
Service Location Working Group                               James Kempf
INTERNET DRAFT                                             Jonathan Wood
                                                   Sun Microsystems, Inc
                                                            24 June 1998

The jndi-drivers Abstract Service Type
draft-ietf-srvloc-jndi-drivers-00.txt

Status of This Memo

   This document is a submission by the Service Location Working Group
   of the Internet Engineering Task Force (IETF).  Comments should be
   submitted to the srvloc@corp.home.net mailing list.

   Distribution of this memo is unlimited.

   This document is an Internet-Draft.  Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at
   any time.  It is inappropriate to use Internet- Drafts as reference
   material or to cite them other than as ``work in progress.''

   To view the entire list of current Internet-Drafts, please check
   the ``1id-abstracts.txt'' listing contained in the Internet-Drafts
   Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
   Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
   Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

   Distribution of this memo is unlimited.

Abstract

   This document describes the jndi-drivers abstract type. The
   jndi-drivers service provides access to drivers (also known as
   service provider classes) for the Java Naming and Directory
   Interface (JNDI).  This type can be used in conjunction with
   the Service Location Protocol.

1. Introduction

   The Service Location Protocol is defined in [1]. Service templates
   and abstract types are defined in [2]. JNDI is defined in [3]. The

Kempf, Wood              expires December 1998                  [Page 1]



INTERNET DRAFT                                                 June 1998

   jndi-drivers abstract type is intended to organize information
   pertaining to the location and access method needed to obtain
   dynamically JNDI drivers.

   Java class files can be obtained off the local file system or
   from the network. Hence drivers for JNDI need not be bundled with
   an application which uses JNDI; they can be downloaded from the
   network and dynamically instantiated (for instance, by a Java
   class-loader). The jndi-drivers type contains all information
   necessary to complete this process.

   The concrete type should be the access protocol used to retrieve
   the driver. The URL should also specify the host which provides
   access to the driver, and a path relative to the server host which
   names the location of the driver's class file archive.

2. Example Scenario

   This example demonstrates how to use this service type in
   conjunction with SLP and JNDI to dynamically instantiate
   a service provider for LDAP. LDAP is defined in [4].

   An application running JNDI has only the core JNDI classes
   available to it locally. The application knows that it wishes to
   talk to an LDAP server, and has the information it needs to talk
   to that LDAP server: the server's name is "andromeda", serving
   the base suffix "o=sun,c=us", and it listens on port 389.
   (The application need not be preconfigured with the location of
   the LDAP service in order to make use of the dynamic loading of
   a JNDI driver for LDAP.  The application could use SLP [1] to
   discover the LDAP server, though further discussion of this is
   beyond the scope of this document.)

   The application does not have the LDAP service provider
   classes, nor does it know where to obtain the classes. It does
   have the ability to use SLP, and can retrieve class files using
   the http protocol.

   In order to discover the location of the LDAP service provider
   classes, the application issues a SLP service request for the
   service type "service:jndi-drivers" with the predicate string
   "(&(service-type=ldap)(access-protocol=http))".

   The LDAP service provider classes are offered by the http server
   "jserver.sun.com", which is also advertising this offering via
   SLP. "jserver" thus sends a SLP service reply to the requesting
   application with the following URL:



Kempf, Wood              expires December 1998                  [Page 2]



INTERNET DRAFT                                                 June 1998

   service:jndi-drivers:http://jserver.sun.com/java/drivers/ldap.jar;\
      class=com.sun.jndi.LdapCtx;\
      factory=com.sun.jndi.LdapCtxFactory

   The application now has enough information to retrieve the class
   files it needs. It will use the JNDI NamingManager to create
   an LDAP service provider context; to do so, it must first decompose
   the service: URL into a JNDI Reference. The following Java code
   fragment shows how this is done. Note that the ServiceURL object is
   defined in [5], which also defines an API for using SLP through
   which ServiceURLs can be obtained. Error handling is omitted for
   brevity.

    ServiceURL surl = // result from service request

    // Compose a JNDI Reference from the service: URL
    // Get the class name
    String urlPart = surl.getURLPath();
    String className = urlPart.substring(urlPart.indexOf("class="));
    className = className.substring(className.indexOf("=") + 1,
                                    className.indexOf(";"));

    // Get the factory class name
    String fact = urlPart.substring(urlPart.indexOf("factory="));
    fact = fact.substring(fact.indexOf("=") + 1);

    // Reconstruct the URL for the class files
    String type = surl.getServiceType();
    String proto = type.getConcreteTypeName();
    String host = surl.getHost();
    String factLoc = proto + "://" + host +
                     urlPart.substring(0, urlPart.indexOf(";"));

    // Compose a JNDI RefAddr which will bootstrap the driver
    StringRefAddr refAddr = new StringRefAddr("URL",
                              "ldap://andromeda:389/o=sun,c=us");

    // Compose a JNDI Reference with all information needed to
    // instantiate and bootstrap the provider
    Reference ref = new Reference(className, refAddr, fact, factLoc);

    // Install a permissive security manager here ...
    System.setSecurityManager(new PermissiveSecurityManager());

    // Retrieve, instantiate, and bootstrap the provider
    DirContext ctx = (DirContext)
                      NamingManager.getObjectInstance(ref,
                                                null, null, null);



Kempf, Wood              expires December 1998                  [Page 3]



INTERNET DRAFT                                                 June 1998

   The application now has a working LDAP DirContext object.

2. The "jndi-drivers" Abstract Service

  -------------------------template begins here-----------------------

type = jndi-drivers

version = 0.1

language = en

scheme-description =
The jndi-drivers service provides the following information:
1) The name of a service class,
2) The name of a factory object to create the service class,
3) A URL locating the factory object and service object Java code.
This is an abstract type. The concrete type should be the access
protocol used to retrieve the driver.
This template takes advantage of the abstract types introduced
with SLP V2 [1].

url-syntax =
url-part = url ";class=" class name ";factory=" factory-class-name
url = an URL as defined in [6]
class-name = ;Fully qualified Java name of service class
factory-class-name = ;Fully qualified Java name of the factory object's class

service-type = STRING L
#The SLP service type name for the driver.

jndi-driver-version = STRING L
#The driver's version number.

access-protocol = string
# The protocol used to access this driver. This attribute
# is useful for SLP UAs which wish to query for a set of preferred
# access protocols. This attribute should match the access protocol
# given in the concrete type.

  --------------------------template ends here------------------------

contacts = "James Kempf" <james.kempf@eng.sun.com>
           "Jonathan Wood" <jonathan.wood@eng.sun.com>

security-considerations = Drivers obtained from these service: URLs
  will ultimately be executed within process space of the
  instantiating application. As such, the application should take



Kempf, Wood              expires December 1998                  [Page 4]



INTERNET DRAFT                                                 June 1998

  care to ensure that the driver is valid, and not malicious. Two
  possible means of ensuring a driver's validity are the use of SLP
  protected scopes, or by utilizing signed Java Archives (JAR files)
  provided by Sun's Java Development Kit (JDK) [7]

References:

    [1] E. Guttman, C. Perkins, J. Veizades, M. Day,
        Service Location Protocol. draft-ietf-svrloc-protocol-v2-06.txt,
        May 1998 (work in progress)

    [2] E. Guttman, C. Perkins, J. Kempf, Service Templates and service:
        Schemes. draft-ietf-svrloc-service-scheme-10.txt
        March, 1998 (work in progress)

    [3] The Java Naming and Directory Interface (TM) Specification,
        Sun Microsystems, Inc.  Feb 1998.  http://java.sun.com/jndi/.

    [4] M. Wahl, T. Howes, S. Kille, The Lightweight Directory Access
        Protocol (v3).  RFC 2251

    [5] J. Kempf, E. Guttman, An API for Service Location
draft-ietf-svrloc-api-05.txt, May 1998 (work in progress)

    [6] T. Berners-Lee, R. Fielding, and L. Masinter.  Uniform Resource
        Locators (URL): Generic Syntax and Semantics.  RFC1738 as
        amended by RFC1808

    [7] The Java Development Kit
        Sun Microsystems, Inc.  http://java.sun.com/products/jdk

Authors' Addresses

James Kempf
Sun Microsystems
901 San Antonio Avenue
Palo Alto, CA 94043
USA
Phone: +1 650 786-5890
email: James.Kempf@Eng.Sun.COM

Jonathan Wood
Sun Microsystems
901 San Antonio Avenue
Palo Alto, CA 94043
USA
Phone: +1 650 786-4815
email: Jonathan.Wood@Eng.Sun.COM

https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-protocol-v2-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-service-scheme-10.txt
http://java.sun.com/jndi/
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-api-05.txt
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1808
http://java.sun.com/products/jdk


Kempf, Wood              expires December 1998                  [Page 5]


