
TAPS Working Group A. Brunstrom, Ed.
Internet-Draft Karlstad University
Intended status: Informational T. Pauly, Ed.
Expires: May 7, 2020 Apple Inc.
 T. Enghardt
 TU Berlin
 K-J. Grinnemo
 Karlstad University
 T. Jones
 University of Aberdeen
 P. Tiesel
 TU Berlin
 C. Perkins
 University of Glasgow
 M. Welzl
 University of Oslo
 November 04, 2019

Implementing Interfaces to Transport Services
draft-ietf-taps-impl-05

Abstract

 The Transport Services architecture [I-D.ietf-taps-arch] defines a
 system that allows applications to use transport networking protocols
 flexibly. This document serves as a guide to implementation on how
 to build such a system.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Brunstrom, et al. Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TAPS Implementation November 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Implementing Connection Objects 4
3. Implementing Pre-Establishment 4
3.1. Configuration-time errors 5
3.2. Role of system policy 6

4. Implementing Connection Establishment 6
4.1. Candidate Gathering 8
4.1.1. Gathering Endpoint Candidates 8
4.1.2. Structuring Options as a Tree 9
4.1.3. Branch Types . 11

4.2. Branching Order-of-Operations 13
4.3. Sorting Branches . 14
4.4. Candidate Racing . 15
4.4.1. Delayed . 16
4.4.2. Failover . 17

4.5. Completing Establishment 17
4.5.1. Determining Successful Establishment 18

4.6. Establishing multiplexed connections 18
4.7. Handling racing with "unconnected" protocols 19
4.8. Implementing listeners 19
4.8.1. Implementing listeners for Connected Protocols . . . 20
4.8.2. Implementing listeners for Unconnected Protocols . . 20
4.8.3. Implementing listeners for Multiplexed Protocols . . 20

5. Implementing Sending and Receiving Data 21
5.1. Sending Messages . 21
5.1.1. Message Properties 21
5.1.2. Send Completion 23
5.1.3. Batching Sends 23

5.2. Receiving Messages 23
5.3. Handling of data for fast-open protocols 24

6. Implementing Message Framers 24

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Brunstrom, et al. Expires May 7, 2020 [Page 2]

Internet-Draft TAPS Implementation November 2019

6.1. Defining Message Framers 25
6.2. Sender-side Message Framing 26
6.3. Receiver-side Message Framing 26

7. Implementing Connection Management 27
7.1. Pooled Connection . 28
7.2. Handling Path Changes 28

8. Implementing Connection Termination 29
9. Cached State . 30
9.1. Protocol state caches 30
9.2. Performance caches 31

10. Specific Transport Protocol Considerations 32
10.1. TCP . 33
10.2. UDP . 34
10.3. TLS . 35
10.4. DTLS . 37
10.5. HTTP . 37
10.6. QUIC . 38
10.7. HTTP/2 transport . 39
10.8. SCTP . 39

11. IANA Considerations . 42
12. Security Considerations 42
12.1. Considerations for Candidate Gathering 42
12.2. Considerations for Candidate Racing 42

13. Acknowledgements . 42
14. References . 43
14.1. Normative References 43
14.2. Informative References 44

Appendix A. Additional Properties 45
A.1. Properties Affecting Sorting of Branches 45

Appendix B. Reasons for errors 45
Appendix C. Existing Implementations 46

 Authors' Addresses . 47

1. Introduction

 The Transport Services architecture [I-D.ietf-taps-arch] defines a
 system that allows applications to use transport networking protocols
 flexibly. The interface such a system exposes to applications is
 defined as the Transport Services API [I-D.ietf-taps-interface].
 This API is designed to be generic across multiple transport
 protocols and sets of protocols features.

 This document serves as a guide to implementation on how to build a
 system that provides a Transport Services API. It is the job of an
 implementation of a Transport Services system to turn the requests of
 an application into decisions on how to establish connections, and
 how to transfer data over those connections once established. The

Brunstrom, et al. Expires May 7, 2020 [Page 3]

Internet-Draft TAPS Implementation November 2019

 terminology used in this document is based on the Architecture
 [I-D.ietf-taps-arch].

2. Implementing Connection Objects

 The connection objects that are exposed to applications for Transport
 Services are:

 o the Preconnection, the bundle of properties that describes the
 application constraints on the transport;

 o the Connection, the basic object that represents a flow of data in
 either direction between the Local and Remote Endpoints;

 o and the Listener, a passive waiting object that delivers new
 Connections.

 Preconnection objects should be implemented as bundles of properties
 that an application can both read and write. Once a Preconnection
 has been used to create an outbound Connection or a Listener, the
 implementation should ensure that the copy of the properties held by
 the Connection or Listener is immutable. This may involve performing
 a deep-copy if the application is still able to modify properties on
 the original Preconnection object.

 Connection objects represent the interface between the application
 and the implementation to manage transport state, and conduct data
 transfer. During the process of establishment (Section 4), the
 Connection will be unbound to a specific transport flow, since there
 may be multiple candidate Protocol Stacks being raced. Once the
 Connection is established, the object should be considered mapped to
 a specific Protocol Stack. The notion of a Connection maps to many
 different protocols, depending on the Protocol Stack. For example,
 the Connection may ultimately represent the interface into a TCP
 connection, a TLS session over TCP, a UDP flow with fully-specified
 local and remote endpoints, a DTLS session, a SCTP stream, a QUIC
 stream, or an HTTP/2 stream.

 Listener objects are created with a Preconnection, at which point
 their configuration should be considered immutable by the
 implementation. The process of listening is described in

Section 4.8.

3. Implementing Pre-Establishment

 During pre-establishment the application specifies the Endpoints to
 be used for communication as well as its preferences via Selection
 Properties and, if desired, also Connection Properties. Generally,

Brunstrom, et al. Expires May 7, 2020 [Page 4]

Internet-Draft TAPS Implementation November 2019

 Connection Properties should be configured as early as possible, as
 they may serve as input to decisions that are made by the
 implementation (the Capacity Profile may guide usage of a protocol
 offering scavenger-type congestion control, for example). In the
 remainder of this document, we only refer to Selection Properties
 because they are the more typical case and have to be handled by all
 implementations.

 The implementation stores these objects and properties as part of the
 Preconnection object for use during connection establishment. For
 Selection Properties that are not provided by the application, the
 implementation must use the default values specified in the Transport
 Services API ([I-D.ietf-taps-interface]).

3.1. Configuration-time errors

 The transport system should have a list of supported protocols
 available, which each have transport features reflecting the
 capabilities of the protocol. Once an application specifies its
 Transport Parameters, the transport system should match the required
 and prohibited properties against the transport features of the
 available protocols.

 In the following cases, failure should be detected during pre-
 establishment:

 o The application requested Protocol Properties that include
 requirements or prohibitions that cannot be satisfied by any of
 the available protocols. For example, if an application requires
 "Configure Reliability per Message", but no such protocol is
 available on the host running the transport system, e.g., because
 SCTP is not supported by the operating system, this should result
 in an error.

 o The application requested Protocol Properties that are in conflict
 with each other, i.e., the required and prohibited properties
 cannot be satisfied by the same protocol. For example, if an
 application prohibits "Reliable Data Transfer" but then requires
 "Configure Reliability per Message", this mismatch should result
 in an error.

 It is important to fail as early as possible in such cases in order
 to avoid allocating resources, e.g., to endpoint resolution, only to
 find out later that there is no protocol that satisfies the
 requirements.

Brunstrom, et al. Expires May 7, 2020 [Page 5]

Internet-Draft TAPS Implementation November 2019

3.2. Role of system policy

 The properties specified during pre-establishment have a close
 connection to system policy. The implementation is responsible for
 combining and reconciling several different sources of preferences
 when establishing Connections. These include, but are not limited
 to:

 1. Application preferences, i.e., preferences specified during the
 pre-establishment via Selection Properties.

 2. Dynamic system policy, i.e., policy compiled from internally and
 externally acquired information about available network
 interfaces, supported transport protocols, and current/previous
 Connections. Examples of ways to externally retrieve policy-
 support information are through OS-specific statistics/
 measurement tools and tools that reside on middleboxes and
 routers.

 3. Default implementation policy, i.e., predefined policy by OS or
 application.

 In general, any protocol or path used for a connection must conform
 to all three sources of constraints. Any violation of any of the
 layers should cause a protocol or path to be considered ineligible
 for use. For an example of application preferences leading to
 constraints, an application may prohibit the use of metered network
 interfaces for a given Connection to avoid user cost. Similarly, the
 system policy at a given time may prohibit the use of such a metered
 network interface from the application's process. Lastly, the
 implementation itself may default to disallowing certain network
 interfaces unless explicitly requested by the application and allowed
 by the system.

 It is expected that the database of system policies and the method of
 looking up these policies will vary across various platforms. An
 implementation should attempt to look up the relevant policies for
 the system in a dynamic way to make sure it is reflecting an accurate
 version of the system policy, since the system's policy regarding the
 application's traffic may change over time due to user or
 administrative changes.

4. Implementing Connection Establishment

 The process of establishing a network connection begins when an
 application expresses intent to communicate with a remote endpoint by
 calling Initiate. (At this point, any constraints or requirements
 the application may have on the connection are available from pre-

Brunstrom, et al. Expires May 7, 2020 [Page 6]

Internet-Draft TAPS Implementation November 2019

 establishment.) The process can be considered complete once there is
 at least one Protocol Stack that has completed any required setup to
 the point that it can transmit and receive the application's data.

 Connection establishment is divided into two top-level steps:
 Candidate Gathering, to identify the paths, protocols, and endpoints
 to use, and Candidate Racing, in which the necessary protocol
 handshakes are conducted so that the transport system can select
 which set to use. This document structures candidates for racing as
 a tree.

 The most simple example of this process might involve identifying the
 single IP address to which the implementation wishes to connect,
 using the system's current default interface or path, and starting a
 TCP handshake to establish a stream to the specified IP address.
 However, each step may also vary depending on the requirements of the
 connection: if the endpoint is defined as a hostname and port, then
 there may be multiple resolved addresses that are available; there
 may also be multiple interfaces or paths available, other than the
 default system interface; and some protocols may not need any
 transport handshake to be considered "established" (such as UDP),
 while other connections may utilize layered protocol handshakes, such
 as TLS over TCP.

 Whenever an implementation has multiple options for connection
 establishment, it can view the set of all individual connection
 establishment options as a single, aggregate connection
 establishment. The aggregate set conceptually includes every valid
 combination of endpoints, paths, and protocols. As an example,
 consider an implementation that initiates a TCP connection to a
 hostname + port endpoint, and has two valid interfaces available (Wi-
 Fi and LTE). The hostname resolves to a single IPv4 address on the
 Wi-Fi network, and resolves to the same IPv4 address on the LTE
 network, as well as a single IPv6 address. The aggregate set of
 connection establishment options can be viewed as follows:

Aggregate [Endpoint: www.example.com:80] [Interface: Any] [Protocol: TCP]
|-> [Endpoint: 192.0.2.1:80] [Interface: Wi-Fi] [Protocol: TCP]
|-> [Endpoint: 192.0.2.1:80] [Interface: LTE] [Protocol: TCP]
|-> [Endpoint: 2001:DB8::1.80] [Interface: LTE] [Protocol: TCP]

 Any one of these sub-entries on the aggregate connection attempt
 would satisfy the original application intent. The concern of this
 section is the algorithm defining which of these options to try,
 when, and in what order.

Brunstrom, et al. Expires May 7, 2020 [Page 7]

Internet-Draft TAPS Implementation November 2019

4.1. Candidate Gathering

 The step of gathering candidates involves identifying which paths,
 protocols, and endpoints may be used for a given Connection. This
 list is determined by the requirements, prohibitions, and preferences
 of the application as specified in the Selection Properties.

4.1.1. Gathering Endpoint Candidates

 Both Local and Remote Endpoint Candidates must be discovered during
 connection establishment. To support ICE, or similar protocols, that
 involve out-of-band indirect signalling to exchange candidates with
 the Remote Endpoint, it's important to be able to query the set of
 candidate Local Endpoints, and give the protocol stack a set of
 candidate Remote Endpoints, before it attempts to establish
 connections.

4.1.1.1. Local Endpoint candidates

 The set of possible Local Endpoints is gathered. In the simple case,
 this merely enumerates the local interfaces and protocols, allocates
 ephemeral source ports. For example, a system that has WiFi and
 Ethernet and supports IPv4 and IPv6 might gather four candidate
 locals (IPv4 on Ethernet, IPv6 on Ethernet, IPv4 on WiFi, and IPv6 on
 WiFi) that can form the source for a transient.

 If NAT traversal is required, the process of gathering Local
 Endpoints becomes broadly equivalent to the ICE candidate gathering
 phase [RFC5245]. The endpoint determines its server reflexive Local
 Endpoints (i.e., the translated address of a local, on the other side
 of a NAT) and relayed locals (e.g., via a TURN server or other
 relay), for each interface and network protocol. These are added to
 the set of candidate Local Endpoints for this connection.

 Gathering Local Endpoints is primarily a local operation, although it
 might involve exchanges with a STUN server to derive server reflexive
 locals, or with a TURN server or other relay to derive relayed
 locals. It does not involve communication with the Remote Endpoint.

4.1.1.2. Remote Endpoint Candidates

 The Remote Endpoint is typically a name that needs to be resolved
 into a set of possible addresses that can be used for communication.
 Resolving the Remote Endpoint is the process of recursively
 performing such name lookups, until fully resolved, to return the set
 of candidates for the remote of this connection.

https://datatracker.ietf.org/doc/html/rfc5245

Brunstrom, et al. Expires May 7, 2020 [Page 8]

Internet-Draft TAPS Implementation November 2019

 How this is done will depend on the type of the Remote Endpoint, and
 can also be specific to each Local Endpoint. A common case is when
 the Remote Endpoint is a DNS name, in which case it is resolved to
 give a set of IPv4 and IPv6 addresses representing that name. Some
 types of remote might require more complex resolution. Resolving the
 Remote Endpoint for a peer-to-peer connection might involve
 communication with a rendezvous server, which in turn contacts the
 peer to gain consent to communicate and retrieve its set of candidate
 locals, which are returned and form the candidate remote addresses
 for contacting that peer.

 Resolving the remote is not a local operation. It will involve a
 directory service, and can require communication with the remote to
 rendezvous and exchange peer addresses. This can expose some or all
 of the candidate locals to the remote.

4.1.2. Structuring Options as a Tree

 When an implementation responsible for connection establishment needs
 to consider multiple options, it should logically structure these
 options as a hierarchical tree. Each leaf node of the tree
 represents a single, coherent connection attempt, with an Endpoint, a
 Path, and a set of protocols that can directly negotiate and send
 data on the network. Each node in the tree that is not a leaf
 represents a connection attempt that is either underspecified, or
 else includes multiple distinct options. For example. when
 connecting on an IP network, a connection attempt to a hostname and
 port is underspecified, because the connection attempt requires a
 resolved IP address as its remote endpoint. In this case, the node
 represented by the connection attempt to the hostname is a parent
 node, with child nodes for each IP address. Similarly, an
 implementation that is allowed to connect using multiple interfaces
 will have a parent node of the tree for the decision between the
 paths, with a branch for each interface.

 The example aggregate connection attempt above can be drawn as a tree
 by grouping the addresses resolved on the same interface into
 branches:

Brunstrom, et al. Expires May 7, 2020 [Page 9]

Internet-Draft TAPS Implementation November 2019

 ||
 +==========================+
 | www.example.com:80/Any |
 +==========================+
 // \\
+==========================+ +==========================+
| www.example.com:80/Wi-Fi | | www.example.com:80/LTE |
+==========================+ +==========================+
 || // \\
 +====================+ +====================+ +======================+
 | 192.0.2.1:80/Wi-Fi | | 192.0.2.1:80/LTE | | 2001:DB8::1.80/LTE |
 +====================+ +====================+ +======================+

 The rest of this section will use a notation scheme to represent this
 tree. The parent (or trunk) node of the tree will be represented by
 a single integer, such as "1". Each child of that node will have an
 integer that identifies it, from 1 to the number of children. That
 child node will be uniquely identified by concatenating its integer
 to it's parents identifier with a dot in between, such as "1.1" and
 "1.2". Each node will be summarized by a tuple of three elements:
 Endpoint, Path, and Protocol. The above example can now be written
 more succinctly as:

 1 [www.example.com:80, Any, TCP]
 1.1 [www.example.com:80, Wi-Fi, TCP]
 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [www.example.com:80, LTE, TCP]
 1.2.1 [192.0.2.1:80, LTE, TCP]
 1.2.2 [2001:DB8::1.80, LTE, TCP]

 When an implementation views this aggregate set of connection
 attempts as a single connection establishment, it only will use one
 of the leaf nodes to transfer data. Thus, when a single leaf node
 becomes ready to use, then the entire connection attempt is ready to
 use by the application. Another way to represent this is that every
 leaf node updates the state of its parent node when it becomes ready,
 until the trunk node of the tree is ready, which then notifies the
 application that the connection as a whole is ready to use.

 A connection establishment tree may be degenerate, and only have a
 single leaf node, such as a connection attempt to an IP address over
 a single interface with a single protocol.

 1 [192.0.2.1:80, Wi-Fi, TCP]

 A parent node may also only have one child (or leaf) node, such as a
 when a hostname resolves to only a single IP address.

Brunstrom, et al. Expires May 7, 2020 [Page 10]

Internet-Draft TAPS Implementation November 2019

 1 [www.example.com:80, Wi-Fi, TCP]
 1.1 [192.0.2.1:80, Wi-Fi, TCP]

4.1.3. Branch Types

 There are three types of branching from a parent node into one or
 more child nodes. Any parent node of the tree must only use one type
 of branching.

4.1.3.1. Derived Endpoints

 If a connection originally targets a single endpoint, there may be
 multiple endpoints of different types that can be derived from the
 original. The connection library should order the derived endpoints
 according to application preference, system policy and expected
 performance.

 DNS hostname-to-address resolution is the most common method of
 endpoint derivation. When trying to connect to a hostname endpoint
 on a traditional IP network, the implementation should send DNS
 queries for both A (IPv4) and AAAA (IPv6) records if both are
 supported on the local link. The algorithm for ordering and racing
 these addresses should follow the recommendations in Happy Eyeballs
 [RFC8305].

 1 [www.example.com:80, Wi-Fi, TCP]
 1.1 [2001:DB8::1.80, Wi-Fi, TCP]
 1.2 [192.0.2.1:80, Wi-Fi, TCP]
 1.3 [2001:DB8::2.80, Wi-Fi, TCP]
 1.4 [2001:DB8::3.80, Wi-Fi, TCP]

 DNS-Based Service Discovery can also provide an endpoint derivation
 step. When trying to connect to a named service, the client may
 discover one or more hostname and port pairs on the local network
 using multicast DNS. These hostnames should each be treated as a
 branch which can be attempted independently from other hostnames.
 Each of these hostnames may also resolve to one or more addresses,
 thus creating multiple layers of branching.

 1 [term-printer._ipp._tcp.meeting.ietf.org, Wi-Fi, TCP]
 1.1 [term-printer.meeting.ietf.org:631, Wi-Fi, TCP]
 1.1.1 [31.133.160.18.631, Wi-Fi, TCP]

4.1.3.2. Alternate Paths

 If a client has multiple network interfaces available to it, such as
 mobile client with both Wi-Fi and Cellular connectivity, it can
 attempt a connection over either interface. This represents a branch

https://datatracker.ietf.org/doc/html/rfc8305

Brunstrom, et al. Expires May 7, 2020 [Page 11]

Internet-Draft TAPS Implementation November 2019

 point in the connection establishment. Like with derived endpoints,
 the interfaces should be ranked based on preference, system policy,
 and performance. Attempts should be started on one interface, and
 then on other interfaces successively after delays based on expected
 round-trip-time or other available metrics.

 1 [192.0.2.1:80, Any, TCP]
 1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [192.0.2.1:80, LTE, TCP]

 This same approach applies to any situation in which the client is
 aware of multiple links or views of the network. Multiple Paths,
 each with a coherent set of addresses, routes, DNS server, and more,
 may share a single interface. A path may also represent a virtual
 interface service such as a Virtual Private Network (VPN).

 The list of available paths should be constrained by any requirements
 or prohibitions the application sets, as well as system policy.

4.1.3.3. Protocol Options

 Differences in possible protocol compositions and options can also
 provide a branching point in connection establishment. This allows
 clients to be resilient to situations in which a certain protocol is
 not functioning on a server or network.

 This approach is commonly used for connections with optional proxy
 server configurations. A single connection may be allowed to use an
 HTTP-based proxy, a SOCKS-based proxy, or connect directly. These
 options should be ranked and attempted in succession.

 1 [www.example.com:80, Any, HTTP/TCP]
 1.1 [192.0.2.8:80, Any, HTTP/HTTP Proxy/TCP]
 1.2 [192.0.2.7:10234, Any, HTTP/SOCKS/TCP]
 1.3 [www.example.com:80, Any, HTTP/TCP]
 1.3.1 [192.0.2.1:80, Any, HTTP/TCP]

 This approach also allows a client to attempt different sets of
 application and transport protocols that may provide preferable
 characteristics when available. For example, the protocol options
 could involve QUIC [I-D.ietf-quic-transport] over UDP on one branch,
 and HTTP/2 [RFC7540] over TLS over TCP on the other:

 1 [www.example.com:443, Any, Any HTTP]
 1.1 [www.example.com:443, Any, QUIC/UDP]
 1.1.1 [192.0.2.1:443, Any, QUIC/UDP]
 1.2 [www.example.com:443, Any, HTTP2/TLS/TCP]
 1.2.1 [192.0.2.1:443, Any, HTTP2/TLS/TCP]

https://datatracker.ietf.org/doc/html/rfc7540

Brunstrom, et al. Expires May 7, 2020 [Page 12]

Internet-Draft TAPS Implementation November 2019

 Another example is racing SCTP with TCP:

 1 [www.example.com:80, Any, Any Stream]
 1.1 [www.example.com:80, Any, SCTP]
 1.1.1 [192.0.2.1:80, Any, SCTP]
 1.2 [www.example.com:80, Any, TCP]
 1.2.1 [192.0.2.1:80, Any, TCP]

 Implementations that support racing protocols and protocol options
 should maintain a history of which protocols and protocol options
 successfully established, on a per-network basis (see Section 9.2).
 This information can influence future racing decisions to prioritize
 or prune branches.

4.2. Branching Order-of-Operations

 Branch types must occur in a specific order relative to one another
 to avoid creating leaf nodes with invalid or incompatible settings.
 In the example above, it would be invalid to branch for derived
 endpoints (the DNS results for www.example.com) before branching
 between interface paths, since usable DNS results on one network may
 not necessarily be the same as DNS results on another network due to
 local network entities, supported address families, or enterprise
 network configurations. Implementations must be careful to branch in
 an order that results in usable leaf nodes whenever there are
 multiple branch types that could be used from a single node.

 The order of operations for branching, where lower numbers are acted
 upon first, should be:

 1. Alternate Paths

 2. Protocol Options

 3. Derived Endpoints

 Branching between paths is the first in the list because results
 across multiple interfaces are likely not related to one another:
 endpoint resolution may return different results, especially when
 using locally resolved host and service names, and which protocols
 are supported and preferred may differ across interfaces. Thus, if
 multiple paths are attempted, the overall connection can be seen as a
 race between the available paths or interfaces.

 Protocol options are checked next in order. Whether or not a set of
 protocol, or protocol-specific options, can successfully connect is
 generally not dependent on which specific IP address is used.
 Furthermore, the protocol stacks being attempted may influence or

Brunstrom, et al. Expires May 7, 2020 [Page 13]

Internet-Draft TAPS Implementation November 2019

 altogether change the endpoints being used. Adding a proxy to a
 connection's branch will change the endpoint to the proxy's IP
 address or hostname. Choosing an alternate protocol may also modify
 the ports that should be selected.

 Branching for derived endpoints is the final step, and may have
 multiple layers of derivation or resolution, such as DNS service
 resolution and DNS hostname resolution.

 For example, if the application has indicated both a preference for
 WiFi over LTE and for a feature only available in SCTP, branches will
 be first sorted accord to path selection, with WiFi at the top.
 Then, branches with SCTP will be sorted to the top within their
 subtree according to the properties influencing protocol selection.
 However, if the implementation has cached the information that SCTP
 is not available on the path over WiFi, there is no SCTP node in the
 WiFi subtree. Here, the path over WiFi will be tried first, and, if
 connection establishment succeeds, TCP will be used. So the
 Selection Property of preferring WiFi takes precedence over the
 Property that led to a preference for SCTP.

 1. [www.example.com:80, Any, Any Stream]
 1.1 [192.0.2.1:80, Wi-Fi, Any Stream]
 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [192.0.3.1:80, LTE, Any Stream]
 1.2.1 [192.0.3.1:80, LTE, SCTP]
 1.2.2 [192.0.3.1:80, LTE, TCP]

4.3. Sorting Branches

 Implementations should sort the branches of the tree of connection
 options in order of their preference rank. Leaf nodes on branches
 with higher rankings represent connection attempts that will be raced
 first. Implementations should order the branches to reflect the
 preferences expressed by the application for its new connection,
 including Selection Properties, which are specified in
 [I-D.ietf-taps-interface].

 In addition to the properties provided by the application, an
 implementation may include additional criteria such as cached
 performance estimates, see Section 9.2, or system policy, see

Section 3.2, in the ranking. Two examples of how Selection and
 Connection Properties may be used to sort branches are provided
 below:

 o "Interface Instance or Type": If the application specifies an
 interface type to be preferred or avoided, implementations should
 rank paths accordingly. If the application specifies an interface

Brunstrom, et al. Expires May 7, 2020 [Page 14]

Internet-Draft TAPS Implementation November 2019

 type to be required or prohibited, we expect an implementation to
 not include the non-conforming paths into the three.

 o "Capacity Profile": An implementation may use the Capacity Profile
 to prefer paths optimized for the application's expected traffic
 pattern according to cached performance estimates, see

Section 9.2:

 * Scavenger: Prefer paths with the highest expected available
 bandwidth, based on observed maximum throughput

 * Low Latency/Interactive: Prefer paths with the lowest expected
 Round Trip Time

 * Constant-Rate Streaming: Prefer paths that can satisfy the
 requested Stream Send or Stream Receive Bitrate, based on
 observed maximum throughput

 Implementations should process properties in the following order:
 Prohibit, Require, Prefer, Avoid. If Selection Properties contain
 any prohibited properties, the implementation should first purge
 branches containing nodes with these properties. For required
 properties, it should only keep branches that satisfy these
 requirements. Finally, it should order branches according to
 preferred properties, and finally use avoided properties as a
 tiebreaker.

4.4. Candidate Racing

 The primary goal of the Candidate Racing process is to successfully
 negotiate a protocol stack to an endpoint over an interface--to
 connect a single leaf node of the tree--with as little delay and as
 few unnecessary connections attempts as possible. Optimizing these
 two factors improves the user experience, while minimizing network
 load.

 This section covers the dynamic aspect of connection establishment.
 While the tree described above is a useful conceptual and
 architectural model, an implementation does not know what the full
 tree may become up front, nor will many of the possible branches be
 used in the common case.

 There are three different approaches to racing the attempts for
 different nodes of the connection establishment tree:

 1. Immediate

 2. Delayed

Brunstrom, et al. Expires May 7, 2020 [Page 15]

Internet-Draft TAPS Implementation November 2019

 3. Failover

 Each approach is appropriate in different use-cases and branch types.
 However, to avoid consuming unnecessary network resources,
 implementations should not use immediate racing as a default
 approach.

 The timing algorithms for racing should remain independent across
 branches of the tree. Any timers or racing logic is isolated to a
 given parent node, and is not ordered precisely with regards to other
 children of other nodes.

4.4.1. Delayed

 Delayed racing can be used whenever a single node of the tree has
 multiple child nodes. Based on the order determined when building
 the tree, the first child node will be initiated immediately,
 followed by the next child node after some delay. Once that second
 child node is initiated, the third child node (if present) will begin
 after another delay, and so on until all child nodes have been
 initiated, or one of the child nodes successfully completes its
 negotiation.

 Delayed racing attempts occur in parallel. Implementations should
 not terminate an earlier child connection attempt upon starting a
 secondary child.

 The delay between starting child nodes should be based on the
 properties of the previously started child node. For example, if the
 first child represents an IP address with a known route, and the
 second child represents another IP address, the delay between
 starting the first and second IP addresses can be based on the
 expected retransmission cadence for the first child's connection
 (derived from historical round-trip-time). Alternatively, if the
 first child represents a branch on a Wi-Fi interface, and the second
 child represents a branch on an LTE interface, the delay should be
 based on the expected time in which the branch for the first
 interface would be able to establish a connection, based on link
 quality and historical round-trip-time.

 Any delay should have a defined minimum and maximum value based on
 the branch type. Generally, branches between paths and protocols
 should have longer delays than branches between derived endpoints.
 The maximum delay should be considered with regards to how long a
 user is expected to wait for the connection to complete.

 If a child node fails to connect before the delay timer has fired for
 the next child, the next child should be started immediately.

Brunstrom, et al. Expires May 7, 2020 [Page 16]

Internet-Draft TAPS Implementation November 2019

4.4.2. Failover

 If an implementation or application has a strong preference for one
 branch over another, the branching node may choose to wait until one
 child has failed before starting the next. Failure of a leaf node is
 determined by its protocol negotiation failing or timing out; failure
 of a parent branching node is determined by all of its children
 failing.

 An example in which failover is recommended is a race between a
 protocol stack that uses a proxy and a protocol stack that bypasses
 the proxy. Failover is useful in case the proxy is down or
 misconfigured, but any more aggressive type of racing may end up
 unnecessarily avoiding a proxy that was preferred by policy.

4.5. Completing Establishment

 The process of connection establishment completes when one leaf node
 of the tree has completed negotiation with the remote endpoint
 successfully, or else all nodes of the tree have failed to connect.
 The first leaf node to complete its connection is then used by the
 application to send and receive data.

 It is useful to process success and failure throughout the tree by
 child nodes reporting to their parent nodes (towards the trunk of the
 tree). For example, in the following case, if 1.1.1 fails to
 connect, it reports the failure to 1.1. Since 1.1 has no other child
 nodes, it also has failed and reports that failure to 1. Because 1.2
 has not yet failed, 1 is not considered to have failed. Since 1.2
 has not yet started, it is started and the process continues.
 Similarly, if 1.1.1 successfully connects, then it marks 1.1 as
 connected, which propagates to the trunk node 1. At this point, the
 connection as a whole is considered to be successfully connected and
 ready to process application data

 1 [www.example.com:80, Any, TCP]
 1.1 [www.example.com:80, Wi-Fi, TCP]
 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [www.example.com:80, LTE, TCP]
 ...

 If a leaf node has successfully completed its connection, all other
 attempts should be made ineligible for use by the application for the
 original request. New connection attempts that involve transmitting
 data on the network should not be started after another leaf node has
 completed successfully, as the connection as a whole has been
 established. An implementation may choose to let certain handshakes
 and negotiations complete in order to gather metrics to influence

Brunstrom, et al. Expires May 7, 2020 [Page 17]

Internet-Draft TAPS Implementation November 2019

 future connections. Similarly, an implementation may choose to hold
 onto fully established leaf nodes that were not the first to
 establish for use as part of a Pooled Connection, see Section 7.1, or
 in future connections. In both cases, keeping additional connections
 is generally not recommended since those attempts were slower to
 connect and may exhibit less desirable properties.

4.5.1. Determining Successful Establishment

 Implementations may select the criteria by which a leaf node is
 considered to be successfully connected differently on a per-protocol
 basis. If the only protocol being used is a transport protocol with
 a clear handshake, like TCP, then the obvious choice is to declare
 that node "connected" when the last packet of the three-way handshake
 has been received. If the only protocol being used is an
 "unconnected" protocol, like UDP, the implementation may consider the
 node fully "connected" the moment it determines a route is present,
 before sending any packets on the network, see further Section 4.7.

 For protocol stacks with multiple handshakes, the decision becomes
 more nuanced. If the protocol stack involves both TLS and TCP, an
 implementation could determine that a leaf node is connected after
 the TCP handshake is complete, or it can wait for the TLS handshake
 to complete as well. The benefit of declaring completion when the
 TCP handshake finishes, and thus stopping the race for other branches
 of the tree, is that there will be less burden on the network from
 other connection attempts. On the other hand, by waiting until the
 TLS handshake is complete, an implementation avoids the scenario in
 which a TCP handshake completes quickly, but TLS negotiation is
 either very slow or fails altogether in particular network conditions
 or to a particular endpoint. To avoid the issue of TLS possibly
 failing, the implementation should not generate a Ready event for the
 Connection until TLS is established.

 If all of the leaf nodes fail to connect during racing, i.e. none of
 the configurations that satisfy all requirements given in the
 Transport Parameters actually work over the available paths, then the
 transport system should notify the application with an InitiateError
 event. An InitiateError event should also be generated in case the
 transport system finds no usable candidates to race.

4.6. Establishing multiplexed connections

 Multiplexing several Connections over a single underlying transport
 connection requires that the Connections to be multiplexed belong to
 the same Connection Group (as is indicated by the application using
 the Clone call). When the underlying transport connection supports
 multi-streaming, the Transport System can map each Connection in the

Brunstrom, et al. Expires May 7, 2020 [Page 18]

Internet-Draft TAPS Implementation November 2019

 Connection Group to a different stream. Thus, when the Connections
 that are offered to an application by the Transport System are
 multiplexed, the Transport System may implement the establishment of
 a new Connection by simply beginning to use a new stream of an
 already established transport connection and there is no need for a
 connection establishment procedure. This, then, also means that
 there may not be any "establishment" message (like a TCP SYN), but
 the application can simply start sending or receiving. Therefore,
 when the Initiate action of a Transport System is called without
 Messages being handed over, it cannot be guaranteed that the other
 endpoint will have any way to know about this, and hence a passive
 endpoint's ConnectionReceived event may not be called upon an active
 endpoint's Inititate. Instead, calling the ConnectionReceived event
 may be delayed until the first Message arrives.

4.7. Handling racing with "unconnected" protocols

 While protocols that use an explicit handshake to validate a
 Connection to a peer can be used for racing multiple establishment
 attempts in parallel, "unconnected" protocols such as raw UDP do not
 offer a way to validate the presence of a peer or the usability of a
 Connection without application feedback. An implementation should
 consider such a protocol stack to be established as soon as a local
 route to the peer endpoint is confirmed.

 However, if a peer is not reachable over the network using the
 unconnected protocol, or data cannot be exchanged for any other
 reason, the application may want to attempt using another candidate
 Protocol Stack. The implementation should maintain the list of other
 candidate Protocol Stacks that were eligible to use. In the case
 that the application signals that the initial Protocol Stack is
 failing for some reason and that another option should be attempted,
 the Connection can be updated to point to the next candidate Protocol
 Stack. This can be viewed as an application-driven form of Protocol
 Stack racing.

4.8. Implementing listeners

 When an implementation is asked to Listen, it registers with the
 system to wait for incoming traffic to the Local Endpoint. If no
 Local Endpoint is specified, the implementation should either use an
 ephemeral port or generate an error.

 If the Selection Properties do not require a single network interface
 or path, but allow the use of multiple paths, the Listener object
 should register for incoming traffic on all of the network interfaces
 or paths that conform to the Properties. The set of available paths
 can change over time, so the implementation should monitor network

Brunstrom, et al. Expires May 7, 2020 [Page 19]

Internet-Draft TAPS Implementation November 2019

 path changes and register and de-register the Listener across all
 usable paths. When using multiple paths, the Listener is generally
 expected to use the same port for listening on each.

 If the Selection Properties allow multiple protocols to be used for
 listening, and the implementation supports it, the Listener object
 should register across the eligble protocols for each path. This
 means that inbound Connections delivered by the implementation may
 have heterogeneous protocol stacks.

4.8.1. Implementing listeners for Connected Protocols

 Connected protocols such as TCP and TLS-over-TCP have a strong
 mapping between the Local and Remote Endpoints (five-tuple) and their
 protocol connection state. These map well into Connection objects.
 Whenever a new inbound handshake is being started, the Listener
 should generate a new Connection object and pass it to the
 application.

4.8.2. Implementing listeners for Unconnected Protocols

 Unconnected protocols such as UDP and UDP-lite generally do not
 provide the same mechanisms that connected protocols do to offer
 Connection objects. Implementations should wait for incoming packets
 for unconnected protocols on a listening port and should perform
 five-tuple matching of packets to either existing Connection objects
 or the creation of new Connection objects. On platforms with
 facilities to create a "virtual connection" for unconnected protocols
 implementations should use these mechanisms to minimise the handling
 of datagrams intended for already created Connection objects.

4.8.3. Implementing listeners for Multiplexed Protocols

 Protocols that provide multiplexing of streams into a single five-
 tuple can listen both for entirely new connections (a new HTTP/2
 stream on a new TCP connection, for example) and for new sub-
 connections (a new HTTP/2 stream on an existing connection). If the
 abstraction of Connection presented to the application is mapped to
 the multiplexed stream, then the Listener should deliver new
 Connection objects in the same way for either case. The
 implementation should allow the application to introspect the
 Connection Group marked on the Connections to determine the grouping
 of the multiplexing.

Brunstrom, et al. Expires May 7, 2020 [Page 20]

Internet-Draft TAPS Implementation November 2019

5. Implementing Sending and Receiving Data

 The most basic mapping for sending a Message is an abstraction of
 datagrams, in which the transport protocol naturally deals in
 discrete packets. Each Message here corresponds to a single
 datagram. Generally, these will be short enough that sending and
 receiving will always use a complete Message.

 For protocols that expose byte-streams, the only delineation provided
 by the protocol is the end of the stream in a given direction. Each
 Message in this case corresponds to the entire stream of bytes in a
 direction. These Messages may be quite long, in which case they can
 be sent in multiple parts.

 Protocols that provide the framing (such as length-value protocols,
 or protocols that use delimiters) provide data boundaries that may be
 longer than a traditional packet datagram. Each Message for framing
 protocols corresponds to a single frame, which may be sent either as
 a complete Message, or in multiple parts.

5.1. Sending Messages

 The effect of the application sending a Message is determined by the
 top-level protocol in the established Protocol Stack. That is, if
 the top-level protocol provides an abstraction of framed messages
 over a connection, the receiving application will be able to obtain
 multiple Messages on that connection, even if the framing protocol is
 built on a byte-stream protocol like TCP.

5.1.1. Message Properties

 o Lifetime: this should be implemented by removing the Message from
 its queue of pending Messages after the Lifetime has expired. A
 queue of pending Messages within the transport system
 implementation that have yet to be handed to the Protocol Stack
 can always support this property, but once a Message has been sent
 into the send buffer of a protocol, only certain protocols may
 support de-queueing a message. For example, TCP cannot remove
 bytes from its send buffer, while in case of SCTP, such control
 over the SCTP send buffer can be exercised using the partial
 reliability extension [RFC8303]. When there is no standing queue
 of Messages within the system, and the Protocol Stack does not
 support removing a Message from its buffer, this property may be
 ignored.

 o Priority: this represents the ability to prioritize a Message over
 other Messages. This can be implemented by the system re-ordering
 Messages that have yet to be handed to the Protocol Stack, or by

https://datatracker.ietf.org/doc/html/rfc8303

Brunstrom, et al. Expires May 7, 2020 [Page 21]

Internet-Draft TAPS Implementation November 2019

 giving relative priority hints to protocols that support
 priorities per Message. For example, an implementation of HTTP/2
 could choose to send Messages of different Priority on streams of
 different priority.

 o Ordered: when this is false, it disables the requirement of in-
 order-delivery for protocols that support configurable ordering.

 o Idempotent: when this is true, it means that the Message can be
 used by mechanisms that might transfer it multiple times - e.g.,
 as a result of racing multiple transports or as part of TCP Fast
 Open.

 o Final: when this is true, it means that a transport connection can
 be closed immediately after its transmission.

 o Corruption Protection Length: when this is set to any value other
 than -1, it limits the required checksum in protocols that allow
 limiting the checksum length (e.g. UDP-Lite).

 o Transmission Profile: TBD - because it's not final in the API yet.
 Old text follows: when this is set to "Interactive/Low Latency",
 the Message should be sent immediately, even when this comes at
 the cost of using the network capacity less efficiently. For
 example, small messages can sometimes be bundled to fit into a
 single data packet for the sake of reducing header overhead; such
 bundling should not be used. For example, in case of TCP, the
 Nagle algorithm should be disabled when Interactive/Low Latency is
 selected as the capacity profile. Scavenger/Bulk can translate
 into usage of a congestion control mechanism such as LEDBAT, and/
 or the capacity profile can lead to a choice of a DSCP value as
 described in [I-D.ietf-taps-minset]).

 o Singular Transmission: when this is true, the application requests
 to avoid transport-layer segmentation or network-layer
 fragmentation. Some transports implement network-layer
 fragmentation avoidance (Path MTU Discovery) without exposing this
 functionality to the application; in this case, only transport-
 layer segmentation should be avoided, by fitting the message into
 a single transport-layer segment or otherwise failing. Otherwise,
 network-layer fragmentation should be avoided--e.g. by requesting
 the IP Don't Fragment bit to be set in case of UDP(-Lite) and IPv4
 (SET_DF in [RFC8304]).

https://datatracker.ietf.org/doc/html/rfc8304

Brunstrom, et al. Expires May 7, 2020 [Page 22]

Internet-Draft TAPS Implementation November 2019

5.1.2. Send Completion

 The application should be notified whenever a Message or partial
 Message has been consumed by the Protocol Stack, or has failed to
 send. The meaning of the Message being consumed by the stack may
 vary depending on the protocol. For a basic datagram protocol like
 UDP, this may correspond to the time when the packet is sent into the
 interface driver. For a protocol that buffers data in queues, like
 TCP, this may correspond to when the data has entered the send
 buffer.

5.1.3. Batching Sends

 Since sending a Message may involve a context switch between the
 application and the transport system, sending patterns that involve
 multiple small Messages can incur high overhead if each needs to be
 enqueued separately. To avoid this, the application should have a
 way to indicate a batch of Send actions, during which time the
 implementation will hold off on processing Messages until the batch
 is complete. This can also help context switches when enqueuing data
 in the interface driver if the operation can be batched.

5.2. Receiving Messages

 Similar to sending, Receiving a Message is determined by the top-
 level protocol in the established Protocol Stack. The main
 difference with Receiving is that the size and boundaries of the
 Message are not known beforehand. The application can communicate in
 its Receive action the parameters for the Message, which can help the
 implementation know how much data to deliver and when. For example,
 if the application only wants to receive a complete Message, the
 implementation should wait until an entire Message (datagram, stream,
 or frame) is read before delivering any Message content to the
 application. This requires the implementation to understand where
 messages end, either via a supplied deframer or because the top-level
 protocol in the established Protocol Stack preserves message
 boundaries; if, on the other hand, the top-level protocol only
 supports a byte-stream and no deframers were supported, the
 application must specify the minimum number of bytes of Message
 content it wants to receive (which may be just a single byte) to
 control the flow of received data.

 If a Connection becomes finished before a requested Receive action
 can be satisfied, the implementation should deliver any partial
 Message content outstanding, or if none is available, an indication
 that there will be no more received Messages.

Brunstrom, et al. Expires May 7, 2020 [Page 23]

Internet-Draft TAPS Implementation November 2019

5.3. Handling of data for fast-open protocols

 Several protocols allow sending higher-level protocol or application
 data within the first packet of their protocol establishment, such as
 TCP Fast Open [RFC7413] and TLS 1.3 [RFC8446]. This approach is
 referred to as sending Zero-RTT (0-RTT) data. This is a desirable
 property, but poses challenges to an implementation that uses racing
 during connection establishment.

 If the application has 0-RTT data to send in any protocol handshakes,
 it needs to provide this data before the handshakes have begun. When
 racing, this means that the data should be provided before the
 process of connection establishment has begun. If the application
 wants to send 0-RTT data, it must indicate this to the implementation
 by setting the Idempotent send parameter to true when sending the
 data. In general, 0-RTT data may be replayed (for example, if a TCP
 SYN contains data, and the SYN is retransmitted, the data will be
 retransmitted as well), but racing means that different leaf nodes
 have the opportunity to send the same data independently. If data is
 truly idempotent, this should be permissible.

 Once the application has provided its 0-RTT data, an implementation
 should keep a copy of this data and provide it to each new leaf node
 that is started and for which a 0-RTT protocol is being used.

 It is also possible that protocol stacks within a particular leaf
 node use 0-RTT handshakes without any idempotent application data.
 For example, TCP Fast Open could use a Client Hello from TLS as its
 0-RTT data, shortening the cumulative handshake time.

 0-RTT handshakes often rely on previous state, such as TCP Fast Open
 cookies, previously established TLS tickets, or out-of-band
 distributed pre-shared keys (PSKs). Implementations should be aware
 of security concerns around using these tokens across multiple
 addresses or paths when racing. In the case of TLS, any given ticket
 or PSK should only be used on one leaf node. If implementations have
 multiple tickets available from a previous connection, each leaf node
 attempt must use a different ticket. In effect, each leaf node will
 send the same early application data, yet encoded (encrypted)
 differently on the wire.

6. Implementing Message Framers

 Message Framers are pieces of code that define simple transformations
 between application Message data and raw transport protocol data. A
 Framer can encapsulate or encode outbound Messages, and decapsulate
 or decode inbound data into Messages.

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc8446

Brunstrom, et al. Expires May 7, 2020 [Page 24]

Internet-Draft TAPS Implementation November 2019

 While many protocols can be represented as Message Framers, for the
 purposes of the Transport Services interface these are ways for
 applications or application frameworks to define their own Message
 parsing to be included within a Connection's Protocol Stack. As an
 example, TLS can serve the purpose of framing data over TCP, but is
 exposed as a protocol natively supported by the Transport Services
 interface.

 Most Message Framers fall into one of two categories:

 o Header-prefixed record formats, such as a basic Type-Length-Value
 (TLV) structure

 o Delimiter-separated formats, such as HTTP/1.1.

 Common Message Framers can be provided by the Transport Services
 implementation, but an implemention ought to allow custom Message
 Framers to be defined by the application or some other piece of
 software. This section describes one possible interface for defining
 Message Framers as an example.

6.1. Defining Message Framers

 A Message Framer is primarily defined by the set of code that handles
 events for a framer implementation, specifically how it handles
 inbound and outbound data parsing. The piece of code that implements
 custom framing logic will be referred to as the "framer
 implementation", which may be provided by the Transport Services
 implementation or the application itself. The Message Framer refers
 to the object or piece of code within the main Connection
 implementation that delivers events to the custom framer
 implementation whenever data is ready to be parsed or framed.

 When a Connection establishment attempt begins, an event can be
 delivered to notify the framer implementation that a new Connection
 is being created. Similarly, a stop event can be delivered when a
 Connection is being torn down. The framer implementation can use the
 Connection object to look up specific properties of the Connection or
 the network being used that may influence how to frame Messages.

 MessageFramer -> Start(Connection)
 MessageFramer -> Stop(Connection)

 When a Message Framer generates a "Start" event, the framer
 implementation has the opportunity to start writing some data prior
 to the Connection delivering its "Ready" event. This allows the
 implementation to communicate control data to the remote endpoint
 that can be used to parse Messages.

Brunstrom, et al. Expires May 7, 2020 [Page 25]

Internet-Draft TAPS Implementation November 2019

 MessageFramer.MakeConnectionReady(Connection)

 At any time if the implementation encounters a fatal error, it can
 also cause the Connection to fail and provide an error.

 MessageFramer.FailConnection(Connection, Error)

 Before an implementation marks a Message Framer as ready, it can also
 dynamically add a protocol or framer above it in the stack. This
 allows protocols like STARTTLS, that need to add TLS conditionally,
 to modify the Protocol Stack based on a handshake result.

 otherFramer := NewMessageFramer()
 MessageFramer.PrependFramer(Connection, otherFramer)

6.2. Sender-side Message Framing

 Message Framers generate an event whenever a Connection sends a new
 Message.

MessageFramer -> NewSentMessage<Connection, MessageData, MessageContext,
IsEndOfMessage>

 Upon receiving this event, a framer implementation is responsible for
 performing any necessary transformations and sending the resulting
 data to the next protocol. Implementations SHOULD ensure that there
 is a way to pass the original data through without copying to improve
 performance.

 MessageFramer.Send(Connection, Data)

 To provide an example, a simple protocol that adds a length as a
 header would receive the "NewSentMessage" event, create a data
 representation of the length of the Message data, and then send a
 block of data that is the concatenation of the length header and the
 original Message data.

6.3. Receiver-side Message Framing

 In order to parse a received flow of data into Messages, the Message
 Framer notifies the framer implementation whenever new data is
 available to parse.

 MessageFramer -> HandleReceivedData<Connection>

 Upon receiving this event, the framer implementation can inspect the
 inbound data. The data is parsed from a particular cursor
 representing the unprocessed data. The application requests a

Brunstrom, et al. Expires May 7, 2020 [Page 26]

Internet-Draft TAPS Implementation November 2019

 specific amount of data it needs to have available in order to parse.
 If the data is not available, the parse fails.

MessageFramer.Parse(Connection, MinimumIncompleteLength, MaximumLength) ->
(Data, MessageContext, IsEndOfMessage)

 The framer implementation can directly advance the receive cursor
 once it has parsed data to effectively discard data (for example,
 discard a header once the content has been parsed).

 To deliver a Message to the application, the framer implementation
 can either directly deliever data that it has allocated, or deliver a
 range of data directly from the underlying transport and
 simulatenously advance the receive cursor.

MessageFramer.AdvanceReceiveCursor(Connection, Length)
MessageFramer.DeliverAndAdvanceReceiveCursor(Connection, MessageContext,
Length, IsEndOfMessage)
MessageFramer.Deliver(Connection, MessageContext, Data, IsEndOfMessage)

 Note that "MessageFramer.DeliverAndAdvanceReceiveCursor" allows the
 framer implementation to earmark bytes as part of a Message even
 before they are received by the transport. This allows the delivery
 of very large Messages without requiring the implementation to
 directly inspect all of the bytes.

 To provide an example, a simple protocol that parses a length as a
 header value would receive the "HandleReceivedData" event, and call
 "Parse" with a minimum and maximum set to the length of the header
 field. Once the parse succeeded, it would call
 "AdvanceReceiveCursor" with the length of the header field, and then
 call "DeliverAndAdvanceReceiveCursor" with the length of the body
 that was parsed from the header, marking the new Message as complete.

7. Implementing Connection Management

 Once a Connection is established, the Transport Services system
 allows applications to interact with the Connection by modifying or
 inspecting Connection Properties. A Connection can also generate
 events in the form of Soft Errors.

 The set of Connection Properties that are supported for setting and
 getting on a Connection are described in [I-D.ietf-taps-interface].
 For any properties that are generic, and thus could apply to all
 protocols being used by a Connection, the Transport System should
 store the properties in a generic storage, and notify all protocol
 instances in the Protocol Stack whenever the properties have been
 modified by the application. For protocol-specfic properties, such
 as the User Timeout that applies to TCP, the Transport System only

 needs to update the relevant protocol instance.

Brunstrom, et al. Expires May 7, 2020 [Page 27]

Internet-Draft TAPS Implementation November 2019

 If an error is encountered in setting a property (for example, if the
 application tries to set a TCP-specific property on a Connection that
 is not using TCP), the action should fail gracefully. The
 application may be informed of the error, but the Connection itself
 should not be terminated.

 The Transport Services implementation should allow protocol instances
 in the Protocol Stack to pass up arbitrary generic or protocol-
 specific errors that can be delivered to the application as Soft
 Errors. These allow the application to be informed of ICMP errors,
 and other similar events.

7.1. Pooled Connection

 For protocols that employ request/response pairs and do not require
 in-order delivery of the responses, like HTTP, the transport
 implementation may distribute interactions across several underlying
 transport connections. For these kinds of protocols, implementations
 may hide the connection management and only expose a single
 Connection object and the individual requests/responses as messages.
 These Pooled Connections can use multiple connections or multiple
 streams of multi-streaming connections between endpoints, as long as
 all of these satisfy the requirements, and prohibitions specified in
 the Selection Properties of the Pooled Connection. This enables
 implementations to realize transparent connection coalescing,
 connection migration, and to perform per-message endpoint and path
 selection by choosing among these underlying connections.

7.2. Handling Path Changes

 When a path change occurs, the Transport Services implementation is
 responsible for notifying Protocol Instances in the Protocol Stack.
 If the Protocol Stack includes a transport protocol that supports
 multipath connectivity, an update to the available paths should
 inform the Protocol Instance of the new set of paths that are
 permissible based on the Selection Properties passed by the
 application. A multipath protocol can establish new subflows over
 new paths, and should tear down subflows over paths that are no
 longer available. Pooled Connections Section 7.1 may add or remove
 underlying transport connections in a similar manner. If the
 Protocol Stack includes a transport protocol that does not support
 multipath, but support migrating between paths, the update to
 available paths can be used as the trigger to migrating the
 connection. For protocols that do not support multipath or
 migration, the Protocol Instances may be informed of the path change,
 but should not be forcibly disconnected if the previously used path
 becomes unavailable. An exception to this case is if the System

Brunstrom, et al. Expires May 7, 2020 [Page 28]

Internet-Draft TAPS Implementation November 2019

 Policy changes to prohibit traffic from the Connection based on its
 properties, in which case the Protocol Stack should be disconnected.

8. Implementing Connection Termination

 With TCP, when an application closes a connection, this means that it
 has no more data to send (but expects all data that has been handed
 over to be reliably delivered). However, with TCP only, "close" does
 not mean that the application will stop receiving data. This is
 related to TCP's ability to support half-closed connections.

 SCTP is an example of a protocol that does not support such half-
 closed connections. Hence, with SCTP, the meaning of "close" is
 stricter: an application has no more data to send (but expects all
 data that has been handed over to be reliably delivered), and will
 also not receive any more data.

 Implementing a protocol independent transport system means that the
 exposed semantics must be the strictest subset of the semantics of
 all supported protocols. Hence, as is common with all reliable
 transport protocols, after a Close action, the application can expect
 to have its reliability requirements honored regarding the data it
 has given to the Transport System, but it cannot expect to be able to
 read any more data after calling Close.

 Abort differs from Close only in that no guarantees are given
 regarding data that the application has handed over to the Transport
 System before calling Abort.

 As explained in Section 4.6, when a new stream is multiplexed on an
 already existing connection of a Transport Protocol Instance, there
 is no need for a connection establishment procedure. Because the
 Connections that are offered by the Transport System can be
 implemented as streams that are multiplexed on a transport protocol's
 connection, it can therefore not be guaranteed that one Endpoint's
 Initiate action provokes a ConnectionReceived event at its peer.

 For Close (provoking a Finished event) and Abort (provoking a
 ConnectionError event), the same logic applies: while it is desirable
 to be informed when a peer closes or aborts a Connection, whether
 this is possible depends on the underlying protocol, and no
 guarantees can be given. With SCTP, the transport system can use the
 stream reset procedure to cause a Finish event upon a Close action
 from the peer [NEAT-flow-mapping].

Brunstrom, et al. Expires May 7, 2020 [Page 29]

Internet-Draft TAPS Implementation November 2019

9. Cached State

 Beyond a single Connection's lifetime, it is useful for an
 implementation to keep state and history. This cached state can help
 improve future Connection establishment due to re-using results and
 credentials, and favoring paths and protocols that performed well in
 the past.

 Cached state may be associated with different Endpoints for the same
 Connection, depending on the protocol generating the cached content.
 For example, session tickets for TLS are associated with specific
 endpoints, and thus should be cached based on a Connection's hostname
 Endpoint (if applicable). On the other hand, performance
 characteristics of a path are more likely tied to the IP address and
 subnet being used.

9.1. Protocol state caches

 Some protocols will have long-term state to be cached in association
 with Endpoints. This state often has some time after which it is
 expired, so the implementation should allow each protocol to specify
 an expiration for cached content.

 Examples of cached protocol state include:

 o The DNS protocol can cache resolution answers (A and AAAA queries,
 for example), associated with a Time To Live (TTL) to be used for
 future hostname resolutions without requiring asking the DNS
 resolver again.

 o TLS caches session state and tickets based on a hostname, which
 can be used for resuming sessions with a server.

 o TCP can cache cookies for use in TCP Fast Open.

 Cached protocol state is primarily used during Connection
 establishment for a single Protocol Stack, but may be used to
 influence an implementation's preference between several candidate
 Protocol Stacks. For example, if two IP address Endpoints are
 otherwise equally preferred, an implementation may choose to attempt
 a connection to an address for which it has a TCP Fast Open cookie.

 Applications must have a way to flush protocol cache state if
 desired. This may be necessary, for example, if application-layer
 identifiers rotate and clients wish to avoid linkability via
 trackable TLS tickets or TFO cookies.

Brunstrom, et al. Expires May 7, 2020 [Page 30]

Internet-Draft TAPS Implementation November 2019

9.2. Performance caches

 In addition to protocol state, Protocol Instances should provide data
 into a performance-oriented cache to help guide future protocol and
 path selection. Some performance information can be gathered
 generically across several protocols to allow predictive comparisons
 between protocols on given paths:

 o Observed Round Trip Time

 o Connection Establishment latency

 o Connection Establishment success rate

 These items can be cached on a per-address and per-subnet
 granularity, and averaged between different values. The information
 should be cached on a per-network basis, since it is expected that
 different network attachments will have different performance
 characteristics. Besides Protocol Instances, other system entities
 may also provide data into performance-oriented caches. This could
 for instance be signal strength information reported by radio modems
 like Wi-Fi and mobile broadband or information about the battery-
 level of the device. Furthermore, the system may cache the observed
 maximum throughput on a path as an estimate of the available
 bandwidth.

 An implementation should use this information, when possible, to
 determine preference between candidate paths, endpoints, and protocol
 options. Eligible options that historically had significantly better
 performance than others should be selected first when gathering
 candidates (see Section 4.1) to ensure better performance for the
 application.

 The reasonable lifetime for cached performance values will vary
 depending on the nature of the value. Certain information, like the
 connection establishment success rate to a Remote Endpoint using a
 given protocol stack, can be stored for a long period of time (hours
 or longer), since it is expected that the capabilities of the Remote
 Endpoint are not changing very quickly. On the other hand, Round
 Trip Time observed by TCP over a particular network path may vary
 over a relatively short time interval. For such values, the
 implementation should remove them from the cache more quickly, or
 treat older values with less confidence/weight.

Brunstrom, et al. Expires May 7, 2020 [Page 31]

Internet-Draft TAPS Implementation November 2019

10. Specific Transport Protocol Considerations

 Each protocol that can run as part of a Transport Services
 implementation defines both its API mapping as well as implementation
 details. API mappings for a protocol apply most to Connections in
 which the given protocol is the "top" of the Protocol Stack. For
 example, the mapping of the "Send" function for TCP applies to
 Connections in which the application directly sends over TCP. If
 HTTP/2 is used on top of TCP, the HTTP/2 mappings take precendence.

 Each protocol has a notion of Connectedness. Possible values for
 Connectedness are:

 o Unconnected. Unconnected protocols do not establish explicit
 state between endpoints, and do not perform a handshake during
 Connection establishment.

 o Connected. Connected protocols establish state between endpoints,
 and perform a handshake during Connection establishment. The
 handshake may be 0-RTT to send data or resume a session, but
 bidirectional traffic is required to confirm connectedness.

 o Multiplexing Connected. Multiplexing Connected protocols share
 properties with Connected protocols, but also explictly support
 opening multiple application-level flows. This means that they
 can support cloning new Connection objects without a new explicit
 handshake.

 Protocols also define a notion of Data Unit. Possible values for
 Data Unit are:

 o Byte-stream. Byte-stream protocols do not define any Message
 boundaries of their own apart from the end of a stream in each
 direction.

 o Datagram. Datagram protocols define Message boundaries at the
 same level of transmission, such that only complete (not partial)
 Messages are supported.

 o Message. Message protocols support Message boundaries that can be
 sent and received either as complete or partial Messages. Maximum
 Message lengths can be defined, and Messages can be partially
 reliable.

 Below, primitives in the style of
 "CATEGORY.[SUBCATEGORY].PRIMITIVENAME.PROTOCOL" (e.g.,
 "CONNECT.SCTP") refer to the primitives with the same name in section

4 of [RFC8303]. For further implementation details, the description

https://datatracker.ietf.org/doc/html/rfc8303#section-4
https://datatracker.ietf.org/doc/html/rfc8303#section-4

Brunstrom, et al. Expires May 7, 2020 [Page 32]

Internet-Draft TAPS Implementation November 2019

 of these primitives in [RFC8303] points to section 3, which refers
 back the specifications for each protocol. This back-tracking method
 applies to all elements of [I-D.ietf-taps-minset] (see appendix D of
 [I-D.ietf-taps-interface]): they are listed in appendix A of
 [I-D.ietf-taps-minset] with an implementation hint in the same style,
 pointing back to section 4 of [RFC8303].

10.1. TCP

 Connectedness: Connected

 Data Unit: Byte-stream

 API mappings for TCP are as follows:

 Connection Object: TCP connections between two hosts map directly to
 Connection objects.

 Initiate: CONNECT.TCP. Calling "Initiate" on a TCP Connection
 causes it to reserve a local port, and send a SYN to the Remote
 Endpoint.

 InitiateWithSend: CONNECT.TCP with parameter "user message". Early
 idempotent data is sent on a TCP Connection in the SYN, as TCP
 Fast Open data.

 Ready: A TCP Connection is ready once the three-way handshake is
 complete.

 InitiateError: Failure of CONNECT.TCP. TCP can throw various errors
 during connection setup. Specifically, it is important to handle
 a RST being sent by the peer during the handshake.

 ConnectionError: Once established, TCP throws errors whenever the
 connection is disconnected, such as due to receiving a RST from
 the peer; or hitting a TCP retransmission timeout.

 Listen: LISTEN.TCP. Calling "Listen" for TCP binds a local port and
 prepares it to receive inbound SYN packets from peers.

 ConnectionReceived: TCP Listeners will deliver new connections once
 they have replied to an inbound SYN with a SYN-ACK.

 Clone: Calling "Clone" on a TCP Connection creates a new Connection
 with equivalent parameters. The two Connections are otherwise
 independent.

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303#section-4

Brunstrom, et al. Expires May 7, 2020 [Page 33]

Internet-Draft TAPS Implementation November 2019

 Send: SEND.TCP. TCP does not on its own preserve Message
 boundaries. Calling "Send" on a TCP connection lays out the bytes
 on the TCP send stream without any other delineation. Any Message
 marked as Final will cause TCP to send a FIN once the Message has
 been completely written, by calling CLOSE.TCP immediately upon
 successful termination of SEND.TCP.

 Receive: With RECEIVE.TCP, TCP delivers a stream of bytes without
 any Message delineation. All data delivered in the "Received" or
 "ReceivedPartial" event will be part of a single stream-wide
 Message that is marked Final (unless a Message Framer is used).
 EndOfMessage will be delivered when the TCP Connection has
 received a FIN (CLOSE-EVENT.TCP or ABORT-EVENT.TCP) from the peer.

 Close: Calling "Close" on a TCP Connection indicates that the
 Connection should be gracefully closed (CLOSE.TCP) by sending a
 FIN to the peer and waiting for a FIN-ACK before delivering the
 "Closed" event.

 Abort: Calling "Abort" on a TCP Connection indicates that the
 Connection should be immediately closed by sending a RST to the
 peer (ABORT.TCP).

10.2. UDP

 Connectedness: Unconnected

 Data Unit: Datagram

 API mappings for UDP are as follows:

 Connection Object: UDP connections represent a pair of specific IP
 addresses and ports on two hosts.

 Initiate: CONNECT.UDP. Calling "Initiate" on a UDP Connection
 causes it to reserve a local port, but does not generate any
 traffic.

 InitiateWithSend: Early data on a UDP Connection does not have any
 special meaning. The data is sent whenever the Connection is
 Ready.

 Ready: A UDP Connection is ready once the system has reserved a
 local port and has a path to send to the Remote Endpoint.

 InitiateError: UDP Connections can only generate errors on
 initiation due to port conflicts on the local system.

Brunstrom, et al. Expires May 7, 2020 [Page 34]

Internet-Draft TAPS Implementation November 2019

 ConnectionError: Once in use, UDP throws "soft errors" (ERROR.UDP(-
 Lite)) upon receiving ICMP notifications indicating failures in
 the network.

 Listen: LISTEN.UDP. Calling "Listen" for UDP binds a local port and
 prepares it to receive inbound UDP datagrams from peers.

 ConnectionReceived: UDP Listeners will deliver new connections once
 they have received traffic from a new Remote Endpoint.

 Clone: Calling "Clone" on a UDP Connection creates a new Connection
 with equivalent parameters. The two Connections are otherwise
 independent.

 Send: SEND.UDP(-Lite). Calling "Send" on a UDP connection sends the
 data as the payload of a complete UDP datagram. Marking Messages
 as Final does not change anything in the datagram's contents.
 Upon sending a UDP datagram, some relevant fields and flags in the
 IP header can be controlled: DSCP (SET_DSCP.UDP(-Lite)), DF in
 IPv4 (SET_DF.UDP(-Lite)) and ECN flag (SET_ECN.UDP(-Lite)).

 Receive: RECEIVE.UDP(-Lite). UDP only delivers complete Messages to
 "Received", each of which represents a single datagram received in
 a UDP packet. Upon receiving a UDP datagram, the ECN flag from
 the IP header can be obtained (GET_ECN.UDP(-Lite)).

 Close: Calling "Close" on a UDP Connection (ABORT.UDP(-Lite))
 releases the local port reservation.

 Abort: Calling "Abort" on a UDP Connection (ABORT.UDP(-Lite)) is
 identical to calling "Close".

10.3. TLS

 The mapping of a TLS stream abstraction into the application is
 equivalent to the contract provided by TCP (see Section 10.1), and
 builds upon many of the actions of TCP connections.

 Connectedness: Connected

 Data Unit: Byte-stream

 Connection Object: Connection objects represent a single TLS
 connection running over a TCP connection between two hosts.

 Initiate: Calling "Initiate" on a TLS Connection causes it to first
 initiate a TCP connection. Once the TCP protocol is Ready, the

Brunstrom, et al. Expires May 7, 2020 [Page 35]

Internet-Draft TAPS Implementation November 2019

 TLS handshake will be performed as a client (starting by sending a
 "client_hello", and so on).

 InitiateWithSend: Early idempotent data is supported by TLS 1.3, and
 sends encrypted application data in the first TLS message when
 performing session resumption. For older versions of TLS, or if a
 session is not being resumed, the initial data will be delayed
 until the TLS handshake is complete. TCP Fast Option can also be
 enabled automatically.

 Ready: A TLS Connection is ready once the underlying TCP connection
 is Ready, and TLS handshake is also complete and keys have been
 established to encrypt application data.

 InitiateError: In addition to TCP initiation errors, TLS can
 generate errors during its handshake. Examples of error include a
 failure of the peer to successfully authenticate, the peer
 rejecting the local authentication, or a failure to match versions
 or algorithms.

 ConnectionError: TLS connections will generate TCP errors, or errors
 due to failures to rekey or decrypt received messages.

 Listen: Calling "Listen" for TLS listens on TCP, and sets up
 received connections to perform server-side TLS handshakes.

 ConnectionReceived: TLS Listeners will deliver new connections once
 they have successfully completed both TCP and TLS handshakes.

 Clone: As with TCP, calling "Clone" on a TLS Connection creates a
 new Connection with equivalent parameters. The two Connections
 are otherwise independent.

 Send: Like TCP, TLS does not preserve message boundaries. Although
 application data is framed natively in TLS, there is not a general
 guarantee that these TLS messages represent semantically
 meaningful application stream boundaries. Rather, sending data on
 a TLS Connection only guarantees that the application data will be
 transmitted in an encrypted form. Marking Messages as Final
 causes a "close_notify" to be generated once the data has been
 written.

 Receive: Like TCP, TLS delivers a stream of bytes without any
 Message delineation. The data is decrypted prior to being
 delivered to the application. If a "close_notify" is received,
 the stream-wide Message will be delivered with EndOfMessage set.

Brunstrom, et al. Expires May 7, 2020 [Page 36]

Internet-Draft TAPS Implementation November 2019

 Close: Calling "Close" on a TLS Connection indicates that the
 Connection should be gracefully closed by sending a "close_notify"
 to the peer and waiting for a corresponding "close_notify" before
 delivering the "Closed" event.

 Abort: Calling "Abort" on a TCP Connection indicates that the
 Connection should be immediately closed by sending a
 "close_notify", optionally preceded by "user_canceled", to the
 peer. Implementations do not need to wait to receive
 "close_notify" before delivering the "Closed" event.

10.4. DTLS

 DTLS follows the same behavior as TLS (Section 10.3), with the
 notable exception of not inheriting behavior directly from TCP.
 Differences from TLS are detailed below, and all cases not explicitly
 mentioned should be considered the same as TLS.

 Connectedness: Connected

 Data Unit: Datagram

 Connection Object: Connection objects represent a single DTLS
 connection running over a set of UDP ports between two hosts.

 Initiate: Calling "Initiate" on a DTLS Connection causes it reserve
 a UDP local port, and begin sending handshake messages to the peer
 over UDP. These messages are reliable, and will be automatically
 retransmitted.

 Ready: A DTLS Connection is ready once the TLS handshake is complete
 and keys have been established to encrypt application data.

 Send: Sending over DTLS does preserve message boundaries in the same
 way that UDP datagrams do. Marking a Message as Final does send a
 "close_notify" like TLS.

 Receive: Receiving over DTLS delivers one decrypted Message for each
 received DTLS datagram. If a "close_notify" is received, a
 Message will be delivered that is marked as Final.

10.5. HTTP

 HTTP requests and responses map naturally into Messages, since they
 are delineated chunks of data with metadata that can be sent over a
 transport. To that end, HTTP can be seen as the most prevalent
 framing protocol that runs on top of streams like TCP, TLS, etc.

Brunstrom, et al. Expires May 7, 2020 [Page 37]

Internet-Draft TAPS Implementation November 2019

 In order to use a transport Connection that provides HTTP Message
 support, the establishment and closing of the connection can be
 treated as it would without the framing protocol. Sending and
 receiving of Messages, however, changes to treat each Message as a
 well-delineated HTTP request or response, with the content of the
 Message representing the body, and the Headers being provided in
 Message metadata.

 Connectedness: Multiplexing Connected

 Data Unit: Message

 Connection Object: Connection objects represent a flow of HTTP
 messages between a client and a server, which may be an HTTP/1.1
 connection over TCP, or a single stream in an HTTP/2 connection.

 Initiate: Calling "Initiate" on an HTTP connection intiates a TCP or
 TLS connection as a client.

 Clone: Calling "Clone" on an HTTP Connection opens a new stream on
 an existing HTTP/2 connection when possible. If the underlying
 version does not support multiplexed streams, calling "Clone"
 simply creates a new parallel connection.

 Send: When an application sends an HTTP Message, it is expected to
 provide HTTP header values as a MessageContext in a canonical
 form, along with any associated HTTP message body as the Message
 data. The HTTP header values are encoded in the specific version
 format upon sending.

 Receive: HTTP Connections deliver Messages in which HTTP header
 values attached to MessageContexts, and HTTP bodies in Message
 data.

 Close: Calling "Close" on an HTTP Connection will only close the
 underlying TLS or TCP connection if the HTTP version does not
 support multiplexing. For HTTP/2, for example, closing the
 connection only closes a specific stream.

10.6. QUIC

 QUIC provides a multi-streaming interface to an encrypted transport.
 Each stream can be viewed as equivalent to a TLS stream over TCP, so
 a natural mapping is to present each QUIC stream as an individual
 Connection. The protocol for the stream will be considered Ready
 whenever the underlying QUIC connection is established to the point
 that this stream's data can be sent. For streams after the first
 stream, this will likely be an immediate operation.

Brunstrom, et al. Expires May 7, 2020 [Page 38]

Internet-Draft TAPS Implementation November 2019

 Closing a single QUIC stream, presented to the application as a
 Connection, does not imply closing the underlying QUIC connection
 itself. Rather, the implementation may choose to close the QUIC
 connection once all streams have been closed (often after some
 timeout), or after an individual stream Connection sends an Abort.

 Connectedness: Multiplexing Connected

 Data Unit: Stream

 Connection Object: Connection objects represent a single QUIC stream
 on a QUIC connection.

10.7. HTTP/2 transport

 Similar to QUIC (Section 10.6), HTTP/2 provides a multi-streaming
 interface. This will generally use HTTP as the unit of Messages over
 the streams, in which each stream can be represented as a transport
 Connection. The lifetime of streams and the HTTP/2 connection should
 be managed as described for QUIC.

 It is possible to treat each HTTP/2 stream as a raw byte-stream
 instead of a carrier for HTTP messages, in which case the Messages
 over the streams can be represented similarly to the TCP stream (one
 Message per direction, see Section 10.1).

 Connectedness: Multiplexing Connected

 Data Unit: Stream

 Connection Object: Connection objects represent a single HTTP/2
 stream on a HTTP/2 connection.

10.8. SCTP

 Connectedness: Connected

 Data Unit: Message

 API mappings for SCTP are as follows:

 Connection Object: Connection objects represent a flow of SCTP
 messages between a client and a server, which may be an SCTP
 association or a stream in a SCTP association. How to map
 Connection objects to streams is described in [NEAT-flow-mapping];
 in the following, a similar method is described. To map
 Connection objects to SCTP streams without head-of-line blocking
 on the sender side, both the sending and receiving SCTP

Brunstrom, et al. Expires May 7, 2020 [Page 39]

Internet-Draft TAPS Implementation November 2019

 implementation must support message interleaving [RFC8260]. Both
 SCTP implementations must also support stream reconfiguration.
 Finally, both communicating endpoints must be aware of this
 intended multiplexing; [NEAT-flow-mapping] describes a way for a
 Transport System to negotiate the stream mapping capability using
 SCTP's adaptation layer indication, such that this functionality
 would only take effect if both ends sides are aware of it. The
 first flow, for which the SCTP association has been created, will
 always use stream id zero. All additional flows are assigned to
 unused stream ids in growing order. To avoid a conflict when both
 endpoints map new flows simultaneously, the peer which initiated
 the transport connection will use even stream numbers whereas the
 remote side will map its flows to odd stream numbers. Both sides
 maintain a status map of the assigned stream numbers. Generally,
 new streams must consume the lowest available (even or odd,
 depending on the side) stream number; this rule is relevant when
 lower numbers become available because Connection objects
 associated to the streams are closed.

 Initiate: If this is the only Connection object that is assigned to
 the SCTP association or stream mapping has not been negotiated,
 CONNECT.SCTP is called. Else, a new stream is used: if there are
 enough streams available, "Initiate" is just a local operation
 that assigns a new stream number to the Connection object. The
 number of streams is negotiated as a parameter of the prior
 CONNECT.SCTP call, and it represents a trade-off between local
 resource usage and the number of Connection objects that can be
 mapped without requiring a reconfiguration signal. When running
 out of streams, ADD_STREAM.SCTP must be called.

 InitiateWithSend: If this is the only Connection object that is
 assigned to the SCTP association or stream mapping has not been
 negotiated, CONNECT.SCTP is called with the "user message"
 parameter. Else, a new stream is used (see "Initiate" for how to
 handle running out of streams), and this just sends the first
 message on a new stream.

 Ready: "Initiate" or "InitiateWithSend" returns without an error,
 i.e. SCTP's four-way handshake has completed. If an association
 with the peer already exists, and stream mapping has been
 negotiated and enough streams are available, a Connection Object
 instantly becomes Ready after calling "Initiate" or
 "InitiateWithSend".

 InitiateError: Failure of CONNECT.SCTP.

 ConnectionError: TIMEOUT.SCTP or ABORT-EVENT.SCTP.

https://datatracker.ietf.org/doc/html/rfc8260

Brunstrom, et al. Expires May 7, 2020 [Page 40]

Internet-Draft TAPS Implementation November 2019

 Listen: LISTEN.SCTP. If an association with the peer already exists
 and stream mapping has been negotiated, "Listen" just expects to
 receive a new message on a new stream id (chosen in accordance
 with the stream number assignment procedure described above).

 ConnectionReceived: LISTEN.SCTP returns without an error (a result
 of successful CONNECT.SCTP from the peer), or, in case of stream
 mapping, the first message has arrived on a new stream (in this
 case, "Receive" is also invoked).

 Clone: Calling "Clone" on an SCTP association creates a new
 Connection object and assigns it a new stream number in accordance
 with the stream number assignment procedure described above. If
 there are not enough streams available, ADD_STREAM.SCTP must be
 called.

 Priority (Connection): When this value is changed, or a Message with
 Message Property "Priority" is sent, and there are multiple
 Connection objects assigned to the same SCTP association,
 CONFIGURE_STREAM_SCHEDULER.SCTP is called to adjust the priorities
 of streams in the SCTP association.

 Send: SEND.SCTP. Message Properties such as "Lifetime" and
 "Ordered" map to parameters of this primitive.

 Receive: RECEIVE.SCTP. The "partial flag" of RECEIVE.SCTP invokes a
 "ReceivedPartial" event.

 Close: If this is the only Connection object that is assigned to the
 SCTP association, CLOSE.SCTP is called. Else, the Connection object
 is one out of several Connection objects that are assigned to the
 same SCTP assocation, and RESET_STREAM.SCTP must be called, which
 informs the peer that the stream will no longer be used for mapping
 and can be used by future "Initiate", "InitiateWithSend" or "Listen"
 calls. At the peer, the event RESET_STREAM-EVENT.SCTP will fire,
 which the peer must answer by issuing RESET_STREAM.SCTP too. The
 resulting local RESET_STREAM-EVENT.SCTP informs the transport system
 that the stream number can now be re-used by the next "Initiate",
 "InitiateWithSend" or "Listen" calls.

 Abort: If this is the only Connection object that is assigned to the
 SCTP association, ABORT.SCTP is called. Else, the Connection object
 is one out of several Connection objects that are assigned to the
 same SCTP assocation, and shutdown proceeds as described under
 "Close".

Brunstrom, et al. Expires May 7, 2020 [Page 41]

Internet-Draft TAPS Implementation November 2019

11. IANA Considerations

 RFC-EDITOR: Please remove this section before publication.

 This document has no actions for IANA.

12. Security Considerations

12.1. Considerations for Candidate Gathering

 Implementations should avoid downgrade attacks that allow network
 interference to cause the implementation to select less secure, or
 entirely insecure, combinations of paths and protocols.

12.2. Considerations for Candidate Racing

 See Section 5.3 for security considerations around racing with 0-RTT
 data.

 An attacker that knows a particular device is racing several options
 during connection establishment may be able to block packets for the
 first connection attempt, thus inducing the device to fall back to a
 secondary attempt. This is a problem if the secondary attempts have
 worse security properties that enable further attacks.
 Implementations should ensure that all options have equivalent
 security properties to avoid incentivizing attacks.

 Since results from the network can determine how a connection attempt
 tree is built, such as when DNS returns a list of resolved endpoints,
 it is possible for the network to cause an implementation to consume
 significant on-device resources. Implementations should limit the
 maximum amount of state allowed for any given node, including the
 number of child nodes, especially when the state is based on results
 from the network.

13. Acknowledgements

 This work has received funding from the European Union's Horizon 2020
 research and innovation programme under grant agreement No. 644334
 (NEAT).

 This work has been supported by Leibniz Prize project funds of DFG -
 German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
 FE 570/4-1).

 This work has been supported by the UK Engineering and Physical
 Sciences Research Council under grant EP/R04144X/1.

Brunstrom, et al. Expires May 7, 2020 [Page 42]

Internet-Draft TAPS Implementation November 2019

 This work has been supported by the Research Council of Norway under
 its "Toppforsk" programme through the "OCARINA" project.

 Thanks to Stuart Cheshire, Josh Graessley, David Schinazi, and Eric
 Kinnear for their implementation and design efforts, including Happy
 Eyeballs, that heavily influenced this work.

14. References

14.1. Normative References

 [I-D.ietf-taps-arch]
 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G.,
 Perkins, C., Tiesel, P., and C. Wood, "An Architecture for
 Transport Services", draft-ietf-taps-arch-04 (work in
 progress), July 2019.

 [I-D.ietf-taps-interface]
 Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,
 Kuehlewind, M., Perkins, C., Tiesel, P., Wood, C., and T.
 Pauly, "An Abstract Application Layer Interface to
 Transport Services", draft-ietf-taps-interface-04 (work in
 progress), July 2019.

 [I-D.ietf-taps-minset]
 Welzl, M. and S. Gjessing, "A Minimal Set of Transport
 Services for End Systems", draft-ietf-taps-minset-11 (work
 in progress), September 2018.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

 [RFC8303] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",

RFC 8303, DOI 10.17487/RFC8303, February 2018,
 <https://www.rfc-editor.org/info/rfc8303>.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-04
https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-04
https://datatracker.ietf.org/doc/html/draft-ietf-taps-minset-11
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://datatracker.ietf.org/doc/html/rfc8303
https://www.rfc-editor.org/info/rfc8303

Brunstrom, et al. Expires May 7, 2020 [Page 43]

Internet-Draft TAPS Implementation November 2019

 [RFC8304] Fairhurst, G. and T. Jones, "Transport Features of the
 User Datagram Protocol (UDP) and Lightweight UDP (UDP-
 Lite)", RFC 8304, DOI 10.17487/RFC8304, February 2018,
 <https://www.rfc-editor.org/info/rfc8304>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

14.2. Informative References

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-23 (work
 in progress), September 2019.

 [NEAT-flow-mapping]
 "Transparent Flow Mapping for NEAT (in Workshop on Future
 of Internet Transport (FIT 2017))", n.d..

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <https://www.rfc-editor.org/info/rfc5245>.

 [Trickle] "Trickle - Rate Limiting YouTube Video Streaming (ATC
 2012)", n.d..

14.3. URIs

 [1] https://developer.apple.com/documentation/network

 [2] https://github.com/NEAT-project/neat

 [3] https://www.neat-project.org

 [4] https://github.com/fg-inet/python-asyncio-taps

https://datatracker.ietf.org/doc/html/rfc8304
https://www.rfc-editor.org/info/rfc8304
https://datatracker.ietf.org/doc/html/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-23
https://datatracker.ietf.org/doc/html/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://developer.apple.com/documentation/network
https://github.com/NEAT-project/neat
https://www.neat-project.org
https://github.com/fg-inet/python-asyncio-taps

Brunstrom, et al. Expires May 7, 2020 [Page 44]

Internet-Draft TAPS Implementation November 2019

Appendix A. Additional Properties

 This appendix discusses implementation considerations for additional
 parameters and properties that could be used to enhance transport
 protocol and/or path selection, or the transmission of messages given
 a Protocol Stack that implements them. These are not part of the
 interface, and may be removed from the final document, but are
 presented here to support discussion within the TAPS working group as
 to whether they should be added to a future revision of the base
 specification.

A.1. Properties Affecting Sorting of Branches

 In addition to the Protocol and Path Selection Properties discussed
 in Section 4.3, the following properties under discussion can
 influence branch sorting:

 o Bounds on Send or Receive Rate: If the application indicates a
 bound on the expected Send or Receive bitrate, an implementation
 may prefer a path that can likely provide the desired bandwidth,
 based on cached maximum throughput, see Section 9.2. The
 application may know the Send or Receive Bitrate from metadata in
 adaptive HTTP streaming, such as MPEG-DASH.

 o Cost Preferences: If the application indicates a preference to
 avoid expensive paths, and some paths are associated with a
 monetary cost, an implementation should decrease the ranking of
 such paths. If the application indicates that it prohibits using
 expensive paths, paths that are associated with a cost should be
 purged from the decision tree.

Appendix B. Reasons for errors

 The Transport Services API [I-D.ietf-taps-interface] allows for the
 several generic error types to specify a more detailed reason as to
 why an error occurred. This appendix lists some of the possible
 reasons.

 o InvalidConfiguration: The transport properties and endpoints
 provided by the application are either contradictory or
 incomplete. Examples include the lack of a remote endpoint on an
 active open or using a multicast group address while not
 requesting a unidirectional receive.

 o NoCandidates: The configuration is valid, but none of the
 available transport protocols can satisfy the transport properties
 provided by the application.

Brunstrom, et al. Expires May 7, 2020 [Page 45]

Internet-Draft TAPS Implementation November 2019

 o ResolutionFailed: The remote or local specifier provided by the
 application can not be resolved.

 o EstablishmentFailed: The TAPS system was unable to establish a
 transport-layer connection to the remote endpoint specified by the
 application.

 o PolicyProhibited: The system policy prevents the transport system
 from performing the action requested by the application.

 o NotCloneable: The protocol stack is not capable of being cloned.

 o MessageTooLarge: The message size is too big for the transport
 system to handle.

 o ProtocolFailed: The underlying protocol stack failed.

 o InvalidMessageProperties: The message properties are either
 contradictory to the transport properties or they can not be
 satisfied by the transport system.

 o DeframingFailed: The data that was received by the underlying
 protocol stack could not be deframed.

 o ConnectionAborted: The connection was aborted by the peer.

 o Timeout: Delivery of a message was not possible after a timeout.

Appendix C. Existing Implementations

 This appendix gives an overview of existing implementations, at the
 time of writing, of transport systems that are (to some degree) in
 line with this document.

 o Apple's Network.framework:

 * [A very brief introduction should be added]

 * Documentation: https://developer.apple.com/documentation/
network [1]

 o NEAT:

 * NEAT is the output of the European H2020 research project
 "NEAT"; it is a user-space library for protocol-independent
 communication on top of TCP, UDP and SCTP, with many more
 features such as a policy manager.

https://developer.apple.com/documentation/network
https://developer.apple.com/documentation/network

Brunstrom, et al. Expires May 7, 2020 [Page 46]

Internet-Draft TAPS Implementation November 2019

 * Code: https://github.com/NEAT-project/neat [2]

 * NEAT project: https://www.neat-project.org [3]

 o PyTAPS:

 * A TAPS implementation based on Python asyncio, offering
 protocol-independent communication to applications on top of
 TCP, UDP and TLS, with support for multicast.

 * Code: https://github.com/fg-inet/python-asyncio-taps [4]

Authors' Addresses

 Anna Brunstrom (editor)
 Karlstad University
 Universitetsgatan 2
 651 88 Karlstad
 Sweden

 Email: anna.brunstrom@kau.se

 Tommy Pauly (editor)
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Theresa Enghardt
 TU Berlin
 Marchstrasse 23
 10587 Berlin
 Germany

 Email: theresa@inet.tu-berlin.de

 Karl-Johan Grinnemo
 Karlstad University
 Universitetsgatan 2
 651 88 Karlstad
 Sweden

 Email: karl-johan.grinnemo@kau.se

https://github.com/NEAT-project/neat
https://www.neat-project.org
https://github.com/fg-inet/python-asyncio-taps

Brunstrom, et al. Expires May 7, 2020 [Page 47]

Internet-Draft TAPS Implementation November 2019

 Tom Jones
 University of Aberdeen
 Fraser Noble Building
 Aberdeen, AB24 3UE
 UK

 Email: tom@erg.abdn.ac.uk

 Philipp S. Tiesel
 TU Berlin
 Einsteinufer 25
 10587 Berlin
 Germany

 Email: philipp@tiesel.net

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 0316 Oslo
 Norway

 Email: michawe@ifi.uio.no

Brunstrom, et al. Expires May 7, 2020 [Page 48]

