
Internet Engineering Task Force Syslog
Internet Draft John Kelsey
draft-ietf-syslog-auth-00.txt Expires: June 2001

Syslog-Auth Protocol

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

ABSTRACT

 This document describes syslog-auth, an attempt to add origin
 authentication, message integrity, replay-resistance, message
 sequencing, and missing message detection to syslog, while continuing
 to allow the use of UDP for syslog messages. Syslog-auth supports
 many different setups for syslog devices, relays, and collectors.
 Syslog-auth should be implemented on all devices, relays, and
 collectors being used together.

1. Introduction

 The current syslog protocol sends syslog messages over various
 unsecured networks, with no mechanisms for ensuring anything about
 the messages that eventually arrive and are stored. It also provides
 no mechanisms for storage security.

 In this note, I describe syslog-auth, a lightweight mechanism for
 providing authentication of syslog messages sent over an insecure
 network, between a sender and receiver which share a secret key. The
 goals of this mechanism are:

 a. To provide the best over-the-wire security possible between pairs
 of syslog-auth machines that share a key. This means allowing

https://datatracker.ietf.org/doc/html/draft-ietf-syslog-auth-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 the receiver to detect alterations, deletions, insertions, and
 replays in the sequence of syslog-auth messages from a sender in
 real time if resources permit, and during offline analysis if
 resources are too tight on the receiver.

 b. To build in mechanisms to provide some level of storage security
 for logs generated by syslog-auth machines, when they are stored
 anywhere but on the machine that generated them.

Expires June 2001 [Page 1]

Draft Syslog Auth December 2000

 c. To build in mechanisms to allow a ``best try'' of providing
 storage security on syslog-syslog receivers. (That is, on
 old-style receivers doing nothing but plain old syslog.)

 d. To NEVER cause a syslog-syslog receiver to crash or drop messages
 because they're too long, and to NEVER leave syslog-auth data at
 the end of a message that can't be unambiguously identified as
 either syslog-auth data or original message text data.

 e. To combine with reliable delivery mechanisms (e.g.,
 syslog-reliable in RAW mode) to provide even stronger guarantees
 for both over-the-wire and storage security.

1.1. Resource Requirements

 Our resource assumptions are as follows:

 a. The sender's machine may be very limited in its resources. It
 must have a small amount of persistent storage to keep its shared
 key with the receiver, and a small amount of RAM which is kept
 for reasonable lengths of time. It must also be capable of
 computing a cryptographic hash function over the data it sends
 out as syslog messages. Senders that lose all their RAM state
 (e.g., reboot) once per message and have no clock, persistent
 storage, or reboot counter are not likely to benefit much from
 this mechanism.

 b. The receiver's machine is assumed to be much less limited. In
 general, its problem will be assumed to be keeping up with many
 senders at once.

 c. We assume that we have a shared secret key between the sender and
 receiver. How the key got shared is beyond the scope of this
 note, but the key did, in fact, get shared. This key includes
 both raw key data, and some indication of what cryptographic
 authentication scheme is to be used with that key.

 d. In this note, I assume no cryptographic mechanisms available
 except md5.

2. Syslog-Auth Message Format

 The syslog-auth message format consists of the text of the original
 syslog message (called the message text from now on), concatenated
 with an authentication block. This block contains all the
 information necessary to verify the origin, integrity, and freshness
 of this message. It may also contain additional useful information.

Expires June 2001 [Page 2]

Draft Syslog Auth December 2000

2.1. General Formatting Issues

 A syslog-auth message is intended to go from a syslog-auth enabled
 sender to a syslog-auth enabled receiver. A receiver that doesn't
 understand syslog-auth will have no way to use the authentication
 block, and for very long message texts, won't even see the
 authentication block. It may be that a sender sends out all messages
 using syslog-auth. In this case, syslog-auth receivers that share a
 key with it can make use of the authentication blocks, and old-style
 syslog receivers will have no harm done by the messages, other than
 receiving longer messages.

 All information in syslog-auth is kept in ASCII printable format, and
 all cryptographic information appears at the end of the syslog
 message, after the original message text. Cryptographic information
 is always contained in an "authentication block." A syslog-auth
 message sent to a syslog-auth receiver may have either one or two
 authentication blocks. A syslog-auth message sent to an old style
 receiver may have zero, one, or two authentication blocks. Note that
 whenever a message is truncated for sending to an old-style receiver,
 each authentication block is either left intact or entirely deleted.

 When a new syslog-auth message is generated and sent to a syslog-auth
 receiver, it will have one authentication block. If the message is
 forwarded to another syslog-auth receiver, it will end up with both
 the original authentication block and a block by the forwarder.
 However many times the message is forwarded, it always keeps its
 original authentication block and an authentication block from the
 most recent forwarding machine. As will be discussed below, when a
 machine forwards a syslog-auth message, it strips off the previous
 forwarder's block, generates a new authentication block, and appends
 its new authentication block. The forwarder often borrows some
 fields from the previous forwarder's block to build its own.

 The format of a syslog-auth message is thus

 syslog-auth message = message-text + authentication blocks

2.2. Base 64 Encoding

 In the following description, we assume base-64 encoding for various
 fields. This is to be done according to RFC-2045.

https://datatracker.ietf.org/doc/html/rfc2045

Expires June 2001 [Page 3]

Draft Syslog Auth December 2000

2.3. The Authentication Block Format

 The authentication block always appears at the end of the syslog-auth
 message. Its fields always appear in the following order, including
 optional fields that may not appear at all in most messages.
 I've listed the range of lengths of these fields using base 64
 encoding.

 a. Transmission MAC Block (Required; 27 bytes)
 b. Storage MAC Block (Optional; 27 bytes)
 c. Forwarding Block (Optional; 9 bytes)
 d. Destination Message Counter (Optional; 8 bytes)
 e. Global Message Counter (Required; 8 bytes)
 f. Reboot Session ID (Required; 8 or 16 bytes)
 g. Flags (Required; 2 bytes)
 h. Version (Required; 2 bytes)
 i. Cookie (Required; 8 bytes)

 Note that the block is intended to be parsed from last field
 backwards. Also note that the maximum possible length for a single
 authentication block is 123 bytes.

2.2.1. Transmission MAC Block (27 bytes)

 The transmission MAC block consists of two parts: the key ID and the
 MAC. All syslog-auth key IDs are 96 bits wide (encoded as 16
 characters in base 64), and are computed by the formula:

 Key ID = low96(hmac_md5_{K}("KEYID"))

 All syslog-auth MACs are 64 bits wide (encoded as 11 characters) and
 are computed by the formula:

 MAC_{K}(X) = low64(hmac-md5_{K}(X))

 In the transmission MAC block, the key ID used is (naturally) that of
 the key used to generate the MAC. The MAC is computed over the whole
 message text concatenated with the whole authentication block,
 exactly as it will appear in the final message except with the
 transmission MAC field set to eleven characters of ASCII zeros.

 The purpose of the transmission MAC block is to:

 a. Identify which key is being used for the receiver.

 b. Authenticate the contents of the message, as well as its
 freshness and its position in the sequence of messages being
 sent by this sender.

2.2.2. Storage MAC Block (27 bytes)

 The storage MAC block consists of the storage MAC key ID and the
 storage MAC. The key ID used is (naturally) that of the key used for
 storage security. The MAC is always computed over the original

Expires June 2001 [Page 4]

Draft Syslog Auth December 2000

 message text concatenated with the first authentication block held by
 the message, with all MAC fields set to eleven characters of ASCII
 zeros. Note that this happens even if the storage MAC is being
 computed by a forwarding machine several hops after the message was
 generated; the MAC is only computed over that original message and
 first authentication block, with all its MAC fields set to blocks of
 ASCII zeros.

 The purpose of the storage MAC block is to allow the use of a second
 key for storage security. This is necessary since a syslog-auth
 receiver with the key to a MAC stored can't use that key to provide
 any additional storage security.

2.2.3. Forwarding Block (25 bytes)

 This block is used only when the message is being forwarded, and the
 sender wishes to inform the receiver of this fact. It has three
 components:

 a. Flags (1 byte, encoding 6 bits) numbered 5-0:

 (i) Secure Path bit (bit 5) -- set if message has traveled over
 syslog-auth for its whole life.

 (ii) Replay Resistant bit (bit 4) -- set if every forwarder that
 has forwarded this message is sure this is not a replayed
 message. (See the section on forwarding issues to see why
 this is important.)

 (iii) Reserved (bits 2-0) -- reserved for later use, MUST be
 zeros now.

 b. The IP address of the first syslog-auth sender or forwarder, 128
 bits, base-64 encoded as 22 characters.

 c. The number of times this message has been forwarded, 0-4095,
 encoded as two base-64 characters.

 The forwarding block is only used when a message is being forwarded,
 and it can only appear when it is indicated by the right flag.

2.2.4. Destination Message Counter (8 bytes, base 64 encoded)

 This is a counter incremented only for messages the sender knows are
 going to the same destination. It is 48 bits wide in its raw format.

2.2.5. Global Message Counter (8 bytes, base 64 encoded)

 This is a counter which is incremented and included for each
 syslog-auth message sent out since its last reboot. It is 48 bits
 wide in its raw format.

Expires June 2001 [Page 5]

Draft Syslog Auth December 2000

2.2.6. Reboot Session ID (8-16 bytes, base 64 encoded)

 The reboot session ID can have one of three sources:

 a. It can be a fixed value that never changes, though this typically
 allows no replay resistance.

 b. It can be generated pseudorandomly, but this means that it needs
 to be 96 bits long.

 c. It can be based on something guaranteed always to increase in
 value, such as the timestamp of the last reboot. It's very
 important to note that this allows a receiver to immediately
 detect any replay attempt. This value is always 48 bits long.
 Its only requirement is that a later reboot session ID MUST
 always be greater than an earlier reboot session ID.

2.2.7. Flags (2 bytes, base 64 encoded)

 The flags take up 12 bits in their raw format, and are represented by
 two base-64 characters. Numbering from 11-0, these are:

 a. Destination Counter (bit 11):
 This indicates whether the optional destination message counter
 is included in this message. A zero bit means there's no
 desitination message counter.

 b. Superincreasing Session ID (bit 10):
 This indicates whether the session ID is guaranteed to always
 increase over time (so that replayed session IDs can be
 recognized by the fact that they have lower values than recently
 seen session IDs), or whether the session ID is pseudorandom. A
 one bit means the session ID is superincreasing.

 d. Temporary Reboot Session ID (bit 9):
 This indicates whether this session ID is a temporary one. This
 is used when a sender has to wait for its PRNG to become
 available, or to accumulate the running hash of some limited
 number of messages, before it can generate a reboot session ID
 that it overwhelmingly likely to be unique. When this bit is set
 to one, the reboot session ID MUST be 0.

 e. Replay Vulnerable (bit 8):
 This bit indicates whether the replay session ID may be repeated
 in different sessions. If this bit is set, then the message has
 no replay protection right now. This may be a temporary
 situation (e.g., when we're using a temporary reboot session ID)
 or permanent (e.g., when the sender can't generate any kind of

 unique session ID).

 f. Forwarding Block (bit 7):
 This bit indicates whether the forwarding block is present in
 this message.

Expires June 2001 [Page 6]

Draft Syslog Auth December 2000

 g. Storage MAC (bit 6):
 This bit indicates whether the storage MAC is present in this
 message.

 h. Old Style Receiver (bit 5):
 This bit is set when the sender believes it is sending to an
 old-style receiver.

 i. Reserved (bits 4-0):
 These bits must be zero at present, and may be used in the future
 to indicate new things.

2.2.8. Version (2 bytes, base 64 encoded)

 The version is twelve bits raw. I don't expect the version to *ever*
 change, but if it does, then all the other fields may change. The
 current version is 1. A receiver at version M MAY be able to
 understand lower versions, but this is not required, since lower
 versions may be known to be insecure. A receiver below the version of
 the sender cannot make any use of the syslog-auth authentication
 block at all.

2.2.9. Cookie (8 bytes)

 The cookie is an eight character string that occurs at the *end* of
 the syslog-auth message, signaling that it is a syslog-auth message,
 rather than an old-style syslog message. There's no special reason
 to use "authAUTH", and the choice has no security relevance--its
 purpose is simply to give receivers who must process both old style
 and syslog-auth messages a simple way to distinguish them, with a
 very low rate of false identification. Note that falsely identifying
 an old style message as a syslog-auth message will never cause the
 receiver to misidentify the message for long, since there won't be a
 valid MAC for this message.

2.2.10. Length of Messages

 The longest possible syslog-auth message (including forwarding, as
 described in detail below) will include a 1024-byte message text, and
 two 109-byte authentication blocks, and thus a total length of 1133
 bytes. A normal syslog-auth message should have about 57 bytes of
 authentication block when there is no forwarding going on, and 123
 bytes with forwarding.

3. Key Management Issues

 In this document, managing the keys outside the senders, forwarders,
 and receivers is the responsibility of the user of the system.
 However, in this section, we discuss:

 a. Our general philosophy of how keys ought to be managed for this
 system.

Expires June 2001 [Page 7]

Draft Syslog Auth December 2000

 b. Some ideas of ways that keys may be managed that will scale
 reasonably well.

 c. Some tools for managing keys on syslog-auth devices.

3.1. The Basic Scheme: One Key Per Sender/Receiver Pair.

 This is the cleanest way to manage the keys. Somehow, we distribute
 a shared key to each sender and receiver, in such a way that each
 receiver has a different key for each sender it's receiving from, and
 each sender has a different key for each receiver it's sending to.

 This has good security properties, since compromise of one sender
 leads only to the compromise of logs sent by that sender, and
 compromise of one receiver leads only to the compromise of logs
 received by that sender. However, we now have the problem of
 distributing all those keys securely.

 Consider a set of syslog-auth machines, which are all "owned" by the
 same entity and communicate with one another. Let's call the entity
 that owns all these machines the administrator. Also, let's assume
 that each machine has an IP address, and knows the IP address of all
 machines it communicates with over syslog-auth. We now have the
 following trick for simplifying key management:

 a. The administrator has a master key, K_{master}, which is stored
 securely somehow. This key could be a passphrase, though it
 should be a very long one. The key is an hmac-md5 key.

 b. Each syslog-auth machine has its own device key, K_{device}.
 This key has to be given to the device by the administrator. The
 administrator generates a device's key as:

 K_{device} = hmac-md5_{K_{master}}(Device's IP address).

 c. Each machine knows the IP addresses of machines it is going to be
 sending to. The keys of these machines are generated as:

 K_{sender,receiver} = hmac-md5_{K_{sender}}(receiver's IP address)

 where K_{sender} is K_{device} for the sender.

 d. Storage MAC keys are derived as

 K_{sender,STORAGE} = hmac-md5_{K_{sender}}("STORAGE")

 e. This reduces the key management problems to:

 (i) Loading the secret key for a device onto that
 device securely during installation or change of IP
 address.

 (ii) Loading K_{sender,receiver} onto a receiver
 securely.

Expires June 2001 [Page 8]

Draft Syslog Auth December 2000

 Note that the administrator can always generate any key in the system
 in this scheme. This means that if the administrator's key is
 compromised, the whole set of keys have to be changed, and until they
 are, all syslog-auth security is lost. Similarly, if the
 administrator's key is lost, the whole system must be rekeyed.

 If would also be possible to use this kind of a scheme in a network
 where some devices have variable IP addresses. In this case, we'd
 give each device a unique serial number, and use the serial number in
 place of the IP address. So long as "STORAGE" remains an invalid
 serial number, the scheme will work fine.

 Along with making the key management simpler, this scheme decreases
 the memory needed for a single sender who must send to many
 receivers. The sender can compute the key for each receiver on the
 fly based on their IP address.

3.2. Some Less Useful Key Management Options

 There are several alternatives for key managemtent in syslog-auth.
 Here, I describe three methods that may be useful in some limited
 environments, but which have major security problems.

3.2.1. One Key per Sender

 A simpler way to manage keys is simply to give each sender a unique
 key, and share that key with all receivers that must receive messages
 from the sender. This is slightly simpler to manage than the scheme
 described above, but it has a major security problem: If one machine
 that receives messages from a given sender is compromised, the
 attacker can alter or make up new messages from that sender to all
 its other receivers, without being caught by syslog-auth.

 In this case, each sender that also includes a storage MAC in its
 messages MUST have a unique storage MAC key, which is not shared by
 anyone else on the network.

3.2.2. One Key per Receiver

 Another simple way to manage keys is simply to give each receiver a
 unique key, and share that key with all senders who will send to a
 given receiver. This has the same kind of security problem as the
 above scheme--compromise of one machine sending to a given receiver
 lets the attacker successfully impersonate all other senders to this
 receiver. Even worse, if the sender is sending messages to many
 receivers, then an attacker who compromises that sender will be able

 to generate fake messages or alter messages in transit from any
 sender to any of those receivers.

 In this case, each sender that does storage MACing MUST have its own
 unique storage MAC key.

Expires June 2001 [Page 9]

Draft Syslog Auth December 2000

3.2.3. Global Shared Key

 The simplest method of doing key management is to give all
 syslog-auth devices under the same administrator the same key. This
 has the advantage that key management is made very simple, and the
 disadvantage that compromising a single machine with syslog-auth
 installed allows an attacker to make up or alter messages to and from
 all other syslog-auth machines using that key.

 In this case, each sender that does storage MACing MUST have its own
 unique storage MAC key.

4. Sending Syslog-Auth Messages

4.1. Overview

 In this section, we discuss the operations of a syslog-auth sender.
 We expect the majority of machines implementing syslog-auth to be
 doing nothing but sending messages out. The requirements for the
 process of sending messages:

 a. It must be possible to send messages out properly based only on
 information the sender has available.

 b. It must be possible to send messages out with minimal available
 resources on the sender.

 c. It must be reasonably computationally cheap to generate and send
 syslog-auth messages.

4.1.1. Resources

 The sender MUST have the following resources:

 a. Shared keys with all its intended syslog-auth receivers.

 b. RAM in which to store a reboot session ID and a counter.

 c. The ability to compute MACs and hashes.

 d. Some way to generate reboot session IDs, which may include:
 (i) Pseudorandom generation
 (ii) Superincreasing generation
 (iii)Fixed session ID

Expires June 2001 [Page 10]

Draft Syslog Auth December 2000

4.2. Setup and Configuration

 The sender is told somehow where to send each kind of log message,
 and is somehow given shared keys to use with any available
 syslog-auth recipients in its list of machines to send messages to.
 The mechanisms to do this are generally outside the scope of this
 note.
 In the remainder of this section, we will assume the following:

 a. Any storage MAC keys that are to be used have been loaded onto
 the sender somehow.

 b. The sender knows where to send each kind of syslog message, and
 has shared keys for any of the designated receivers that are
 equipped to handle syslog-auth messages.

4.3. Reboot Sessions

 Occasionally, the operations of the sender are disrupted somehow, and
 it loses the memory of its message counters. We call this event a
 reboot, though it may or may not correspond to the physical operation
 of a reboot. Some senders may *never* have a reboot of this kind,
 while others may reboot several times a day.

 A reboot session ID must be generated in one of the following ways,
 with the specified implications for the message flags.

 a. Superincreasing -- session IDs of 48 bits chosen in a way that
 guarantees that the session ID will never repeat or decrease in
 successive reboot sessions.

 b. Pseudorandom -- session IDs of 96 bits chosen pseudorandomly, and
 very unlikely to ever repeat in the lifetime of a sender and his
 key. (If the sender has 2^{32} reboots in its lifetime, the
 probability of a single collision is about 2^{-33}. If the
 sender reboots ten times a day for a lifetime of about eighteen
 years, it will reach 2^{16} reboots in its lifetime, and thus
 will have a probability of about 2^{-65} of colliding.)

 c. Fixed -- session IDs that are 96 bits of binary zeros. This kind
 of session ID is chosen when a pseudorandom session ID hasn't yet
 been generated, and may be used for some senders that can't
 generate any variable session ID.

4.3.1. Superincreasing Session IDs

 The best way to generate reboot session IDs is to guarantee that if

 we have two IDs, X and Y, and X was generated before Y, then X < Y.
 This allows the receiver to put reboot session IDs in sequence, and
 thus to very efficiently determine whether a message with a new
 session ID is a replay attempt.

Expires June 2001 [Page 11]

Draft Syslog Auth December 2000

 Many devices have an internal clock. Others have some persistent
 read/write storage in which to store a persistent counter. Still
 others have a reboot counter available. Any of these can be used to
 generate superincreasing reboot session IDs. Syslog-auth has no
 requirement for how these resources (or others) are used to set the
 reboot session ID. The only requirements are:

 a. The Superincreasing Session ID flag MUST be set, and the Replay
 Vulnerable flag MUST be cleared.

 b. The session ID MUST be 48 bits.

 c. If there are two session IDs generated at different times, the
 one generated later MUST be greater than the one generated
 earlier, when the two session IDs are treated as 48 bit unsigned
 integers.

 I don't know whether there will be any devices that use this, but
 it's legitimate for a system which never "reboots" (that is, never
 loses track of its message counters) to make use of a permanent fixed
 session ID, and still set the Superincreasing Session ID flag. This
 represents a situation in which we have replay resistance despite a
 fixed reboot session ID. In this case, the reboot session ID can be
 any fixed value except a block of binary zeros. The messages sent
 will always satisfy the requirement that no later message will have a
 smaller reboot session ID.

4.3.2. Pseudorandom Session IDs

 Senders that do not have access to a clock, persistent storage across
 reboots, or a reboot counter may have to generate reboot session IDs
 pseudorandomly. It is legitimate to do this by generating a
 cryptographically strong 128 bit random number, but I don't expect
 there to be any sender devices in practice that don't have any of
 those other things, but which do have a really good RNG or PRNG.

 I emphasize: C compiler PRNGs MUST NOT be used to generate these
 reboot session IDs.

 The standard way I expect for senders to generate reboot session IDs
 in this case is as follows:

 a. Initialize the reboot session ID to a fixed 128-bit block of
 binary zeros.

 b. Set the Temporary Reboot Session bit and the Replay Vulnerable
 bit and clear the Superincreasing Session ID bit.

 c. Decide on a number of messages, N, after which it is
 overwhelmingly likely that we will have a unique message sequence
 --that is, that this precise sequence of messages has never been
 generated from this sender before, and never will again.

 d. Initialize an md5 hashing context.

Expires June 2001 [Page 12]

Draft Syslog Auth December 2000

 e. For each message sent, feed the message text into the md5 hashing
 context. If there is an internal clock (e.g., clock ticks since
 reboot) available on the sender, hash that value in as well.

 f. After the sender has sent its Nth message, it does the following:

 (i) Hashes in any additional information that might be unique
 for this reboot session, such as an internal clock, status
 flags, etc.

 (ii) Computes the final hash value from all this information
 that's been fed into that md5 hashing context.

 (iii)Sets the reboot session ID to that md5 output value.

 (iv) Clears the Temporary Reboot Session flag and the Replay
 Vulnerable flag.

 (v) Leaves the global message counter and destination counters
 to increment just as they would for any other message.

 We don't specify N in this document. However, N MUST be chosen in
 such a way that the reboot session ID is different for every reboot
 session.

4.3.3. Temporary Session IDs

 This is simple enough that there is little to discuss about it. The
 session ID is set to 96 bits of binary zeros, the Replay Vulnerable
 flag is set, the Temporary Session ID is set, and the Superincreasing
 Session ID flag is cleared.

4.4. Building a Syslog-Auth Message

 The sender builds a Syslog-Auth message one field at a time, in
 order, as follows:

4.4.1. Cookie (Required; 8 bytes)

 The cookie value is set to ``authAUTH'' for all authentication
 blocks.

4.4.2. Version (Required; 2 bytes)

 The version field is filled in. Note that this field is base-64
 encoded, as described above, and so represents a number between 0 and

 4095. The current version is version 1.

Expires June 2001 [Page 13]

Draft Syslog Auth December 2000

4.4.3. Flags (Required; 2 bytes)

 The flags are set as follows:

 a. Destination Counter (bit 11):
 If this sender is including the optional Destination Counter
 field, then this bit is set, otherwise it is cleared.

 b. Superincreasing Session ID (bit 10)

 c. Temporary Reboot Session ID (bit 9)

 d. Replay Vulnerable (bit 8):
 These bits are set as indicated earlier in this section, in the
 discussion of different ways to derive reboot session IDs.

 e. Forwarding Block (bit 7):
 For messages being sent (not forwarded), this bit will always be
 cleared. In the section on forwarding, below, we will discuss
 cases where this bit is set.

 f. Storage MAC (bit 6):
 This bit is set if the sender is including the optional storage
 MAC block in this message.

 g. Old Style Receiver (bit 5):
 This bit is set if the sender believes it is sending to an
 old-style receiver.

 h. Reserved (bits 4-0):
 These bits are all set to zero at present.

4.4.4. Reboot Session ID (Required; 8 or 16 bytes)

 This value is set as described above. The raw value of the session
 ID is either 48 or 96 bits; that value is then base 64 encoded.

4.4.5. Global Message Counter (Required; 8 bytes)

 This value is set to the number of all messages that have been sent
 so far in this reboot session by this sender. Note that the current
 reboot session and global message counter on a sender are used for
 all receivers. It is a 48-bit number that is base-64 encoded as 8
 bytes.

4.4.6. Destination Message Counter (Optional; 8 bytes)

 If this value is included, it is set to the number of messages in
 this reboot session sent to this receiver so far. It is a 48-bit
 number that is base-64 encoded into 8 bytes.

Expires June 2001 [Page 14]

Draft Syslog Auth December 2000

4.4.7. Forwarding Block (Optional; 9 bytes)

 This field is never included in a message that's just being
 generated. The format and settings in this field are discussed in
 the section on forwarding, below.

4.4.8. Storage MAC Block (Optional; 27 bytes)

 If this field is included, it will carry two subfields:

 a. A 96-bit key ID, base-64 encoded as 16 bytes.

 b. A 64-bit MAC, base-64 encoded as 11 bytes.

 The key ID is a hash of the secret storage MAC key used by this
 sender. It is computed by taking

 Key ID = low 96 bits(hmac_md5_{K}("KEYID")).

 The MAC is computed as:

 MAC = hmac-md5_{Key}(message-text, A) where

 A = the authentication block, with all MAC values set to ASCII
 "00000000000", but key IDs and all other stuff left unchanged. Note
 that in forwarded messages, storage MACs are computed using the
 original authentication block. In forwarded non-authenticated
 messages, no authentication block is included in the MAC.

4.4.9. Transmission MAC Block (Required; 27 bytes)

 This field also carries two subfields:

 a. A 96-bit key ID, base-64 encoded as 16 bytes.

 b. A 64-bit MAC, base-64 encoded as 11 bytes.

 The key ID is a hash of the MAC key used by this sender when sending
 to this receiver. It is computed by taking

 Key ID = low 96 bits(hmac_md5_{K}("KEYID")).

 The MAC is computed as:

 MAC = hmac-md5_{Key}(message-text, A') where

 A' = the authentication block, with the transmission MAC value set to
 ASCII "00000000000", but key IDs and all other stuff left unchanged.

 Note that the storage MAC value will be authenticated by this MAC.

Expires June 2001 [Page 15]

Draft Syslog Auth December 2000

4.5. Sending to Old-Style Receivers

 If possible, a sender will know whether it shares a key with a given
 receiver. If not, it MUST assume that this receiver is an old-style
 receiver. When a syslog-auth sender is sending to an old-style
 receiver, it MUST make sure all messages sent are less than or equal
 to 1024 characters in length.

 There are only two ways a message may be shortened before being sent
 off:

 a. If it has two authentication blocks (e.g., if it's a forwarded
 message), we can cut off the last one and try to fit the
 resulting message.

 b. If that doesn't cut the message down to 1024 or fewer bytes
 total, we cut off all authentication blocks. This will cause
 some messages to arrive at their final destinations with no
 authentication messages, when the last one or more receivers of
 a message like this are old-style receivers.

 Note that in no case do we ever leave part of an authentication
 block. Either the whole authentication block is left, or the whole
 authentication block is deleted. (The alternative would be to leave
 random meaningless blobs of bits at the end of long syslog messages,
 which could not be distinguished from the original message text
 except by context.)

5. Forwarding

 Syslog-auth has a mechanism to make it clear when we're dealing with
 forwarded messages, and what we can guarantee about them
 cryptographically. These lead to a fairly simple set of mechanisms
 for handling forwarded messages, which retain important context about
 these messages.

 Whenever a syslog-auth message is forwarded, the forwarder appends
 its own authentication block to the message. To avoid having
 message keep expanding as they're forwarded, the original sender's
 authentication block is left untouched, but when an already forwarded
 message is forwarded again, the previous forwarder's authentication
 block is stripped off, and replaced with the current forwarder's
 authentication block.

 The goal here is to allow future receivers of the message to know
 exactly what can and cannot be promised about the message. This
 means:

 a. Whether the message has been sent and forwarded only through
 syslog-auth machines, or whether some of the hops the message
 has traveled have been unauthenticated.

 b. Whether all the forwarders have been able to implement online
 replay detection on this message.

Expires June 2001 [Page 16]

Draft Syslog Auth December 2000

 c. The entry point of the message into the chain of one or more
 syslog-auth forwarders.

 d. How many hops the message has made so far.

 All of this is included in the forwarding block, which is contained
 inside the forwarder's authentication block. A forwarding block MUST
 be included in the forwarder's authentication block, and MUST NOT be
 included in the message's original authentication block.

 Note that when a message is forwarded to an old-style receiver, all
 its authentication information is treated as just part of the message
 text. Similarly, when a message is received from an old-style sender
 or forwarder, the receiver treats the whole message text like nothing
 but message text; it does not treat it as being a syslog-auth
 message, even if that message text contains an authentication block!
 This is necessary, since the receiver will generally have no shared
 key with the original sender, and so can't trust anything it would
 find in a previous sender's authentication block.

 This is the only way a syslog-auth message could end up with more
 than two authentication blocks. Consider the really weird case where
 a message goes from a syslog-auth sender to a syslog-auth forwarder
 to an old-style forwarder, and then to another syslog-auth forwarder.
 Assuming the original message text is not too long, the last
 forwarder will receive an unauthenticated message whose text contains
 two authentication blocks. However, the whole message text will be
 treated as unauthenticated, and a new authentication block will be
 appended at the end.

 It's possible to contrive cases where a very short syslog message is
 forwarded through alternating syslog-auth and old-style forwarders,
 and thus ends up with eleven authentication blocks. However, note
 that this leaves no ambiguity; each authentication block will clearly
 specify where it came from, and since long messages are never sent to
 old-style receivers, we will never allow messages to get longer than
 our maximum syslog-auth length.

5.1. Building the New Authentication Block

 A forwarder is forwarding messages, using syslog-auth. In this
 subsection, we describe how the forwarder builds the forwarding
 block, and thus the authentication blocks, which it uses to forward
 this message along.

 We can break the forwarder's task into three cases: Forwarding
 unauthenticated messages, forwarding authenticated messages that
 haven't been forwarded before, and forwarding authenticated messages

 that were forwarded to us.

 Note that the forwarder must parse, verify, and process
 authentication blocks just as the receiver must. In the rest of this
 section, we assume the forwarder has already done everything it would
 have to do as a receiver, including drawing conclusions about
 received messages before forwarding them.

Expires June 2001 [Page 17]

Draft Syslog Auth December 2000

5.2.2. Unauthenticated Message

 When an unauthenticated message arrives at the forwarder, the whole
 message text is treated as the original message text for this
 message. If the sender complies with the syslog standard, this
 message will be less than 1024 bytes long; if not, the message text
 is truncated to 1024 bytes before any further processing is done on
 it.

 The forwarding block has four fields, and they are set as follows:

 a. The Secure Path bit, set if the message has traveled over
 syslog-auth for its whole life. This bit is set to zero, since
 the message arrived here without any authentication. This is
 true even if the message was previously forwarded, and has a
 forwarding block; none of that information can be verified at
 this forwarder, so it is not relevant or useful.

 b. Replay Resistant bit, set if every forwarder that has forwarded
 this message is sure this is not a replayed message. This bit is
 set to zero, since there's no way to verify that a message
 arriving unauthenticated isn't a replayed or spoofed message.

 c. The IP address of the first syslog-auth sender or forwarder in
 this sequence of forwards. This is filled in with the
 forwarder's IP address, since this is the first IP address which
 can actually be known to be correct.

 d. The number of times this message has been forwarded, 0-4095,
 encoded as two base-64 characters. This is set to 1, by
 definition, since this is the first time this particular message
 text has been forwarded.

5.2.1.1. The Rest of the Authentication Block

 The rest of the authentication block is set exactly as though this
 message were being originally sent by the forwarder, with only two
 exceptions: The Forwarding Block bit in the Flags field is set to
 one, and the Forwarding Block is included in the authentication
 block. The whole original message is treated as message text.

5.2.2. Authenticated Messages on First Hop

 When an authenticated message arrives at the forwarder without a
 forwarding block, we build its forwarding block as follows:

 a. The Secure Path bit, set if the message has traveled over

 syslog-auth for its whole life. This bit is set to one.

Expires June 2001 [Page 18]

Draft Syslog Auth December 2000

 b. Replay Resistant bit, set if every forwarder that has forwarded
 this message is sure this is not a replayed message. This bit is
 set to a one if:

 (i) The Replay Vulnerable bit in the arriving message's
 authentication block is 0.

 AND

 (ii) The forwarder is implementing online replay detection for
 this kind of message.

 Otherwise, the bit is cleared.

 c. The IP address of the first syslog-auth sender or forwarder in
 this sequence of forwards. This field is set to the IP address
 of the sender.

 d. The number of times this message has been forwarded, 0-4095,
 encoded as two base-64 characters. This is set to 1, by
 definition. (When the receiver gets this message, it will have
 been forwarded once.)

5.2.2.1. The Rest of the Authentication Block

 The rest of the authentication block is set exactly as though this
 message were being originally sent by the forwarder, with only three
 exceptions:

 a. The Forwarding Block bit in the Flags field is set to one.

 b. The Forwarding Block is included in the authentication block.

 c. If the forwarder generates a storage MAC, it is done exactly as
 described in the section on sending syslog-auth messages, above,
 but the authentication block used is the original message's
 authentication block, not the one generated by the forwarder.
 Because forwarders' authentication blocks are stripped off by
 subsequent forwarders, the storage MAC cannot be based on any
 part of the forwarder's authentication block.

5.2.3. Authenticated Message, Additional Forwards

 There is no inherent limit to how many times a message may be
 forwarded, though syslog-auth supports only allowing a message to be
 forwarded 4095 times. I don't expect this limit to ever become
 relevant in practice unless messages are being forwarded in an

 endless loop. However, syslog-auth forwarders MUST NOT forward a
 message more than 4095 hops.

Expires June 2001 [Page 19]

Draft Syslog Auth December 2000

 When we forward a message that has already been forwarded to us
 through syslog-auth, we build a new forwarding block based heavily
 on the old forwarding block. We do this as follows. Note that we
 always reference the fields of the last authentication block appended
 to the message.

 a. The Secure Path bit, set if the message has traveled over
 syslog-auth for its whole life. This bit is set to the value of
 the Secure Path bit in the message we received.

 b. Replay Resistant bit, set if every forwarder that has forwarded
 this message is sure this is not a replayed message. If this
 forwarder is able to guarantee that this message is not being
 replayed from the previous forwarder (e.g., if it is able to
 implement online replay detection), and if the previous forwarder
 set this bit, then the current forwarder sets it. Otherwise, the
 bit is cleared.

 c. The IP address of the first syslog-auth sender or forwarder in
 this sequence of forwards. This value is copied to the new
 forwarding block unchanged.

 d. The number of times this message has been forwarded, 0-4095,
 encoded as two base-64 characters. The forwarder takes this
 value, increments it by one, and checks to see if the result is
 greater than 4095. If so, the message MUST NOT be forwarded, but
 may be stored, discarded, or otherwise processed. Otherwise, the
 new value is copied into the same field in the new forwarding
 block.

5.2.3.1. The Rest of the Authentication Block

 In the case of multiply-forwarded messages, we *replace* the
 authentication block appended by the previous forwarder with our own.
 In doing this, we generate an authentication block exactly like we
 would if we were sending this message ourselves, with three
 exceptions:

 a. The Forwarding Block bit in the Flags field is set to one.

 b. The Forwarding Block is included in our authentication block.

 c. If there is a Storage MAC field in the authentication block we're
 replacing, we copy that field into our own authentication block.
 This is true even in the case that we would normally generate a
 Storage MAC of our own; in that case, there's simply no room for
 our Storage MAC, and so it isn't included.

 Note that when a storage MAC field is computed on a forwarded
 message, it is computed over only the original message text and the
 first authentication block; its computation never includes any of the
 forwarder's authentication block, since that block may be stripped
 off. The storage MAC is computed exactly as described in the section
 on sending syslog-auth messages, above, with the authentication block
 involved being the first authentication block.

Expires June 2001 [Page 20]

Draft Syslog Auth December 2000

6. Receiver-Side Issues

 Everything the receiver does with regard to syslog-auth is intended
 to accomplish the following goals:

 a. Provide as much real-time information about the logs being
 received as possible. Whenever possible, we would like to be
 able to give applications processing these log messages in real
 time enough information to decide whether this message might be a
 replay, or whether we can even promise the identity of the sender
 and the integrity of the message. This is particularly important
 to allow receivers to resist flooding attacks, by discarding
 replay-vulnerable messages when the disk is nearly full.

 b. Provide enough information in the stored logs that a person or
 program reviewing these logs

 (i) Has as much information as possible about the log messages
 stored here, and any missing messages.

 (ii) Knows unambiguously what can be determined from the log
 messages stored here about these things.

 These two goals are the only reason to bother with security for log
 files in the first place. In this section, we discuss providing
 online information where possible, and storing auxillary information
 about a stored log file to aid in offline reviewing of the logs. In
 the next section, we discuss techniques for using that auxillary
 information to review stored logs offline.

 As a rule, message origin and integrity can be detected in real time
 for all syslog-auth messages, replays can be detected in near real
 time for some syslog-auth messages by some syslog-auth receivers, and
 gaps in messages can sometimes be detected offline using one
 receiver's logs, and in special cases, may be detectable in near real
 time for some senders and receivers. Even more critical than
 allowing receivers and reviewers of log messages to detect gaps and
 replays and such, is making it absolutely clear to a receiver or
 reviewer (which may be a computer program) what can and can't be
 determined from available data.

6.1. Description of Steps of Receiver Processing

 This section discusses the steps of processing a received syslog-auth
 message:

 a. Detect the syslog-auth message.

 b. Parse it into its fields, and verify its integrity.

 c. Process the fields, drawing conclusions about the status and
 security of the message.

Expires June 2001 [Page 21]

Draft Syslog Auth December 2000

 d. Apply those conclusions, either through writing them to an
 auxillary log file, noting them in some other way associated with
 the log file, or changing some of the flags and fields used in
 forwarding this message.

 Note that forwarded messages will generally have two authentication
 blocks. The last authentication block allows us to verify
 information from the last forwarder to see the message if it is
 forwarded, or the original sender if it is not forwarded. In general,
 we will share a key only with the last forwarder, not with the
 original sender of a forwarded message. If we share a key with the
 original sender of a forwarded message, we can check the original
 authentication block of the message as well as the last
 authentication block. In general, though, we will only check the
 last authentication block, since that's the only one we will have the
 key material for.

6.1.1. Notation

 We will use the following notation in the rest of this section:

 M is the syslog message.

 M[i] is the ith byte in the message.

 M[-i] is the ith byte from the end of the message.

 M[i..j] is the string from the ith to the jth byte of M.

 M[-i..-j] is the string from i characters before the end of the
 string to j characters before the end of the string.

 Thus, if M = "Hello, world!", then:

 M[0] = 'H'
 M[4] = 'o',
 M[-1] = '!'
 M[-5] = 'o'.
 M[2..4] = "llo,"
 M[-3..-1] = "ld!"

Expires June 2001 [Page 22]

Draft Syslog Auth December 2000

 A is the authentication block data structure, which has fields for
 all the possible fields in the authentication block.

 The fields are denoted as follows:

 A.cookie
 A.version
 A.flags
 A.flags.destinationCounter
 A.flags.superincreasingSessionID
 A.flags.temporaryRebootSession
 A.flags.replayVulnerable
 A.flags.forwardingBlock
 A.flags.storageMAC
 A.flags.oldStyleReceiver
 A.transmissionMAC
 A.transmissionMAC.keyID
 A.transmissionMAC.MAC
 A.sessionID
 A.globalCounter
 A.destinationCounter
 A.forwardingBlock
 A.forwardingBlock.flags
 A.forwardingBlock.flags.securePath
 A.forwardingBlock.flags.replayResistant
 A.forwardingBlock.entryPoint
 A.forwardingBlock.hopCount
 A.storageMAC
 A.storageMAC.keyID
 A.storageMAC.MAC

6.2. Detecting, Parsing and Verifying

 Before anything else may be done, we must efficiently detect
 syslog-auth messages, parse them into their constituent fields, and
 verify their signatures. This is done as follows:

6.2.1. Detecting Syslog-Auth Messages

 To detect a syslog-auth message, we simply look at the end of the
 message for the cookie, ``authAUTH''. If the cookie is missing, we
 assume this is not a syslog-auth message; if it is there, we assume
 it is a syslog-auth message, but don't make any assumptions that it's
 a valid one.

Expires June 2001 [Page 23]

Draft Syslog Auth December 2000

6.2.2. Parsing

 The next step is parsing the authentication block into its
 constituent fields. To do this, we must:

 a. Determine whether this message is long enough to safely process.
 That means first verifying that it's as long as the minimum
 length for an authentication block. In what follows, we assume
 that the receiver takes care never to allow buffer overruns.

 b. Read the version of the authentication block, and verify that we
 can understand it. To get the version, we read M[-10..-9], and
 process it as a base-64 encoded string. The result is put into
 A.version. If A.version is not any of the versions understood by
 the receiver, then the message cannot be processed, and must be
 stored in a log file which is specified not to have been
 processed or discarded.

 c. Read the flags of the authentication block, and use those flags
 to determine what fields will exist and what their size will be.
 The flags are at M[-12..-11], and are also base 64 encoded.

 d. Read and store each field from the authentication block for
 verification and later processing. Based on the specific values
 of the flags, the right blocks of characters are placed into each
 field.

6.2.3. Verifying the Authentication Block

 Before any processing can be done on the contents of these fields, we
 need to verify that the block and message have arrived intact. To do
 this, we do the following:

 a. Check the keyIDs of all keys currently available to the receiver
 against the A.transmissionMAC.keyID. If there is a match, then
 use the corresponding key for the following operations. If there
 is no match, this message must be written to a log file which is
 specified as not having been processed at all by syslog-auth, or
 must be discarded.

 b. Let A' be A with A.transmissionMAC.MAC = "00000000000".

 c. Compute hmac-md5_{Key}(message-text,A') where , denotes
 concatenation of strings. Note the use of A', which is A with
 the transmission MAC field set to a block of ASCII zeros.

 d. Compare the result of the hmac-md5 computation against
 A.transmissionMAC.MAC. If the two are equal, then the message

 has been verified, and processing can contine. If the two are
 not equal, the message must either be stored in a log file
 specified as not having been processed, or must be discarded.

Expires June 2001 [Page 24]

Draft Syslog Auth December 2000

6.3. Drawing Conclusions about Message Security

 The message flags and receiver configuration, together, determine
 what fields are in the message, and thus what can be determined
 about the message. In this subsection, we describe how the receiver
 will draw conclusions about what can be guaranteed about the
 messages.

6.3.1. Online Replay Detection

 The receiver sees a sequence of syslog-auth messages coming from each
 sender. It needs to be able to detect replay attempts in real time,
 so that it can't be swamped by replayed messages and have its disk
 filled up.

 There are three steps necessary to do this:

 a. Verify the authentication block and MAC. If that is not valid,
 discard the message.

 b. Check to see whether the Replay Vulnerable bit is set; if so,
 treat this message like an unauthenticated message for purposes
 of online replay detection. It may still be worthwhile to try to
 discard accidental replays, but there's no point in spending any
 time trying to detect intentional ones.

 c. Otherwise, treat this message as a syslog-auth message with
 replay resistance.

6.3.1.1. Syslog-auth Messages with Replay Resistance

 Messages in this category contain the information necessary to
 always detect replays. Whether and how this is done depends on the
 implementation and resources available. The basic idea is to accept
 messages arriving slightly out of order, but not to accept messages
 which have already been seen, or whose reboot session ID indicates a
 replay. The main difficulty here is with changes of session ID from
 a sender.

 When a syslog-auth message arrives with the Replay Vulnerable bit
 clear, it means that this combination of reboot session ID and global
 message counter has only been generated and used in a message once.
 The sender generates these two numbers in such a way that this is
 somehow assured.

6.3.1.2. The Replay Window

 A simple way to detect replays is the "replay window." This divides
 the problem of deciding whether the current message has been seen
 before into two simpler problems:

 a. Is this message even in the range of possible non-replayed
 messages?

Expires June 2001 [Page 25]

Draft Syslog Auth December 2000

 b. If so, is this message in the list of recently-received messages
 in that range?

 Whenever a new message arrives, we first check to see if it is
 automatically disqualified by being outside our allowable range. The
 allowable range is defined in terms of both session IDs and global
 message counters, in a way that will be described further below. If
 the message isn't automatically disqualified, then we check to see
 whether we've already seen it. If it passes both checks, then it is
 accepted, the message is added to the list of in-range messages that
 have recently been received (the "window"), and the range may be
 adjusted based on this message.

 Note that the replay window needs to be larger for messages with long
 forwarding paths, since each hop in the forwarding path can
 introduce additional delays or re-orderings.

 A message with the Replay Vulnerable flag not set comes with a
 promise from the sender: its reboot session ID and global message
 counter, taken together, are guaranteed to be unique among messages
 ever sent by this sender. Together, these two fields make up a
 unique identifier for each message sent by a sender.

 At any given time, the replay window has zero, one, or two session
 IDs active. (It would have zero active if the sender hadn't sent a
 message in a long time; it would have two active if the sender had
 recently changed session IDs, as it might after a reboot. In nearly
 all cases, we expect it to have one active reboot session ID.)

 In the discussion below, we assume there is some number, N, such that
 we would be very surprised to see a message sent before N other
 messages that arrived after all of them.

 When a new message arrives with its Replay Vulnerable flag not set,
 there are three categories into which we can immediately place it:

 a. Old -- for example, if it has an active session ID, but a message
 counter much lower than the highest message counter received for
 that session ID, then it will be discarded. Similarly, if it has
 a session ID that's not currently active, but which is determined
 to be old, then the message is discarded. Note that even if we
 don't discard messages whose MACs fail, we SHOULD discard
 messages that are unambigously replayed.

 b. Current session ID and counter -- in this case, it has a
 currently active session ID and a counter that's within the range
 of counter values we're expecting. The session ID and message
 counter of this message are added to the list of
 recently-received messages, and the range of messages to be

 accepted may be updated as a result.

 c. New session ID -- in this case, a new session ID has occurred,
 and the new session ID is not known to be a replayed session ID.
 In this case, a new session ID becomes active in our window. We
 have to deal with this in various ways, as will be discussed
 below.

Expires June 2001 [Page 26]

Draft Syslog Auth December 2000

6.3.1.3. New Session IDs and Discontinuities

 Because syslog-auth doesn't assume reliable delivery, it is possible
 to get "discontinuities." A discontinuity is a gap between two
 blocks of messages, about which the receiver can usually tell nothing
 except that a block of messages sent between these two blocks was
 never received. For example, when a message arrives with a new
 session ID, this implies that the sender has rebooted recently. We
 will never know whether we saw the last message sent from the old
 session ID, since there is no later message to show a gap. Further,
 when a message arrives with a new session ID from a sender that
 generates those session IDs pseudorandomly, it's impossible to know
 whether there were other session IDs generated in-between which were
 never seen. (This could happen if the network between the sender and
 receiver went down for a long time.) Such situations are noted as
 discontinuities, and MUST be reported in the authenticated log file.

6.3.1.4. Detecting Replayed Session IDs

 When the Superincreasing Session ID flag is on, detecting a replayed
 session ID is easy: we simply check to see if the session ID of the
 new message is greater than all currently active session IDs, and if
 not, we reject it.

 When this flag is off, we must check the list of all session IDs ever
 sent by this sender since it's been using its current key. This
 sounds like searching through a long list, but there are two things
 that make it less demanding than it sounds:

 a. New session IDs should occur very rarely; very few machines
 reboot or otherwise lose all context all that often. A message
 with a new session ID should in practice not arrive from a sender
 more than a few times a day in the worst case. This means that
 it's acceptable for the test of a session ID to take a few
 seconds. It might even be reasonable to set up one machine on a
 local network to keep track of the pseudorandom session IDs for
 all the senders.

 b. The list of previously seen pseudorandom session IDs from a given
 sender is expected to be pretty small. Suppose in the worst case
 that we see one new session ID from some sender per hour, and
 that this sender continues using the same key for five years.
 The result will be a list of less than 44,000 session IDs. A
 hash table of 65,536 entries will handle this list efficiently,
 and the last sixteen bits of the pseudorandom session IDs can be
 used as the key for the hash table. A syslog server handling
 many senders will presumably have a lot of disk space; even five

 years' session IDs for 1000 senders in the worst case will take
 up only about 64 MB.

 Despite this, there will be some receivers that cannot do online
 replay detection for syslog-auth messages with pseudorandom session
 IDs. This is acceptable. However, the authenticated logs MUST
 indicate that replay detection isn't done on these session IDs, in
 the same field that shows discontinuities for new session IDs.

Expires June 2001 [Page 27]

Draft Syslog Auth December 2000

6.3.1.5. Unauthenticated Messages and Replay-Vulnerable Messages

 Unauthenticated messages can never be kept from being used to flood a
 receiver. That means that a receiver that handles unauthentication
 messages SHOULD take precautions to resist flooding attacks. These
 include keeping much more storage than is necessary, and keeping
 separate storage for authenticated and unauthenticated senders, so
 that an attacker can't fill up the receiver's storage with
 unauthenticated garbage messages, and thus prevent the receipt of
 syslog-auth messages.

 Similar steps SHOULD be taken for syslog-auth messages that are
 vulnerable to replay, as described above.

6.3.1.6. Syslog-Auth Forwarded Messages

 Forward messages present a special problem, because even when they're
 forwarded through syslog-auth, they may not have always been
 protected by syslog-auth, or some forwarding machine may not have
 implemented online replay detection.

 To deal with this, the forwarding block carries a flag (the Replay
 Resistant bit) which indicates whether the forwarder can guarantee
 that this message isn't a replay.

 If a forwarded message arrives at a receiver for storage, and the
 Replay Resistant bit is not set, the fact that this message (and
 presumably the whole log file from this sender via this forwarding
 pattern) is not replay resistant MUST be specified in the log.

6.3.2. Detecting Gaps

 If the authentication block contains the field A.destinationCounter,
 then we can detect any gaps in the messages we were sent. The
 destination counter is incremented by one each time a message is sent
 to a given destination, so if there are missing destination counter
 values in the received messages, we know that those messages didn't
 make it to us. Cryptographic methods can't tell us why the messages
 didn't arrive (e.g., whether this is due to random packets being
 dropped or malicious action). If syslog-auth is being used over
 reliable delivery mechanisms, then gaps in the sequence of received
 messages is strong evidence of malicious tampering.

 Note that we can use the replay window mechanism to look for gaps.
 As each message falls out of the replay window, we can check to see
 whether it's leaving any gaps more than N messages back, where N is
 the replay window size. If so, we note the gap.

 Also note that we don't actually need to note gaps in the auxiliary
 log; we merely have to note whether or not sufficient information
 exists in the original log to note gaps, and if so, what information
 that is.

Expires June 2001 [Page 28]

Draft Syslog Auth December 2000

6.4. Applying Conclusions

 Once the receiver has drawn conclusions about what can be guaranteed
 about a given message cryptographically, it needs to have a way of
 applying these conclusions. There are three ways this may be done:

 a. Writing conclusions out as an auxillary log file.

 b. Using the observations to change flags and such in forwarded
 messages.

 c. Using the observations to alter processing based on these
 messages.

6.4.1. Writing Out Conclusions about Syslog-Auth Messages

 When the messages are being stored on the receiver, they need to be
 stored in such a way that a reviewer doesn't need the secret key
 shared between the sender and receiver to verify a message. For this
 purpose, we propose an auxillary log file.

 This log file is related to a given log file, and includes additional
 information about what can is known from syslog-auth about a given
 message or range of messages.

 Entries in this auxillary log file are of the form:

 a. Key ID, Reboot Session ID (identify the machine and session)

 b. startGlobalCounter, endGlobalCounter (identify the range of
 messages; * is valid on either end).

 c. blob (32-bit encoding of promises being made)

 d. textDescription ASCII text of the promises being made.

 The fields are separated by commas. The result is something like

 3f48d17787acce4437836b6e,00000348a490,*,*,c1f13839,
 No replay or gap detection possible online.

 9d1eac9bcc3ab07657eb35ee,0000898de7bd,*,000000000048,09dee718,
 No replay detection possible.

 8837174d47328e71937014e2,*,*,091726aa,
 Session-ID is pseudorandoml cannot be sequenced with
 other session IDs

Expires June 2001 [Page 29]

Draft Syslog Auth December 2000

6.4.2. Applying Conclusions in Forwarded Messages

 The conclusions drawn in subsection 6.3 are also useful when the
 message in question is being forwarded. Knowledge about replay and
 gap detection must be passed on to the next receiver, and this can be
 done by setting appropriate bits in the flags of the authentication
 block and its forwarding block. In particular, the following flags
 may be affected:

 A.flags.replayVulnerable
 A.forwardingBlock.flags.replayResistant

6.4.3. Applying Conclusions in Online Processing

 These conclusions may also be of great value for systems doing online
 processing of log files, e.g., for intrusion detection. Such systems
 can, for example, discard replayable messages when they're overloaded
 with other messages, or signal a problem when some authenticated
 device's messages are showing a suspicious number of missing
 messages.

7. Reviewing Syslog-Auth Logs Offline

 We expect that in most applications, people or programs will review
 logs offline, perhaps hours or days after they have been written.
 Offline review of logs gives several potential advantages:

 a. It's possible to postprocess log data, e.g., by putting all of
 the messages from the same reboot session ID in order of
 increasing global counter, and thus in order of original
 transmission.

 b. It's possible to gather information from other receivers, and
 thus combine information from the same sender that went to
 different receivers, or from different senders that ought to be
 analyzed together.

 c. Sometimes, an administrator will want to have an additional
 storage security key which is not available online. This might
 be used to resist attacks in which someone compromises the
 receiver machine, and alters logs on it.

 This section describes offline review of logs received and stored by
 a syslog-auth receiver, including an auxillary log file.

7.1. Offline Replay Detection

 Online replay detection is preferable, but offline replay detection
 is often good enough in practice. Offline replay detection uses
 exactly the same techniques as online replay detection, but isn't
 nearly as time critical.

Expires June 2001 [Page 30]

Draft Syslog Auth December 2000

 Offline replay detection uses the same techniques as online replay
 detection, described above.

7.2. Storage Security

 Syslog-auth is mainly concerned with ensuring transmission security
 of log messages--that is, ensuring that they aren't altered on the
 wire between the sender and receiver. However, someone doing offline
 analysis of logs may also want to ensure that the logs haven't been
 tampered with since they've arrived. These two goals are rather
 distinct. It is important to note: storage security cannot be
 provided using a key held by the machine on which the logs are to be
 stored. If that machine isn't compromised, then an attacker can't
 alter the logs once they've arrived at it. If the machine is
 compromised, then an attacker can recover the key used, and can
 alter logs undetectably.

7.3.1. Syslog-Auth Storage MACs

 Storage MACs are the only way that syslog-auth supports storage
 security directly. A syslog-auth message may, under normal
 conditions, contain zero, one, or two storage MACs. The key used for
 the storage MAC should be known to no online machine except the
 sender.

 The storage MAC is intended to be verified offline. The owner of the
 log uses the storage MAC key, specified by the key ID in the storage
 MAC block, to verify that the message hasn't changed. There are two
 important points to consider, here:

 a. If there is ever a disagreement about authenticity of a message
 between the receiver and the storage MAC (e.g., a message is
 stored as a valid message, but its storage MAC is not valid),
 this implies either a malfunction or a compromise somewhere on
 the forwarding path of the message, since the storage MAC was
 added to the machine.

 b. The storage MAC prevents the receiver, if compromised, from
 altering stored log messages, but does not prevent it from
 deleting inconvenient log messages. (This is inevitable, since
 all that a storage MAC can authenticate is its message, not a
 sequence of messages that arrived.)

Expires June 2001 [Page 31]

Draft Syslog Auth December 2000

7.4. Detecting Gaps by Reassembling All Paths of Forwarded Messages

 Forwarded messages and messages without destination counters can't be
 checked for meaningful gaps in the message sequence online. (In this
 context, a meaningful gap is a gap caused by a message being lost or
 blocked, rather than by the sender having simply sent the message to
 a different receiver instead of this one.) To check those logs for
 gaps that represent lost messages, we must reassemble the logs from a
 given sender, using the logs stored on all the ultimate receivers
 (possibly at the end of long chains of forwards). We can then find
 any gaps in global message counters and identify them.8. Acknowledgements

 The author wishes to thank Alex Brown, Chris Calabrese, Jon Callas,
 Carson Gaspar, Drew Gross, Chris Lonvick, Darrin New, Marshall Rose,
 Holt Sorenson, and the whole bunch of Counterpane engineering and
 operations people who commented on early or late versions of this
 proposal.

9. Bibliography

A. Defining the Key ID.

 The md5 hash function is known to have some weaknesses, particularly
 in terms of collision resistance. However, it is also believed to be
 secure when used in the hmac construction, which is

 hmac_{K}(X) = md5(K xor Pad1,md5(K xor Pad2,X))

 This applies the hash twice between the initial use of the key and
 the output. All our security in this scheme is based on hmac-md5, so
 far. One nice feature of this is that we can always change the hash
 function used, e.g., to SHA1 or SHA-256, with no real difficulties in
 terms of these definitions. Our key IDs and MACs are both based on
 taking the low-order 64 or 96 bits of the hash value, so changing the
 output size of the hash should have no impact on them.

 We use the following formula for Key ID:

 Key ID = low 96 bits(hmac_md5_{K}("KEYID")).

 The reasoning behind this is:

 a. We are already trusting hmac_md5 with all our security in this
 scheme, so it introduces no new trust requirements.

 b. There is no valid syslog-auth message with only the text "KEYID",
 since it does not include an authentication block. A sender or

 forwarder who follows the standard will never generate a MAC for
 such a message. Therefore, we need not worry about someone
 trying to forge a syslog-auth message using the key ID as a
 valid MAC, because there's no valid message that could be forged
 this way.

Expires June 2001 [Page 32]

Draft Syslog Auth December 2000

 c. The key ID is 96 bits based on the following logic: We never
 expect to see any receiver dealing with more than 2^{32}
 different senders' keys at once. In fact, we'd be surprised to
 see even one receiver on earth have to deal with that many
 senders. For that receiver, however, the probability that a pair
 of keys will collide is

 choose(2^{32},2) * 2^{-96} ~= 2^{63} * 2^{-96} = 2^{-33}.

 This means that in this worst-case environment, the probability that
 we will get a pair of keys with the same key ID is still
 astronomically small.

 Why is this last point important? The software implementing
 syslog-auth is going to use this key ID to decide which key to use
 when checking the message's MAC. So if there were ever a pair of
 keys that had the same key ID, and a given receiver had to deal with
 both at once, it would almost certainly fail to authenticate messages
 from one of the two colliding keys. (It's possible to implement this
 so that it detects unequal keys with colliding key IDs, and deals
 intelligently with them. But the code to do this will never be used,
 and so will probably almost never be tested. Even generating a test
 case for this situation requires a prohibitive amount of processing
 power (we expect it to take about 2^{48} operations)! So it will
 never be used, will never be tested, and so it just shouldn't be
 counted on.)

B Author's Address

 John Kelsey
 Counterpane Internet Security
 kelsey.j@ix.netcom.com

Expires June 2001 [Page 33]

Draft Syslog Auth December 2000

C Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Expires June 2001 [Page 34]

