
Workgroup: TAPS Working Group

Internet-Draft: draft-ietf-taps-arch-07

Published: 9 March 2020

Intended Status: Standards Track

Expires: 10 September 2020

Authors: T. Pauly, Ed.

Apple Inc.

B. Trammell, Ed.

Google

A. Brunstrom

Karlstad University

G. Fairhurst

University of Aberdeen

C. Perkins

University of Glasgow

P. Tiesel

TU Berlin

C. Wood

Apple Inc.

An Architecture for Transport Services

Abstract

This document describes an architecture for exposing transport

protocol features to applications for network communication, the

Transport Services architecture. The Transport Services Application

Programming Interface (API) is based on an asynchronous, event-

driven interaction pattern. It uses messages for representing data

transfer to applications, and it assumes an implementation that can

use multiple IP addresses, multiple protocols, and multiple paths,

and provide multiple application streams. This document further

defines common terminology and concepts to be used in definitions of

Transport Services APIs and implementations.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Background

1.2. Overview

1.3. Specification of Requirements

2. API Model

2.1. Event-Driven API

2.2. Data Transfer Using Messages

2.3. Flexibile Implementation

3. Design Principles

3.1. Common APIs for Common Features

3.2. Access to Specialized Features

3.3. Scope for API and Implementation Definitions

4. Transport Services Architecture and Concepts

4.1. Transport Services API Concepts

4.1.1. Connections and Related Objects

4.1.2. Pre-Establishment

4.1.3. Establishment Actions

4.1.4. Data Transfer Objects and Actions

4.1.5. Event Handling

4.1.6. Termination Actions

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

4.1.7. Connection Groups

4.2. Transport Services Implementation Concepts

4.2.1. Candidate Gathering

4.2.2. Candidate Racing

4.2.3. Protocol Stack Equivalence

4.2.4. Separating Connection Groups

5. IANA Considerations

6. Security Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

Many application programming interfaces (APIs) to perform transport

networking have been deployed, perhaps the most widely known and

imitated being the BSD Socket [POSIX] interface (Socket API). The

naming of objects and functions across these APIs is not consistent,

and varies depending on the protocol being used. For example,

sending and receiving streams of data is conceptually the same for

both an unencrypted Transmission Control Protocol (TCP) stream and

operating on an encrypted Transport Layer Security (TLS) [RFC8446]

stream over TCP, but applications cannot use the same socket send()

and recv() calls on top of both kinds of connections. Similarly,

terminology for the implementation of transport protocols varies

based on the context of the protocols themselves: terms such as

"flow", "stream", "message", and "connection" can take on many

different meanings. This variety can lead to confusion when trying

to understand the similarities and differences between protocols,

and how applications can use them effectively.

The goal of the Transport Services architecture is to provide a

common, flexible, and reusable interface for transport protocols. As

applications adopt this interface, they will benefit from a wide set

of transport features that can evolve over time, and ensure that the

system providing the interface can optimize its behavior based on

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

the application requirements and network conditions, without

requiring changes to the applications. This flexibility enables

faster deployment of new features and protocols. It can also support

applications by offering racing and fallback mechanisms, which

otherwise need to be implemented in each application separately.

This document was developed in parallel with the specification of

the Transport Services API [I-D.ietf-taps-interface] and

Implementation Guidelines [I-D.ietf-taps-impl]. Although following

the Transport Services Architecture does not require that all APIs

and implementations are identical, a common minimal set of features

represented in a consistent fashion will enable applications to be

easily ported from one system to another.

1.1. Background

The Transport Services architecture is based on the survey of

services provided by IETF transport protocols and congestion control

mechanisms [RFC8095], and the distilled minimal set of the features

offered by transport protocols [I-D.ietf-taps-minset]. These

documents identified common features and patterns across all

transport protocols developed thus far in the IETF.

Since transport security is an increasingly relevant aspect of using

transport protocols on the Internet, this architecture also

considers the impact of transport security protocols on the feature-

set exposed by Transport Services [I-D.ietf-taps-transport-

security].

One of the key insights to come from identifying the minimal set of

features provided by transport protocols [I-D.ietf-taps-minset] was

that features either require application interaction and guidance

(referred to in that document as Functional or Optimizing Features),

or else can be handled automatically by a system implementing

Transport Services (referred to as Automatable Features). Among the

Functional and Optimizing Features, some were common across all or

nearly all transport protocols, while others could be seen as

features that, if specified, would only be useful with a subset of

protocols, but would not harm the functionality of other protocols.

For example, some protocols can deliver messages faster for

applications that do not require messages to arrive in the order in

which they were sent. However, this functionality needs to be

explicitly allowed by the application, since reordering messages

would be undesirable in many cases.

¶

¶

¶

¶

¶

1.2. Overview

This document describes the Transport Services architecture in three

sections:

Section 2 describes how the API model of Transport Services

differs from traditional socket-based APIs. Specifically, it

offers asynchronous event-driven interaction, the use of messages

for data transfer, and the flexibility to use different transport

protocols and paths without requiring major changes to the

application.

Section 3 explains the design principles behind the Transport

Services API. These principles are intended to make sure that

transport protocols can continue to be enhanced and evolve

without requiring too many changes by application developers.

Section 4 presents the Transport Services architecture diagram

and defines the concepts that are used by both the API and

implementation documents. The Preconnection allows applications

to configure Connection Properties, and the Connection represents

an object that can be used to send and receive Messages.

1.3. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. API Model

The traditional model of using sockets for networking can be

represented as follows:

Applications create connections and transfer data using the

Socket API.

The Socket API provides the interface to the implementations of

TCP and UDP (typically implemented in the system's kernel).

TCP and UDP in the kernel send and receive data over the

available network-layer interfaces.

Sockets are bound directly to transport-layer and network-layer

addresses, obtained via a separate resolution step, usually

performed by a system-provided stub resolver.

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

Figure 1: Socket API Model

The Transport Services architecture evolves this general model of

interaction, aiming to both modernize the API surface presented to

applications by the transport layer and enrich the capabilities of

the Transport Services implementation. It combines interfaces for

multiple interaction patterns into a unified whole. By combining

name resolution with connection establishment and data transfer in a

single API, it allows for more flexible implementations to provide

path and transport protocol agility on the application's behalf.

Figure 2: Transport Services API Model

+---+

| Application |

+---+

 | | |

 +------------+ +------------+ +--------------+

 | stub | | Stream API | | Datagram API |

 | resolver | +------------+ +--------------+

 +------------+ | |

 +---------------------------------+

 | TCP UDP |

 | Kernel Networking Stack |

 +---------------------------------+

 |

+---+

| Network Layer Interface |

+---+

¶

+---+

| Application |

+---+

 |

+---+

| Transport Services API |

+---+

 |

+---+

| Transport Services Implementation |

| (Using: DNS, UDP, TCP, SCTP, DCCP, TLS, QUIC, etc) |

+---+

 |

+---+

| Network Layer Interface |

+---+

The Transport Services API [I-D.ietf-taps-interface] defines the

mechanism for an application to create network connections and

transfer data. The implementation [I-D.ietf-taps-impl] is

responsible for mapping the API to the various available transport

protocols and managing the available network interfaces and paths.

There are key differences between the architecture of the Transport

Services system and the architecture of the Socket API: the

Transport Services API is asynchronous and event-driven; it uses

messages for representing data transfer to applications; and it

assumes an implementation that can use multiple IP addresses,

multiple protocols, multiple paths, and provide multiple application

streams.

2.1. Event-Driven API

Originally, sockets presented a blocking interface for establishing

connections and transferring data. However, most modern applications

interact with the network asynchronously. Emulation of an

asynchronous interface using sockets generally uses a try-and-fail

model. If the application wants to read, but data has not yet been

received from the peer, the call to read will fail. The application

then waits and can try again later.

In contrast to sockets, all interaction with a Transport Services

system is expected to be asynchronous, and use an event-driven model

(see Section 4.1.5). For example, if the application wants to read,

its call to read will not complete immediately, but will deliver an

event containing the received data once it is available. Error

handling is also asynchronous; a failure to send results in an

asynchronous send error as an event.

The Transport Services API also delivers events regarding the

lifetime of a connection and changes in the available network links,

which were not previously made explicit in sockets.

Using asynchronous events allows for a more natural interaction

model when establishing connections and transferring data. Events in

time more closely reflect the nature of interactions over networks,

as opposed to how sockets represent network resources as file system

objects that may be temporarily unavailable.

Separate from events, callbacks are also provided for asynchronous

interactions with the API not directly related to events on the

network or network interfaces.

2.2. Data Transfer Using Messages

Sockets provide a message interface for datagram protocols like UDP,

but provide an unstructured stream abstraction for TCP. While TCP

¶

¶

¶

¶

¶

¶

¶

does indeed provide the ability to send and receive data as streams,

most applications need to interpret structure within these streams.

For example, HTTP/1.1 uses character delimiters to segment messages

over a stream [RFC7230]; TLS record headers carry a version, content

type, and length [RFC8446]; and HTTP/2 uses frames to segment its

headers and bodies [RFC7540].

The Transport Services API represents data as messages, so that it

more closely matches the way applications use the network. Providing

a message-based abstraction provides many benefits, such as:

the ability to associate deadlines with messages, for

applications that care about timing;

the ability to provide control of reliability, choosing which

messages to retransmit when there is packet loss, and how best to

make use of the data that arrived;

the ability to manage dependencies between messages, when the

Transport Services system could decide to not deliver a message,

either following packet loss or because it has missed a deadline.

In particular, this can avoid (re-)sending data that relies on a

previous transmission that was never received.

the ability to automatically assign messages and connections to

underlying transport connections to utilize multi-streaming and

pooled connections.

Allowing applications to interact with messages is backwards-

compatible with existings protocols and APIs, as it does not change

the wire format of any protocol. Instead, it gives the protocol

stack additional information to allow it to make better use of

modern transport services, while simplifying the application's role

in parsing data. For protocols which natively use a streaming

abstraction, framers (Section 4.1.4) bridge the gap between the two

abstractions.

2.3. Flexibile Implementation

Sockets, for protocols like TCP, are generally limited to connecting

to a single address over a single interface. They also present a

single stream to the application. Software layers built upon sockets

often propagate this limitation of a single-address single-stream

model. The Transport Services architecture is designed to handle

multiple candidate endpoints, protocols, and paths; and support

multipath and multistreaming protocols.

Transport Services implementations are meant to be flexible at

connection establishment time, considering many different options

and trying to select the most optimal combinations (Section 4.2.1

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

and Section 4.2.2). This requires applications to provide higher-

level endpoints than IP addresses, such as hostnames and URLs, which

are used by a Transport Services implementation for resolution, path

selection, and racing. Transport services implementations can

further implement fallback mechanisms if connection establishment of

one protocol fails or performance is detected to be unsatisfactory.

Flexibility after connection establishment is also important.

Transport protocols that can migrate between multiple network-layer

interfaces need to be able to process and react to interface

changes. Protocols that support multiple application-layer streams

need to support initiating and receiving new streams using existing

connections.

3. Design Principles

The goal of the Transport Services architecture is to redefine the

interface between applications and transports in a way that allows

the transport layer to evolve and improve without fundamentally

changing the contract with the application. This requires a careful

consideration of how to expose the capabilities of protocols.

There are several degrees in which a Transport Services system is

intended to offer flexibility to an application: it can provide

access to multiple sets of protocols and protocol features; it can

use these protocols across multiple paths that could have different

performance and functional characteristics; and it can communicate

with different remote systems to optimize performance, robustness to

failure, or some other metric. Beyond these, if the API for the

system remains the same over time, new protocols and features could

be added to the system's implementation without requiring changes in

applications for adoption.

3.1. Common APIs for Common Features

Functionality that is common across multiple transport protocols

ought to be accessible through a unified set of API calls. An

application using a Transport Services API can implement logic for

its basic use of transport networking (establishing the transport,

and sending and receiving data) once, and expect that implementation

to continue to function as the transports change.

As a baseline, any Transport Services API needs to allow access to

the distilled minimal set of features offered by transport protocols

[I-D.ietf-taps-minset].

3.2. Access to Specialized Features

There are applications that will need to control fine-grained

details of transport protocols to optimize their behavior and ensure

¶

¶

¶

¶

¶

¶

compatibility with remote systems. A Transport Services system

therefore ought to also permit more specialized protocol features to

be used. The interface for these specialized options ought to be

exposed differently from the common options to ensure flexibility.

A specialized feature could be required by an application only when

using a specific protocol, and not when using others. For example,

if an application is using TCP, it could require control over the

User Timeout Option for TCP; these options would not take effect for

other transport protocols. In such cases, the API ought to expose

the features in such a way that they take effect when a particular

protocol is selected, but do not imply that only that protocol could

be used. For example, if the API allows an application to specify a

preference to use the User Timeout Option, communication would not

fail when a protocol such as QUIC is selected.

Other specialized features, however, could be strictly required by

an application and thus constrain the set of protocols that can be

used. For example, if an application requires support for automatic

handover or failover for a connection, only protocol stacks that

provide this feature are eligible to be used, e.g., protocol stacks

that include a multipath protocol or a protocol that supports

connection migration. A Transport Services API needs to allow

applications to define such requirements and constrain the system's

options. Since such options are not part of the core/common

features, it will generally be simple for an application to modify

its set of constraints and change the set of allowable protocol

features without changing the core implementation.

3.3. Scope for API and Implementation Definitions

The Transport Services API is envisioned as the abstract model for a

family of APIs that share a common way to expose transport features

and encourage flexibility. The abstract API definition [I-D.ietf-

taps-interface] describes this interface and how it can be exposed

to application developers.

Implementations that provide the Transport Services API [I-D.ietf-

taps-impl] will vary due to system-specific support and the needs of

the deployment scenario. It is expected that all implementations of

Transport Services will offer the entire mandatory API. All

implementations are expected to offer an API that is sufficient to

use the distilled minimal set of features offered by transport

protocols [I-D.ietf-taps-minset], including API support for TCP and

UDP transport. However, some features provided by this API will not

be functional in certain implementations. For example, it is

possible that some very constrained devices might not have a full

TCP implementation beneath the API.

¶

¶

¶

¶

¶

To preserve flexibility and compatibility with future protocols,

top-level features in the Transport Services API ought to avoid

referencing particular transport protocols. The mappings of these

API features to specific implementations of each feature is

explained in the [I-D.ietf-taps-impl] along with the implications of

the feature on existing protocols. It is expected that [I-D.ietf-

taps-interface] will be updated and supplemented as new protocols

and protocol features are developed.

It is important to note that neither the Transport Services API [I-

D.ietf-taps-interface] nor the Implementation document [I-D.ietf-

taps-impl] define new protocols or protocol capabilities that affect

what is communicated across the network. Use of a Transport Services

system does not require that a peer on the other side of a

connection uses the same API or implementation. A Transport Services

system acting as a connection initiator can communicate with any

existing system that implements the transport protocol(s) selected

by the Transport Services system. Similarly, a Transport Services

system acting as a listener can receive connections for any protocol

that is supported by the system from existing initiators that

implement the protocol, independent of whether the initiator uses

Transport Services as well or not.

4. Transport Services Architecture and Concepts

The concepts defined in this document are intended primarily for use

in the documents and specifications that describe the Transport

Services architecture and API. While the specific terminology can be

used in some implementations, it is expected that there will remain

a variety of terms used by running code.

The architecture divides the concepts for Transport Services into

two categories:

API concepts, which are intended to be exposed to applications;

and

System-implementation concepts, which are intended to be

internally used when building systems that implement Transport

Services.

The following diagram summarizes the top-level concepts in the

architecture and how they relate to one another.

¶

¶

¶

¶

1.

¶

2.

¶

¶

Figure 3: Concepts and Relationships in the Transport Services

Architecture

4.1. Transport Services API Concepts

Fundamentally, a Transport Services API needs to provide connection

objects (Section 4.1.1) that allow applications to establish

communication, and then send and receive data. These could be

exposed as handles or referenced objects, depending on the language.

Beyond the connection objects, there are several high-level groups

of actions that any Transport Services API needs to provide:

Pre-Establishment (Section 4.1.2) encompasses the properties that

an application can pass to describe its intent, requirements,

prohibitions, and preferences for its networking operations.

These properties apply to multiple transport protocols, unless

 +---+

 | Application |

 +-+----------------+------^-------+--------^----------+

 | | | | |

 pre- | data | events

 establishment | transfer | |

 | establishment | termination |

 | | | | |

 | +--v------v-------v+ |

 +-v-------------+ Connection(s) +-------+----------+

 | Transport +--------+---------+ |

 | Services | |

 | API | +-------------+ |

 +------------------------+--+ Framer(s) |-----------+

 | +-------------+

 +------------------------|----------------------------+

 | Transport | |

 | System | +-----------------+ |

 | Implementation | | Cached | |

 | | | State | |

 | (Candidate Gathering) | +-----------------+ |

 | | |

 | (Candidate Racing) | +-----------------+ |

 | | | System | |

 | | | Policy | |

 | +----------v-----+ +-----------------+ |

 | | Protocol | |

 +-------------+ Stack(s) +----------------------+

 +-------+--------+

 V

 Network Layer Interface

¶

¶

*

otherwise specified. Properties specified during Pre-

Establishment can have a large impact on the rest of the

interface: they modify how establishment occurs, they influence

the expectations around data transfer, and they determine the set

of events that will be supported.

Establishment (Section 4.1.3) focuses on the actions that an

application takes on the connection objects to prepare for data

transfer.

Data Transfer (Section 4.1.4) consists of how an application

represents the data to be sent and received, the functions

required to send and receive that data, and how the application

is notified of the status of its data transfer.

Event Handling (Section 4.1.5) defines categories of

notifications which an application can receive during the

lifetime of transport objects. Events also provide opportunities

for the application to interact with the underlying transport by

querying state or updating maintenance options.

Termination (Section 4.1.6) focuses on the methods by which data

transmission is stopped, and state is torn down in the transport.

The diagram below provides a high-level view of the actions and

events during the lifetime of a Connection object. Note that some

actions are alternatives (e.g., whether to initiate a connection or

to listen for incoming connections), while others are optional

(e.g., setting Connection and Message Properties in Pre-

Establishment) or have been omitted for brevity and simplicity.

¶

*

¶

*

¶

*

¶

*

¶

¶

Figure 4: The lifetime of a Connection object

4.1.1. Connections and Related Objects

Preconnection: A Preconnection object is a representation of a

potential Connection. It has state that describes parameters of a

Connection that might exist in the future: the Local Endpoint

from which that Connection will be established, the Remote

Endpoint (Section 4.1.2) to which it will connect, and Transport

Properties that influence the paths and protocols a Connection

will use. A Preconnection can be fully specified such that it

represents a single possible Connection, or it can be partially

specified such that it represents a family of possible

Connections. The Local Endpoint (Section 4.1.2) is required if

the Preconnection is used to Listen for incoming Connections. The

Local Endpoint is optional if it is used to Initiate Connections.

The Remote Endpoint is required in the Preconnection that is used

to Initiate Connections. The Remote Endpoint is optional if it is

used to Listen for incoming Connections. The Local Endpoint and

the Remote Endpoint are both required if a peer-to-peer

Rendezvous is to occur based on the Preconnection.

Transport Properties: Transport Properties allow the application

to express their requirements, prohibitions, and preferences and

configure the Transport Services system. There are three kinds of

Transport Properties:

Selection Properties (Section 4.1.2) that can only be

specified on a Preconnection.

 Pre-Establishment : Established : Termination

 ----------------- : ----------- : -----------

 : :

 +-- Local Endpoint : Message :

 +-- Remote Endpoint : Receive() | :

 +-- Transport Properties : Send() | :

 +-- Security Parameters : | :

 | : | :

 | InitiateWithSend() | Close() :

 | +---------------+ Initiate() +-----+------+ Abort() :

 +---+ Preconnection |------------->| Connection |-----------> Closed

 +---------------+ Rendezvous() +------------+ :

 Listen() | : | | :

 | : | v :

 v : | Connection :

 +----------+ : | Ready :

 | Listener |----------------------+ :

 +----------+ Connection Received :

 : :

*

¶

*

¶

-

¶

Connection Properties (Section 4.1.2) that can be specified on

a Preconnection and changed on the Connection.

Message Properties (Section 4.1.4) that can be specified as

defaults on a Preconnection or a Connection, and can also be

specified during data transfer to affect specific Messages.

Connection: A Connection object represents one or more active

transport protocol instances that can send and/or receive

Messages between local and remote systems. It holds state

pertaining to the underlying transport protocol instances and any

ongoing data transfers. This represents, for example, an active

Connection in a connection-oriented protocol such as TCP, or a

fully-specified 5-tuple for a connectionless protocol such as

UDP. It can also represent a pool of transport protocol

instances, e.g., a set of TCP and QUIC connections to equivalent

endpoints, or a stream of a multi-streaming transport protocol

instance. Connections can be created from a Preconnection or by a

Listener.

Listener: A Listener object accepts incoming transport protocol

connections from remote systems and generates corresponding

Connection objects. It is created from a Preconnection object

that specifies the type of incoming Connections it will accept.

4.1.2. Pre-Establishment

Endpoint: An Endpoint represents an identifier for one side of a

transport connection. Endpoints can be Local Endpoints or Remote

Endpoints, and respectively represent an identity that the

application uses for the source or destination of a connection.

An Endpoint can be specified at various levels of abstraction,

and an Endpoint at a higher level of abstraction (such as a

hostname) can be resolved to more concrete identities (such as IP

addresses).

Remote Endpoint: The Remote Endpoint represents the application's

identifier for a peer that can participate in a transport

connection; for example, the combination of a DNS name for the

peer and a service name/port.

Local Endpoint: The Local Endpoint represents the application's

identifier for itself that it uses for transport connections; for

example, a local IP address and port.

Selection Properties: The Selection Properties consist of the

options that an application can set to influence the selection of

paths between the local and remote systems, to influence the

selection of transport protocols, or to configure the behavior of

generic transport protocol features. These options can take the

-

¶

-

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

form of requirements, prohibitions, or preferences. Examples of

options that influence path selection include the interface type

(such as a Wi-Fi connection, or a Cellular LTE connection),

requirements around the largest Message that can be sent, or

preferences for throughput and latency properties. Examples of

options that influence protocol selection and configuration of

transport protocol features include reliability, multipath

support, and fast open support.

Connection Properties: The Connection Properties are used to

configure protocol-specific options and control per-connection

behavior of the Transport Services system; for example, a

protocol-specific Connection Property can express that if TCP is

used, the implementation ought to use the User Timeout Option.

Note that the presence of such a property does not require that a

specific protocol will be used. In general, these properties do

not explicitly determine the selection of paths or protocols, but

can be used in this way by an implementation during connection

establishment. Connection Properties are specified on a

Preconnection prior to Connection establishment, and can be

modified on the Connection later. Changes made to Connection

Properties after Connection establishment take effect on a best-

effort basis.

Security Parameters: Security Parameters define an application's

requirements for authentication and encryption on a Connection.

They are used by Transport Security protocols (such as those

described in [I-D.ietf-taps-transport-security]) to establish

secure Connections. Examples of parameters that can be set

include local identities, private keys, supported cryptographic

algorithms, and requirements for validating trust of remote

identities. Security Parameters are primarily associated with a

Preconnection object, but properties related to identities can be

associated directly with Endpoints.

4.1.3. Establishment Actions

Initiate: The primary action that an application can take to

create a Connection to a Remote Endpoint, and prepare any

required local or remote state to enable the transmission of

Messages. For some protocols, this will initiate a client-to-

server style handshake; for other protocols, this will just

establish local state (e.g., with connectionless protocols such

as UDP). The process of identifying options for connecting, such

as resolution of the Remote Endpoint, occurs in response to the

Initiate call.

Listen: Enables a listener to accept incoming Connections. The

Listener will then create Connection objects as incoming

¶

*

¶

*

¶

*

¶

*

connections are accepted (Section 4.1.5). Listeners by default

register with multiple paths, protocols, and local endpoints,

unless constrained by Selection Properties and/or the specified

Local Endpoint(s). Connections can be accepted on any of the

available paths or endpoints.

Rendezvous: The action of establishing a peer-to-peer connection

with a Remote Endpoint. It simultaneously attempts to initiate a

connection to a Remote Endpoint while listening for an incoming

connection from that endpoint. The process of identifying options

for the connection, such as resolution of the Remote Endpoint,

occurs in response to the Rendezvous call. As with Listeners, the

set of local paths and endpoints is constrained by Selection

Properties. If successful, the Rendezvous call returns a

Connection object to represent the established peer-to-peer

connection. The processes by which connections are initiated

during a Rendezvous action will depend on the set of Local and

Remote Endpoints configured on the Preconnection. For example, if

the Local and Remote Endpoints are TCP host candidates, then a

TCP simultaneous open [RFC0793] will be performed. However, if

the set of Local Endpoints includes server reflexive candidates,

such as those provided by STUN, a Rendezvous action will race

candidates in the style of the ICE algorithm [RFC8445] to perform

NAT binding discovery and initiate a peer-to-peer connection.

4.1.4. Data Transfer Objects and Actions

Message: A Message object is a unit of data that can be

represented as bytes that can be transferred between two systems

over a transport connection. The bytes within a Message are

assumed to be ordered. If an application does not care about the

order in which a peer receives two distinct spans of bytes, those

spans of bytes are considered independent Messages.

Message Properties: Message Properties are used to specify

details about Message transmission. They can be specified

directly on individual Messages, or can be set on a Preconnection

or Connection as defaults. These properties might only apply to

how a Message is sent (such as how the transport will treat

prioritization and reliability), but can also include properties

that specific protocols encode and communicate to the Remote

Endpoint. When receiving Messages, Message Properties can contain

information about the received Message, such as metadata

generated at the receiver and information signalled by the remote

endpoint. For example, a Message can be marked with a Message

Property indicating that it is the final message on a connection

if the peer sent a TCP FIN.

¶

*

¶

*

¶

*

¶

Send: The action to transmit a Message over a Connection to the

remote system. The interface to Send can accept Message

Properties specific to how the Message content is to be sent. The

status of the Send operation is delivered back to the sending

application in an event (Section 4.1.5).

Receive: An action that indicates that the application is ready

to asynchronously accept a Message over a Connection from a

remote system, while the Message content itself will be delivered

in an event (Section 4.1.5). The interface to Receive can include

Message Properties specific to the Message that is to be

delivered to the application.

Framer: A Framer is a data translation layer that can be added to

a Connection to define how application-layer Messages are

transmitted over a transport protocol. This is particularly

relevant for protocols that otherwise present unstructured

streams, such as TCP.

4.1.5. Event Handling

The following categories of events can be delivered to an

application:

Connection Ready: Signals to an application that a given

Connection is ready to send and/or receive Messages. If the

Connection relies on handshakes to establish state between peers,

then it is assumed that these steps have been taken.

Connection Closed: Signals to an application that a given

Connection is no longer usable for sending or receiving Messages.

The event delivers a reason or error to the application that

describes the nature of the termination.

Connection Received: Signals to an application that a given

Listener has received a Connection.

Message Received: Delivers received Message content to the

application, based on a Receive action. This can include an error

if the Receive action cannot be satisfied due to the Connection

being closed.

Message Sent: Notifies the application of the status of its Send

action. This might indicate a failure if the Message cannot be

sent, or an indication that the Message has been processed by the

protocol stack.

Path Properties Changed: Notifies the application that some

property of the Connection has changed that might influence how

and where data is sent and/or received.

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

4.1.6. Termination Actions

Close: The action an application takes on a Connection to

indicate that it no longer intends to send data, is no longer

willing to receive data, and that the protocol should signal this

state to the remote system if the transport protocol allows this.

(Note that this is distinct from the concept of "half-closing" a

bidirectional connection, such as when a FIN is sent in one

direction of a TCP connection. Indicating the end of a stream in

the Transport Services architecture is possible using Message

Properties when sending.)

Abort: The action the application takes on a Connection to

indicate a Close and also indicate that the Transport Services

system should not attempt to deliver any outstanding data. This

is intended for immediate termination of a connection, without

cleaning up state.

4.1.7. Connection Groups

A Connection Group is a set of Connections that share properties and

caches. For multiplexing transport protocols, only Connections

within the same Connection Group are allowed to be multiplexed

together. An application can explicitly define Connection Groups to

control caching boundaries, as discussed in Section 4.2.4.

4.2. Transport Services Implementation Concepts

This section defines the set of objects used internally to a system

or library to implement the functionality needed to provide a

transport service across a network, as required by the abstract

interface.

Path: Represents an available set of properties that a local

system can use to communicate with a remote system, such as

routes, addresses, and physical and virtual network interfaces.

Protocol Instance: A single instance of one protocol, including

any state necessary to establish connectivity or send and receive

Messages.

Protocol Stack: A set of Protocol Instances (including relevant

application, security, transport, or Internet protocols) that are

used together to establish connectivity or send and receive

Messages. A single stack can be simple (a single transport

protocol instance over IP), or it can be complex (multiple

application protocol streams going through a single security and

transport protocol, over IP; or, a multi-path transport protocol

over multiple transport sub-flows).

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

Candidate Path: One path that is available to an application and

conforms to the Selection Properties and System Policy, of which

there can be several. Candidate Paths are identified during the

gathering phase (Section 4.2.1) and can be used during the racing

phase (Section 4.2.2).

Candidate Protocol Stack: One Protocol Stack that can be used by

an application for a connection, of which there can be several.

Candidate Protocol Stacks are identified during the gathering

phase (Section 4.2.1) and are started during the racing phase

(Section 4.2.2).

System Policy: Represents the input from an operating system or

other global preferences that can constrain or influence how an

implementation will gather candidate paths and Protocol Stacks

(Section 4.2.1) and race the candidates during establishment

(Section 4.2.2). Specific aspects of the System Policy either

apply to all Connections or only certain ones, depending on the

runtime context and properties of the Connection.

Cached State: The state and history that the implementation keeps

for each set of associated Endpoints that have been used

previously. This can include DNS results, TLS session state,

previous success and quality of transport protocols over certain

paths, as well as other information.

4.2.1. Candidate Gathering

Candidate Path Selection: Candidate Path Selection represents the

act of choosing one or more paths that are available to use based

on the Selection Properties and any available Local and Remote

Endpoints provided by the application, as well as the policies

and heuristics of a Transport Services system.

Candidate Protocol Selection: Candidate Protocol Selection

represents the act of choosing one or more sets of Protocol

Stacks that are available to use based on the Transport

Properties provided by the application, and the heuristics or

policies within the Transport Services system.

4.2.2. Candidate Racing

Connection establishment attempts for a set of candidates may be

performed simultaneously, synchronously, serially, or some

combination of all of these. We refer to this process as racing,

borrowing terminology from Happy Eyeballs [RFC8305].

Protocol Option Racing: Protocol Option Racing is the act of

attempting to establish, or scheduling attempts to establish,

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

multiple Protocol Stacks that differ based on the composition of

protocols or the options used for protocols.

Path Racing: Path Racing is the act of attempting to establish,

or scheduling attempts to establish, multiple Protocol Stacks

that differ based on a selection from the available Paths. Since

different Paths will have distinct configurations for local

addresses and DNS servers, attempts across different Paths will

perform separate DNS resolution steps, which can lead to further

racing of the resolved Remote Endpoints.

Remote Endpoint Racing: Remote Endpoint Racing is the act of

attempting to establish, or scheduling attempts to establish,

multiple Protocol Stacks that differ based on the specific

representation of the Remote Endpoint, such as a particular IP

address that was resolved from a DNS hostname.

4.2.3. Protocol Stack Equivalence

The Transport Services architecture defines a mechanism that allows

applications to easily make use of various network paths and

Protocol Stacks without requiring major changes in application

logic. In some cases, changing which Protocol Stacks or network

paths are used will require updating the preferences expressed by

the application that uses the Transport Services system. For

example, an application can enable the use of a multipath or

multistreaming transport protocol by modifying the properties in its

Pre-Connection configuration. In some cases, however, the Transport

Services system will be able to automatically change Protocol Stacks

without an update to the application, either by selecting a new

stack entirely, or by racing multiple candidate Protocol Stacks

during connection establishment. This functionality in the API can

be a powerful driver of new protocol adoption, but needs to be

constrained carefully to avoid unexpected behavior that can lead to

functional or security problems.

If two different Protocol Stacks can be safely swapped, or raced in

parallel (see Section 4.2.2), then they are considered to be

"equivalent". Equivalent Protocol Stacks need to meet the following

criteria:

Both stacks MUST offer the interface requested by the

application for connection establishment and data transmission.

For example, if an application requires preservation of message

boundaries, a Protocol Stack that runs UDP as the top-level

interface to the application is not equivalent to a Protocol

Stack that runs TCP as the top-level interface. A UDP stack

would allow an application to read out message boundaries based

on datagrams sent from the remote system, whereas TCP does not

¶

*

¶

*

¶

¶

¶

1.

preserve message boundaries on its own, but needs a framing

protocol on top to determine message boundaries.

Both stacks MUST offer the transport services that are

requested by the application. For example, if an application

specifies that it requires reliable transmission of data, then

a Protocol Stack using UDP without any reliability layer on top

would not be allowed to replace a Protocol Stack using TCP.

However, if the application does not require reliability, then

a Protocol Stack that adds reliability could be regarded as an

equivalent Protocol Stack as long as providing this would not

conflict with any other application-requested properties.

Both stacks MUST offer security protocols and parameters as

requested by the application [I-D.ietf-taps-transport-

security]. Security features and properties, such as

cryptographic algorithms, peer authentication, and identity

privacy vary across security protocols, and across versions of

security protocols. Protocol equivalence ought not to be

assumed for different protocols or protocol versions, even if

they offer similar application configuration options. To ensure

that security protocols are not incorrectly swapped, Transport

Services systems SHOULD only automatically generate equivalent

Protocol Stacks when the transport security protocols within

the stacks are identical. Specifically, a Transport Services

system would consider protocols identical only if they are of

the same type and version. For example, the same version of TLS

running over two different transport Protocol Stacks are

considered equivalent, whereas TLS 1.2 and TLS 1.3 [RFC8446]

are not considered equivalent. However, Transport Services

systems MAY allow applications to indicate that they consider

two different transport protocols equivalent, e.g., to allow

fallback to TLS 1.2 if TLS 1.3 is not available.

4.2.4. Separating Connection Groups

By default, stored properties of the implementation, such as cached

protocol state, cached path state, and heuristics, may be shared

(e.g. across multiple connections in an application). This provides

efficiency and convenience for the application, since the Transport

Services implementation can automatically optimize behavior.

There are several reasons, however, that an application might want

to explicitly isolate some Connections. These reasons include:

Privacy concerns about re-using cached protocol state that can

lead to linkability. Sensitive state may include TLS session

state [RFC8446] and HTTP cookies [RFC6265].

¶

2.

¶

3.

¶

¶

¶

*

¶

Privacy concerns about allowing Connections to multiplex

together, which can tell a Remote Endpoint that all of the

Connections are coming from the same application (for example,

when Connections are multiplexed HTTP/2 or QUIC streams).

Performance concerns about Connections introducing head-of-line

blocking due to multiplexing or needing to share state on a

single thread.

The Transport Services API can allow applications to explicitly

define Connection Groups that force separation of Cached State and

Protocol Stacks. For example, a web browser application might use

Connection Groups with separate caches for different tabs in the

browser to decrease linkability.

The interface to specify a Connection Group can expose fine-grained

tuning for which properties and cached state is allowed to be shared

with other Connections. For example, an application might want to

allow sharing TCP Fast Open cookies across groups, but not TLS

session state.

5. IANA Considerations

RFC-EDITOR: Please remove this section before publication.

This document has no actions for IANA.

6. Security Considerations

The Transport Services architecture does not recommend use of

specific security protocols or algorithms. Its goal is to offer ease

of use for existing protocols by providing a generic security-

related interface. Each provided interface translates to an existing

protocol-specific interface provided by supported security

protocols. For example, trust verification callbacks are common

parts of TLS APIs. Transport Services APIs will expose similar

functionality [I-D.ietf-taps-transport-security].

As described above in Section 4.2.3, if a Transport Services system

races between two different Protocol Stacks, both SHOULD use the

same security protocols and options. However, a Transport Services

system MAY race different security protocols, e.g., if the

application explicitly specifies that it considers them equivalent.

Applications need to ensure that they use security APIs

appropriately. In cases where applications use an interface to

provide sensitive keying material, e.g., access to private keys or

copies of pre-shared keys (PSKs), key use needs to be validated. For

example, applications ought not to use PSK material created for the

Encapsulating Security Protocol (ESP, part of IPsec) [RFC4303] with

*

¶

*

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-taps-interface]

[RFC2119]

QUIC, and applications ought not to use private keys intended for

server authentication as keys for client authentication.

Moreover, Transport Services systems MUST NOT automatically fall

back from secure protocols to insecure protocols, or to weaker

versions of secure protocols. For example, if an application

requests a specific version of TLS, but the desired version of TLS

is not available, its connection will fail. Applications are thus

responsible for implementing security protocol fallback or version

fallback by creating multiple Transport Services Connections, if so

desired. Alternatively, a Transport Services system MAY allow

applications to specify that fallback to a specific other version of

a protocol is allowed.

7. Acknowledgements

This work has received funding from the European Union's Horizon

2020 research and innovation programme under grant agreements No.

644334 (NEAT) and No. 688421 (MAMI).

This work has been supported by Leibniz Prize project funds of DFG -

German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011

(FKZ FE 570/4-1).

This work has been supported by the UK Engineering and Physical

Sciences Research Council under grant EP/R04144X/1.

Thanks to Theresa Enghardt, Max Franke, Mirja Kuehlewind, Jonathan

Lennox, and Michael Welzl for the discussions and feedback that

helped shape the architecture described here. Thanks as well to

Stuart Cheshire, Josh Graessley, David Schinazi, and Eric Kinnear

for their implementation and design efforts, including Happy

Eyeballs, that heavily influenced this work.

8. References

8.1. Normative References

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,

Kuehlewind, M., Perkins, C., Tiesel, P., Wood, C., and T.

Pauly, "An Abstract Application Layer Interface to

Transport Services", Work in Progress, Internet-Draft,

draft-ietf-taps-interface-05, 4 November 2019, <http://

www.ietf.org/internet-drafts/draft-ietf-taps-

interface-05.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-05.txt

[RFC8174]

[I-D.ietf-taps-impl]

[I-D.ietf-taps-minset]

[I-D.ietf-taps-transport-security]

[POSIX]

[RFC0793]

[RFC4303]

[RFC6265]

[RFC7230]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

Brunstrom, A., Pauly, T., Enghardt, T., Grinnemo, K.,

Jones, T., Tiesel, P., Perkins, C., and M. Welzl,

"Implementing Interfaces to Transport Services", Work in

Progress, Internet-Draft, draft-ietf-taps-impl-05, 4

November 2019, <http://www.ietf.org/internet-drafts/

draft-ietf-taps-impl-05.txt>.

Welzl, M. and S. Gjessing, "A Minimal Set of

Transport Services for End Systems", Work in Progress,

Internet-Draft, draft-ietf-taps-minset-11, 27 September

2018, <http://www.ietf.org/internet-drafts/draft-ietf-

taps-minset-11.txt>.

Enghardt, T., Pauly, T., Perkins, C., Rose, K., and C.

Wood, "A Survey of the Interaction Between Security

Protocols and Transport Services", Work in Progress,

Internet-Draft, draft-ietf-taps-transport-security-11, 5

March 2020, <http://www.ietf.org/internet-drafts/draft-

ietf-taps-transport-security-11.txt>.

"IEEE Std. 1003.1-2008 Standard for Information

Technology -- Portable Operating System Interface

(POSIX). Open group Technical Standard: Base

Specifications, Issue 7", 2008.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Kent, S., "IP Encapsulating Security Payload (ESP)", RFC

4303, DOI 10.17487/RFC4303, December 2005, <https://

www.rfc-editor.org/info/rfc4303>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
http://www.ietf.org/internet-drafts/draft-ietf-taps-impl-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-impl-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-minset-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-minset-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-transport-security-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-transport-security-11.txt
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265

[RFC7540]

[RFC8095]

[RFC8305]

[RFC8445]

[RFC8446]

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,

Ed., "Services Provided by IETF Transport Protocols and

Congestion Control Mechanisms", RFC 8095, DOI 10.17487/

RFC8095, March 2017, <https://www.rfc-editor.org/info/

rfc8095>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/info/rfc8305>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

info/rfc8445>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Tommy Pauly (editor)

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Brian Trammell (editor)

Google

Gustav-Gull-Platz 1

8004 Zurich

Switzerland

Email: ietf@trammell.ch

Anna Brunstrom

Karlstad University

Universitetsgatan 2

https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8446
mailto:tpauly@apple.com
mailto:ietf@trammell.ch

651 88 Karlstad

Sweden

Email: anna.brunstrom@kau.se

Godred Fairhurst

University of Aberdeen

Fraser Noble Building

Aberdeen, AB24 3UE

Email: gorry@erg.abdn.ac.uk

URI: http://www.erg.abdn.ac.uk/

Colin Perkins

University of Glasgow

School of Computing Science

Glasgow G12 8QQ

United Kingdom

Email: csp@csperkins.org

Philipp S. Tiesel

TU Berlin

Einsteinufer 25

10587 Berlin

Germany

Email: philipp@tiesel.net

Chris Wood

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: cawood@apple.com

mailto:anna.brunstrom@kau.se
mailto:gorry@erg.abdn.ac.uk
http://www.erg.abdn.ac.uk/
mailto:csp@csperkins.org
mailto:philipp@tiesel.net
mailto:cawood@apple.com

	An Architecture for Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Overview
	1.3. Specification of Requirements

	2. API Model
	2.1. Event-Driven API
	2.2. Data Transfer Using Messages
	2.3. Flexibile Implementation

	3. Design Principles
	3.1. Common APIs for Common Features
	3.2. Access to Specialized Features
	3.3. Scope for API and Implementation Definitions

	4. Transport Services Architecture and Concepts
	4.1. Transport Services API Concepts
	4.1.1. Connections and Related Objects
	4.1.2. Pre-Establishment
	4.1.3. Establishment Actions
	4.1.4. Data Transfer Objects and Actions
	4.1.5. Event Handling
	4.1.6. Termination Actions
	4.1.7. Connection Groups

	4.2. Transport Services Implementation Concepts
	4.2.1. Candidate Gathering
	4.2.2. Candidate Racing
	4.2.3. Protocol Stack Equivalence
	4.2.4. Separating Connection Groups

	5. IANA Considerations
	6. Security Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

