
Workgroup: SUIT

Internet-Draft: draft-ietf-suit-report-02

Published: 11 July 2022

Intended Status: Informational

Expires: 12 January 2023

Authors: B. Moran

Arm Limited

H. Birkholz

Fraunhofer SIT

Secure Reporting of Update Status

Abstract

The Software Update for the Internet of Things (SUIT) manifest

provides a way for many different update and boot workflows to be

described by a common format. However, this does not provide a

feedback mechanism for developers in the event that an update or

boot fails.

This specification describes a lightweight feedback mechanism that

allows a developer in possession of a manifest to reconstruct the

decisions made and actions performed by a manifest processor.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. The SUIT Record

4. The SUIT Report

5. Attestation

6. IANA Considerations

7. Security Considerations

8. Acknowledgements

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

A SUIT manifest processor can fail to install or boot an update for

many reasons. Frequently, the error codes generated by such systems

fail to provide developers with enough information to find root

causes and produce corrective actions, resulting in extra effort to

reproduce failures. Logging the results of each SUIT command can

simplify this process.

While it is possible to report the results of SUIT commands through

existing logging or attestation mechanisms, this comes with several

drawbacks:

data inflation, particularly when designed for text-based logging

missing information elements

missing support for multiple components

The CBOR objects defined in this document allow devices to:

report a trace of how an update was performed

report expected vs. actual values for critical checks

describe the installation of complex multi-component

architectures

describe the measured properties of a system

report the exact reason for a parsing failure

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

*

¶

* ¶

* ¶

This document provides a definition of a SUIT-specific logging

container that may be used in a variety of scenarios.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Terms used in this specification include:

Boot: initialization of an executable image. Although this

specification refers to boot, any boot-specific operations

described are equally applicable to starting an executable in an

OS context.

3. The SUIT Record

If the developer can be assumed to have a copy of the manifest, then

they need little information to reconstruct what the manifest

processor has done. They simply need any data that influences the

control flow of the manifest. The manifest only supports the

following control flow primitives:

Set Component/Dependency Index

Set/Override Parameters

Try-Each

Run Sequence

Conditions

Of these, only conditions change the behavior of the processor from

the default, and then only when the condition fails.

Then, to reconstruct the flow of a manifest, all a developer needs

is a list of metadata about failed conditions:

the current manifest

the current section

the offset into the current section

the current component index

¶

¶

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

the "reason" for failure

Most conditions compare a parameter to an actual value, so the

"reason" is typically simply the actual value.

Since it is possible that a non-condition command (directive) may

fail in an exceptional circumstance, this must be included as well.

However, a failed directive will terminate processing of the

manifest. To accommodate for a failed command and for explicit

"completion," an additional "result" element is added as well. In

the case of a command failure, the failure reason is typically a

numeric error code. However, these error codes need to be

standardised in order to be useful.

Reconstructing what a device has done in this way is compact,

however it requires some reconstruction effort. This is an issue

that can be solved by tooling.

suit-record-manifest-id is used to identify which manifest contains

the command that caused the record to be generated. The manifest id

is a list of integers that form a walk of the manifest tree,

starting at the root. An empty list indicates that the command was

contained in the root manifest. If the list is not empty, the

command was contained in one of the root manifest's dependencies, or

nested even further below that.

For example, suppose that the root manifest has 3 dependencies and

each of those dependencies has 2 dependencies of its own:

Root

Dependency A

Dependency A0

Dependency A1

* ¶

¶

¶

¶

SUIT_Record = {

 suit-record-manifest-id => [* uint],

 suit-record-manifest-section => int,

 suit-record-section-offset => uint,

 (

 suit-record-component-index => uint //

 suit-record-dependency-index => uint

),

 suit-record-properties => SUIT_Parameters,

}

¶

¶

¶

* ¶

- ¶

o ¶

o ¶

Dependency B

Dependency B0

Dependency B1

Dependency C

Dependency C0

Dependency C1

A manifest-id of [1,0] would indicate that the current command was

contained within Dependency B0. Similarly, a manifest-id of [2,1]

would indicate Dependency C1

suit-record-manifest-section indicates which section of the manifest

was active. This is used in addition to an offset so that the

developer can index into severable sections in a predictable way.

The value of this element is the value of the key that identified

the section in the manifest.

suit-record-section-offset is the number of bytes into the current

section at which the current command is located.

suit-record-component-index is the index of the component that was

specified at the time that the report was generated. This field is

necessary due to the availability of set-current-component values of

True and a list of components. Both of these values cause the

manifest processor to loop over commands using a series of

component-ids, so the developer needs to know which was selected

when the command executed.

suit-record-dependency-index is similar to suit-record-component-

index but is used to identify the dependency that was active.

suit-record-properties contains any measured properties that led to

the command failure. For example, this could be the actual value of

a SUIT_Digest or class identifier. This is encoded in a

SUIT_Parameters block as defined in [I-D.ietf-suit-manifest].

4. The SUIT Report

Some metadata is common to all records, such as the root manifest:

the manifest that is the entry-point for the manifest processor.

This metadata is aggregated with a list of SUIT_Records. The

SUIT_Report may also contain a list of any system properties that

were measured and reported, and a reason for a failure if one

occured.

- ¶

o ¶

o ¶

- ¶

o ¶

o ¶

¶

¶

¶

¶

¶

¶

¶

suit-report-manifest-digest provides a SUIT_Digest (as defined in

[I-D.ietf-suit-manifest]) that is the characteristic digest of the

Root manifest.

suit-report-manifest-uri provides the reference URI that was

provided in the root manifest.

suit-report-nonce provides a container for freshness or replay

protection information. This field MAY be omitted where the suit-

report is authenticated within a container that provides freshness

already. For example, attestation evidence typically contains a

proof of freshness.

suit-system-properties provides a list of measured or asserted

properties of the system that creates the suit report. These

properties are scoped by component identifier. Because this list is

expected to be constructed on the fly by a constrained node,

component identifiers may appear more than once. A recipient may

convert the result to a more conventional structure:

SUIT_Record_System_Properties = {

 * component-id => {

 + SUIT_Parameters,

 }

}

suit-report-records is a list of 0 or more SUIT Records. Because

SUIT Records are only generated on failure, in simple cases this can

be an empty list.

SUIT_Report = {

 suit-report-manifest-digest => SUIT_Digest,

 ? suit-report-manifest-uri => tstr,

 ? suit-report-nonce => bstr,

 suit-report-records => [* SUIT_Record],

 ? suit-system-properties => [+ system-property-claims],

 suit-report-result => true / {

 suit-report-result-code => int, ; could condense to enum later

 suit-report-result-record => SUIT_Record,

 }

}

system-property-claims = {

 system-component-id => SUIT_Component_Identifier,

 + SUIT_Parameters,

}

¶

¶

¶

¶

¶

¶

¶

suit-report-result provides a mechanism to show that the SUIT

procedure completed successfully (value is true) or why it failed

(value is a map of an error code and a SUIT_Record).

The suit-report-result-code indicates the reason for the failure.

Values are expected to be CBOR parsing failures, Schema validation

failures, COSE validation failures or SUIT processing failures.

The suit-report-result-record indicates the exact point in the

manifest or manifest dependency tree where the error occured.

5. Attestation

This document ~~can allow~~ describes how a well-informed verifier

can infer the trustworthiness of a remote device. Remote attestation

is done by using the SUIT_Manifest_Envelope along with the

SUIT_Report to reconstruct the state of the device at boot time. By

embedding data used for remote attestation in the SUIT_Report, a

remote device can use an append-only log to collect both

measurements and debug/failure information into the same document.

This document can then be conveyed to a verifier as a part of the

attestation evidence. A remote attestation format to convey

attestation evidence, such as an Entity Attestation Token (EAT, see

[I-D.ietf-rats-eat]), that contains a SUIT_Report MUST also include

an integrity measurement of the Manifest Parser & Report Generator.

When a Concise Reference Integrity Manifest (CoRIM, see [I-

D.birkholz-rats-corim] is delivered in a SUIT_Manifest_Envelope,

this codifies the delivery of verification information to the

verifier:

The Firmware Distributor:

sends the SUIT_Manifest_Envelope to the Verifier without

payload or text, but with CoRIM

sends the SUIT_Manifest_Envelope to the recipient without

CoRIM, or text, but with payload

The Recipient:

Installs the firmware as described in the SUIT_Manifest and

generates a SUIT_report, which is encapsulated in an EAT by

the installer and sent to the Firmware Distributor.

Boots the firmware as described in the SUIT_Manifest and

creates a SUIT_report, which is encapsulated in an EAT by the

installer and sent to the Firmware Distributor.

¶

¶

¶

¶

¶

* ¶

-

¶

-

¶

* ¶

-

¶

-

¶

[I-D.ietf-suit-manifest]

[RFC2119]

The Firmware Distributor sends both reports to the verifier

(separately or together)

The Verifier:

Reconstructs the state of the device using the manifest

Compares this state to the CoRIM

Returns an Attestation Report to the Firmware Distributor

This approach simplifies the design of the bootloader since it is

able to use an append-only log. It allows a verifier to validate

this report against a signed CoRIM that is provided by the firmware

author, which simplifies the delivery chain of verification

information to the verifier.

This information is not intended as Attestation Evidence and while

an Attestation Report MAY provide this information for conveying

error codes and/or failure reports, it SHOULD be translated into

general-purpose claims for use by the Relying Party.

6. IANA Considerations

IANA is requested to allocate a CBOR tag for the SUIT Report.

7. Security Considerations

The SUIT Report should either be carried over a secure transport, or

signed, or both. Ideally, attestation should be used to prove that

the report was generated by legitimate hardware.

8. Acknowledgements

9. References

9.1. Normative References

Moran, B., Tschofenig, H., Birkholz, H.,

and K. Zandberg, "A Concise Binary Object Representation

(CBOR)-based Serialization Format for the Software

Updates for Internet of Things (SUIT) Manifest", Work in

Progress, Internet-Draft, draft-ietf-suit-manifest-18, 11

July 2022, <https://www.ietf.org/archive/id/draft-ietf-

suit-manifest-18.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

*

¶

* ¶

- ¶

- ¶

- ¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-suit-manifest-18.txt
https://www.ietf.org/archive/id/draft-ietf-suit-manifest-18.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[I-D.birkholz-rats-corim]

[I-D.ietf-rats-eat]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

Birkholz, H., Fossati, T., Deshpande, Y.,

Smith, N., and W. Pan, "Concise Reference Integrity

Manifest", Work in Progress, Internet-Draft, draft-

birkholz-rats-corim-03, 11 July 2022, <https://

www.ietf.org/archive/id/draft-birkholz-rats-

corim-03.txt>.

Lundblade, L., Mandyam, G., and J. O'Donoghue,

"The Entity Attestation Token (EAT)", Work in Progress,

Internet-Draft, draft-ietf-rats-eat-14, 10 July 2022,

<https://www.ietf.org/archive/id/draft-ietf-rats-

eat-14.txt>.

Authors' Addresses

Brendan Moran

Arm Limited

Email: Brendan.Moran@arm.com

Henk Birkholz

Fraunhofer SIT

Email: henk.birkholz@sit.fraunhofer.de

https://www.rfc-editor.org/info/rfc8174
https://www.ietf.org/archive/id/draft-birkholz-rats-corim-03.txt
https://www.ietf.org/archive/id/draft-birkholz-rats-corim-03.txt
https://www.ietf.org/archive/id/draft-birkholz-rats-corim-03.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-14.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-14.txt
mailto:Brendan.Moran@arm.com
mailto:henk.birkholz@sit.fraunhofer.de

	Secure Reporting of Update Status
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. The SUIT Record
	4. The SUIT Report
	5. Attestation
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgements
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

