
Service Location Working Group Erik Guttman
INTERNET DRAFT Charles Perkins
 James Kempf
31 October 1997 Sun Microsystems

 Service Templates and service: Schemes
draft-ietf-svrloc-service-scheme-05.txt

Status of This Memo

 This document is a submission by the Service Location Working Group
 of the Internet Engineering Task Force (IETF). Comments should be
 submitted to the srvloc@corp.home.net mailing list.

 Distribution of this memo is unlimited.

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at
 any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check
 the ``1id-abstracts.txt'' listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (North
 Europe), ftp.nis.garr.it (South Europe), munnari.oz.au (Pacific Rim),
 ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 The ''service:'' URL scheme name is used to define URLs (called
 ''service: URLs'' in this document) that are primarily intended to be
 used by the Service Location Protocol in order to distribute service
 access information. These schemes provide an extensible framework
 for client-based network software to obtain configuration information
 required to make use of network services. When registering a
 service: URL, the URL SHOULD be accompanied by a set of well-defined
 attributes which define the service. These attributes SHOULD
 convey configuration information to client software, or service
 characteristics meaningful to end users.

 This document describes a formal procedure for defining and
 standardizing new service types and attributes for use with the

https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-service-scheme-05.txt

Guttman,Perkins,Kempf Expires 31 April 1997 [Page i]

Internet Draft Service Templates and URLs 31 October 1997

 ''service:'' scheme. The formal descriptions of service types and
 attributes are templates that are human and machine understandable.
 They SHOULD be used by administrative tools to parse service
 registration information and by client applications to provide
 localized translations of service attribute strings.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page ii]

Internet Draft Service Templates and URLs 31 October 1997

 Contents

Status of This Memo i

Abstract i

 1. Introduction 2
1.1. Terminology . 3
1.2. Service Location Protocol 4

 2. Related work 4

 3. Service URL Syntax and Semantics 4
3.1. Service URL Syntax 4
3.2. Service URL Semantics 6
3.3. Use of service: URLs 7
3.4. Specifying the Service Type-Specific URL Syntax 8
3.5. Accommodating Abstract Service Types 8

3.5.1. Advertising Abstract Service Types 9

 4. Syntax and Semantics of Service Type Specifications 10
4.1. Syntax of Service Type Templates 10
4.2. Semantics of Service Type Templates 13

4.2.1. Definition of a Service Template 13
4.2.2. Service Type 14
4.2.3. Service Type Language 14
4.2.4. Version Number 14
4.2.5. Description 14
4.2.6. Syntax of the Service Type-specific URL Part . . 15
4.2.7. Attribute Definition 15

 5. A Process For Standardizing New Service Types 19

 6. IANA Considerations 20

 7. Internationalization Considerations 21
7.1. Language Identification and Translation 21

 8. Security Considerations 22

 A. Service Template Examples 22
A.1. ACAP . 23

 A.2. Abstract Service Template Example: Network-Management . 24
 A.3. Concrete Service Template Example: Network-Management:SNMP
 24

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 1]

Internet Draft Service Templates and URLs 31 October 1997

A.4. service: URLs and SLP 26

1. Introduction

 This document describes a URL scheme, called service: URL, which
 defines network access information for network services using a
 formal notation. In addition it describes how to define a set of
 attributes to associate with a service: URL. These attributes will
 allow end users and programs to select between network services of
 the same type that have different capabilities. The attributes
 are defined in a template document that is readable by people and
 machines.

 A client uses attributes to select a particular service. Service
 selection occurs by obtaining the service: URL that offers the right
 configuration for the client. Service type templates define the
 syntax of service: URLs for a particular service type, as well as the
 attributes which accompany a service: URL in a service registration.

 Templates are used for the following distinct purposes:

 1. Standardization

 The template is reviewed before it is standardized. Once it is
 standardized, all versions of the template are archived by IANA.

 2. Service Registration

 Servers making use of the Service Location Protocol [15] register
 themselves and their attributes. They use the templates to
 generate the service registrations. In registering, the service
 must use the specified values for its attributes.

 3. Client presentation of Service Information

 Client applications may display service information. The
 template provides type information and explanatory text which may
 be helpful in producing user interfaces.

 4. Internationalization

 Entities with access to the template for a given service type in
 two different languages may translate between the two languages.

 A service may register itself in more than one language using
 templates, though it has been configured by an operator who
 registered service attributes in a single language.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 2]

Internet Draft Service Templates and URLs 31 October 1997

 All grammar encoding follows the Augmented BNF (ABNF) [9] for syntax
 specifications.

1.1. Terminology

 This section introduces some terminology for describing service:
 URLs.

 service scheme

 A URL scheme whose name starts with the string "service:" and
 is followed by the service type name, constructed according to
 the rules in this document. An example is "service:lpr:" for
 the lpr print service [14].

 service: URL

 A URL constructed according to the service scheme definition.
 It typically provides at least the following: The name of an
 access protocol, and an address locating this service. The
 service: URL may include url path information specific to the
 type of service, as well as attribute information encoded
 according to the URL grammar. The service: URL is used by
 the Service Location Protocol to register and discover the
 location of services. It may be used by other protocols and in
 documents as well.

 service type

 A name identifying the semantics by which the remainder of
 the service: URL is to be understood. It may denote either a
 particular network protocol, or an abstract service associated
 with a variety of protocols. If the service type denotes a
 particular protocol, then the service type name SHOULD either
 be assigned the name of a particular well known port [3]
 by convention or or be the Assigned Numbers name for the
 service [1].

 abstract service type

 A service type name which is associated with a variety of
 different protocols. An example is given in Section A.

Section 3 discusses various ways that abstract types can be
 accommodated.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 3]

Internet Draft Service Templates and URLs 31 October 1997

 service registration

 A service: URL and optionally a set of attributes comprise
 a service registration. This registration is made by or on
 behalf of a given service. The URL syntax and attributes must
 conform to the service template for the registered service.

 service template

 A formal description of the service attributes and service
 scheme associated with a particular service type.

1.2. Service Location Protocol

 The Service Location Protocol [15] allows service: URLs to be
 registered and discovered, though service: URLs may be also used in
 other contexts.

 Client applications discover service registrations by issuing queries
 for services of a particular type, specifying the attributes of
 the service: URLs to return. Clients retrieve the attributes of a
 particular service by supplying its service: URL. Attributes for all
 service registrations of a particular type can also be retrieved.

 Services may register themselves, or registrations may be made on
 their behalf. These registrations contain a service: URL, and
 possibly attributes and digital signatures.

2. Related work

 The "Finding Stuff" work by Ryan Moats, Martin Hamilton, and
 Paul Leach uses service: URLs to provide access information about
 arbitrary network protocols through DNS [11]. DNS SRV Resource
 Records are a mechanism which provides a way to obtain a service by
 type for a given domain [10], without specifying which instance of
 the service type meet particular requirements.

3. Service URL Syntax and Semantics

 This section describes the syntax and semantics of service: URLs.

3.1. Service URL Syntax

 The syntax of the service: URL MUST conform to [6]. The only
 exception is that the <password> field has been omitted from the

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 4]

Internet Draft Service Templates and URLs 31 October 1997

 <site> production, since plain text transmission of passwords is
 now discouraged. Note that the syntax for the <sap> field depends
 upon the service type definition. The <sap> field is the service
 access point, and describes how to access the service. In addition,
 although both upper case and lower case characters are recognized in
 the <service-type> field for convenience, the name is case-folded
 into lower case. Service types are therefore not distinguished on
 the basis of case, so, for example, "http" and "HTTP" designate the
 same service type. This is consistent with general URL practice, as
 outlined in [7].

 The ABNF for a service: URL is:

 service: URL = "service:" service-type ":" sap
 service-type = abstract-type ":" url-scheme / concrete-type
 abstract-type = type-name ["." naming-auth]
 concrete-type = protocol ["." naming-auth]
 type-name = resname
 naming-auth = resname
 url-scheme = resname
 ; A recognized URL scheme name, standardized
 ; either through common practice or through
 ; approval of a standards body.
 resname = alpha [1*(alpha / digit / "+" / "-")]
 sap = "//" site [url-part]
 site = [[user "@"] hostport]
 hostport = host [":" port]
 host = hostname / hostnumber
 hostname = *(domainlabel ".") toplabel
 alphanum = alpha / digit
 domainlabel = alphanum / alphanum *[alphanum / "-"] alphanum
 toplabel = alpha / alpha *[alphanum / "-"] alphanum
 hostnumber = ipv4-number / ipv6-number
 ipv4-number = 1*3digit 3("." 1*3digit)
 ipv6-number = 32hex
 3digit = digit digit digit
 port = 1*digit
 ; A port number must be included if the
 ; protocol field does not have an IANA
 ; assigned port number.
 user = *[uchar / ";" / "+" / "&" / "="]
 url-part = [url-path] [attr-list]
 url-path = 1 * ("/" *xchar)
 ; Each service type must define its
 ; own syntax consistent
 ; with [6].
 attr-list = 1 * (";" attr-asgn)

 attr-asgn = attr-id / attr-id "=" attr-value

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 5]

Internet Draft Service Templates and URLs 31 October 1997

 safe = "$" / "-" / "_" / "." / "~"
 extra = "!" / "*" / "'" / "(" / ")" / "," / "+"
 uchar = unreserved / escaped
 xchar = unreserved / reserved / escaped
 escaped = "%" hex hex
 hex "a" / "b" / "c" / "d" / "e" / digit
 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"
 unreserved = alpha / digit / safe / extra

 Certain characters must be escaped before use. To escape any
 character, precede the two digits indicating its ASCII value by '%'.

3.2. Service URL Semantics

 The service scheme-specific information following the "service:"
 URL scheme identifier provides information necessary to access the
 service. As described in the previous subsection, the form of a
 service: URL is as follows:

 service: URL = "service:" service-type ":" sap

 where <sap> has the following form:

 //addr-spec/url-path;attr-list

 The <service-spec> field includes the <service-type> field. As
 discussed in Section 1, the <service-type> can be either a concrete
 protocol name, or an abstract type name.

 The <service-part> field includes a site specification (the
 <site> field) in the format specified by [6]. The <site> field
 is typically either a domain name (DNS) or an IP network protocol
 address for the service, and possibly a port number. Note that use
 of DNS hostnames is preferred for ease of renumbering. The <site>
 field can be null if other information in the service URL or service
 attributes is sufficient to use the service.

 The <sap> field allows more information to be provided (by way of
 <url-path> and <attr-list>) that can uniquely locate the service or
 resource if the <addr-spec> is not sufficient for that purpose.

 An <attr-list> field appears at the end of the <url-part> field,
 but is never required to exist in any service location registration.
 The <attr-list> field is composed of a list of semicolon (";")
 separated attribute assignments of the form:

 attr-id "=" attr-value

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 6]

Internet Draft Service Templates and URLs 31 October 1997

 or for keyword attributes:

 attr-id

 Attributes are part of service: URLs when the attributes are required
 to access a particular service. For instance, an ACAP [13] service
 might require that the client authenticate with it through Kerberos.
 Including an attribute in the service registration allows the ACAP
 client to make use of the correct SASL [12] authentication mechanism.
 The ACAP server's registration might look like:

 service:acap://some.where.net;authentication=KERBEROSV4

 Note that there can be other attributes of an ACAP server which are
 not be appropriate to include in the URL. For instance, the list
 of users who have access to the server is useful for selecting an
 ACAP server, but is not required for a client to use the registered
 service.

 Attributes associated with the service: URL are not typically
 included in the service: URL. They are stored and retrieved using
 other mechanisms. The service: URL is uniquely identified with a
 particular service agent or resource, and is used when registering or
 requesting the attribute information. The Service Location Protocol
 specifies how such information SHOULD be registered by network
 services and obtained by client software.

3.3. Use of service: URLs

 The service: URL is intended to allow arbitrary client/server and
 peer to peer systems to make use of a standardized dynamic service
 access point discovery mechanism.

 It is intended that service: URLs be selected according to the
 suitability of associated attributes. A client application can
 obtain the URLs of several services of the same type and distinguish
 the most preferable among them by means of their attributes. The
 client uses the service: URL to communicate directly to a service.

 Attributes are specified with a formal service template syntax
 described in Section 4. If a service: URL registration includes
 attributes, the registering agent SHOULD also keep track of the
 attributes which characterize the service.

 Registrations can be checked against the formal attribute
 specification defined in the template by the client or agent
 representing the client. Service registration are typically done
 using the Service Location Protocol [15] (SLP). SLP provides a

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 7]

Internet Draft Service Templates and URLs 31 October 1997

 mechanism for service: URLs to be obtained dynamically, according to
 the service's attributes.

 It is also possible to obtain service: URLs from documents and using
 other protocols. In this case, the URL may not be accompanied by
 the service attributes. The context in which the URL appears SHOULD
 make it clear, if possible, when the service is appropriate to use.
 For example, in a mail message, a service might be recommended for
 use when the user is in a branch office. Or, an HTML document might
 include a service: URL as a pointer to a service, describing in text
 what the service does and who is authorized to use it.

3.4. Specifying the Service Type-Specific URL Syntax

 When a service type is specified, the specification includes the
 definition of the syntax for all URLs that are registered by services
 of that particular type. For instance, the "lpr" service type may be
 defined with service: URLs in the following form:

 service:printer:lpr://<address of printer>/<queue name>

 The section of the URL after the address of the printer:

 "/" <queue name>

 is specific to the lpr service type and corresponds to the
 <url-path> field of the general service: URL syntax. This part is
 specified when the lpr service type is specified.

3.5. Accommodating Abstract Service Types

 An abstract service type is a service type that can be implemented by
 a variety of different service agents.

 In order to register an service: URL for an abstract service type the
 'abstract-type' grammar rule described in section 3.1 is used. This
 will result in a URL which includes enough information to use the
 service, namely, the protocol, address and path information. Unlike
 'concrete' service: URLs, however, the service type is not enough
 to determine the service access. Rather, an abstract service type
 denotes a class of service types. The following subsection discusses
 this point in more detail.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 8]

Internet Draft Service Templates and URLs 31 October 1997

3.5.1. Advertising Abstract Service Types

 Some services may make use of several protocols that are in common
 use and are distinct services in their own right. In these cases an
 abstract service type is appropriate. What is essential is that all
 the required information for the service is clearly defined.

 For example, suppose a network service is being developed for
 dynamically loading device drivers. The client requires the
 following three pieces of information before it can successfully load
 and instantiate the driver:

 1. The protocol used to load the driver code, for example, "ftp",
 "http" or "tftp"

 2. A pathname identifying where the driver code is located, for
 example "/systemhost/drivers/diskdrivers.drv",

 3. The name of the driver, for example, "scsi".

 The temptation is to form the first two items into a URL and embed
 that into a service: URL. As an example which should be avoided,

 service:ftp:/x3.bean.org/drivers/diskdrivers.drv;driver=scsi

 is a service: URL which seems to indicate where to obtain the driver.

 Rather, an abstract service-type SHOULD be used. The service type is
 not "ftp", as the example indicates. Rather, it is "device-drivers".
 The service: URL that should be used, consistent with the rules in
 section [6], is the following:

 service:device-drivers:ftp://x3.bean.org/drivers/diskdrivers.drv;
 driver=scsi;platform=sys3.2-rs3000

 Other URLs for the same service using other protocols are also
 supported, as in:

 service:device-drivers:tftp://x2.bean.org/vol3/disk/drivers.drv;
 driver=scsi;platform=sys3.2-rs3000

 service:device-drivers:http://www.bean.org/drivers/drivpak.drv;
 driver=scsi;platform=sys3.2-rs3000

 Using SLP, a search for the service type "device-drivers" may return
 all of the three URLs listed above. The client selects the most
 appropriate access protocol for the desired resource.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 9]

Internet Draft Service Templates and URLs 31 October 1997

 The fundamental requirement is that the abstract service type MUST
 be well specified. This requirement is imposed so that program code
 or human users have enough information to access the service. In
 every case, a well-specified abstract type will include either an
 access protocol and a network address where the service is available,
 or an embedded URL for a standardized URL scheme that describes
 how to access the service. In the example above, there are three
 further requirements: A URL path is included for access protocols
 indicating the document to download, and two attributes are included
 to characterize the driver.

4. Syntax and Semantics of Service Type Specifications

 Service type specifications are documents in a formal syntax defining
 properties important to service registration. These properties are:

 1. General information on the service type specification itself,

 2. The syntax of the service type-specific part of the service URL,

 3. The definition of attributes associated with a service.

 The service type specification document is the service type template.

 The following subsections describe the syntax and semantics of
 service type templates.

4.1. Syntax of Service Type Templates

 Service template documents are encoded in a simple form. They may be
 translated into any language or character set, but the template used
 for standardization MUST be encoded in UTF8 [16] and be in English.

 A template document begins with a block of text assigning values to
 five document identification items. The five identification items
 can appear in any order within the block, but conventionally the
 "type" item, which assigns the service type name, occurs at the very
 top of the document in order to provide context for the rest of
 the the document. The attribute definition item occurs after the
 document identification items.

 All items end with a blank line. The reserved characters are ";",
 "%", "=", ",", "#", LF, and CR. Reserved characters MUST be escaped.
 The escape sequence is the same as described in [6].

 The service template is encoded in a UTF8 character set, but
 submitted as a part of an internet-draft, which is encoded in ASCII

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 10]

Internet Draft Service Templates and URLs 31 October 1997

 characters. All characters which are outside of the ASCII range MUST
 be escaped using the % HEX HEX syntax. For example, the letter e
 accent aigue would be represented as "%c3%a9". Unfortunately, this
 will detract from the readability of the service template in the
 internet draft. Hopefully some public domain tools will emerge for
 translating escaped UTF8 characters into humanly readable ones.

 Values in value lists are separated by commas. A value list is
 terminated by a newline not preceded by a comma. If the newline is
 preceded by a comma, the value list is interpreted to continue onto
 the next line.

 Attribute identifiers, attribute type names, and flags are all
 case insensitive. For ease of presentation, upper and lower case
 characters can be used to represent these in the template document.
 Newlines are significant in the grammar. They delimit one item from
 another, as well as separating parts of items internally.

 String values are considered to be a sequence of non-whitespace
 tokens potentially with embedded whitespace, separated from each
 other by whitespace. Commas delimit lists of strings. String values
 are trimmed so as to reduce any sequence of white space interior to a
 string to a single white space. Preceding or trailing white space is
 removed. For example:

 " some value , another example "

 is trimmed to

 "some value" and "another example".

 Note that there can be no ambiguity in string tokenization because
 values in value lists are separated by a comma. String tokens are
 not delimited by double quotes (") as is usually the case with
 programming languages.

 Attribute tags and values are useful for directory look-up. In this
 case, decoding of character escapes and trimming white space MUST
 be performed before string matching. In addition, string matching
 SHOULD be case insensitive.

 Templates obey the following ABNF [9] grammar:

 template = tem-attrs attr-defs
 tem-attrs = schemetype schemevers schemelang
 schemetext schemeurl
 schemetype = "type" "=" scheme termdef
 schemevers = "version" "=" version-no termdef

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 11]

Internet Draft Service Templates and URLs 31 October 1997

 schemelang = "language" "=" isolang termdef
 schemetext = "description" "=" newline desc-text termdef
 schemeurl = "url-syntax" "=" newline url-bnf termdef
 url-bnf = *[com-chars]
 ; An ABNF describing the <url-path> production
 ; in the service: URL grammar of Section 3.1.
 scheme = service-type ["." naming-auth]
 service-type = scheme-name
 naming-auth = scheme-name
 scheme-name = alpha [1*schemechar] ["." 1*schemechar]
 schemechar = alpha / digit / "-" / "+" /
 version-no = 1*digit "." 1*digit
 isolang = 2*3lower-alpha ;see [4]
 desc-text = *[com-chars]
 ; A block of free-form text for reading by
 ; people describing the service in a short,
 ; informative manner.
 termdef = newline newline
 attr-defs = *(attr-def / keydef)
 attr-def = id "=" attrtail
 keydef = id "=" "keyword" newline [help-text] newline
 attrtail = type flags newline [value-list] [help-text]
 [value-list] newline
 id = 1*attrchar
 type = "string" / "integer" / "boolean" / "opaque"
 flags = ["m"/"M"] ["l"/"L"] ["o"/"O"] ["x"/"X"]
 value-list = value newline / value "," value-list /
 value "," newline value-list
 help-text = 1*("#" help-line)
 ; A block of free-form text for reading by
 ; people describing the attribute and
 ; its values.
 help-line = *[com-chars] newline
 attrchar = schemechar / ":" / "_" / "$" / "~" / "@" / "." /
 "|" / "<" / ">" / "*" / "&"
 value = string / integer / boolean / opaque
 string = safe-char *[safe-char / white-sp] safe-char
 integer = ["+" | "-"] 1*digit
 boolean = "true" / "false"
 opaque = 1*digit ":" 4*radix64-char
 ; The digits define the original length of
 ; the opaque value. The restricted character
 ; string is the radix-64 encoding of the
 ; opaque value([8], Sect. 6.8.)
 ; Newlines are ignored in decoding radix-64
 ; values.
 com-chars = safe-char / white-sp / "," / ";"/ "%"
 safe-char = attrchar / escaped / " " / "!" / '"' / "'" /

 "|" / "(" / ")" / "+" / "-" / "." / ":" /

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 12]

Internet Draft Service Templates and URLs 31 October 1997

 "=" / "?" / "[" / "]" / "{" / "/" / "{" /
 "$"
 ; All UTF8 printable characters are
 ; included except ",", "%", ";", and "#".
 escaped = "%" hex hex
 hex = digit / "A" / "B" / "C" / "D" / "E" /
 "a" / "b" / "c" / "d" / "e"
 white-sp = space / tab
 newline = CR / (CR LF)

4.2. Semantics of Service Type Templates

 The service type template defines the service attributes and service:
 URL syntax for a particular service type. The attribute definition
 includes the attribute type, default values, allowed values and other
 information.

4.2.1. Definition of a Service Template

 There are six items included in the service template. The semantics
 of each item is summarized below.

 - type

 The scheme name of the service scheme. The scheme name consists
 of the service type name and an optional naming authority name,
 separated from the service type name by a period. See 4.2.2 for
 the conventions governing service type names.

 - version

 The version number of the service type specification.

 - language

 The language of the service type specification.

 - description

 A description of the service suitable for inclusion in text read
 by people.

 - url-syntax

 The syntax of the service type-specific URL part of the service:
 URL.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 13]

Internet Draft Service Templates and URLs 31 October 1997

 - attribute definitions

 A collection of zero or more definitions for attributes
 associated with the service in service registrations.

 Each of the following subsections deals with one of these items.

4.2.2. Service Type

 The service scheme consists of the service type name and an optional
 naming authority name separated from the service type name by a
 period. The service scheme is a string that is appended to the
 'service:' URL scheme identifier, and is the value of the "type"
 item in the template document. If the naming authority name is
 absent it is assumed to be IANA.

4.2.3. Service Type Language

 The service type language is a RFC 1766 Language Tag defining the
 language of the template [4] and is the value of the "language" item.

4.2.4. Version Number

 The version number of the service type template is the value of the
 "version" item. A draft proposal starts at 0.0, and the minor number
 increments once per revision. A standardized template starts at 1.0.
 Additions of optional attributes add one to the minor number, and
 additions of required attributes, changes of definition, or removal
 of attributes add one to the major number. The intent is that an
 old service template still accurately, if incompletely, defines the
 attributes of a service registration if the template only differs
 from the registration in its minor version. See Section 5 for more
 detail on how to use the version attribute.

4.2.5. Description

 The description is a block of text readable by people in the language
 of the template and is the value of the "description" item. It
 should be sufficient to identify the service to human readers and
 provide a short, informative description of what the service does.

 If the service type corresponds to a particular protocol, the
 protocol specification must be cited here. The protocol need not be
 a standardized protocol. The template might refer to a proprietary

https://datatracker.ietf.org/doc/html/rfc1766

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 14]

Internet Draft Service Templates and URLs 31 October 1997

 specification, and refer the reader of the template to a contact
 person for further information.

4.2.6. Syntax of the Service Type-specific URL Part

 The syntax of the service type-specific part of the service:
 URL is provided in the template document as the value of the
 "url-syntax" item. The <url-path> field of the service: URL is
 designed to provide additional information to locate a service when
 the <addr-spec> field is not sufficient. The <url-path> field
 distinguishes URLs of a particular service type from those of another
 service type. For instance, in the case of the lpr service type, the
 <url-path> must include the queue name [14], but other service types
 may not require this information.

 The syntax for the <url-path> field MUST accompany the definition
 of a new service type, unless the URL scheme has already been
 standardized and is not a service: URL. The syntax is included in the
 template document as an ABNF [9] following the rules for URL syntax
 described in [6]. There is no requirement for a service scheme to
 support a <url-path>. The <url-path> field can be very simple,
 or even omitted. If the URL scheme has already been standardized,
 the "url-syntax" item SHOULD include a reference to the appropriate
 standardization documents. Abstract service types may defer this
 field to the template documents describing their concrete instances.

4.2.7. Attribute Definition

 The bulk of the template is typically devoted to defining service
 type-specific attributes. An attribute definition precisely
 specifies the attribute's type, other restrictions on the attribute
 (whether it is multi-valued, optional, etc), some text readable by
 people describing the attribute, and lists of default and allowed
 values. The only required information is the attribute's type, the
 rest are optional. Registration, deregistration and the use of
 attributes in queries can be accomplished using the Service Location
 Protocol [15] or other means, and discussion of this is beyond the
 scope of the document.

 Attributes are used to convey information about a given service for
 purposes of differentiating different services of the same type.
 They convey information to be used in the selection of a particular
 service to establish communicate with, either through a program
 offering a human interface or programmatically. Attributes can be
 encoded in different character sets and in different languages. The
 procedure for doing this is described in Section 7.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 15]

Internet Draft Service Templates and URLs 31 October 1997

 An attribute definition begins with the specification of the
 attribute's identifier and ends with a single empty line. Attributes
 definitions have five components (in order of appearance in a
 definition):

 1. An attribute identifier which acts as the name of the attribute,

 2. Attribute descriptors (type and flags),

 3. An optional list of values which are assigned to the attribute by
 default,

 4. An optional block of text readable by people providing a short,
 informative description of the attribute,

 5. An optional list of allowed values which restrict the value or
 values the attribute can take on.

4.2.7.1. The Attribute Identifier

 An attribute definition starts with the specification of the
 attribute's identifier. The attribute's identifier functions as the
 name of the attribute. Note that the characters used to compose an
 attribute identifier are restricted to those characters considered
 unrestricted for inclusion in a URL according to [6]. The reason
 is that services can display prominent attributes in their service:
 URL registrations. Each attribute identifier must be unique in the
 template. Since identifiers are case folded, upper case and lower
 case characters are the same.

4.2.7.2. The Attribute Type

 Attributes can have one of five different types: string, integer,
 boolean, opaque, or keyword. The attribute's type specification is
 separated from the attribute's identifier by an equal sign ("=") and
 follows the equal sign on the same line. The string, signed integer,
 and boolean types have the standard programming language or database
 semantics. Integers are restricted to those signed values that can
 be represented in 32 bits. The character set used to represent
 strings is not specified at the time the template is defined, but
 rather is determined by the service registration. Booleans have the
 standard syntax. Opaques are radix64 numbers [8] that can be used
 to represent any other kind of data. Keywords are attributes that
 have no characteristics other than their existence (and possibly the
 descriptive text in their definition).

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 16]

Internet Draft Service Templates and URLs 31 October 1997

 Keyword and boolean attributes impose restrictions on the following
 parts of the attribute definition. Keyword attribute definitions
 MUST have no flag information following the type definition, nor any
 default or allowed values list. Boolean attributes are single value
 only, i.e., multi-valued boolean attributes are not allowed.

4.2.7.3. Attribute Flags

 Flags determine other characteristics of an attribute. With the
 exception of keyword attributes, which may not have any flags,
 flags follow the attribute type on the same line as the attribute
 identifier, and are separated from each other by whitespace. Flags
 may appear in any order after the attribute type. Other information
 must not follow the flags, and only one flag identifier of a
 particular flag type is allowed per attribute definition.

 The semantics of the flags are as follows:

 - o or O

 Indicates that the attribute is optional. If this flag is
 missing, the attribute is required in every service registration.

 - m or M

 Indicates that the attribute can take on multiple values. If
 this flag is present, every value in a multi-valued attribute
 has the same type as the type specified in the type part of the
 attribute definition. Boolean attributes must not include this
 flag.

 - l or L

 Indicates that attribute is literal, i.e. is not meant to be
 translated into other languages. If this flag is present, the
 attribute is not considered to be readable by people and should
 not be translated when the template is translated. See Section 7
 for more information about translation.

 - x or X

 Indicates that clients MUST specify the attribute and a value in
 a service query in order to narrowly focus which service: URLs
 are returned. The query will be rejected by DA's that utilize
 templates if the attribute is not included, regardless of whether
 the other attributes match.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 17]

Internet Draft Service Templates and URLs 31 October 1997

 The values for multivalued attributes are an unordered set.
 Deletions of individual values from a multivalued attribute are not
 supported, and deletion of the attribute causes the entire set of
 values to be removed.

4.2.7.4. Default Value or List

 If the attribute definition includes a default value or, in the
 case of multivalued attributes, a default values list, it begins
 on the second line of the attribute definition and continues
 over the following lines until a line ends without a comma. As a
 consequence, newlines cannot be embedded in values unless escaped.
 See Section 3.1.

 Particular attribute types and definitions restrict the default
 values list. Keyword attributes must not have a list of defaults.
 If an optional attribute's definition has an allowed values list,
 then a default value or list is not optional but required. The
 motivation for this is that defining an attribute with an allowed
 values list is meant to restrict the values the attribute can take
 on, and requiring a default value or list assures that the default
 value is a member of the given set of allowed values.

 The default value or list indicates what values the attribute is
 given if no values are assigned to the attribute when a service
 is registered. If an optional attribute's definition includes no
 default value or list, the following defaults are assigned:

 1. String values are assigned the empty string,

 2. Integer values are assigned zero,

 3. Boolean values are assigned false,

 4. Opaque values are assigned a byte array containing no values,

 5. Multi-valued attributes are initialized with a single value.

 For purposes of translating nonliteral attributes, the default values
 list is taken to be an ordered set, and translations MUST maintain
 that order.

4.2.7.5. Descriptive Text

 Immediately after the default values list, if any, a block of
 descriptive text SHOULD be included in the attribute definition.
 This text is meant to be readable by people, and should include

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 18]

Internet Draft Service Templates and URLs 31 October 1997

 a short, informative description of the attribute. It may also
 provide additional information, such as a description of the allowed
 values. This text is primarily designed for display by interactive
 browsing tools. The descriptive text is set off from the surrounding
 definition by a crosshatch character ("#") at the beginning of
 the line. The text should not, however, be treated as a comment
 by parsing and other tools, since it is an integral part of the
 attribute definition. Within the block of descriptive text, the text
 is transferred verbatim, including indentation and line breaks, so
 any formatting is preserved.

4.2.7.6. Allowed Values List

 Finally, the attribute definition concludes with an optional
 allowed values list. The allowed values list, if any, follows the
 descriptive text, or, if the descriptive text is absent, the initial
 values list. The syntax of the allowed values list is identical to
 that of the initial values list. The allowed values list is also
 terminated by a line that does not end in a comma. If the allowed
 values list is present, assignment to attributes is restricted to
 members of the list.

 As with the default values list, the allowed values list is also
 considered to be an ordered set for purposes of translation.

4.2.7.7. Conclusion of An Attribute Definition

 An attribute definition concludes with a single empty line.

5. A Process For Standardizing New Service Types

 New service types can be suggested simply by providing a service type
 template and a short description about how to use the service. The
 template MUST have its "version" template attribute set to 0.0.

 The minor version number increments once with each change until it
 achieves 1.0. There is no guarantee any version of the service
 template is backward compatible before it reaches 1.0.

 Once a service template has reached 1.0, the definition is "frozen"
 for that version. New templates must be defined, of course, to
 refine that definition, but the following rules must be followed:

 - Any new optional attribute defined for the template increases
 the minor version number by one. All other attributes for the
 version must continue to be supported as before. A client which

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 19]

Internet Draft Service Templates and URLs 31 October 1997

 supports 1.x can still use later versions of 1.y (where x<y) as
 it ignores attributes it doesn't know about.

 - Adding a required attribute, removing support for an attribute
 or changing definition of an attribute requires changing the
 major version number of a service template. A client application
 may be unable to make use of this information, or it may need
 to obtain the most recent service template to help the user
 interpret the service information.

 The template should be submitted as an 'individual contribution'
 Internet Draft. The Internet Draft must include a 'template begins
 here' and 'template ends here' marking, in text, so that it is
 trivial to cut and paste the template from the internet draft.

 A notice must be posted to the SVRLOC WG mailing list for review.
 Ideally, experts in the implementation and deployment of the
 particular protocol are consulted so as to add or delete attributes
 or change their definition to make the template as useful as
 possible. The mailing list will be maintained even when the SVRLOC
 WG goes dormant for the purpose of discussing service templates.

 All published versions of the template must be available on-line,
 including obsolete ones.

 Once consensus is achieved, the template should be reissued with
 possible corrections, having its Version number set to 1.0. If there
 is no comment on the template after 3 months, it should be considered
 to have been accepted. See Section 6 for details on how templates
 are submitted to an IANA registry of templates.

6. IANA Considerations

 The Applications Area directors appoint a set of reviewers, including
 a 'lead reviewer'. Any of these reviewers may ask for clarification
 of a service template. If no reviewers dissent, the lead reviewer
 will submit the template to the IANA for inclusion in a registry.
 Mailing list participants supply input to the process but do not make
 the decision whether to accept a service template or request changes
 or clarifications.

 The service template file has a naming convention:

 <service-type> "." <version-no> "." <isolang>

 Each of these fields are defined in Section 3. They correspond
 to the values of the template fields "type", "version" and
 "lang". The files for the example templates in this document

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 20]

Internet Draft Service Templates and URLs 31 October 1997

 are called "acap.0.0.en", "network-management.0.0.en" and
 "network-management:snmp.0.0.en". See Section A.

 No Internet Draft describing a service type template will be accepted
 unless it includes a security considerations section and contact
 information for the template document author.

 The IANA will maintain a registry containing both the service type
 templates, and the template description document containing the
 service type template, including all previous versions. The IANA
 will receive notice by email from the reviewers, which will contain a
 reference to the Internet Draft that contains the service template.
 This Internet Draft will be edited to remove the Internet Draft
 headers and replace them with a simple header stating "This document
 contains a Service Type Template."

 Should any trademark or copyright issues arise due to the naming of
 the Service Type or attributes in the Service Template, the offending
 names may have to be changed. The owner of the trademark may
 demand that this be done. The filer of the Template that requires
 renaming will decide the new names to use. If such issues arise,
 the committee of reviewers in consultation with the IESG directorate
 will proceed to satisfy these conditions. The IANA should simply
 notify the committee and they will pursue the action: The IANA is
 not expected to resolve trademark issues with Service Type templates.

7. Internationalization Considerations

 The service: URL must be encoded using the rules set forth in [6].
 The character set encoding is limited to specific ranges within the
 US-ASCII character set [5].

 The template is encoded in UTF8 characters.

7.1. Language Identification and Translation

 The language used in attribute strings should be identified using the
 "language" template item as defined by [4].

 A program can translate a service registration from one language to
 another provided it has both the template of the language for the
 registration and the template of the desired target language. All
 standardized attributes are in the same order in both templates.
 All non-arbitrary strings, including the descriptive help text, is
 directly translatable from one language to another. Non-literal
 attribute definitions, attribute identifiers, attribute type names,
 attribute flags, and the boolean constants "true" and "false" are

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 21]

Internet Draft Service Templates and URLs 31 October 1997

 never translated. Translation of attribute identifiers is prohibited
 because, as with domain names, they can potentially be part of a
 service: URL and therefore their character set is restricted. In
 addition, as with variable identifiers in programming languages, they
 could become embedded into program code.

 All strings used in attribute values are assumed translatable unless
 explicitly defined as being literal, so that best effort translation
 (see below) does not modify strings which are meant to be interpreted
 by a program, not a person.

 There are two ways to go about translation: standardization and best
 effort.

 When the service type is standardized, more than one document can
 be submitted for review. One service type description is approved
 as a master, so that when a service type template is updated in one
 language, all the translations (at least eventually) reflect the same
 semantics.

 If no document exists describing the standard translation of the
 service type, a 'best effort' translation for strings should be done.

8. Security Considerations

 Service type templates provide information that is used to interpret
 information obtained by the Service Location Protocol. If these
 templates are modified or false templates are distributed, services
 may not correctly register themselves, or clients might not be able
 to interpret service information.

 The service: URLs themselves specify the service access point and
 protocol for a particular service type. These service: URLs could
 be distributed and indicate the location of a service other than
 that normally want to used. The Service Location Protocol [15]
 distributes service: URLs and has an authentication mechanism that
 allows service: URLs of registered services to be signed and for the
 signatures to be verified by clients.

 Each Service Template will include a security considerations section
 which will describe security issues with using the service scheme for
 the specific Service Type.

A. Service Template Examples

 The text in the template example sections is to be taken as being a
 single file.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 22]

Internet Draft Service Templates and URLs 31 October 1997

 The ACAP example shows how to use service templates for an
 application that has very few attributes. Clients request the ACAP
 server where their user data is located by including their user name
 as the value of the user attribute.

 The Network-Management example shows how abstract service types are
 defined and how a corresponding concrete instance is defined. A
 system might support any of several Network-Management services.
 Here we give only one concrete instance of the abstract type. It is
 not necessary to register concrete templates for an abstract service
 type if the abstract service type template is completely clear as to
 what possible values can be used as a concrete type, and what their
 interpretation is.

A.1. ACAP

 -------------------------template begins here-----------------------
 type=ACAP

 version=0.0

 lang=en

 description=
 The ACAP service URL provides the location of an ACAP service.

 url-syntax=
 url-path= ; There is no URL path defined for an ACAP URL.

 users= string M L O
 # The list of all users which the ACAP server supports.

 groups= string M L O
 # The list of all groups which the ACAP server supports.
 --------------------------template ends here------------------------

 The Internet Draft describing the ACAP scheme template must indicate
 contact information and security considerations, e.g.,

 contact="Erik Guttman" <Erik.Guttman@sun.com>

 security considerations=
 If the USER and GROUPS attributes are included a
 possibility exists that the list of identities for users or groups
 can be discovered. This information would otherwise be difficult
 to discover.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 23]

Internet Draft Service Templates and URLs 31 October 1997

A.2. Abstract Service Template Example: Network-Management

 The Internet Draft for the service type template contains the
 following text:

 -------------------------template begins here-----------------------
 type=Network-Management

 version=0.0

 lang=en

 description=
 This is an abstract service type. The purpose of the network-
 management service type is to organize into a single category
 information crucial to properly managing networked hosts. This
 will allow all network-management services of a host, as well
 as basic host configuration to be obtained by a single query
 using SLP.

 url-syntax=
 url-path= ; Depends on the concrete service type.
 ; See these templates.
 --------------------------template ends here------------------------

In addition, the following format might be used for the needed
contact and security considerations information.

 contact="Erik Guttman" <Erik.Guttman@sun.com>

 security considerations=
 See the security considerations of the concrete service types.

A.3. Concrete Service Template Example: Network-Management:SNMP

 -------------------------template begins here-----------------------
 type=service:network-management:snmp

 version=0.0

 lang=en

 description=
 The 'service:network-management:SNMP:' URL provides information
 about the SNMP manageability of a given host. Namely, if this
 URL exists for a host (denoted by the <addr-spec> in the URL,)

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 24]

Internet Draft Service Templates and URLs 31 October 1997

 the host supports SNMP. The path contains an enumeration of
 the MIB groups that are supported by the host. The OID "1.3.6.1."
 is assumed as a prefix to each of the OID terms below.

 url-syntax=
 url-path = ([port-list] [comm-string] [oid-list])
 ; None of the attributes listed in the URL path
 ; are required. They MAY be included.
 port-list = ";ports=" port-list
 ports = port / port "," ports
 ; See the Service URL <port> production rule.
 ; This field is defined as an attribute, below.
 comm-string = ";read-community-string=" 1*uchar
 ; See the Service URL <uchar> production rule.
 ; This field is defined as an attribute, below.
 oid-list = ";oids=" oids
 ; This field is defined as an attribute, below.
 oids = oid / oid "," oids
 oid = DIGIT ["." (DIGIT ".") DIGIT]

 ports=integer M L
 161
 # This attribute must be included. It lists all ports on which
 # SNMP Agents are listening.

 read-community-string=string L O
 # The read community string may be included as an attribute of
 # a service:network-managment:snmp: URL. This is useful in
 # cases where the community string is PUBLIC and ease of access
 # to the SNMP Agent is desired. See the 'security considerations.'

 oid=string M L O
 # This attribute identifies a list of 'top level' MIB groups.
 # This is entirely optional, as such values can be obtained
 # directly using SNMP. The value of including this information
 # in a service:network-managment:snmp: URL is that it will save
 # the Manager time; the MIB information can be obtained along
 # with the URL without requiring additional sequential requests
 # being sent to the managed system.
 --------------------------template ends here------------------------

 contact="Erik Guttman" <Erik.Guttman@sun.com>

 security considerations=
 The read-community-string MUST only be included if the value
 of this string is considered to be public. If this attribute

 is included, absolutely anyone may access the SNMP Agent and

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 25]

Internet Draft Service Templates and URLs 31 October 1997

 get information from it. This may be desirable in some cases.
 If this string is considered confidential information, the
 read-community-string MUST NOT be included in the URL path
 nor in service registrations of the URL made through SLP or
 other protocols.

A.4. service: URLs and SLP

 A user with an ACAP enabled email client application should not
 be bothered with knowing the address of their ACAP server. The
 mail client program can use SLP to obtain the ACAP service: URL
 automatically, say 'service:acap://server1.nosuch.org', by issuing
 a Service Request. In the event that this ACAP server failed, the
 Email client can issue the same service request again to find the
 backup ACAP server, say 'service:acap://server2.nosuch.org'. In both
 cases, the service: URL conforms to the ACAP service template as do
 the associated attributes (user and group.)

 An SNMP based network Manager can use SLP to obtain
 service:network-management:SNMP URLs. This allows the network
 Manager to proceed to manage the hosts identified by these URLs
 without having to scan networks one address at a time, etc. SLP
 provides the capability to send multicast or directed broadcasts to
 obtain this information from every managed host.

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 26]

Internet Draft Service Templates and URLs 31 October 1997

References

 [1] Protocol and service names, October 1994.
ftp://ftp.isi.edu/in-notes/iana/assignments/service-names.

 [2] Address family numbers, October 1995.
ftp://ftp.isi.edu/in-notes/iana/assignments/address-family-numbers.

 [3] Port numbers, July 1997.
ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers.

 [4] H. Alvestrand. Tags for the Identification of Languages. RFC
1766, March 1995.

 [5] ANSI. Coded Character Set -- 7-bit American Standard code for
 Information Interchange. X3.4-1986, 1986.

 [6] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
 Locators (URL): Generic Syntax and Semantics. RFC1738 as
 amended by RFC1808

 [7] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource
 Locators (URL). RFC 1738, December 1994.

 [8] N. Freed and N. Borenstein. Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies.

RFC 2045, November 1996.

 [9] D. Crocker and P Overell. Augmented BNF for Syntax
 Specifications: ABNF. draft-ietf-drums-abnf-04.txt, September
 1997. (work in progress).

 [10] A. Gulbrandsen and P. Vixie. A DNS RR for specifying the
 location of services (DNS SRV). RFC 2052, October 1996.

 [11] R. Moats and M. Hamilton. Finding Stuff (Providing information
 to support service discovery). draft-ietf-svrloc-advertise-00.txt,
 February 1997. (work in progress).

 [12] J. Myers. Simple Authentication and Security Layer (SASL). RFC
2222, October 1997.

 [13] J. G. Myers. ACAP -- Application Configuration Access Prototol.
draft-ietf-acap-spec-04.txt, June 1997. (work in progress).

 [14] Pete St. Pierre. Definition of lpr: URLs for use with Service
 Location. draft-ietf-svrloc-lpr-scheme-01.txt, November 1997.
 (work in progress).

ftp://ftp.isi.edu/in-notes/iana/assignments/service-names
ftp://ftp.isi.edu/in-notes/iana/assignments/address-family-numbers
ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/draft-ietf-drums-abnf-04.txt
https://datatracker.ietf.org/doc/html/rfc2052
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-advertise-00.txt
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/draft-ietf-acap-spec-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-lpr-scheme-01.txt

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 27]

Internet Draft Service Templates and URLs 31 October 1997

 [15] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service
 Location Protocol. RFC 2165, July 1997.

 [16] F. Yergeau. UTF-8, a transformation format of unicode and ISO
 10646. RFC 2044, October 1996.

Authors' Addresses

 Questions about this memo can be directed to:

Erik Guttman Charles E. Perkins James Kempf
Sun Microsystems Sun Microsystems Sun Microsystems
Bahnstr. 2 901 San Antonio Rd. 901 San Antonio Rd.
74915 Waibstadt Palo Alto, CA, 94303 Palo Alto, CA, 94303
Germany USA USA
+49 7263 911484 1 650 786 6464 1 650 786 5890
 1 650 786 6445 (fax) 1 650 786 6445 (fax)
erik.guttman@sun.com charles.perkins@sun.com james.kempf@sun.com

https://datatracker.ietf.org/doc/html/rfc2165
https://datatracker.ietf.org/doc/html/rfc2044

Guttman,Perkins,Kempf Expires 31 April 1997 [Page 28]

