
Workgroup: TAPS Working Group

Internet-Draft: draft-ietf-taps-arch-12

Published: 3 January 2022

Intended Status: Standards Track

Expires: 7 July 2022

Authors: T. Pauly, Ed.

Apple Inc.

B. Trammell, Ed.

Google Switzerland GmbH

A. Brunstrom

Karlstad University

G. Fairhurst

University of Aberdeen

C. Perkins

University of Glasgow

An Architecture for Transport Services

Abstract

This document describes an architecture for exposing transport

protocol features to applications for network communication, a

Transport Services system. The Transport Services Application

Programming Interface (API) is based on an asynchronous, event-

driven interaction pattern. This API uses messages for representing

data transfer to applications, and describes how implementations can

use multiple IP addresses, multiple protocols, and multiple paths,

and provide multiple application streams. This document further

defines common terminology and concepts to be used in definitions of

a Transport Service API and a Transport Services implementation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Background

1.2. Overview

1.3. Specification of Requirements

2. API Model

2.1. Event-Driven API

2.2. Data Transfer Using Messages

2.3. Flexible Implementation

3. API and Implementation Requirements

3.1. Provide Common APIs for Common Features

3.2. Allow Access to Specialized Features

3.3. Select Equivalent Protocol Stacks

3.4. Maintain Interoperability

4. Transport Services Architecture and Concepts

4.1. Transport Services API Concepts

4.1.1. Endpoint Objects

4.1.2. Connections and Related Objects

4.1.3. Pre-Establishment

4.1.4. Establishment Actions

4.1.5. Data Transfer Objects and Actions

4.1.6. Event Handling

4.1.7. Termination Actions

4.1.8. Connection Groups

4.2. Transport Services Implementation

4.2.1. Candidate Gathering

4.2.2. Candidate Racing

4.2.3. Separating Connection Contexts

5. IANA Considerations

6. Security and Privacy Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

¶

https://trustee.ietf.org/license-info

1. Introduction

Many application programming interfaces (APIs) to perform transport

networking have been deployed, perhaps the most widely known and

imitated being the BSD Socket [POSIX] interface (Socket API). The

naming of objects and functions across these APIs is not consistent,

and varies depending on the protocol being used. For example,

sending and receiving streams of data is conceptually the same for

both an unencrypted Transmission Control Protocol (TCP) stream and

operating on an encrypted Transport Layer Security (TLS) [RFC8446]

stream over TCP, but applications cannot use the same socket send()

and recv() calls on top of both kinds of connections. Similarly,

terminology for the implementation of transport protocols varies

based on the context of the protocols themselves: terms such as

"flow", "stream", "message", and "connection" can take on many

different meanings. This variety can lead to confusion when trying

to understand the similarities and differences between protocols,

and how applications can use them effectively.

The goal of the Transport Services architecture is to provide a

flexible and reusable architecture that provides a common interface

for transport protocols. As applications adopt this interface, they

will benefit from a wide set of transport features that can evolve

over time, and ensure that the system providing the interface can

optimize its behavior based on the application requirements and

network conditions, without requiring changes to the applications.

This flexibility enables faster deployment of new features and

protocols. It can also support applications by offering racing

mechanisms (attempting multiple IP addresses, protocols, or network

paths in parallel), which otherwise need to be implemented in each

application separately (see Section 4.2.2).

This document was developed in parallel with the specification of

the Transport Services API [I-D.ietf-taps-interface] and

implementation guidelines [I-D.ietf-taps-impl]. Although following

the Transport Services architecture does not require that all APIs

and implementations are identical, a common minimal set of features

represented in a consistent fashion will enable applications to be

easily ported from one system to another.

1.1. Background

The Transport Services architecture is based on the survey of

services provided by IETF transport protocols and congestion control

mechanisms [RFC8095], and the distilled minimal set of the features

offered by transport protocols [RFC8923]. These documents identified

common features and patterns across all transport protocols

developed thus far in the IETF.

¶

¶

¶

¶

Since transport security is an increasingly relevant aspect of using

transport protocols on the Internet, this architecture also

considers the impact of transport security protocols on the feature-

set exposed by Transport Services [RFC8922].

One of the key insights to come from identifying the minimal set of

features provided by transport protocols [RFC8923] was that features

either require application interaction and guidance (referred to in

that document as Functional or Optimizing Features), or else can be

handled automatically by a system implementing Transport Services

(referred to as Automatable Features). Among the identified

Functional and Optimizing Features, some were common across all or

nearly all transport protocols, while others could be seen as

features that, if specified, would only be useful with a subset of

protocols, but would not harm the functionality of other protocols.

For example, some protocols can deliver messages faster for

applications that do not require messages to arrive in the order in

which they were sent. However, this functionality needs to be

explicitly allowed by the application, since reordering messages

would be undesirable in many cases.

1.2. Overview

This document describes the Transport Services architecture in three

sections:

Section 2 describes how the API model of Transport Services

architecture differs from traditional socket-based APIs.

Specifically, it offers asynchronous event-driven interaction,

the use of messages for data transfer, and the flexibility to use

different transport protocols and paths without requiring major

changes to the application.

Section 3 explains the fundamental requirements for a Transport

Services system. These principles are intended to make sure that

transport protocols can continue to be enhanced and evolve

without requiring significant changes by application developers.

Section 4 presents a diagram showing the Transport Services

architecture and defines the concepts that are used by both the

API [I-D.ietf-taps-interface] and implementation guidelines [I-

D.ietf-taps-impl]. The Preconnection allows applications to

configure Connection Properties.

Section 4 also presents how an abstract Connection is used to

select a transport protocol instance such as TCP, UDP, or another

transport. The Connection represents an object that can be used

to send and receive messages.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

1.3. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. API Model

The traditional model of using sockets for networking can be

represented as follows:

Applications create connections and transfer data using the

Socket API.

The Socket API provides the interface to the implementations of

TCP and UDP (typically implemented in the system's kernel).

TCP and UDP in the kernel send and receive data over the

available network-layer interfaces.

Sockets are bound directly to transport-layer and network-layer

addresses, obtained via a separate resolution step, usually

performed by a system-provided stub resolver.

Figure 1: Socket API Model

The Transport Services architecture evolves this general model of

interaction, to both modernize the API surface presented to

¶

¶

*

¶

*

¶

*

¶

*

¶

+---+

| Application |

+---+

 | | |

 +------------+ +------------+ +--------------+

 | stub | | Stream API | | Datagram API |

 | resolver | +------------+ +--------------+

 +------------+ | |

 +---------------------------------+

 | TCP UDP |

 | Kernel Networking Stack |

 +---------------------------------+

 |

+---+

| Network Layer Interface |

+---+

applications by the transport layer and to enrich the capabilities

of the implementation below the API.

Figure 2: Transport Services API Model

The Transport Services API [I-D.ietf-taps-interface] defines the

interface for an application to create Connections and transfer

data. It combines interfaces for multiple interaction patterns into

a unified whole. By combining name resolution with connection

establishment and data transfer in a single API, it allows for more

flexible implementations to provide path and transport protocol

agility on the application's behalf.

The Transport Services implementation [I-D.ietf-taps-impl]

implements the transport layer protocols and other functions needed

to send and receive data. It is is responsible for mapping the API

to a specific available transport protocol stack and managing the

available network interfaces and paths.

There are key differences between the Transport Services

architecture and the architecture of the Socket API: the API of the

Transport Services architecture is asynchronous and event-driven; it

uses messages for representing data transfer to applications; and it

describes how implementations can use multiple IP addresses,

multiple protocols, multiple paths, and provide multiple application

streams.

2.1. Event-Driven API

Originally, the Socket API presented a blocking interface for

establishing connections and transferring data. However, most modern

¶

+---+

| Application |

+---+

 |

+---+

| Transport Services API |

+---+

 |

+---+

| Transport Services Implementation |

| (Using: DNS, UDP, TCP, SCTP, DCCP, TLS, QUIC, etc) |

+---+

 |

+---+

| Network Layer Interface |

+---+

¶

¶

¶

applications interact with the network asynchronously. Emulation of

an asynchronous interface using the Socket API generally uses a try-

and-fail model. If the application wants to read, but data has not

yet been received from the peer, the call to read will fail. The

application then waits and can try again later. In contrast to the

Socket API, all interaction using the Transport Services API is

expected to be asynchronous and use an event-driven model (see

Section 4.1.6). For example, an application first issues a call to

receive new data from the connection. When delivered data becomes

available, this data is delivered to the application using

asynchronous events that contain the data. Error handling is also

asynchronous; a failure to send data results in an asynchronous

error event.

This API also delivers events regarding the lifetime of a connection

and changes in the available network links, which were not

previously made explicit in the Socket API.

Using asynchronous events allows for a more natural interaction

model when establishing connections and transferring data. Events in

time more closely reflect the nature of interactions over networks,

as opposed to how the Socket API represent network resources as file

system objects that may be temporarily unavailable.

Separate from events, callbacks are also provided for asynchronous

interactions with the API not directly related to events on the

network or network interfaces.

2.2. Data Transfer Using Messages

The Socket API provides a message interface for datagram protocols

like UDP, but provides an unstructured stream abstraction for TCP.

While TCP has the ability to send and receive data as a byte-stream,

most applications need to interpret structure within this byte-

stream. For example, HTTP/1.1 uses character delimiters to segment

messages over a byte-stream [RFC7230]; TLS record headers carry a

version, content type, and length [RFC8446]; and HTTP/2 uses frames

to segment its headers and bodies [RFC7540].

The Transport Services API represents data as messages, so that it

more closely matches the way applications use the network. Providing

a message-based abstraction provides many benefits, such as:

the ability to associate deadlines with messages, for

applications that care about timing;

the ability control reliability, which messages to retransmit

when there is packet loss, and how best to make use of the data

that arrived;

¶

¶

¶

¶

¶

¶

*

¶

*

¶

the ability to automatically assign messages and connections to

underlying transport connections to utilize multi-streaming and

pooled connections.

Allowing applications to interact with messages is backwards-

compatible with existing protocols and APIs because it does not

change the wire format of any protocol. Instead, it gives the

protocol stack additional information to allow it to make better use

of modern transport services, while simplifying the application's

role in parsing data. For protocols which natively use a streaming

abstraction, framers (Section 4.1.5) bridge the gap between the two

abstractions.

2.3. Flexible Implementation

The Socket API for protocols like TCP is generally limited to

connecting to a single address over a single interface. It also

presents a single stream to the application. Software layers built

upon this API often propagate this limitation of a single-address

single-stream model. The Transport Services architecture is

designed:

to handle multiple candidate endpoints, protocols, and paths;

to support candidate protocol racing to select the most optimal

stack in each situation;

to support multipath and multistreaming protocols;

to provide state caching and application control over it.

A Transport Services implementation is intended to be flexible at

connection establishment time, considering many different options

and trying to select the most optimal combinations by racing them

and measuring the results (see Section 4.2.1 and Section 4.2.2).

This requires applications to provide higher-level endpoints than IP

addresses, such as hostnames and URLs, which are used by a Transport

Services implementation for resolution, path selection, and racing.

An implementation can further implement fallback mechanisms if

connection establishment of one protocol fails or performance is

detected to be unsatisfactory.

Information used in connection establishment (e.g. cryptographic

resumption tokens, information about usability of certain protocols

on the path, results of racing in previous connections) are cached

in the Transport Services implementation. Applications have control

over whether this information is used for a specific establishment,

in order to allow tradeoffs between efficiency and linkability.

*

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

Flexibility after connection establishment is also important.

Transport protocols that can migrate between multiple network-layer

interfaces need to be able to process and react to interface

changes. Protocols that support multiple application-layer streams

need to support initiating and receiving new streams using existing

connections.

3. API and Implementation Requirements

A goal of the Transport Services architecture is to redefine the

interface between applications and transports in a way that allows

the transport layer to evolve and improve without fundamentally

changing the contract with the application. This requires a careful

consideration of how to expose the capabilities of protocols. This

architecture also encompasses system policies that can influence and

inform how transport protocols use a network path or interface.

There are several ways the Transport Services system can offer

flexibility to an application: it can provide access to transport

protocols and protocol features; it can use these protocols across

multiple paths that could have different performance and functional

characteristics; and it can communicate with different remote

systems to optimize performance, robustness to failure, or some

other metric. Beyond these, if the Transport Services API remains

the same over time, new protocols and features can be added to the

Transport Services implementation without requiring changes in

applications for adoption. Similarly, this can provide a common

basis for utilizing information about a network path or interface,

enabling evolution below the transport layer.

The normative requirements described in this section allow Transport

Services APIs and Transport Services implementation to provide this

functionality without causing incompatibility or introducing

security vulnerabilities.

3.1. Provide Common APIs for Common Features

Any functionality that is common across multiple transport protocols

SHOULD be made accessible through a unified set of calls using the

Transport Services API. As a baseline, any Transport Services API

SHOULD allow access to the minimal set of features offered by

transport protocols [RFC8923].

An application can specify constraints and preferences for the

protocols, features, and network interfaces it will use via

Properties. Properties are used by an application to declare its

preferences for how the transport service should operate at each

stage in the lifetime of a connection. Transport Properties are

subdivided into Selection Properties, which specify which paths and

¶

¶

¶

¶

¶

protocol stacks can be used and are preferred by the application;

Connection Properties, which inform decisions made during connection

establishment and fine-tune the established connection; and Message

Properties, set on individual Messages.

It is RECOMMENDED that the Transport Services API offers properties

that are common to multiple transport protocols. This enables a

Transport Services implementation to appropriately select between

protocols that offer equivalent features. Similarly, it is

RECOMMENDED that the Properties offered by the Transport Services

API are applicable to a variety of network layer interfaces and

paths, which permits racing of different network paths without

affecting the applications using the API. Each is expected to have a

default value.

It is RECOMMENDED that the default values for Properties are

selected to ensure correctness for the widest set of applications,

while providing the widest set of options for selection. For

example, since both applications that require reliability and those

that do not require reliability can function correctly when a

protocol provides reliability, reliability ought to be enabled by

default. As another example, the default value for a Property

regarding the selection of network interfaces ought to permit as

many interfaces as possible.

Applications using the Transport Services API are REQUIRED to be

robust to the automated selection provided by the Transport Services

implementation. This automated selection is constrained by the

properties and preferences expressed by the application and requires

applications to explictly set properties that define any necssary

constraints on protocol, path, and interface selection.

3.2. Allow Access to Specialized Features

There are applications that will need to control fine-grained

details of transport protocols to optimize their behavior and ensure

compatibility with remote systems. It is therefore RECOMMENDED that

the Transport Services API and the Transport Services implementation

permit more specialized protocol features to be used.

A specialized feature could be needed by an application only when

using a specific protocol, and not when using others. For example,

if an application is using TCP, it could require control over the

User Timeout Option for TCP; these options would not take effect for

other transport protocols. In such cases, the API ought to expose

the features in such a way that they take effect when a particular

protocol is selected, but do not imply that only that protocol could

be used. For example, if the API allows an application to specify a

¶

¶

¶

¶

¶

preference to use the User Timeout Option, communication would not

fail when a protocol such as QUIC is selected.

Other specialized features, however, can be strictly required by an

application and thus constrain the set of protocols that can be

used. For example, if an application requires support for automatic

handover or failover for a connection, only protocol stacks that

provide this feature are eligible to be used, e.g., protocol stacks

that include a multipath protocol or a protocol that supports

connection migration. A Transport Services API needs to allow

applications to define such requirements and constrain the options

available to a Transport Services implementation. Since such options

are not part of the core/common features, it will generally be

simple for an application to modify its set of constraints and

change the set of allowable protocol features without changing the

core implementation.

3.3. Select Equivalent Protocol Stacks

A Transport Services implementation can select Protocol Stacks based

on the Selection and Connection Properties communicated by the

application, along with any security parameters. If two different

Protocol Stacks can be safely swapped, or raced in parallel (see

Section 4.2.2), then they are considered to be "equivalent".

Equivalent Protocol Stacks are defined as stacks that can provide

the same Transport Properties and interface expectations as

requested by the application.

The following two examples show non-equivalent Protocol Stacks:

If the application requires preservation of message boundaries, a

Protocol Stack that runs UDP as the top-level interface to the

application is not equivalent to a Protocol Stack that runs TCP

as the top-level interface. A UDP stack would allow an

application to read out message boundaries based on datagrams

sent from the remote system, whereas TCP does not preserve

message boundaries on its own, but needs a framing protocol on

top to determine message boundaries.

If the application specifies that it requires reliable

transmission of data, then a Protocol Stack using UDP without any

reliability layer on top would not be allowed to replace a

Protocol Stack using TCP.

The following example shows equivalent Protocol Stacks:

If the application does not require reliable transmission of

data, then a Protocol Stack that adds reliability could be

regarded as an equivalent Protocol Stack as long as providing

¶

¶

¶

¶

*

¶

*

¶

¶

*

this would not conflict with any other application-requested

properties.

To ensure that security protocols are not incorrectly swapped, a

Transport Services implementation MUST only select Protocol Stacks

that meet application requirements ([RFC8922]). A Transport Services

implementation SHOULD only race Protocol Stacks where the transport

security protocols within the stacks are identical. A Transport

Services implementation MUST NOT automatically fall back from secure

protocols to insecure protocols, or to weaker versions of secure

protocols. A Transport Services implementation MAY allow

applications to explicitly specify that fallback to a specific other

version of a protocol \, e.g., to allow fallback to TLS 1.2 if TLS

1.3 is not available.

3.4. Maintain Interoperability

It is important to note that neither the Transport Services API [I-

D.ietf-taps-interface] nor the guidelines for the Transport Service

implementation [I-D.ietf-taps-impl] define new protocols or protocol

capabilities that affect what is communicated across the network. A

Transport Services system MUST NOT require that a peer on the other

side of a connection uses the same API or implementation. A

Transport Services implementation acting as a connection initiator

is able to communicate with any existing endpoint that implements

the transport protocol(s) and all the required properties selected.

Similarly, a Transport Services implementation acting as a listener

can receive connections for any protocol that is supported from an

existing initiator that implements the protocol, independent of

whether the initiator uses the Transport Services architecture or

not.

A Transport Services system makes decisions that select protocols

and interfaces. In normal use, a given version of a Transport

Services system SHOULD result in consistent protocol and interface

selection decisions for the same network conditions given the same

set of Properties. This is intended to provide predictable outcomes

to the application using the API.

4. Transport Services Architecture and Concepts

This section and the remainder of this document describe the

architecture non-normatively. The concepts defined in this document

are intended primarily for use in the documents and specifications

that describe the Transport Services system. This includes the

architecture, the Transport Services API and the associated

Transport Services implementation. While the specific terminology

can be used in some implementations, it is expected that there will

remain a variety of terms used by running code.

¶

¶

¶

¶

¶

The architecture divides the concepts for Transport Services system

into two categories:

API concepts, which are intended to be exposed to applications;

and

System-implementation concepts, which are intended to be

internally used by aTransport Services implementation.

The following diagram summarizes the top-level concepts in the

architecture and how they relate to one another.

Figure 3: Concepts and Relationships in the Transport Services

Architecture

¶

1.

¶

2.

¶

¶

 +---+

 | Application |

 +-+----------------+------^-------+--------^----------+

 | | | | |

 pre- | data | events

 establishment | transfer | |

 | establishment | termination |

 | | | | |

 | +--v------v-------v+ |

 +-v-------------+ Connection(s) +-------+----------+

 | Transport +--------+---------+ |

 | Services | |

 | API | +-------------+ |

 +------------------------+--+ Framer(s) |-----------+

 | +-------------+

 +------------------------|----------------------------+

 | Transport | |

 | System | +-----------------+ |

 | Implementation | | Cached | |

 | | | State | |

 | (Candidate Gathering) | +-----------------+ |

 | | |

 | (Candidate Racing) | +-----------------+ |

 | | | System | |

 | | | Policy | |

 | +----------v-----+ +-----------------+ |

 | | Protocol | |

 +-------------+ Stack(s) +----------------------+

 +-------+--------+

 V

 Network Layer Interface

4.1. Transport Services API Concepts

Fundamentally, a Transport Services API needs to provide connection

objects (Section 4.1.2) that allow applications to establish

communication, and then send and receive data. These could be

exposed as handles or referenced objects, depending on the chosen

programming language.

Beyond the connection objects, there are several high-level groups

of actions that any Transport Services API needs to provide:

Pre-Establishment (Section 4.1.3) encompasses the properties that

an application can pass to describe its intent, requirements,

prohibitions, and preferences for its networking operations.

These properties apply to multiple transport protocols, unless

otherwise specified. Properties specified during Pre-

Establishment can have a large impact on the rest of the

interface: they modify how establishment occurs, they influence

the expectations around data transfer, and they determine the set

of events that will be supported.

Establishment (Section 4.1.4) focuses on the actions that an

application takes on the connection objects to prepare for data

transfer.

Data Transfer (Section 4.1.5) consists of how an application

represents the data to be sent and received, the functions

required to send and receive that data, and how the application

is notified of the status of its data transfer.

Event Handling (Section 4.1.6) defines categories of

notifications which an application can receive during the

lifetime of transport objects. Events also provide opportunities

for the application to interact with the underlying transport by

querying state or updating maintenance options.

Termination (Section 4.1.7) focuses on the methods by which data

transmission is stopped, and state is torn down in the transport.

The diagram below provides a high-level view of the actions and

events during the lifetime of a Connection object. Note that some

actions are alternatives (e.g., whether to initiate a connection or

to listen for incoming connections), while others are optional

(e.g., setting Connection and Message Properties in Pre-

Establishment) or have been omitted for brevity and simplicity.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

Figure 4: The lifetime of a Connection object

4.1.1. Endpoint Objects

Endpoint: An Endpoint represents an identifier for one side of a

transport connection. Endpoints can be Local Endpoints or Remote

Endpoints, and respectively represent an identity that the

application uses for the source or destination of a connection.

An Endpoint can be specified at various levels of abstraction. An

Endpoint at a higher level of abstraction (such as a hostname)

can be resolved to more concrete identities (such as IP

addresses). An endpoint may also represent a multicast group, in

which case it selects a multicast transport for communication.

Remote Endpoint: The Remote Endpoint represents the application's

identifier for a peer that can participate in a transport

connection; for example, the combination of a DNS name for the

peer and a service name/port.

Local Endpoint: The Local Endpoint represents the application's

identifier for itself that it uses for transport connections; for

example, a local IP address and port.

4.1.2. Connections and Related Objects

Preconnection: A Preconnection object is a representation of a

Connection that has not yet been established. It has state that

describes parameters of the Connection: the Local Endpoint from

which that Connection will be established, the Remote Endpoint

 Pre-Establishment : Established : Termination

 ----------------- : ----------- : -----------

 : :

 +-- Local Endpoint : Message :

 +-- Remote Endpoint : Receive() | :

 +-- Transport Properties : Send() | :

 +-- Security Parameters : | :

 | : | :

 | InitiateWithSend() | Close() :

 | +---------------+ Initiate() +-----+------+ Abort() :

 +---+ Preconnection |------------->| Connection |-----------> Closed

 +---------------+ Rendezvous() +------------+ :

 Listen() | : | | :

 | : | v :

 v : | Connection :

 +----------+ : | Ready :

 | Listener |----------------------+ :

 +----------+ Connection Received :

 : :

*

¶

*

¶

*

¶

*

(Section 4.1.3) to which it will connect, and Transport

Properties that influence the paths and protocols a Connection

will use. A Preconnection can be either fully specified

(representing a single possible Connection), or it can be

partially specified (representing a family of possible

Connections). The Local Endpoint (Section 4.1.3) is required for

a Preconnection used to Listen for incoming Connections, but

optional if it is used to Initiate a Connection. The Remote

Endpoint is required in a Preconnection that used to Initiate a

Connection, but is optional if it is used to Listen for incoming

Connections. The Local Endpoint and the Remote Endpoint are both

required if a peer-to-peer Rendezvous is to occur based on the

Preconnection.

Transport Properties: Transport Properties allow the application

to express their requirements, prohibitions, and preferences and

configure a Transport Services system. There are three kinds of

Transport Properties:

Selection Properties (Section 4.1.3): Selection Properties can

only be specified on a Preconnection.

Connection Properties (Section 4.1.3): Connection Properties

can be specified on a Preconnection and changed on the

Connection.

Message Properties (Section 4.1.5): Message Properties can be

specified as defaults on a Preconnection or a Connection, and

can also be specified during data transfer to affect specific

Messages.

Connection: A Connection object represents one or more active

transport protocol instances that can send and/or receive

Messages between Local and Remote Endpoints. It is an abstraction

that represents the communication. The Connection object holds

state pertaining to the underlying transport protocol instances

and any ongoing data transfers. For example, an active Connection

can represent a connection-oriented protocol such as TCP, or can

represent a fully-specified 5-tuple for a connectionless protocol

such as UDP, where the Connection remains an abstraction at the

end points. It can also represent a pool of transport protocol

instances, e.g., a set of TCP and QUIC connections to equivalent

endpoints, or a stream of a multi-streaming transport protocol

instance. Connections can be created from a Preconnection or by a

Listener.

Listener: A Listener object accepts incoming transport protocol

connections from Remote Endpoints and generates corresponding

¶

*

¶

-

¶

-

¶

-

¶

*

¶

*

Connection objects. It is created from a Preconnection object

that specifies the type of incoming Connections it will accept.

4.1.3. Pre-Establishment

Selection Properties: The Selection Properties consist of the

properties that an application can set to influence the selection

of paths between the Local and Remote Endpoints, to influence the

selection of transport protocols, or to configure the behavior of

generic transport protocol features. These properties can take

the form of requirements, prohibitions, or preferences. Examples

of properties that influence path selection include the interface

type (such as a Wi-Fi connection, or a Cellular LTE connection),

requirements around the largest Message that can be sent, or

preferences for throughput and latency. Examples of properties

that influence protocol selection and configuration of transport

protocol features include reliability, multipath support, and

fast open support.

Connection Properties: The Connection Properties are used to

configure protocol-specific options and control per-connection

behavior of a Transport Services implementation; for example, a

protocol-specific Connection Property can express that if TCP is

used, the implementation ought to use the User Timeout Option.

Note that the presence of such a property does not require that a

specific protocol will be used. In general, these properties do

not explicitly determine the selection of paths or protocols, but

can be used by an implementation during connection establishment.

Connection Properties are specified on a Preconnection prior to

Connection establishment, and can be modified on the Connection

later. Changes made to Connection Properties after Connection

establishment take effect on a best-effort basis.

Security Parameters: Security Parameters define an application's

requirements for authentication and encryption on a Connection.

They are used by Transport Security protocols (such as those

described in [RFC8922]) to establish secure Connections. Examples

of parameters that can be set include local identities, private

keys, supported cryptographic algorithms, and requirements for

validating trust of remote identities. Security Parameters are

primarily associated with a Preconnection object, but properties

related to identities can be associated directly with endpoints.

4.1.4. Establishment Actions

Initiate: The primary action that an application can take to

create a Connection to a Remote Endpoint, and prepare any

required local or remote state to enable the transmission of

Messages. For some protocols, this will initiate a client-to-

¶

*

¶

*

¶

*

¶

*

server style handshake; for other protocols, this will just

establish local state (e.g., with connectionless protocols such

as UDP). The process of identifying options for connecting, such

as resolution of the Remote Endpoint, occurs in response to the

Initiate call.

Listen: Enables a listener to accept incoming Connections. The

Listener will then create Connection objects as incoming

connections are accepted (Section 4.1.6). Listeners by default

register with multiple paths, protocols, and Local Endpoints,

unless constrained by Selection Properties and/or the specified

Local Endpoint(s). Connections can be accepted on any of the

available paths or endpoints.

Rendezvous: The action of establishing a peer-to-peer connection

with a Remote Endpoint. It simultaneously attempts to initiate a

connection to a Remote Endpoint while listening for an incoming

connection from that endpoint. The process of identifying options

for the connection, such as resolution of the Remote Endpoint,

occurs in response to the Rendezvous call. As with Listeners, the

set of local paths and endpoints is constrained by Selection

Properties. If successful, the Rendezvous call returns a

Connection object to represent the established peer-to-peer

connection. The processes by which connections are initiated

during a Rendezvous action will depend on the set of Local and

Remote Endpoints configured on the Preconnection. For example, if

the Local and Remote Endpoints are TCP host candidates, then a

TCP simultaneous open [RFC0793] will be performed. However, if

the set of Local Endpoints includes server reflexive candidates,

such as those provided by STUN, a Rendezvous action will race

candidates in the style of the ICE algorithm [RFC8445] to perform

NAT binding discovery and initiate a peer-to-peer connection.

4.1.5. Data Transfer Objects and Actions

Message: A Message object is a unit of data that can be

represented as bytes that can be transferred between two

endpoints over a transport connection. The bytes within a Message

are assumed to be ordered. If an application does not care about

the order in which a peer receives two distinct spans of bytes,

those spans of bytes are considered independent Messages.

Message Properties: Message Properties are used to specify

details about Message transmission. They can be specified

directly on individual Messages, or can be set on a Preconnection

or Connection as defaults. These properties might only apply to

how a Message is sent (such as how the transport will treat

prioritization and reliability), but can also include properties

that specific protocols encode and communicate to the Remote

¶

*

¶

*

¶

*

¶

*

Endpoint. When receiving Messages, Message Properties can contain

information about the received Message, such as metadata

generated at the receiver and information signalled by the Remote

Endpoint. For example, a Message can be marked with a Message

Property indicating that it is the final message on a connection.

Send: The action to transmit a Message over a Connection to the

Remote Endpoint. The interface to Send can accept Message

Properties specific to how the Message content is to be sent. The

status of the Send operation is delivered back to the sending

application in an Event (Section 4.1.6).

Receive: An action that indicates that the application is ready

to asynchronously accept a Message over a Connection from a

Remote Endpoint, while the Message content itself will be

delivered in an Event (Section 4.1.6). The interface to Receive

can include Message Properties specific to the Message that is to

be delivered to the application.

Framer: A Framer is a data translation layer that can be added to

a Connection to define how application-layer Messages are

transmitted over a transport stack. This is particularly relevant

when using a protocol that otherwise presents unstructured

streams, such as TCP.

4.1.6. Event Handling

The following categories of events can be delivered to an

application:

Connection Ready: Signals to an application that a given

Connection is ready to send and/or receive Messages. If the

Connection relies on handshakes to establish state between peers,

then it is assumed that these steps have been taken.

Connection Closed: Signals to an application that a given

Connection is no longer usable for sending or receiving Messages.

The event delivers a reason or error to the application that

describes the nature of the termination.

Connection Received: Signals to an application that a given

Listener has received a Connection.

Message Received: Delivers received Message content to the

application, based on a Receive action. This can include an error

if the Receive action cannot be satisfied due to the Connection

being closed.

Message Sent: Notifies the application of the status of its Send

action. This might indicate a failure if the Message cannot be

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

sent, or an indication that the Message has been processed by the

Transport Services system.

Path Properties Changed: Notifies the application that a property

of the Connection has changed that might influence how and where

data is sent and/or received.

4.1.7. Termination Actions

Close: The action an application takes on a Connection to

indicate that it no longer intends to send data, is no longer

willing to receive data, and that the protocol should signal this

state to the Remote Endpoint if the transport protocol allows

this. (Note that this is distinct from the concept of "half-

closing" a bidirectional connection, such as when a FIN is sent

in one direction of a TCP connection. The end of a stream can

also be indicated using Message Properties when sending.)

Abort: The action the application takes on a Connection to

indicate a Close and also indicate that a Transport Services

system should not attempt to deliver any outstanding data, and

immediately drop the connection. This is intended for immediate,

usually abnormal, termination of a connection.

4.1.8. Connection Groups

A Connection Group is a set of Connections that shares properties

and caches. A Connection Group represents state for managing

Connections within a single application, and does not require end-

to-end protocol signaling. For multiplexing transport protocols,

only Connections within the same Connection Group are allowed to be

multiplexed together.

When the API clones an existing Connection, this adds a new

Connection to the Connection Group. A change to one of the

Connection Properties on any Connection in the Connection Group

automatically changes the Connection Property for all others. All

Connections in a Connection Group share the same set of Connection

Properties except for the Connection Priority. These Connection

Properties are said to be entangled.

For multiplexing transport protocols, only Connections within the

same Connection Group are allowed to be multiplexed together.

Passive Connections can also be added to a Connection Group, e.g.,

when a Listener receives a new Connection that is just a new stream

of an already active multi-streaming protocol instance.

While Connection Groups are managed by the Transport Services

system, an application can define Connection Contexts to control

caching boundaries, as discussed in Section 4.2.3.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

4.2. Transport Services Implementation

This section defines the key concepts of the Transport Services

architecture.

Transport Service implementaion: This consists of all objects and

protocol instances used internally to a system or library to

implement the functionality needed to provide a transport service

across a network, as required by the abstract interface.

Transport Service system: This consists of the Transport Service

implementaion and the Transport Services API.

Path: Represents an available set of properties that a local

endpoint can use to communicate with a Remote Endpoint, such as

routes, addresses, and physical and virtual network interfaces.

Protocol Instance: A single instance of one protocol, including

any state necessary to establish connectivity or send and receive

Messages.

Protocol Stack: A set of Protocol Instances (including relevant

application, security, transport, or Internet protocols) that are

used together to establish connectivity or send and receive

Messages. A single stack can be simple (a single transport

protocol instance over IP), or it can be complex (multiple

application protocol streams going through a single security and

transport protocol, over IP; or, a multi-path transport protocol

over multiple transport sub-flows).

Candidate Path: One path that is available to an application and

conforms to the Selection Properties and System Policy, of which

there can be several. Candidate Paths are identified during the

gathering phase (Section 4.2.1) and can be used during the racing

phase (Section 4.2.2).

Candidate Protocol Stack: One Protocol Stack that can be used by

an application for a Connection, which there can be several

candidates. Candidate Protocol Stacks are identified during the

gathering phase (Section 4.2.1) and are started during the racing

phase (Section 4.2.2).

System Policy: Represents the input from an operating system or

other global preferences that can constrain or influence how an

implementation will gather candidate paths and Protocol Stacks

(Section 4.2.1) and race the candidates during establishment

(Section 4.2.2). Specific aspects of the System Policy either

apply to all Connections or only certain ones, depending on the

runtime context and properties of the Connection.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Cached State: The state and history that the implementation keeps

for each set of associated Endpoints that have been used

previously. This can include DNS results, TLS session state,

previous success and quality of transport protocols over certain

paths, as well as other information.

4.2.1. Candidate Gathering

Candidate Path Selection: Candidate Path Selection represents the

act of choosing one or more paths that are available to use based

on the Selection Properties and any available Local and Remote

Endpoints provided by the application, as well as the policies

and heuristics of a Transport Services implementation.

Candidate Protocol Selection: Candidate Protocol Selection

represents the act of choosing one or more sets of Protocol

Stacks that are available to use based on the Transport

Properties provided by the application, and the heuristics or

policies within the Transport Services implementation.

4.2.2. Candidate Racing

Connection establishment attempts for a set of candidates may be

performed simultaneously, synchronously, serially, or using some

combination of all of these. We refer to this process as racing,

borrowing terminology from Happy Eyeballs [RFC8305].

Protocol Option Racing: Protocol Option Racing is the act of

attempting to establish, or scheduling attempts to establish,

multiple Protocol Stacks that differ based on the composition of

protocols or the options used for protocols.

Path Racing: Path Racing is the act of attempting to establish,

or scheduling attempts to establish, multiple Protocol Stacks

that differ based on a selection from the available Paths. Since

different Paths will have distinct configurations for local

addresses and DNS servers, attempts across different Paths will

perform separate DNS resolution steps, which can lead to further

racing of the resolved Remote Endpoints.

Remote Endpoint Racing: Remote Endpoint Racing is the act of

attempting to establish, or scheduling attempts to establish,

multiple Protocol Stacks that differ based on the specific

representation of the Remote Endpoint, such as a particular IP

address that was resolved from a DNS hostname.

4.2.3. Separating Connection Contexts

By default, stored properties of the implementation, such as cached

protocol state, cached path state, and heuristics, may be shared

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

(e.g. across multiple connections in an application). This provides

efficiency and convenience for the application, since the Transport

Services system can automatically optimize behavior.

The Transport Services API can allow applications to explicitly

define Connection Contexts that force separation of Cached State and

Protocol Stacks. For example, a web browser application could use

Connection Contexts with separate caches when implementing different

tabs. Possible reasons to isolate Connections using separate

Connection Contexts include:

Privacy concerns about re-using cached protocol state that can

lead to linkability. Sensitive state could include TLS session

state [RFC8446] and HTTP cookies [RFC6265]. These concerns could

be addressed using Connection Contexts with separate caches, such

as for different browser tabs.

Privacy concerns about allowing Connections to multiplex

together, which can tell a Remote Endpoint that all of the

Connections are coming from the same application. Using

Connection Contexts avoids the Connections being multiplexed in a

HTTP/2 or QUIC stream.

5. IANA Considerations

RFC-EDITOR: Please remove this section before publication.

This document has no actions for IANA.

6. Security and Privacy Considerations

The Transport Services architecture does not recommend use of

specific security protocols or algorithms. Its goal is to offer ease

of use for existing protocols by providing a generic security-

related interface. Each provided interface translates to an existing

protocol-specific interface provided by supported security

protocols. For example, trust verification callbacks are common

parts of TLS APIs; a Transport Services API exposes similar

functionality [RFC8922].

As described above in Section 3.3, if a Transport Services

implementation races between two different Protocol Stacks, both

need to use the same security protocols and options. However, a

Transport Services implementation can race different security

protocols, e.g., if the application explicitly specifies that it

considers them equivalent.

The application controls whether information from previous racing

attempts, or other information about past communications that was

cached by the Transport Services system is used during

¶

¶

*

¶

*

¶

¶

¶

¶

¶

establishment. This allows applications to make tradeoffs between

efficiency (through racing) and privacy (via information that might

leak from the cache toward an on-path observer). Some applications

have native concepts (e.g. "incognito mode") that align with this

functionality.

Applications need to ensure that they use security APIs

appropriately. In cases where applications use an interface to

provide sensitive keying material, e.g., access to private keys or

copies of pre-shared keys (PSKs), key use needs to be validated. For

example, applications ought not to use PSK material created for the

Encapsulating Security Protocol (ESP, part of IPsec) [RFC4303] with

QUIC, and applications ought not to use private keys intended for

server authentication as keys for client authentication.

A Transport Services system must not automatically fall back from

secure protocols to insecure protocols, or to weaker versions of

secure protocols (see Section 3.3). For example, if an application

requests a specific version of TLS, but the desired version of TLS

is not available, its connection will fail. Applications are thus

responsible for implementing security protocol fallback or version

fallback by creating multiple Connections, if so desired.

Alternatively, the Transport Services API MAY allow applications to

specify that fallback to a specific other version of a protocol is

allowed by the Transport Services system.

7. Acknowledgements

This work has received funding from the European Union's Horizon

2020 research and innovation programme under grant agreements No.

644334 (NEAT), No. 688421 (MAMI) and No 815178 (5GENESIS).

This work has been supported by Leibniz Prize project funds of DFG -

German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011

(FKZ FE 570/4-1).

This work has been supported by the UK Engineering and Physical

Sciences Research Council under grant EP/R04144X/1.

Thanks to Theresa Enghardt, Max Franke, Mirja Kuehlewind, Jonathan

Lennox, and Michael Welzl for the discussions and feedback that

helped shape the architecture described here. Particular thanks is

also due to Philipp S. Tiesel and Christopher A. Wood, who were both

co-authors of this architecture specification as it progressed

through the TAPS working group. Thanks as well to Stuart Cheshire,

Josh Graessley, David Schinazi, and Eric Kinnear for their

implementation and design efforts, including Happy Eyeballs, that

heavily influenced this work.

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-taps-interface]

[RFC2119]

[RFC8174]

[I-D.ietf-taps-impl]

[POSIX]

8. References

8.1. Normative References

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,

Kuehlewind, M., Perkins, C., Tiesel, P. S., Wood, C. A.,

Pauly, T., and K. Rose, "An Abstract Application Layer

Interface to Transport Services", Work in Progress,

Internet-Draft, draft-ietf-taps-interface-14, 3 January

2022, <https://datatracker.ietf.org/doc/html/draft-ietf-

taps-interface-14>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

8.2. Informative References

Brunstrom, A., Pauly, T., Enghardt, T., Grinnemo, K.,

Jones, T., Tiesel, P. S., Perkins, C., and M. Welzl,

"Implementing Interfaces to Transport Services", Work in

Progress, Internet-Draft, draft-ietf-taps-impl-10, 12

July 2021, <https://datatracker.ietf.org/doc/html/draft-

ietf-taps-impl-10>.

"IEEE Std. 1003.1-2008 Standard for Information

Technology -- Portable Operating System Interface

https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-14
https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-taps-impl-10
https://datatracker.ietf.org/doc/html/draft-ietf-taps-impl-10

[RFC0793]

[RFC4303]

[RFC6265]

[RFC7230]

[RFC7540]

[RFC8095]

[RFC8305]

[RFC8445]

[RFC8446]

[RFC8922]

(POSIX). Open group Technical Standard: Base

Specifications, Issue 7", 2008.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/rfc/rfc793>.

Kent, S., "IP Encapsulating Security Payload (ESP)", RFC

4303, DOI 10.17487/RFC4303, December 2005, <https://

www.rfc-editor.org/rfc/rfc4303>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/rfc/rfc6265>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/rfc/rfc7230>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,

Ed., "Services Provided by IETF Transport Protocols and

Congestion Control Mechanisms", RFC 8095, DOI 10.17487/

RFC8095, March 2017, <https://www.rfc-editor.org/rfc/

rfc8095>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/rfc/rfc8305>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

rfc/rfc8445>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Enghardt, T., Pauly, T., Perkins, C., Rose, K., and C.

Wood, "A Survey of the Interaction between Security

Protocols and Transport Services", RFC 8922, DOI

https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc4303
https://www.rfc-editor.org/rfc/rfc4303
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc8095
https://www.rfc-editor.org/rfc/rfc8095
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8445
https://www.rfc-editor.org/rfc/rfc8445
https://www.rfc-editor.org/rfc/rfc8446

[RFC8923]

10.17487/RFC8922, October 2020, <https://www.rfc-

editor.org/rfc/rfc8922>.

Welzl, M. and S. Gjessing, "A Minimal Set of Transport

Services for End Systems", RFC 8923, DOI 10.17487/

RFC8923, October 2020, <https://www.rfc-editor.org/rfc/

rfc8923>.

Authors' Addresses

Tommy Pauly (editor)

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Brian Trammell (editor)

Google Switzerland GmbH

Gustav-Gull-Platz 1

CH- 8004 Zurich

Switzerland

Email: ietf@trammell.ch

Anna Brunstrom

Karlstad University

Universitetsgatan 2

651 88 Karlstad

Sweden

Email: anna.brunstrom@kau.se

Godred Fairhurst

University of Aberdeen

Fraser Noble Building

Aberdeen, AB24 3UE

Email: gorry@erg.abdn.ac.uk

URI: http://www.erg.abdn.ac.uk/

Colin Perkins

University of Glasgow

School of Computing Science

Glasgow G12 8QQ

United Kingdom

Email: csp@csperkins.org

https://www.rfc-editor.org/rfc/rfc8922
https://www.rfc-editor.org/rfc/rfc8922
https://www.rfc-editor.org/rfc/rfc8923
https://www.rfc-editor.org/rfc/rfc8923
mailto:tpauly@apple.com
mailto:ietf@trammell.ch
mailto:anna.brunstrom@kau.se
mailto:gorry@erg.abdn.ac.uk
http://www.erg.abdn.ac.uk/
mailto:csp@csperkins.org

	An Architecture for Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Overview
	1.3. Specification of Requirements

	2. API Model
	2.1. Event-Driven API
	2.2. Data Transfer Using Messages
	2.3. Flexible Implementation

	3. API and Implementation Requirements
	3.1. Provide Common APIs for Common Features
	3.2. Allow Access to Specialized Features
	3.3. Select Equivalent Protocol Stacks
	3.4. Maintain Interoperability

	4. Transport Services Architecture and Concepts
	4.1. Transport Services API Concepts
	4.1.1. Endpoint Objects
	4.1.2. Connections and Related Objects
	4.1.3. Pre-Establishment
	4.1.4. Establishment Actions
	4.1.5. Data Transfer Objects and Actions
	4.1.6. Event Handling
	4.1.7. Termination Actions
	4.1.8. Connection Groups

	4.2. Transport Services Implementation
	4.2.1. Candidate Gathering
	4.2.2. Candidate Racing
	4.2.3. Separating Connection Contexts

	5. IANA Considerations
	6. Security and Privacy Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

