | | | |
 | Image Match | Section 8.7.6.2 | REQUIRED |
 | | | |
 | Image Not Match | Section 8.7.6.3 | OPTIONAL |
 | | | |
 | Use Before | Section 8.7.6.4 | OPTIONAL |
 | | | |
 | Component Slot | Section 8.7.6.5 | OPTIONAL |
 | | | |
 | Abort | Section 8.7.6.9 | OPTIONAL |
 | | | |
 | Minimum Battery | Section 8.7.6.6 | OPTIONAL |
 | | | |
 | Update Authorized | Section 8.7.6.7 | OPTIONAL |
 | | | |
 | Version | Section 8.7.6.8 | OPTIONAL |
 | | | |
 | Custom Condition | Section 8.7.6.10 | OPTIONAL |
 +-------------------+------------------+----------------+

 The subsequent table shows the directives.

Moran, et al. Expires January 13, 2022 [Page 110]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +-------------------+----------------+------------------------------+
 | Name | Reference | Implementation |
 +-------------------+----------------+------------------------------+
Set Component	Section 8.7.7.	REQUIRED if more than one
Index	1	component
Set Dependency	Section 8.7.7.	REQUIRED if dependencies
Index	2	used
Try Each	Section 8.7.7.	OPTIONAL
	3	
Process	Section 8.7.7.	OPTIONAL
Dependency	4	
Set Parameters	Section 8.7.7.	OPTIONAL
	5	
Override	Section 8.7.7.	REQUIRED
Parameters	6	
Fetch	Section 8.7.7.	REQUIRED for Updater
	7	
Copy	Section 8.7.7.	OPTIONAL
	9	
Run	Section 8.7.7.	REQUIRED for Bootloader
	10	
Wait For Event	Section 8.7.7.	OPTIONAL
	11	
Run Sequence	Section 8.7.7.	OPTIONAL
	12	
Swap	Section 8.7.7.	OPTIONAL
	13	
Fetch URI List	Section 8.7.7.	OPTIONAL
	8	
Unlink	Section 8.7.8	OPTIONAL
 +-------------------+----------------+------------------------------+

 The subsequent table shows the parameters.

Moran, et al. Expires January 13, 2022 [Page 111]

Internet-Draft CBOR-based SUIT Manifest July 2021

 +------------------+------------------+----------------------+
 | Name | Reference | Implementation |
 +------------------+------------------+----------------------+
 | Vendor ID | Section 8.7.5.3 | REQUIRED |
 | | | |
 | Class ID | Section 8.7.5.4 | REQUIRED |
 | | | |
 | Image Digest | Section 8.7.5.6 | REQUIRED |
 | | | |
 | Image Size | Section 8.7.5.7 | REQUIRED |
 | | | |
 | Use Before | Section 8.7.5.8 | RECOMMENDED |
 | | | |
 | Component Slot | Section 8.7.5.9 | OPTIONAL |
 | | | |
 | Encryption Info | Section 8.7.5.10 | RECOMMENDED |
 | | | |
 | Compression Info | Section 8.7.5.11 | RECOMMENDED |
 | | | |
 | Unpack Info | Section 8.7.5.12 | RECOMMENDED |
 | | | |
 | URI | Section 8.7.5.13 | REQUIRED for Updater |
 | | | |
 | Source Component | Section 8.7.5.14 | OPTIONAL |
 | | | |
 | Run Args | Section 8.7.5.15 | OPTIONAL |
 | | | |
 | Device ID | Section 8.7.5.5 | OPTIONAL |
 | | | |
 | Minimum Battery | Section 8.7.5.16 | OPTIONAL |
 | | | |
 | Update Priority | Section 8.7.5.17 | OPTIONAL |
 | | | |
 | Version Match | Section 8.7.5.18 | OPTIONAL |
 | | | |
 | Wait Info | Section 8.7.5.19 | OPTIONAL |
 | | | |
 | URI List | Section 8.7.5.20 | OPTIONAL |
 | | | |
 | Strict Order | Section 8.7.5.22 | OPTIONAL |
 | | | |
 | Soft Failure | Section 8.7.5.23 | OPTIONAL |
 | | | |
 | Custom | Section 8.7.5.24 | OPTIONAL |
 +------------------+------------------+----------------------+

Moran, et al. Expires January 13, 2022 [Page 112]

Internet-Draft CBOR-based SUIT Manifest July 2021

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 Henk Birkholz
 Fraunhofer SIT

 EMail: henk.birkholz@sit.fraunhofer.de

 Koen Zandberg
 Inria

 EMail: koen.zandberg@inria.fr

Moran, et al. Expires January 13, 2022 [Page 113]

