
Service Location Working Group Jonathan Wood
INTERNET DRAFT Roberto Tam
 Sun Microsystems, Inc.
 25 June 1999

The Naming and Directory Service Abstract Type
draft-ieft-svrloc-naming-directory-scheme-01.txt

Status of This Memo

 This document is a submission by the Service Location Working Group
 of the Internet Engineering Task Force (IETF). Comments should be
 submitted to the srvloc@srvloc.org mailing list.

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at
 any time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as ``work in progress.''

 To view the entire list of current Internet-Drafts, please check
 the ``1id-abstracts.txt'' listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

 Distribution of this memo is unlimited.

Abstract

 This document describes the Naming and Directory Service abstract
 type. This abstract type serves as an umbrella type for all
 services which support directory-style operations for obtaining
 system information. This type collects a core set of attributes
 common to all such services.

1. Introduction

 This document defines a template for the naming and directory
 service abstract type. Templates and service types are
 defined in [1]. This type can be used with SLP [2] to
 dynamically discover naming and directory servers. In
 particular, this type applies to name spaces which contain

Wood, Tam expires December 1999 [Page 1]

INTERNET DRAFT June 1999

 information intended primarily for system consumption;
 examples of such information are UNIX-style system information
 (such as passwd, hosts, and service tables), and public-key
 certificates for authenticating principals such as people and
 hosts.

 Currently there is a wide variety of services which are used
 to serve system information (i.e. NIS, NIS+, LDAP, NDS, etc.).
 It is common for two or more of these services to be deployed
 at the same time on the same network. This creates configuration
 complexity for naming and directory clients on the network:
 How does a client choose the right service, and once chosen,
 how does the client find the access handle to that service?

 The type defined by this document manages this complexity by
 collecting attributes common to all naming and directory services,
 allowing clients to select the right service from a
 heterogeneous pool. This type can be used in conjunction with
 SLP to implement a unified discovery solution.

 Note that concrete types include all attributes defined in this
 template; they may also define attributes specific to their
 service. Examples of concrete type templates can be found in
 [3], [4], and [5].

2. Examples

 This section presents two scenarios to illustrate how this type might
 be used. For both scenarios, it is assumed that a number of naming
 and directory services have been deployed in the network, and
 that they are advertising their services via SLP. The following
 list enumerates the registered servers and their attributes. Note
 that in an actual registration, the template attributes would be
 included in the attributes list, and all attributes and URLs would
 be properly escaped. Here, however, these steps have been omitted
 for the sake of brevity and readability:

 URL:
 service:naming-directory:nis://192.168.1.100/eng.wiz.com
 Attributes:
 naming-context=eng.wiz.com
 organization=flat
 dynamic-updates=false
 jndi-sp-available=true
 master=true

 URL:
 service:naming-directory:nis://192.168.1.200/eng.wiz.com

Wood, Tam expires December 1999 [Page 2]

INTERNET DRAFT June 1999

 Attributes:
 naming-context=eng.wiz.com
 organization=flat
 dynamic-updates=false
 jndi-sp-available=true
 master=false

 URL:
 service:naming-directory:nisplus://192.168.2.100/b17.eng.wiz.com
 Attributes:
 naming-context=b17.eng.wiz.com
 organization=hierarchical
 dynamic-updates=true
 jndi-sp-available=false
 master=true
 security-mechanism=dh-ext
 pubkey=(dh-ext)1a22345def3324f3ecbb...

 URL:
 service:naming-directory:ldap://192.168.3.100/dc=eng,dc=wiz,dc=com
 Attributes:
 naming-context=dc=eng,dc=wiz,dc=com
 organization=hierarchical
 dynamic-updates=true
 jndi-sp-available=true
 master=true
 security-mechanism=clear,tls,kerb5
 transport=cots

 Note that some attributes are not defined in the template
 given below; they are defined in the templates for the
 particular services.

2.1. System Configuration

 A number of UNIX platforms currently bundle clients for the
 NIS, NIS+, and LDAP services. When the system initially needs
 to configure its name service, it has no idea with what services
 its new network has been populated. It does, however, know
 that it wants an authenticated connection to its server, and
 that it has been configured with Kerberos and extended DH
 security. Also, it would like to talk to an authoritative server
 to populate its initial configuration.

 So, in order to discover what naming services are available,
 the system issues the following SLP service request:

 <type>=service:naming-directory

Wood, Tam expires December 1999 [Page 3]

INTERNET DRAFT June 1999

 <predicate>=(&(|(security=kerb5)(security=dh-ext))(master=true))

 It receives the following service handles:

 service:naming-directory:ldap://192.168.3.100/dc=eng,dc=wiz,dc=com
 service:naming-directory:nisplus://192.168.2.100/b17.eng.wiz.com

 Each service handle provides enough information to contact and
 query the server.

 The system then decides whether to use NIS+ or LDAP (or both),
 and uses the access handle to contact the server.

2.2. JNDI Configuration

 The Java Naming and Directory Interface (JNDI) [6] provides a
 common interface to naming and directory operations. Using JNDI,
 it is possible to write an application which accesses directories
 without knowing which particular naming or directory service
 it is actually talking to.

 However, JNDI applications require some initial configuration
 in order to find and query a service; this configuration is
 different for each different kind of service.

 This example demonstrates how JNDI applications can use SLP to
 configure themselves in a unified manner. All the application needs
 to know in advance is in what manner it wishes to use a naming or
 directory service.

 In this example, the JNDI application wishes to obtain authentication
 information for a user, and to update preferences for that user in
 the directory. Therefore the required attributes for this directory
 are:
 - dynamic-updates = true
 - jndi-sp-available = true
 The 'jndi-sp-available' attribute is used to find only those services
 for which a JNDI service provider exists, since the application
 needs this driver to communicate with any found services. These
 required attributes are all the application currently "knows"; it
 does not know the address or even the access protocol of a server,
 nor does it have any JNDI service provider available to it. All
 it has are the JNDI framework classes, and a Java environment.

 In order to obtain service handles to suitable service instances,
 the application issues the following SLP service request:

 <type>=service:naming-directory

Wood, Tam expires December 1999 [Page 4]

INTERNET DRAFT June 1999

 <predicate>=(&(dynamic-updates=true)(jndi-sp-available))

 It receives the following service handles:

 service:naming-directory:ldap://192.168.3.100/dc=eng,dc=wiz,dc=com

 At this point, the application now has enought configuration
 information to contact the server. However, it does not have the
 Java class files for the LDAP service provider implementation. It
 can dynamically discover, download, and instantiate the necessary
 classfiles using SLP and the JNDI Drivers service type [7]. See [7]
 for an example of this process.

 The JNDI application is now able to configure itself to talk to a
 directory server, and access the necessary JNDI service provider.

3. The Naming and Directory Service Abstract Type

Names of submitters: Jonathan Wood <jonathan.wood@eng.sun.com>
 Roberto Tam <roberto.tam@eng.sun.com>
Language of service template: en
Security Considerations:
 If these services are used as authentication repositories, and they
 are compromised, any clients of the service become susceptible to
 forged identities. This could result in compromised systems, forged
 messages, etc. Some security measure, such as SLP security, should
 be used to authenticate service advertisements.

 In particular, it is important to understand what is trusted
 during the process of service discovery. If no security measures
 are used, all service advertisements are implicitly trusted. This
 scenario allows for very trivial attacks: an attacker need only
 insert a malicious advertisement for a bogus directory server into
 the service name space. It should also be noted that this scenario
 is open to inadvertant attacks. For example, someone may be testing
 an LDAP server which advertises itself according to [5]. If the
 test server is configured in manner similar to production servers,
 clients will bind to the test server and find false or missing
 data.

 The triviality of the attacks outlined above should provide a strong
 case for implementing security measures. However, even with security
 measures it is important to understand trust dependencies.
 Discovery frameworks like SLP [2] provide only the mechanism for
 making service advertisements available and authenticated. Thus
 advertisements obtained via the discovery framework are valid only
 if a correct advertisement was originally injected into the
 discovery name space. For example, if an LDAP server was incorrectly

Wood, Tam expires December 1999 [Page 5]

INTERNET DRAFT June 1999

 configured, or became corrupted, the bogus configuration would
 be reflected through the discovery framework to all clients. If the
 configuration error pertained to security, the client and server may
 end up using a weaker security flavor than necessary.

 Public key cryptography is ideal for discovery frameworks, since it
 lends itself to store-and-forward mechanisms which can be very
 efficient (for example, directory agents in SLP), and can be
 scalably deployed (see [8]). However, a PKI introduces another
 complex set of trust considerations. For a PKI to be reasonably
 secure, the public key of the principal to be authenticated must
 have been obtained in a secure manner. Discovery frameworks which
 use a PKI must thus trust that the public key or certificate it
 is using for authentication is valid. For example, if a PKI were
 implemented such that it dynamically retrieves a public key over
 the network in an unsecured transfer, an attacker could substitute
 a false public key and thus trick the discovery client into
 believing a principal was to be trusted. The client could then be
 tricked into using a false advertisement and connect to a bogus
 server. [8] defines mechanisms to handle the attack just described.
 PKI users must also trust that the site administrator has correctly
 configured and populated the PKI. Finally, PKI users must trust the
 method used to discover key servers. DNS is often implicitly
 trusted in this step; insertion of a bogus address for a key server
 into the DNS can prevent clients from accessing their PKI.

 See also the security considerations from [2].

Template text:
-------------------------template begins here-----------------------
template-type=naming-directory

template-version=0.0

template-description=
 This is an abstract service type. This type is intended to
 encompass all services which support directory-style operations
 for looking up and searching system information.

template-url-syntax=
 url-path= ; Depends on concrete service type.

naming-context= string M
 # A list of the names of organizational units or domains which
 # this server serves.

organization= string
 # Names spaces can be either hierarchical (as in LDAP) or flat

Wood, Tam expires December 1999 [Page 6]

INTERNET DRAFT June 1999

 # (as in NIS).
flat,hierarchical

dynamic-updates= boolean
 # True if the service's namespace can be modified dynamically;
 # false if the namespace is static.

jndi-sp-available= boolean O
 # True if a JNDI service provider is available for this particular
 # service.

master= boolean
 # True if an instance of a service is the master or authoritative
 # server for a namespace. For multi-master services, all masters
 # should set this value to true.

--------------------------template ends here------------------------

References:

 [1] E. Guttman, C. Perkins, J. Kempf, Service Templates and service:
 Schemes. RFC 2609, February 1999

 [2] E. Guttman, C. Perkins, J. Veizades, M. Day. Service Location
 Protocol. RFC 2608, April 1999

 [3] J. Wood, R. Tam, The NIS Service Type. draft-ieft-svrloc-nis-
scheme-00.txt, November 1998 (work in progress)

 [4] J. Wood, R. Tam, The NIS+ Service Type. draft-ieft-svrloc-nisplus-
scheme-00.txt, November 1998 (work in progress)

 [5] J. Wood, R. Tam, The LDAP Service Type. draft-ieft-svrloc-ldap-
scheme-02.txt, June 1999 (work in progress)

 [6] The Java Naming and Directory Interface (TM) Specification,
 Sun Microsystems, Inc. Feb 1998. http://java.sun.com/jndi/.

 [7] J. Kempf, J. Wood, The jndi-drivers Abstract Service Type.
draft-ietf-svrloc-jndi-drivers-00.txt, June 1998

 (work in progress)

https://datatracker.ietf.org/doc/html/rfc2609
https://datatracker.ietf.org/doc/html/rfc2608
https://datatracker.ietf.org/doc/html/draft-ieft-svrloc-nis-scheme-00.txt
https://datatracker.ietf.org/doc/html/draft-ieft-svrloc-nis-scheme-00.txt
https://datatracker.ietf.org/doc/html/draft-ieft-svrloc-nisplus-scheme-00.txt
https://datatracker.ietf.org/doc/html/draft-ieft-svrloc-nisplus-scheme-00.txt
https://datatracker.ietf.org/doc/html/draft-ieft-svrloc-ldap-scheme-02.txt
https://datatracker.ietf.org/doc/html/draft-ieft-svrloc-ldap-scheme-02.txt
http://java.sun.com/jndi/
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-jndi-drivers-00.txt

Wood, Tam expires December 1999 [Page 7]

