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Abstract

   The Transport Services architecture [I-D.ietf-taps-arch] defines a
   system that allows applications to use transport networking protocols
   flexibly.  This document serves as a guide to implementation on how
   to build such a system.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 7, 2020.
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1.  Introduction

   The Transport Services architecture [I-D.ietf-taps-arch] defines a
   system that allows applications to use transport networking protocols
   flexibly.  The interface such a system exposes to applications is
   defined as the Transport Services API [I-D.ietf-taps-interface].
   This API is designed to be generic across multiple transport
   protocols and sets of protocols features.

   This document serves as a guide to implementation on how to build a
   system that provides a Transport Services API.  It is the job of an
   implementation of a Transport Services system to turn the requests of
   an application into decisions on how to establish connections, and
   how to transfer data over those connections once established.  The
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   terminology used in this document is based on the Architecture
   [I-D.ietf-taps-arch].

2.  Implementing Connection Objects

   The connection objects that are exposed to applications for Transport
   Services are:

   o  the Preconnection, the bundle of properties that describes the
      application constraints on the transport;

   o  the Connection, the basic object that represents a flow of data in
      either direction between the Local and Remote Endpoints;

   o  and the Listener, a passive waiting object that delivers new
      Connections.

   Preconnection objects should be implemented as bundles of properties
   that an application can both read and write.  Once a Preconnection
   has been used to create an outbound Connection or a Listener, the
   implementation should ensure that the copy of the properties held by
   the Connection or Listener is immutable.  This may involve performing
   a deep-copy if the application is still able to modify properties on
   the original Preconnection object.

   Connection objects represent the interface between the application
   and the implementation to manage transport state, and conduct data
   transfer.  During the process of establishment (Section 4), the
   Connection will be unbound to a specific transport flow, since there
   may be multiple candidate Protocol Stacks being raced.  Once the
   Connection is established, the object should be considered mapped to
   a specific Protocol Stack.  The notion of a Connection maps to many
   different protocols, depending on the Protocol Stack.  For example,
   the Connection may ultimately represent the interface into a TCP
   connection, a TLS session over TCP, a UDP flow with fully-specified
   local and remote endpoints, a DTLS session, a SCTP stream, a QUIC
   stream, or an HTTP/2 stream.

   Listener objects are created with a Preconnection, at which point
   their configuration should be considered immutable by the
   implementation.  The process of listening is described in

Section 4.8.

3.  Implementing Pre-Establishment

   During pre-establishment the application specifies the Endpoints to
   be used for communication as well as its preferences via Selection
   Properties and, if desired, also Connection Properties.  Generally,
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   Connection Properties should be configured as early as possible, as
   they may serve as input to decisions that are made by the
   implementation (the Capacity Profile may guide usage of a protocol
   offering scavenger-type congestion control, for example).  In the
   remainder of this document, we only refer to Selection Properties
   because they are the more typical case and have to be handled by all
   implementations.

   The implementation stores these objects and properties as part of the
   Preconnection object for use during connection establishment.  For
   Selection Properties that are not provided by the application, the
   implementation must use the default values specified in the Transport
   Services API ([I-D.ietf-taps-interface]).

3.1.  Configuration-time errors

   The transport system should have a list of supported protocols
   available, which each have transport features reflecting the
   capabilities of the protocol.  Once an application specifies its
   Transport Parameters, the transport system should match the required
   and prohibited properties against the transport features of the
   available protocols.

   In the following cases, failure should be detected during pre-
   establishment:

   o  The application requested Protocol Properties that include
      requirements or prohibitions that cannot be satisfied by any of
      the available protocols.  For example, if an application requires
      "Configure Reliability per Message", but no such protocol is
      available on the host running the transport system, e.g., because
      SCTP is not supported by the operating system, this should result
      in an error.

   o  The application requested Protocol Properties that are in conflict
      with each other, i.e., the required and prohibited properties
      cannot be satisfied by the same protocol.  For example, if an
      application prohibits "Reliable Data Transfer" but then requires
      "Configure Reliability per Message", this mismatch should result
      in an error.

   It is important to fail as early as possible in such cases in order
   to avoid allocating resources, e.g., to endpoint resolution, only to
   find out later that there is no protocol that satisfies the
   requirements.
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3.2.  Role of system policy

   The properties specified during pre-establishment have a close
   connection to system policy.  The implementation is responsible for
   combining and reconciling several different sources of preferences
   when establishing Connections.  These include, but are not limited
   to:

   1.  Application preferences, i.e., preferences specified during the
       pre-establishment via Selection Properties.

   2.  Dynamic system policy, i.e., policy compiled from internally and
       externally acquired information about available network
       interfaces, supported transport protocols, and current/previous
       Connections.  Examples of ways to externally retrieve policy-
       support information are through OS-specific statistics/
       measurement tools and tools that reside on middleboxes and
       routers.

   3.  Default implementation policy, i.e., predefined policy by OS or
       application.

   In general, any protocol or path used for a connection must conform
   to all three sources of constraints.  Any violation of any of the
   layers should cause a protocol or path to be considered ineligible
   for use.  For an example of application preferences leading to
   constraints, an application may prohibit the use of metered network
   interfaces for a given Connection to avoid user cost.  Similarly, the
   system policy at a given time may prohibit the use of such a metered
   network interface from the application's process.  Lastly, the
   implementation itself may default to disallowing certain network
   interfaces unless explicitly requested by the application and allowed
   by the system.

   It is expected that the database of system policies and the method of
   looking up these policies will vary across various platforms.  An
   implementation should attempt to look up the relevant policies for
   the system in a dynamic way to make sure it is reflecting an accurate
   version of the system policy, since the system's policy regarding the
   application's traffic may change over time due to user or
   administrative changes.

4.  Implementing Connection Establishment

   The process of establishing a network connection begins when an
   application expresses intent to communicate with a remote endpoint by
   calling Initiate.  (At this point, any constraints or requirements
   the application may have on the connection are available from pre-
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   establishment.)  The process can be considered complete once there is
   at least one Protocol Stack that has completed any required setup to
   the point that it can transmit and receive the application's data.

   Connection establishment is divided into two top-level steps:
   Candidate Gathering, to identify the paths, protocols, and endpoints
   to use, and Candidate Racing, in which the necessary protocol
   handshakes are conducted so that the transport system can select
   which set to use.  This document structures candidates for racing as
   a tree.

   The most simple example of this process might involve identifying the
   single IP address to which the implementation wishes to connect,
   using the system's current default interface or path, and starting a
   TCP handshake to establish a stream to the specified IP address.
   However, each step may also vary depending on the requirements of the
   connection: if the endpoint is defined as a hostname and port, then
   there may be multiple resolved addresses that are available; there
   may also be multiple interfaces or paths available, other than the
   default system interface; and some protocols may not need any
   transport handshake to be considered "established" (such as UDP),
   while other connections may utilize layered protocol handshakes, such
   as TLS over TCP.

   Whenever an implementation has multiple options for connection
   establishment, it can view the set of all individual connection
   establishment options as a single, aggregate connection
   establishment.  The aggregate set conceptually includes every valid
   combination of endpoints, paths, and protocols.  As an example,
   consider an implementation that initiates a TCP connection to a
   hostname + port endpoint, and has two valid interfaces available (Wi-
   Fi and LTE).  The hostname resolves to a single IPv4 address on the
   Wi-Fi network, and resolves to the same IPv4 address on the LTE
   network, as well as a single IPv6 address.  The aggregate set of
   connection establishment options can be viewed as follows:

Aggregate [Endpoint: www.example.com:80] [Interface: Any]   [Protocol: TCP]
|-> [Endpoint: 192.0.2.1:80]       [Interface: Wi-Fi] [Protocol: TCP]
|-> [Endpoint: 192.0.2.1:80]       [Interface: LTE]   [Protocol: TCP]
|-> [Endpoint: 2001:DB8::1.80]     [Interface: LTE]   [Protocol: TCP]

   Any one of these sub-entries on the aggregate connection attempt
   would satisfy the original application intent.  The concern of this
   section is the algorithm defining which of these options to try,
   when, and in what order.
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4.1.  Candidate Gathering

   The step of gathering candidates involves identifying which paths,
   protocols, and endpoints may be used for a given Connection.  This
   list is determined by the requirements, prohibitions, and preferences
   of the application as specified in the Selection Properties.

4.1.1.  Gathering Endpoint Candidates

   Both Local and Remote Endpoint Candidates must be discovered during
   connection establishment.  To support ICE, or similar protocols, that
   involve out-of-band indirect signalling to exchange candidates with
   the Remote Endpoint, it's important to be able to query the set of
   candidate Local Endpoints, and give the protocol stack a set of
   candidate Remote Endpoints, before it attempts to establish
   connections.

4.1.1.1.  Local Endpoint candidates

   The set of possible Local Endpoints is gathered.  In the simple case,
   this merely enumerates the local interfaces and protocols, allocates
   ephemeral source ports.  For example, a system that has WiFi and
   Ethernet and supports IPv4 and IPv6 might gather four candidate
   locals (IPv4 on Ethernet, IPv6 on Ethernet, IPv4 on WiFi, and IPv6 on
   WiFi) that can form the source for a transient.

   If NAT traversal is required, the process of gathering Local
   Endpoints becomes broadly equivalent to the ICE candidate gathering
   phase [RFC5245].  The endpoint determines its server reflexive Local
   Endpoints (i.e., the translated address of a local, on the other side
   of a NAT) and relayed locals (e.g., via a TURN server or other
   relay), for each interface and network protocol.  These are added to
   the set of candidate Local Endpoints for this connection.

   Gathering Local Endpoints is primarily a local operation, although it
   might involve exchanges with a STUN server to derive server reflexive
   locals, or with a TURN server or other relay to derive relayed
   locals.  It does not involve communication with the Remote Endpoint.

4.1.1.2.  Remote Endpoint Candidates

   The Remote Endpoint is typically a name that needs to be resolved
   into a set of possible addresses that can be used for communication.
   Resolving the Remote Endpoint is the process of recursively
   performing such name lookups, until fully resolved, to return the set
   of candidates for the remote of this connection.

https://datatracker.ietf.org/doc/html/rfc5245
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   How this is done will depend on the type of the Remote Endpoint, and
   can also be specific to each Local Endpoint.  A common case is when
   the Remote Endpoint is a DNS name, in which case it is resolved to
   give a set of IPv4 and IPv6 addresses representing that name.  Some
   types of remote might require more complex resolution.  Resolving the
   Remote Endpoint for a peer-to-peer connection might involve
   communication with a rendezvous server, which in turn contacts the
   peer to gain consent to communicate and retrieve its set of candidate
   locals, which are returned and form the candidate remote addresses
   for contacting that peer.

   Resolving the remote is not a local operation.  It will involve a
   directory service, and can require communication with the remote to
   rendezvous and exchange peer addresses.  This can expose some or all
   of the candidate locals to the remote.

4.1.2.  Structuring Options as a Tree

   When an implementation responsible for connection establishment needs
   to consider multiple options, it should logically structure these
   options as a hierarchical tree.  Each leaf node of the tree
   represents a single, coherent connection attempt, with an Endpoint, a
   Path, and a set of protocols that can directly negotiate and send
   data on the network.  Each node in the tree that is not a leaf
   represents a connection attempt that is either underspecified, or
   else includes multiple distinct options.  For example. when
   connecting on an IP network, a connection attempt to a hostname and
   port is underspecified, because the connection attempt requires a
   resolved IP address as its remote endpoint.  In this case, the node
   represented by the connection attempt to the hostname is a parent
   node, with child nodes for each IP address.  Similarly, an
   implementation that is allowed to connect using multiple interfaces
   will have a parent node of the tree for the decision between the
   paths, with a branch for each interface.

   The example aggregate connection attempt above can be drawn as a tree
   by grouping the addresses resolved on the same interface into
   branches:
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                             ||
                +==========================+
                |  www.example.com:80/Any  |
                +==========================+
                  //                    \\
+==========================+       +==========================+
| www.example.com:80/Wi-Fi |       |  www.example.com:80/LTE  |
+==========================+       +==========================+
             ||                      //                    \\
  +====================+  +====================+  +======================+
  | 192.0.2.1:80/Wi-Fi |  |  192.0.2.1:80/LTE  |  |  2001:DB8::1.80/LTE  |
  +====================+  +====================+  +======================+

   The rest of this section will use a notation scheme to represent this
   tree.  The parent (or trunk) node of the tree will be represented by
   a single integer, such as "1".  Each child of that node will have an
   integer that identifies it, from 1 to the number of children.  That
   child node will be uniquely identified by concatenating its integer
   to it's parents identifier with a dot in between, such as "1.1" and
   "1.2".  Each node will be summarized by a tuple of three elements:
   Endpoint, Path, and Protocol.  The above example can now be written
   more succinctly as:

   1 [www.example.com:80, Any, TCP]
     1.1 [www.example.com:80, Wi-Fi, TCP]
       1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
     1.2 [www.example.com:80, LTE, TCP]
       1.2.1 [192.0.2.1:80, LTE, TCP]
       1.2.2 [2001:DB8::1.80, LTE, TCP]

   When an implementation views this aggregate set of connection
   attempts as a single connection establishment, it only will use one
   of the leaf nodes to transfer data.  Thus, when a single leaf node
   becomes ready to use, then the entire connection attempt is ready to
   use by the application.  Another way to represent this is that every
   leaf node updates the state of its parent node when it becomes ready,
   until the trunk node of the tree is ready, which then notifies the
   application that the connection as a whole is ready to use.

   A connection establishment tree may be degenerate, and only have a
   single leaf node, such as a connection attempt to an IP address over
   a single interface with a single protocol.

   1 [192.0.2.1:80, Wi-Fi, TCP]

   A parent node may also only have one child (or leaf) node, such as a
   when a hostname resolves to only a single IP address.
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   1 [www.example.com:80, Wi-Fi, TCP]
     1.1 [192.0.2.1:80, Wi-Fi, TCP]

4.1.3.  Branch Types

   There are three types of branching from a parent node into one or
   more child nodes.  Any parent node of the tree must only use one type
   of branching.

4.1.3.1.  Derived Endpoints

   If a connection originally targets a single endpoint, there may be
   multiple endpoints of different types that can be derived from the
   original.  The connection library should order the derived endpoints
   according to application preference, system policy and expected
   performance.

   DNS hostname-to-address resolution is the most common method of
   endpoint derivation.  When trying to connect to a hostname endpoint
   on a traditional IP network, the implementation should send DNS
   queries for both A (IPv4) and AAAA (IPv6) records if both are
   supported on the local link.  The algorithm for ordering and racing
   these addresses should follow the recommendations in Happy Eyeballs
   [RFC8305].

   1 [www.example.com:80, Wi-Fi, TCP]
     1.1 [2001:DB8::1.80, Wi-Fi, TCP]
     1.2 [192.0.2.1:80, Wi-Fi, TCP]
     1.3 [2001:DB8::2.80, Wi-Fi, TCP]
     1.4 [2001:DB8::3.80, Wi-Fi, TCP]

   DNS-Based Service Discovery can also provide an endpoint derivation
   step.  When trying to connect to a named service, the client may
   discover one or more hostname and port pairs on the local network
   using multicast DNS.  These hostnames should each be treated as a
   branch which can be attempted independently from other hostnames.
   Each of these hostnames may also resolve to one or more addresses,
   thus creating multiple layers of branching.

   1 [term-printer._ipp._tcp.meeting.ietf.org, Wi-Fi, TCP]
     1.1 [term-printer.meeting.ietf.org:631, Wi-Fi, TCP]
       1.1.1 [31.133.160.18.631, Wi-Fi, TCP]

4.1.3.2.  Alternate Paths

   If a client has multiple network interfaces available to it, such as
   mobile client with both Wi-Fi and Cellular connectivity, it can
   attempt a connection over either interface.  This represents a branch

https://datatracker.ietf.org/doc/html/rfc8305
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   point in the connection establishment.  Like with derived endpoints,
   the interfaces should be ranked based on preference, system policy,
   and performance.  Attempts should be started on one interface, and
   then on other interfaces successively after delays based on expected
   round-trip-time or other available metrics.

   1 [192.0.2.1:80, Any, TCP]
     1.1 [192.0.2.1:80, Wi-Fi, TCP]
     1.2 [192.0.2.1:80, LTE, TCP]

   This same approach applies to any situation in which the client is
   aware of multiple links or views of the network.  Multiple Paths,
   each with a coherent set of addresses, routes, DNS server, and more,
   may share a single interface.  A path may also represent a virtual
   interface service such as a Virtual Private Network (VPN).

   The list of available paths should be constrained by any requirements
   or prohibitions the application sets, as well as system policy.

4.1.3.3.  Protocol Options

   Differences in possible protocol compositions and options can also
   provide a branching point in connection establishment.  This allows
   clients to be resilient to situations in which a certain protocol is
   not functioning on a server or network.

   This approach is commonly used for connections with optional proxy
   server configurations.  A single connection may be allowed to use an
   HTTP-based proxy, a SOCKS-based proxy, or connect directly.  These
   options should be ranked and attempted in succession.

   1 [www.example.com:80, Any, HTTP/TCP]
     1.1 [192.0.2.8:80, Any, HTTP/HTTP Proxy/TCP]
     1.2 [192.0.2.7:10234, Any, HTTP/SOCKS/TCP]
     1.3 [www.example.com:80, Any, HTTP/TCP]
       1.3.1 [192.0.2.1:80, Any, HTTP/TCP]

   This approach also allows a client to attempt different sets of
   application and transport protocols that may provide preferable
   characteristics when available.  For example, the protocol options
   could involve QUIC [I-D.ietf-quic-transport] over UDP on one branch,
   and HTTP/2 [RFC7540] over TLS over TCP on the other:

   1 [www.example.com:443, Any, Any HTTP]
     1.1 [www.example.com:443, Any, QUIC/UDP]
       1.1.1 [192.0.2.1:443, Any, QUIC/UDP]
     1.2 [www.example.com:443, Any, HTTP2/TLS/TCP]
       1.2.1 [192.0.2.1:443, Any, HTTP2/TLS/TCP]

https://datatracker.ietf.org/doc/html/rfc7540


Brunstrom, et al.          Expires May 7, 2020                 [Page 12]



Internet-Draft             TAPS Implementation             November 2019

   Another example is racing SCTP with TCP:

   1 [www.example.com:80, Any, Any Stream]
     1.1 [www.example.com:80, Any, SCTP]
       1.1.1 [192.0.2.1:80, Any, SCTP]
     1.2 [www.example.com:80, Any, TCP]
       1.2.1 [192.0.2.1:80, Any, TCP]

   Implementations that support racing protocols and protocol options
   should maintain a history of which protocols and protocol options
   successfully established, on a per-network basis (see Section 9.2).
   This information can influence future racing decisions to prioritize
   or prune branches.

4.2.  Branching Order-of-Operations

   Branch types must occur in a specific order relative to one another
   to avoid creating leaf nodes with invalid or incompatible settings.
   In the example above, it would be invalid to branch for derived
   endpoints (the DNS results for www.example.com) before branching
   between interface paths, since usable DNS results on one network may
   not necessarily be the same as DNS results on another network due to
   local network entities, supported address families, or enterprise
   network configurations.  Implementations must be careful to branch in
   an order that results in usable leaf nodes whenever there are
   multiple branch types that could be used from a single node.

   The order of operations for branching, where lower numbers are acted
   upon first, should be:

   1.  Alternate Paths

   2.  Protocol Options

   3.  Derived Endpoints

   Branching between paths is the first in the list because results
   across multiple interfaces are likely not related to one another:
   endpoint resolution may return different results, especially when
   using locally resolved host and service names, and which protocols
   are supported and preferred may differ across interfaces.  Thus, if
   multiple paths are attempted, the overall connection can be seen as a
   race between the available paths or interfaces.

   Protocol options are checked next in order.  Whether or not a set of
   protocol, or protocol-specific options, can successfully connect is
   generally not dependent on which specific IP address is used.
   Furthermore, the protocol stacks being attempted may influence or
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   altogether change the endpoints being used.  Adding a proxy to a
   connection's branch will change the endpoint to the proxy's IP
   address or hostname.  Choosing an alternate protocol may also modify
   the ports that should be selected.

   Branching for derived endpoints is the final step, and may have
   multiple layers of derivation or resolution, such as DNS service
   resolution and DNS hostname resolution.

   For example, if the application has indicated both a preference for
   WiFi over LTE and for a feature only available in SCTP, branches will
   be first sorted accord to path selection, with WiFi at the top.
   Then, branches with SCTP will be sorted to the top within their
   subtree according to the properties influencing protocol selection.
   However, if the implementation has cached the information that SCTP
   is not available on the path over WiFi, there is no SCTP node in the
   WiFi subtree.  Here, the path over WiFi will be tried first, and, if
   connection establishment succeeds, TCP will be used.  So the
   Selection Property of preferring WiFi takes precedence over the
   Property that led to a preference for SCTP.

   1. [www.example.com:80, Any, Any Stream]
   1.1 [192.0.2.1:80, Wi-Fi, Any Stream]
   1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
   1.2 [192.0.3.1:80, LTE, Any Stream]
   1.2.1 [192.0.3.1:80, LTE, SCTP]
   1.2.2 [192.0.3.1:80, LTE, TCP]

4.3.  Sorting Branches

   Implementations should sort the branches of the tree of connection
   options in order of their preference rank.  Leaf nodes on branches
   with higher rankings represent connection attempts that will be raced
   first.  Implementations should order the branches to reflect the
   preferences expressed by the application for its new connection,
   including Selection Properties, which are specified in
   [I-D.ietf-taps-interface].

   In addition to the properties provided by the application, an
   implementation may include additional criteria such as cached
   performance estimates, see Section 9.2, or system policy, see

Section 3.2, in the ranking.  Two examples of how Selection and
   Connection Properties may be used to sort branches are provided
   below:

   o  "Interface Instance or Type": If the application specifies an
      interface type to be preferred or avoided, implementations should
      rank paths accordingly.  If the application specifies an interface
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      type to be required or prohibited, we expect an implementation to
      not include the non-conforming paths into the three.

   o  "Capacity Profile": An implementation may use the Capacity Profile
      to prefer paths optimized for the application's expected traffic
      pattern according to cached performance estimates, see

Section 9.2:

      *  Scavenger: Prefer paths with the highest expected available
         bandwidth, based on observed maximum throughput

      *  Low Latency/Interactive: Prefer paths with the lowest expected
         Round Trip Time

      *  Constant-Rate Streaming: Prefer paths that can satisfy the
         requested Stream Send or Stream Receive Bitrate, based on
         observed maximum throughput

   Implementations should process properties in the following order:
   Prohibit, Require, Prefer, Avoid.  If Selection Properties contain
   any prohibited properties, the implementation should first purge
   branches containing nodes with these properties.  For required
   properties, it should only keep branches that satisfy these
   requirements.  Finally, it should order branches according to
   preferred properties, and finally use avoided properties as a
   tiebreaker.

4.4.  Candidate Racing

   The primary goal of the Candidate Racing process is to successfully
   negotiate a protocol stack to an endpoint over an interface--to
   connect a single leaf node of the tree--with as little delay and as
   few unnecessary connections attempts as possible.  Optimizing these
   two factors improves the user experience, while minimizing network
   load.

   This section covers the dynamic aspect of connection establishment.
   While the tree described above is a useful conceptual and
   architectural model, an implementation does not know what the full
   tree may become up front, nor will many of the possible branches be
   used in the common case.

   There are three different approaches to racing the attempts for
   different nodes of the connection establishment tree:

   1.  Immediate

   2.  Delayed
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   3.  Failover

   Each approach is appropriate in different use-cases and branch types.
   However, to avoid consuming unnecessary network resources,
   implementations should not use immediate racing as a default
   approach.

   The timing algorithms for racing should remain independent across
   branches of the tree.  Any timers or racing logic is isolated to a
   given parent node, and is not ordered precisely with regards to other
   children of other nodes.

4.4.1.  Delayed

   Delayed racing can be used whenever a single node of the tree has
   multiple child nodes.  Based on the order determined when building
   the tree, the first child node will be initiated immediately,
   followed by the next child node after some delay.  Once that second
   child node is initiated, the third child node (if present) will begin
   after another delay, and so on until all child nodes have been
   initiated, or one of the child nodes successfully completes its
   negotiation.

   Delayed racing attempts occur in parallel.  Implementations should
   not terminate an earlier child connection attempt upon starting a
   secondary child.

   The delay between starting child nodes should be based on the
   properties of the previously started child node.  For example, if the
   first child represents an IP address with a known route, and the
   second child represents another IP address, the delay between
   starting the first and second IP addresses can be based on the
   expected retransmission cadence for the first child's connection
   (derived from historical round-trip-time).  Alternatively, if the
   first child represents a branch on a Wi-Fi interface, and the second
   child represents a branch on an LTE interface, the delay should be
   based on the expected time in which the branch for the first
   interface would be able to establish a connection, based on link
   quality and historical round-trip-time.

   Any delay should have a defined minimum and maximum value based on
   the branch type.  Generally, branches between paths and protocols
   should have longer delays than branches between derived endpoints.
   The maximum delay should be considered with regards to how long a
   user is expected to wait for the connection to complete.

   If a child node fails to connect before the delay timer has fired for
   the next child, the next child should be started immediately.
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4.4.2.  Failover

   If an implementation or application has a strong preference for one
   branch over another, the branching node may choose to wait until one
   child has failed before starting the next.  Failure of a leaf node is
   determined by its protocol negotiation failing or timing out; failure
   of a parent branching node is determined by all of its children
   failing.

   An example in which failover is recommended is a race between a
   protocol stack that uses a proxy and a protocol stack that bypasses
   the proxy.  Failover is useful in case the proxy is down or
   misconfigured, but any more aggressive type of racing may end up
   unnecessarily avoiding a proxy that was preferred by policy.

4.5.  Completing Establishment

   The process of connection establishment completes when one leaf node
   of the tree has completed negotiation with the remote endpoint
   successfully, or else all nodes of the tree have failed to connect.
   The first leaf node to complete its connection is then used by the
   application to send and receive data.

   It is useful to process success and failure throughout the tree by
   child nodes reporting to their parent nodes (towards the trunk of the
   tree).  For example, in the following case, if 1.1.1 fails to
   connect, it reports the failure to 1.1.  Since 1.1 has no other child
   nodes, it also has failed and reports that failure to 1.  Because 1.2
   has not yet failed, 1 is not considered to have failed.  Since 1.2
   has not yet started, it is started and the process continues.
   Similarly, if 1.1.1 successfully connects, then it marks 1.1 as
   connected, which propagates to the trunk node 1.  At this point, the
   connection as a whole is considered to be successfully connected and
   ready to process application data

   1 [www.example.com:80, Any, TCP]
     1.1 [www.example.com:80, Wi-Fi, TCP]
       1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
     1.2 [www.example.com:80, LTE, TCP]
   ...

   If a leaf node has successfully completed its connection, all other
   attempts should be made ineligible for use by the application for the
   original request.  New connection attempts that involve transmitting
   data on the network should not be started after another leaf node has
   completed successfully, as the connection as a whole has been
   established.  An implementation may choose to let certain handshakes
   and negotiations complete in order to gather metrics to influence
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   future connections.  Similarly, an implementation may choose to hold
   onto fully established leaf nodes that were not the first to
   establish for use as part of a Pooled Connection, see Section 7.1, or
   in future connections.  In both cases, keeping additional connections
   is generally not recommended since those attempts were slower to
   connect and may exhibit less desirable properties.

4.5.1.  Determining Successful Establishment

   Implementations may select the criteria by which a leaf node is
   considered to be successfully connected differently on a per-protocol
   basis.  If the only protocol being used is a transport protocol with
   a clear handshake, like TCP, then the obvious choice is to declare
   that node "connected" when the last packet of the three-way handshake
   has been received.  If the only protocol being used is an
   "unconnected" protocol, like UDP, the implementation may consider the
   node fully "connected" the moment it determines a route is present,
   before sending any packets on the network, see further Section 4.7.

   For protocol stacks with multiple handshakes, the decision becomes
   more nuanced.  If the protocol stack involves both TLS and TCP, an
   implementation could determine that a leaf node is connected after
   the TCP handshake is complete, or it can wait for the TLS handshake
   to complete as well.  The benefit of declaring completion when the
   TCP handshake finishes, and thus stopping the race for other branches
   of the tree, is that there will be less burden on the network from
   other connection attempts.  On the other hand, by waiting until the
   TLS handshake is complete, an implementation avoids the scenario in
   which a TCP handshake completes quickly, but TLS negotiation is
   either very slow or fails altogether in particular network conditions
   or to a particular endpoint.  To avoid the issue of TLS possibly
   failing, the implementation should not generate a Ready event for the
   Connection until TLS is established.

   If all of the leaf nodes fail to connect during racing, i.e. none of
   the configurations that satisfy all requirements given in the
   Transport Parameters actually work over the available paths, then the
   transport system should notify the application with an InitiateError
   event.  An InitiateError event should also be generated in case the
   transport system finds no usable candidates to race.

4.6.  Establishing multiplexed connections

   Multiplexing several Connections over a single underlying transport
   connection requires that the Connections to be multiplexed belong to
   the same Connection Group (as is indicated by the application using
   the Clone call).  When the underlying transport connection supports
   multi-streaming, the Transport System can map each Connection in the
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   Connection Group to a different stream.  Thus, when the Connections
   that are offered to an application by the Transport System are
   multiplexed, the Transport System may implement the establishment of
   a new Connection by simply beginning to use a new stream of an
   already established transport connection and there is no need for a
   connection establishment procedure.  This, then, also means that
   there may not be any "establishment" message (like a TCP SYN), but
   the application can simply start sending or receiving.  Therefore,
   when the Initiate action of a Transport System is called without
   Messages being handed over, it cannot be guaranteed that the other
   endpoint will have any way to know about this, and hence a passive
   endpoint's ConnectionReceived event may not be called upon an active
   endpoint's Inititate.  Instead, calling the ConnectionReceived event
   may be delayed until the first Message arrives.

4.7.  Handling racing with "unconnected" protocols

   While protocols that use an explicit handshake to validate a
   Connection to a peer can be used for racing multiple establishment
   attempts in parallel, "unconnected" protocols such as raw UDP do not
   offer a way to validate the presence of a peer or the usability of a
   Connection without application feedback.  An implementation should
   consider such a protocol stack to be established as soon as a local
   route to the peer endpoint is confirmed.

   However, if a peer is not reachable over the network using the
   unconnected protocol, or data cannot be exchanged for any other
   reason, the application may want to attempt using another candidate
   Protocol Stack.  The implementation should maintain the list of other
   candidate Protocol Stacks that were eligible to use.  In the case
   that the application signals that the initial Protocol Stack is
   failing for some reason and that another option should be attempted,
   the Connection can be updated to point to the next candidate Protocol
   Stack.  This can be viewed as an application-driven form of Protocol
   Stack racing.

4.8.  Implementing listeners

   When an implementation is asked to Listen, it registers with the
   system to wait for incoming traffic to the Local Endpoint.  If no
   Local Endpoint is specified, the implementation should either use an
   ephemeral port or generate an error.

   If the Selection Properties do not require a single network interface
   or path, but allow the use of multiple paths, the Listener object
   should register for incoming traffic on all of the network interfaces
   or paths that conform to the Properties.  The set of available paths
   can change over time, so the implementation should monitor network
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   path changes and register and de-register the Listener across all
   usable paths.  When using multiple paths, the Listener is generally
   expected to use the same port for listening on each.

   If the Selection Properties allow multiple protocols to be used for
   listening, and the implementation supports it, the Listener object
   should register across the eligble protocols for each path.  This
   means that inbound Connections delivered by the implementation may
   have heterogeneous protocol stacks.

4.8.1.  Implementing listeners for Connected Protocols

   Connected protocols such as TCP and TLS-over-TCP have a strong
   mapping between the Local and Remote Endpoints (five-tuple) and their
   protocol connection state.  These map well into Connection objects.
   Whenever a new inbound handshake is being started, the Listener
   should generate a new Connection object and pass it to the
   application.

4.8.2.  Implementing listeners for Unconnected Protocols

   Unconnected protocols such as UDP and UDP-lite generally do not
   provide the same mechanisms that connected protocols do to offer
   Connection objects.  Implementations should wait for incoming packets
   for unconnected protocols on a listening port and should perform
   five-tuple matching of packets to either existing Connection objects
   or the creation of new Connection objects.  On platforms with
   facilities to create a "virtual connection" for unconnected protocols
   implementations should use these mechanisms to minimise the handling
   of datagrams intended for already created Connection objects.

4.8.3.  Implementing listeners for Multiplexed Protocols

   Protocols that provide multiplexing of streams into a single five-
   tuple can listen both for entirely new connections (a new HTTP/2
   stream on a new TCP connection, for example) and for new sub-
   connections (a new HTTP/2 stream on an existing connection).  If the
   abstraction of Connection presented to the application is mapped to
   the multiplexed stream, then the Listener should deliver new
   Connection objects in the same way for either case.  The
   implementation should allow the application to introspect the
   Connection Group marked on the Connections to determine the grouping
   of the multiplexing.
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5.  Implementing Sending and Receiving Data

   The most basic mapping for sending a Message is an abstraction of
   datagrams, in which the transport protocol naturally deals in
   discrete packets.  Each Message here corresponds to a single
   datagram.  Generally, these will be short enough that sending and
   receiving will always use a complete Message.

   For protocols that expose byte-streams, the only delineation provided
   by the protocol is the end of the stream in a given direction.  Each
   Message in this case corresponds to the entire stream of bytes in a
   direction.  These Messages may be quite long, in which case they can
   be sent in multiple parts.

   Protocols that provide the framing (such as length-value protocols,
   or protocols that use delimiters) provide data boundaries that may be
   longer than a traditional packet datagram.  Each Message for framing
   protocols corresponds to a single frame, which may be sent either as
   a complete Message, or in multiple parts.

5.1.  Sending Messages

   The effect of the application sending a Message is determined by the
   top-level protocol in the established Protocol Stack.  That is, if
   the top-level protocol provides an abstraction of framed messages
   over a connection, the receiving application will be able to obtain
   multiple Messages on that connection, even if the framing protocol is
   built on a byte-stream protocol like TCP.

5.1.1.  Message Properties

   o  Lifetime: this should be implemented by removing the Message from
      its queue of pending Messages after the Lifetime has expired.  A
      queue of pending Messages within the transport system
      implementation that have yet to be handed to the Protocol Stack
      can always support this property, but once a Message has been sent
      into the send buffer of a protocol, only certain protocols may
      support de-queueing a message.  For example, TCP cannot remove
      bytes from its send buffer, while in case of SCTP, such control
      over the SCTP send buffer can be exercised using the partial
      reliability extension [RFC8303].  When there is no standing queue
      of Messages within the system, and the Protocol Stack does not
      support removing a Message from its buffer, this property may be
      ignored.

   o  Priority: this represents the ability to prioritize a Message over
      other Messages.  This can be implemented by the system re-ordering
      Messages that have yet to be handed to the Protocol Stack, or by

https://datatracker.ietf.org/doc/html/rfc8303
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      giving relative priority hints to protocols that support
      priorities per Message.  For example, an implementation of HTTP/2
      could choose to send Messages of different Priority on streams of
      different priority.

   o  Ordered: when this is false, it disables the requirement of in-
      order-delivery for protocols that support configurable ordering.

   o  Idempotent: when this is true, it means that the Message can be
      used by mechanisms that might transfer it multiple times - e.g.,
      as a result of racing multiple transports or as part of TCP Fast
      Open.

   o  Final: when this is true, it means that a transport connection can
      be closed immediately after its transmission.

   o  Corruption Protection Length: when this is set to any value other
      than -1, it limits the required checksum in protocols that allow
      limiting the checksum length (e.g.  UDP-Lite).

   o  Transmission Profile: TBD - because it's not final in the API yet.
      Old text follows: when this is set to "Interactive/Low Latency",
      the Message should be sent immediately, even when this comes at
      the cost of using the network capacity less efficiently.  For
      example, small messages can sometimes be bundled to fit into a
      single data packet for the sake of reducing header overhead; such
      bundling should not be used.  For example, in case of TCP, the
      Nagle algorithm should be disabled when Interactive/Low Latency is
      selected as the capacity profile.  Scavenger/Bulk can translate
      into usage of a congestion control mechanism such as LEDBAT, and/
      or the capacity profile can lead to a choice of a DSCP value as
      described in [I-D.ietf-taps-minset]).

   o  Singular Transmission: when this is true, the application requests
      to avoid transport-layer segmentation or network-layer
      fragmentation.  Some transports implement network-layer
      fragmentation avoidance (Path MTU Discovery) without exposing this
      functionality to the application; in this case, only transport-
      layer segmentation should be avoided, by fitting the message into
      a single transport-layer segment or otherwise failing.  Otherwise,
      network-layer fragmentation should be avoided--e.g. by requesting
      the IP Don't Fragment bit to be set in case of UDP(-Lite) and IPv4
      (SET_DF in [RFC8304]).

https://datatracker.ietf.org/doc/html/rfc8304
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5.1.2.  Send Completion

   The application should be notified whenever a Message or partial
   Message has been consumed by the Protocol Stack, or has failed to
   send.  The meaning of the Message being consumed by the stack may
   vary depending on the protocol.  For a basic datagram protocol like
   UDP, this may correspond to the time when the packet is sent into the
   interface driver.  For a protocol that buffers data in queues, like
   TCP, this may correspond to when the data has entered the send
   buffer.

5.1.3.  Batching Sends

   Since sending a Message may involve a context switch between the
   application and the transport system, sending patterns that involve
   multiple small Messages can incur high overhead if each needs to be
   enqueued separately.  To avoid this, the application should have a
   way to indicate a batch of Send actions, during which time the
   implementation will hold off on processing Messages until the batch
   is complete.  This can also help context switches when enqueuing data
   in the interface driver if the operation can be batched.

5.2.  Receiving Messages

   Similar to sending, Receiving a Message is determined by the top-
   level protocol in the established Protocol Stack.  The main
   difference with Receiving is that the size and boundaries of the
   Message are not known beforehand.  The application can communicate in
   its Receive action the parameters for the Message, which can help the
   implementation know how much data to deliver and when.  For example,
   if the application only wants to receive a complete Message, the
   implementation should wait until an entire Message (datagram, stream,
   or frame) is read before delivering any Message content to the
   application.  This requires the implementation to understand where
   messages end, either via a supplied deframer or because the top-level
   protocol in the established Protocol Stack preserves message
   boundaries; if, on the other hand, the top-level protocol only
   supports a byte-stream and no deframers were supported, the
   application must specify the minimum number of bytes of Message
   content it wants to receive (which may be just a single byte) to
   control the flow of received data.

   If a Connection becomes finished before a requested Receive action
   can be satisfied, the implementation should deliver any partial
   Message content outstanding, or if none is available, an indication
   that there will be no more received Messages.
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5.3.  Handling of data for fast-open protocols

   Several protocols allow sending higher-level protocol or application
   data within the first packet of their protocol establishment, such as
   TCP Fast Open [RFC7413] and TLS 1.3 [RFC8446].  This approach is
   referred to as sending Zero-RTT (0-RTT) data.  This is a desirable
   property, but poses challenges to an implementation that uses racing
   during connection establishment.

   If the application has 0-RTT data to send in any protocol handshakes,
   it needs to provide this data before the handshakes have begun.  When
   racing, this means that the data should be provided before the
   process of connection establishment has begun.  If the application
   wants to send 0-RTT data, it must indicate this to the implementation
   by setting the Idempotent send parameter to true when sending the
   data.  In general, 0-RTT data may be replayed (for example, if a TCP
   SYN contains data, and the SYN is retransmitted, the data will be
   retransmitted as well), but racing means that different leaf nodes
   have the opportunity to send the same data independently.  If data is
   truly idempotent, this should be permissible.

   Once the application has provided its 0-RTT data, an implementation
   should keep a copy of this data and provide it to each new leaf node
   that is started and for which a 0-RTT protocol is being used.

   It is also possible that protocol stacks within a particular leaf
   node use 0-RTT handshakes without any idempotent application data.
   For example, TCP Fast Open could use a Client Hello from TLS as its
   0-RTT data, shortening the cumulative handshake time.

   0-RTT handshakes often rely on previous state, such as TCP Fast Open
   cookies, previously established TLS tickets, or out-of-band
   distributed pre-shared keys (PSKs).  Implementations should be aware
   of security concerns around using these tokens across multiple
   addresses or paths when racing.  In the case of TLS, any given ticket
   or PSK should only be used on one leaf node.  If implementations have
   multiple tickets available from a previous connection, each leaf node
   attempt must use a different ticket.  In effect, each leaf node will
   send the same early application data, yet encoded (encrypted)
   differently on the wire.

6.  Implementing Message Framers

   Message Framers are pieces of code that define simple transformations
   between application Message data and raw transport protocol data.  A
   Framer can encapsulate or encode outbound Messages, and decapsulate
   or decode inbound data into Messages.

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc8446
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   While many protocols can be represented as Message Framers, for the
   purposes of the Transport Services interface these are ways for
   applications or application frameworks to define their own Message
   parsing to be included within a Connection's Protocol Stack.  As an
   example, TLS can serve the purpose of framing data over TCP, but is
   exposed as a protocol natively supported by the Transport Services
   interface.

   Most Message Framers fall into one of two categories:

   o  Header-prefixed record formats, such as a basic Type-Length-Value
      (TLV) structure

   o  Delimiter-separated formats, such as HTTP/1.1.

   Common Message Framers can be provided by the Transport Services
   implementation, but an implemention ought to allow custom Message
   Framers to be defined by the application or some other piece of
   software.  This section describes one possible interface for defining
   Message Framers as an example.

6.1.  Defining Message Framers

   A Message Framer is primarily defined by the set of code that handles
   events for a framer implementation, specifically how it handles
   inbound and outbound data parsing.  The piece of code that implements
   custom framing logic will be referred to as the "framer
   implementation", which may be provided by the Transport Services
   implementation or the application itself.  The Message Framer refers
   to the object or piece of code within the main Connection
   implementation that delivers events to the custom framer
   implementation whenever data is ready to be parsed or framed.

   When a Connection establishment attempt begins, an event can be
   delivered to notify the framer implementation that a new Connection
   is being created.  Similarly, a stop event can be delivered when a
   Connection is being torn down.  The framer implementation can use the
   Connection object to look up specific properties of the Connection or
   the network being used that may influence how to frame Messages.

   MessageFramer -> Start(Connection)
   MessageFramer -> Stop(Connection)

   When a Message Framer generates a "Start" event, the framer
   implementation has the opportunity to start writing some data prior
   to the Connection delivering its "Ready" event.  This allows the
   implementation to communicate control data to the remote endpoint
   that can be used to parse Messages.
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   MessageFramer.MakeConnectionReady(Connection)

   At any time if the implementation encounters a fatal error, it can
   also cause the Connection to fail and provide an error.

   MessageFramer.FailConnection(Connection, Error)

   Before an implementation marks a Message Framer as ready, it can also
   dynamically add a protocol or framer above it in the stack.  This
   allows protocols like STARTTLS, that need to add TLS conditionally,
   to modify the Protocol Stack based on a handshake result.

   otherFramer := NewMessageFramer()
   MessageFramer.PrependFramer(Connection, otherFramer)

6.2.  Sender-side Message Framing

   Message Framers generate an event whenever a Connection sends a new
   Message.

MessageFramer -> NewSentMessage<Connection, MessageData, MessageContext, 
IsEndOfMessage>

   Upon receiving this event, a framer implementation is responsible for
   performing any necessary transformations and sending the resulting
   data to the next protocol.  Implementations SHOULD ensure that there
   is a way to pass the original data through without copying to improve
   performance.

   MessageFramer.Send(Connection, Data)

   To provide an example, a simple protocol that adds a length as a
   header would receive the "NewSentMessage" event, create a data
   representation of the length of the Message data, and then send a
   block of data that is the concatenation of the length header and the
   original Message data.

6.3.  Receiver-side Message Framing

   In order to parse a received flow of data into Messages, the Message
   Framer notifies the framer implementation whenever new data is
   available to parse.

   MessageFramer -> HandleReceivedData<Connection>

   Upon receiving this event, the framer implementation can inspect the
   inbound data.  The data is parsed from a particular cursor
   representing the unprocessed data.  The application requests a
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   specific amount of data it needs to have available in order to parse.
   If the data is not available, the parse fails.

MessageFramer.Parse(Connection, MinimumIncompleteLength, MaximumLength) -> 
(Data, MessageContext, IsEndOfMessage)

   The framer implementation can directly advance the receive cursor
   once it has parsed data to effectively discard data (for example,
   discard a header once the content has been parsed).

   To deliver a Message to the application, the framer implementation
   can either directly deliever data that it has allocated, or deliver a
   range of data directly from the underlying transport and
   simulatenously advance the receive cursor.

MessageFramer.AdvanceReceiveCursor(Connection, Length)
MessageFramer.DeliverAndAdvanceReceiveCursor(Connection, MessageContext, 
Length, IsEndOfMessage)
MessageFramer.Deliver(Connection, MessageContext, Data, IsEndOfMessage)

   Note that "MessageFramer.DeliverAndAdvanceReceiveCursor" allows the
   framer implementation to earmark bytes as part of a Message even
   before they are received by the transport.  This allows the delivery
   of very large Messages without requiring the implementation to
   directly inspect all of the bytes.

   To provide an example, a simple protocol that parses a length as a
   header value would receive the "HandleReceivedData" event, and call
   "Parse" with a minimum and maximum set to the length of the header
   field.  Once the parse succeeded, it would call
   "AdvanceReceiveCursor" with the length of the header field, and then
   call "DeliverAndAdvanceReceiveCursor" with the length of the body
   that was parsed from the header, marking the new Message as complete.

7.  Implementing Connection Management

   Once a Connection is established, the Transport Services system
   allows applications to interact with the Connection by modifying or
   inspecting Connection Properties.  A Connection can also generate
   events in the form of Soft Errors.

   The set of Connection Properties that are supported for setting and
   getting on a Connection are described in [I-D.ietf-taps-interface].
   For any properties that are generic, and thus could apply to all
   protocols being used by a Connection, the Transport System should
   store the properties in a generic storage, and notify all protocol
   instances in the Protocol Stack whenever the properties have been
   modified by the application.  For protocol-specfic properties, such
   as the User Timeout that applies to TCP, the Transport System only



   needs to update the relevant protocol instance.
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   If an error is encountered in setting a property (for example, if the
   application tries to set a TCP-specific property on a Connection that
   is not using TCP), the action should fail gracefully.  The
   application may be informed of the error, but the Connection itself
   should not be terminated.

   The Transport Services implementation should allow protocol instances
   in the Protocol Stack to pass up arbitrary generic or protocol-
   specific errors that can be delivered to the application as Soft
   Errors.  These allow the application to be informed of ICMP errors,
   and other similar events.

7.1.  Pooled Connection

   For protocols that employ request/response pairs and do not require
   in-order delivery of the responses, like HTTP, the transport
   implementation may distribute interactions across several underlying
   transport connections.  For these kinds of protocols, implementations
   may hide the connection management and only expose a single
   Connection object and the individual requests/responses as messages.
   These Pooled Connections can use multiple connections or multiple
   streams of multi-streaming connections between endpoints, as long as
   all of these satisfy the requirements, and prohibitions specified in
   the Selection Properties of the Pooled Connection.  This enables
   implementations to realize transparent connection coalescing,
   connection migration, and to perform per-message endpoint and path
   selection by choosing among these underlying connections.

7.2.  Handling Path Changes

   When a path change occurs, the Transport Services implementation is
   responsible for notifying Protocol Instances in the Protocol Stack.
   If the Protocol Stack includes a transport protocol that supports
   multipath connectivity, an update to the available paths should
   inform the Protocol Instance of the new set of paths that are
   permissible based on the Selection Properties passed by the
   application.  A multipath protocol can establish new subflows over
   new paths, and should tear down subflows over paths that are no
   longer available.  Pooled Connections Section 7.1 may add or remove
   underlying transport connections in a similar manner.  If the
   Protocol Stack includes a transport protocol that does not support
   multipath, but support migrating between paths, the update to
   available paths can be used as the trigger to migrating the
   connection.  For protocols that do not support multipath or
   migration, the Protocol Instances may be informed of the path change,
   but should not be forcibly disconnected if the previously used path
   becomes unavailable.  An exception to this case is if the System
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   Policy changes to prohibit traffic from the Connection based on its
   properties, in which case the Protocol Stack should be disconnected.

8.  Implementing Connection Termination

   With TCP, when an application closes a connection, this means that it
   has no more data to send (but expects all data that has been handed
   over to be reliably delivered).  However, with TCP only, "close" does
   not mean that the application will stop receiving data.  This is
   related to TCP's ability to support half-closed connections.

   SCTP is an example of a protocol that does not support such half-
   closed connections.  Hence, with SCTP, the meaning of "close" is
   stricter: an application has no more data to send (but expects all
   data that has been handed over to be reliably delivered), and will
   also not receive any more data.

   Implementing a protocol independent transport system means that the
   exposed semantics must be the strictest subset of the semantics of
   all supported protocols.  Hence, as is common with all reliable
   transport protocols, after a Close action, the application can expect
   to have its reliability requirements honored regarding the data it
   has given to the Transport System, but it cannot expect to be able to
   read any more data after calling Close.

   Abort differs from Close only in that no guarantees are given
   regarding data that the application has handed over to the Transport
   System before calling Abort.

   As explained in Section 4.6, when a new stream is multiplexed on an
   already existing connection of a Transport Protocol Instance, there
   is no need for a connection establishment procedure.  Because the
   Connections that are offered by the Transport System can be
   implemented as streams that are multiplexed on a transport protocol's
   connection, it can therefore not be guaranteed that one Endpoint's
   Initiate action provokes a ConnectionReceived event at its peer.

   For Close (provoking a Finished event) and Abort (provoking a
   ConnectionError event), the same logic applies: while it is desirable
   to be informed when a peer closes or aborts a Connection, whether
   this is possible depends on the underlying protocol, and no
   guarantees can be given.  With SCTP, the transport system can use the
   stream reset procedure to cause a Finish event upon a Close action
   from the peer [NEAT-flow-mapping].
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9.  Cached State

   Beyond a single Connection's lifetime, it is useful for an
   implementation to keep state and history.  This cached state can help
   improve future Connection establishment due to re-using results and
   credentials, and favoring paths and protocols that performed well in
   the past.

   Cached state may be associated with different Endpoints for the same
   Connection, depending on the protocol generating the cached content.
   For example, session tickets for TLS are associated with specific
   endpoints, and thus should be cached based on a Connection's hostname
   Endpoint (if applicable).  On the other hand, performance
   characteristics of a path are more likely tied to the IP address and
   subnet being used.

9.1.  Protocol state caches

   Some protocols will have long-term state to be cached in association
   with Endpoints.  This state often has some time after which it is
   expired, so the implementation should allow each protocol to specify
   an expiration for cached content.

   Examples of cached protocol state include:

   o  The DNS protocol can cache resolution answers (A and AAAA queries,
      for example), associated with a Time To Live (TTL) to be used for
      future hostname resolutions without requiring asking the DNS
      resolver again.

   o  TLS caches session state and tickets based on a hostname, which
      can be used for resuming sessions with a server.

   o  TCP can cache cookies for use in TCP Fast Open.

   Cached protocol state is primarily used during Connection
   establishment for a single Protocol Stack, but may be used to
   influence an implementation's preference between several candidate
   Protocol Stacks.  For example, if two IP address Endpoints are
   otherwise equally preferred, an implementation may choose to attempt
   a connection to an address for which it has a TCP Fast Open cookie.

   Applications must have a way to flush protocol cache state if
   desired.  This may be necessary, for example, if application-layer
   identifiers rotate and clients wish to avoid linkability via
   trackable TLS tickets or TFO cookies.
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9.2.  Performance caches

   In addition to protocol state, Protocol Instances should provide data
   into a performance-oriented cache to help guide future protocol and
   path selection.  Some performance information can be gathered
   generically across several protocols to allow predictive comparisons
   between protocols on given paths:

   o  Observed Round Trip Time

   o  Connection Establishment latency

   o  Connection Establishment success rate

   These items can be cached on a per-address and per-subnet
   granularity, and averaged between different values.  The information
   should be cached on a per-network basis, since it is expected that
   different network attachments will have different performance
   characteristics.  Besides Protocol Instances, other system entities
   may also provide data into performance-oriented caches.  This could
   for instance be signal strength information reported by radio modems
   like Wi-Fi and mobile broadband or information about the battery-
   level of the device.  Furthermore, the system may cache the observed
   maximum throughput on a path as an estimate of the available
   bandwidth.

   An implementation should use this information, when possible, to
   determine preference between candidate paths, endpoints, and protocol
   options.  Eligible options that historically had significantly better
   performance than others should be selected first when gathering
   candidates (see Section 4.1) to ensure better performance for the
   application.

   The reasonable lifetime for cached performance values will vary
   depending on the nature of the value.  Certain information, like the
   connection establishment success rate to a Remote Endpoint using a
   given protocol stack, can be stored for a long period of time (hours
   or longer), since it is expected that the capabilities of the Remote
   Endpoint are not changing very quickly.  On the other hand, Round
   Trip Time observed by TCP over a particular network path may vary
   over a relatively short time interval.  For such values, the
   implementation should remove them from the cache more quickly, or
   treat older values with less confidence/weight.
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10.  Specific Transport Protocol Considerations

   Each protocol that can run as part of a Transport Services
   implementation defines both its API mapping as well as implementation
   details.  API mappings for a protocol apply most to Connections in
   which the given protocol is the "top" of the Protocol Stack.  For
   example, the mapping of the "Send" function for TCP applies to
   Connections in which the application directly sends over TCP.  If
   HTTP/2 is used on top of TCP, the HTTP/2 mappings take precendence.

   Each protocol has a notion of Connectedness.  Possible values for
   Connectedness are:

   o  Unconnected.  Unconnected protocols do not establish explicit
      state between endpoints, and do not perform a handshake during
      Connection establishment.

   o  Connected.  Connected protocols establish state between endpoints,
      and perform a handshake during Connection establishment.  The
      handshake may be 0-RTT to send data or resume a session, but
      bidirectional traffic is required to confirm connectedness.

   o  Multiplexing Connected.  Multiplexing Connected protocols share
      properties with Connected protocols, but also explictly support
      opening multiple application-level flows.  This means that they
      can support cloning new Connection objects without a new explicit
      handshake.

   Protocols also define a notion of Data Unit.  Possible values for
   Data Unit are:

   o  Byte-stream.  Byte-stream protocols do not define any Message
      boundaries of their own apart from the end of a stream in each
      direction.

   o  Datagram.  Datagram protocols define Message boundaries at the
      same level of transmission, such that only complete (not partial)
      Messages are supported.

   o  Message.  Message protocols support Message boundaries that can be
      sent and received either as complete or partial Messages.  Maximum
      Message lengths can be defined, and Messages can be partially
      reliable.

   Below, primitives in the style of
   "CATEGORY.[SUBCATEGORY].PRIMITIVENAME.PROTOCOL" (e.g.,
   "CONNECT.SCTP") refer to the primitives with the same name in section

4 of [RFC8303].  For further implementation details, the description

https://datatracker.ietf.org/doc/html/rfc8303#section-4
https://datatracker.ietf.org/doc/html/rfc8303#section-4


Brunstrom, et al.          Expires May 7, 2020                 [Page 32]



Internet-Draft             TAPS Implementation             November 2019

   of these primitives in [RFC8303] points to section 3, which refers
   back the specifications for each protocol.  This back-tracking method
   applies to all elements of [I-D.ietf-taps-minset] (see appendix D of
   [I-D.ietf-taps-interface]): they are listed in appendix A of
   [I-D.ietf-taps-minset] with an implementation hint in the same style,
   pointing back to section 4 of [RFC8303].

10.1.  TCP

   Connectedness: Connected

   Data Unit: Byte-stream

   API mappings for TCP are as follows:

   Connection Object:  TCP connections between two hosts map directly to
      Connection objects.

   Initiate:  CONNECT.TCP.  Calling "Initiate" on a TCP Connection
      causes it to reserve a local port, and send a SYN to the Remote
      Endpoint.

   InitiateWithSend:  CONNECT.TCP with parameter "user message".  Early
      idempotent data is sent on a TCP Connection in the SYN, as TCP
      Fast Open data.

   Ready:  A TCP Connection is ready once the three-way handshake is
      complete.

   InitiateError:  Failure of CONNECT.TCP.  TCP can throw various errors
      during connection setup.  Specifically, it is important to handle
      a RST being sent by the peer during the handshake.

   ConnectionError:  Once established, TCP throws errors whenever the
      connection is disconnected, such as due to receiving a RST from
      the peer; or hitting a TCP retransmission timeout.

   Listen:  LISTEN.TCP.  Calling "Listen" for TCP binds a local port and
      prepares it to receive inbound SYN packets from peers.

   ConnectionReceived:  TCP Listeners will deliver new connections once
      they have replied to an inbound SYN with a SYN-ACK.

   Clone:  Calling "Clone" on a TCP Connection creates a new Connection
      with equivalent parameters.  The two Connections are otherwise
      independent.

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303#section-4
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   Send:  SEND.TCP.  TCP does not on its own preserve Message
      boundaries.  Calling "Send" on a TCP connection lays out the bytes
      on the TCP send stream without any other delineation.  Any Message
      marked as Final will cause TCP to send a FIN once the Message has
      been completely written, by calling CLOSE.TCP immediately upon
      successful termination of SEND.TCP.

   Receive:  With RECEIVE.TCP, TCP delivers a stream of bytes without
      any Message delineation.  All data delivered in the "Received" or
      "ReceivedPartial" event will be part of a single stream-wide
      Message that is marked Final (unless a Message Framer is used).
      EndOfMessage will be delivered when the TCP Connection has
      received a FIN (CLOSE-EVENT.TCP or ABORT-EVENT.TCP) from the peer.

   Close:  Calling "Close" on a TCP Connection indicates that the
      Connection should be gracefully closed (CLOSE.TCP) by sending a
      FIN to the peer and waiting for a FIN-ACK before delivering the
      "Closed" event.

   Abort:  Calling "Abort" on a TCP Connection indicates that the
      Connection should be immediately closed by sending a RST to the
      peer (ABORT.TCP).

10.2.  UDP

   Connectedness: Unconnected

   Data Unit: Datagram

   API mappings for UDP are as follows:

   Connection Object:  UDP connections represent a pair of specific IP
      addresses and ports on two hosts.

   Initiate:  CONNECT.UDP.  Calling "Initiate" on a UDP Connection
      causes it to reserve a local port, but does not generate any
      traffic.

   InitiateWithSend:  Early data on a UDP Connection does not have any
      special meaning.  The data is sent whenever the Connection is
      Ready.

   Ready:  A UDP Connection is ready once the system has reserved a
      local port and has a path to send to the Remote Endpoint.

   InitiateError:  UDP Connections can only generate errors on
      initiation due to port conflicts on the local system.
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   ConnectionError:  Once in use, UDP throws "soft errors" (ERROR.UDP(-
      Lite)) upon receiving ICMP notifications indicating failures in
      the network.

   Listen:  LISTEN.UDP.  Calling "Listen" for UDP binds a local port and
      prepares it to receive inbound UDP datagrams from peers.

   ConnectionReceived:  UDP Listeners will deliver new connections once
      they have received traffic from a new Remote Endpoint.

   Clone:  Calling "Clone" on a UDP Connection creates a new Connection
      with equivalent parameters.  The two Connections are otherwise
      independent.

   Send:  SEND.UDP(-Lite).  Calling "Send" on a UDP connection sends the
      data as the payload of a complete UDP datagram.  Marking Messages
      as Final does not change anything in the datagram's contents.
      Upon sending a UDP datagram, some relevant fields and flags in the
      IP header can be controlled: DSCP (SET_DSCP.UDP(-Lite)), DF in
      IPv4 (SET_DF.UDP(-Lite)) and ECN flag (SET_ECN.UDP(-Lite)).

   Receive:  RECEIVE.UDP(-Lite).  UDP only delivers complete Messages to
      "Received", each of which represents a single datagram received in
      a UDP packet.  Upon receiving a UDP datagram, the ECN flag from
      the IP header can be obtained (GET_ECN.UDP(-Lite)).

   Close:  Calling "Close" on a UDP Connection (ABORT.UDP(-Lite))
      releases the local port reservation.

   Abort:  Calling "Abort" on a UDP Connection (ABORT.UDP(-Lite)) is
      identical to calling "Close".

10.3.  TLS

   The mapping of a TLS stream abstraction into the application is
   equivalent to the contract provided by TCP (see Section 10.1), and
   builds upon many of the actions of TCP connections.

   Connectedness: Connected

   Data Unit: Byte-stream

   Connection Object:  Connection objects represent a single TLS
      connection running over a TCP connection between two hosts.

   Initiate:  Calling "Initiate" on a TLS Connection causes it to first
      initiate a TCP connection.  Once the TCP protocol is Ready, the
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      TLS handshake will be performed as a client (starting by sending a
      "client_hello", and so on).

   InitiateWithSend:  Early idempotent data is supported by TLS 1.3, and
      sends encrypted application data in the first TLS message when
      performing session resumption.  For older versions of TLS, or if a
      session is not being resumed, the initial data will be delayed
      until the TLS handshake is complete.  TCP Fast Option can also be
      enabled automatically.

   Ready:  A TLS Connection is ready once the underlying TCP connection
      is Ready, and TLS handshake is also complete and keys have been
      established to encrypt application data.

   InitiateError:  In addition to TCP initiation errors, TLS can
      generate errors during its handshake.  Examples of error include a
      failure of the peer to successfully authenticate, the peer
      rejecting the local authentication, or a failure to match versions
      or algorithms.

   ConnectionError:  TLS connections will generate TCP errors, or errors
      due to failures to rekey or decrypt received messages.

   Listen:  Calling "Listen" for TLS listens on TCP, and sets up
      received connections to perform server-side TLS handshakes.

   ConnectionReceived:  TLS Listeners will deliver new connections once
      they have successfully completed both TCP and TLS handshakes.

   Clone:  As with TCP, calling "Clone" on a TLS Connection creates a
      new Connection with equivalent parameters.  The two Connections
      are otherwise independent.

   Send:  Like TCP, TLS does not preserve message boundaries.  Although
      application data is framed natively in TLS, there is not a general
      guarantee that these TLS messages represent semantically
      meaningful application stream boundaries.  Rather, sending data on
      a TLS Connection only guarantees that the application data will be
      transmitted in an encrypted form.  Marking Messages as Final
      causes a "close_notify" to be generated once the data has been
      written.

   Receive:  Like TCP, TLS delivers a stream of bytes without any
      Message delineation.  The data is decrypted prior to being
      delivered to the application.  If a "close_notify" is received,
      the stream-wide Message will be delivered with EndOfMessage set.
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   Close:  Calling "Close" on a TLS Connection indicates that the
      Connection should be gracefully closed by sending a "close_notify"
      to the peer and waiting for a corresponding "close_notify" before
      delivering the "Closed" event.

   Abort:  Calling "Abort" on a TCP Connection indicates that the
      Connection should be immediately closed by sending a
      "close_notify", optionally preceded by "user_canceled", to the
      peer.  Implementations do not need to wait to receive
      "close_notify" before delivering the "Closed" event.

10.4.  DTLS

   DTLS follows the same behavior as TLS (Section 10.3), with the
   notable exception of not inheriting behavior directly from TCP.
   Differences from TLS are detailed below, and all cases not explicitly
   mentioned should be considered the same as TLS.

   Connectedness: Connected

   Data Unit: Datagram

   Connection Object:  Connection objects represent a single DTLS
      connection running over a set of UDP ports between two hosts.

   Initiate:  Calling "Initiate" on a DTLS Connection causes it reserve
      a UDP local port, and begin sending handshake messages to the peer
      over UDP.  These messages are reliable, and will be automatically
      retransmitted.

   Ready:  A DTLS Connection is ready once the TLS handshake is complete
      and keys have been established to encrypt application data.

   Send:  Sending over DTLS does preserve message boundaries in the same
      way that UDP datagrams do.  Marking a Message as Final does send a
      "close_notify" like TLS.

   Receive:  Receiving over DTLS delivers one decrypted Message for each
      received DTLS datagram.  If a "close_notify" is received, a
      Message will be delivered that is marked as Final.

10.5.  HTTP

   HTTP requests and responses map naturally into Messages, since they
   are delineated chunks of data with metadata that can be sent over a
   transport.  To that end, HTTP can be seen as the most prevalent
   framing protocol that runs on top of streams like TCP, TLS, etc.



Brunstrom, et al.          Expires May 7, 2020                 [Page 37]



Internet-Draft             TAPS Implementation             November 2019

   In order to use a transport Connection that provides HTTP Message
   support, the establishment and closing of the connection can be
   treated as it would without the framing protocol.  Sending and
   receiving of Messages, however, changes to treat each Message as a
   well-delineated HTTP request or response, with the content of the
   Message representing the body, and the Headers being provided in
   Message metadata.

   Connectedness: Multiplexing Connected

   Data Unit: Message

   Connection Object:  Connection objects represent a flow of HTTP
      messages between a client and a server, which may be an HTTP/1.1
      connection over TCP, or a single stream in an HTTP/2 connection.

   Initiate:  Calling "Initiate" on an HTTP connection intiates a TCP or
      TLS connection as a client.

   Clone:  Calling "Clone" on an HTTP Connection opens a new stream on
      an existing HTTP/2 connection when possible.  If the underlying
      version does not support multiplexed streams, calling "Clone"
      simply creates a new parallel connection.

   Send:  When an application sends an HTTP Message, it is expected to
      provide HTTP header values as a MessageContext in a canonical
      form, along with any associated HTTP message body as the Message
      data.  The HTTP header values are encoded in the specific version
      format upon sending.

   Receive:  HTTP Connections deliver Messages in which HTTP header
      values attached to MessageContexts, and HTTP bodies in Message
      data.

   Close:  Calling "Close" on an HTTP Connection will only close the
      underlying TLS or TCP connection if the HTTP version does not
      support multiplexing.  For HTTP/2, for example, closing the
      connection only closes a specific stream.

10.6.  QUIC

   QUIC provides a multi-streaming interface to an encrypted transport.
   Each stream can be viewed as equivalent to a TLS stream over TCP, so
   a natural mapping is to present each QUIC stream as an individual
   Connection.  The protocol for the stream will be considered Ready
   whenever the underlying QUIC connection is established to the point
   that this stream's data can be sent.  For streams after the first
   stream, this will likely be an immediate operation.
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   Closing a single QUIC stream, presented to the application as a
   Connection, does not imply closing the underlying QUIC connection
   itself.  Rather, the implementation may choose to close the QUIC
   connection once all streams have been closed (often after some
   timeout), or after an individual stream Connection sends an Abort.

   Connectedness: Multiplexing Connected

   Data Unit: Stream

   Connection Object:  Connection objects represent a single QUIC stream
      on a QUIC connection.

10.7.  HTTP/2 transport

   Similar to QUIC (Section 10.6), HTTP/2 provides a multi-streaming
   interface.  This will generally use HTTP as the unit of Messages over
   the streams, in which each stream can be represented as a transport
   Connection.  The lifetime of streams and the HTTP/2 connection should
   be managed as described for QUIC.

   It is possible to treat each HTTP/2 stream as a raw byte-stream
   instead of a carrier for HTTP messages, in which case the Messages
   over the streams can be represented similarly to the TCP stream (one
   Message per direction, see Section 10.1).

   Connectedness: Multiplexing Connected

   Data Unit: Stream

   Connection Object:  Connection objects represent a single HTTP/2
      stream on a HTTP/2 connection.

10.8.  SCTP

   Connectedness: Connected

   Data Unit: Message

   API mappings for SCTP are as follows:

   Connection Object:  Connection objects represent a flow of SCTP
      messages between a client and a server, which may be an SCTP
      association or a stream in a SCTP association.  How to map
      Connection objects to streams is described in [NEAT-flow-mapping];
      in the following, a similar method is described.  To map
      Connection objects to SCTP streams without head-of-line blocking
      on the sender side, both the sending and receiving SCTP
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      implementation must support message interleaving [RFC8260].  Both
      SCTP implementations must also support stream reconfiguration.
      Finally, both communicating endpoints must be aware of this
      intended multiplexing; [NEAT-flow-mapping] describes a way for a
      Transport System to negotiate the stream mapping capability using
      SCTP's adaptation layer indication, such that this functionality
      would only take effect if both ends sides are aware of it.  The
      first flow, for which the SCTP association has been created, will
      always use stream id zero.  All additional flows are assigned to
      unused stream ids in growing order.  To avoid a conflict when both
      endpoints map new flows simultaneously, the peer which initiated
      the transport connection will use even stream numbers whereas the
      remote side will map its flows to odd stream numbers.  Both sides
      maintain a status map of the assigned stream numbers.  Generally,
      new streams must consume the lowest available (even or odd,
      depending on the side) stream number; this rule is relevant when
      lower numbers become available because Connection objects
      associated to the streams are closed.

   Initiate:  If this is the only Connection object that is assigned to
      the SCTP association or stream mapping has not been negotiated,
      CONNECT.SCTP is called.  Else, a new stream is used: if there are
      enough streams available, "Initiate" is just a local operation
      that assigns a new stream number to the Connection object.  The
      number of streams is negotiated as a parameter of the prior
      CONNECT.SCTP call, and it represents a trade-off between local
      resource usage and the number of Connection objects that can be
      mapped without requiring a reconfiguration signal.  When running
      out of streams, ADD_STREAM.SCTP must be called.

   InitiateWithSend:  If this is the only Connection object that is
      assigned to the SCTP association or stream mapping has not been
      negotiated, CONNECT.SCTP is called with the "user message"
      parameter.  Else, a new stream is used (see "Initiate" for how to
      handle running out of streams), and this just sends the first
      message on a new stream.

   Ready:  "Initiate" or "InitiateWithSend" returns without an error,
      i.e. SCTP's four-way handshake has completed.  If an association
      with the peer already exists, and stream mapping has been
      negotiated and enough streams are available, a Connection Object
      instantly becomes Ready after calling "Initiate" or
      "InitiateWithSend".

   InitiateError:  Failure of CONNECT.SCTP.

   ConnectionError:  TIMEOUT.SCTP or ABORT-EVENT.SCTP.

https://datatracker.ietf.org/doc/html/rfc8260
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   Listen:  LISTEN.SCTP.  If an association with the peer already exists
      and stream mapping has been negotiated, "Listen" just expects to
      receive a new message on a new stream id (chosen in accordance
      with the stream number assignment procedure described above).

   ConnectionReceived:  LISTEN.SCTP returns without an error (a result
      of successful CONNECT.SCTP from the peer), or, in case of stream
      mapping, the first message has arrived on a new stream (in this
      case, "Receive" is also invoked).

   Clone:  Calling "Clone" on an SCTP association creates a new
      Connection object and assigns it a new stream number in accordance
      with the stream number assignment procedure described above.  If
      there are not enough streams available, ADD_STREAM.SCTP must be
      called.

   Priority (Connection):  When this value is changed, or a Message with
      Message Property "Priority" is sent, and there are multiple
      Connection objects assigned to the same SCTP association,
      CONFIGURE_STREAM_SCHEDULER.SCTP is called to adjust the priorities
      of streams in the SCTP association.

   Send:  SEND.SCTP.  Message Properties such as "Lifetime" and
      "Ordered" map to parameters of this primitive.

   Receive:  RECEIVE.SCTP.  The "partial flag" of RECEIVE.SCTP invokes a
      "ReceivedPartial" event.

   Close: If this is the only Connection object that is assigned to the
   SCTP association, CLOSE.SCTP is called.  Else, the Connection object
   is one out of several Connection objects that are assigned to the
   same SCTP assocation, and RESET_STREAM.SCTP must be called, which
   informs the peer that the stream will no longer be used for mapping
   and can be used by future "Initiate", "InitiateWithSend" or "Listen"
   calls.  At the peer, the event RESET_STREAM-EVENT.SCTP will fire,
   which the peer must answer by issuing RESET_STREAM.SCTP too.  The
   resulting local RESET_STREAM-EVENT.SCTP informs the transport system
   that the stream number can now be re-used by the next "Initiate",
   "InitiateWithSend" or "Listen" calls.

   Abort: If this is the only Connection object that is assigned to the
   SCTP association, ABORT.SCTP is called.  Else, the Connection object
   is one out of several Connection objects that are assigned to the
   same SCTP assocation, and shutdown proceeds as described under
   "Close".
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11.  IANA Considerations

   RFC-EDITOR: Please remove this section before publication.

   This document has no actions for IANA.

12.  Security Considerations

12.1.  Considerations for Candidate Gathering

   Implementations should avoid downgrade attacks that allow network
   interference to cause the implementation to select less secure, or
   entirely insecure, combinations of paths and protocols.

12.2.  Considerations for Candidate Racing

   See Section 5.3 for security considerations around racing with 0-RTT
   data.

   An attacker that knows a particular device is racing several options
   during connection establishment may be able to block packets for the
   first connection attempt, thus inducing the device to fall back to a
   secondary attempt.  This is a problem if the secondary attempts have
   worse security properties that enable further attacks.
   Implementations should ensure that all options have equivalent
   security properties to avoid incentivizing attacks.

   Since results from the network can determine how a connection attempt
   tree is built, such as when DNS returns a list of resolved endpoints,
   it is possible for the network to cause an implementation to consume
   significant on-device resources.  Implementations should limit the
   maximum amount of state allowed for any given node, including the
   number of child nodes, especially when the state is based on results
   from the network.
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Appendix A.  Additional Properties

   This appendix discusses implementation considerations for additional
   parameters and properties that could be used to enhance transport
   protocol and/or path selection, or the transmission of messages given
   a Protocol Stack that implements them.  These are not part of the
   interface, and may be removed from the final document, but are
   presented here to support discussion within the TAPS working group as
   to whether they should be added to a future revision of the base
   specification.

A.1.  Properties Affecting Sorting of Branches

   In addition to the Protocol and Path Selection Properties discussed
   in Section 4.3, the following properties under discussion can
   influence branch sorting:

   o  Bounds on Send or Receive Rate: If the application indicates a
      bound on the expected Send or Receive bitrate, an implementation
      may prefer a path that can likely provide the desired bandwidth,
      based on cached maximum throughput, see Section 9.2.  The
      application may know the Send or Receive Bitrate from metadata in
      adaptive HTTP streaming, such as MPEG-DASH.

   o  Cost Preferences: If the application indicates a preference to
      avoid expensive paths, and some paths are associated with a
      monetary cost, an implementation should decrease the ranking of
      such paths.  If the application indicates that it prohibits using
      expensive paths, paths that are associated with a cost should be
      purged from the decision tree.

Appendix B.  Reasons for errors

   The Transport Services API [I-D.ietf-taps-interface] allows for the
   several generic error types to specify a more detailed reason as to
   why an error occurred.  This appendix lists some of the possible
   reasons.

   o  InvalidConfiguration: The transport properties and endpoints
      provided by the application are either contradictory or
      incomplete.  Examples include the lack of a remote endpoint on an
      active open or using a multicast group address while not
      requesting a unidirectional receive.

   o  NoCandidates: The configuration is valid, but none of the
      available transport protocols can satisfy the transport properties
      provided by the application.
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   o  ResolutionFailed: The remote or local specifier provided by the
      application can not be resolved.

   o  EstablishmentFailed: The TAPS system was unable to establish a
      transport-layer connection to the remote endpoint specified by the
      application.

   o  PolicyProhibited: The system policy prevents the transport system
      from performing the action requested by the application.

   o  NotCloneable: The protocol stack is not capable of being cloned.

   o  MessageTooLarge: The message size is too big for the transport
      system to handle.

   o  ProtocolFailed: The underlying protocol stack failed.

   o  InvalidMessageProperties: The message properties are either
      contradictory to the transport properties or they can not be
      satisfied by the transport system.

   o  DeframingFailed: The data that was received by the underlying
      protocol stack could not be deframed.

   o  ConnectionAborted: The connection was aborted by the peer.

   o  Timeout: Delivery of a message was not possible after a timeout.

Appendix C.  Existing Implementations

   This appendix gives an overview of existing implementations, at the
   time of writing, of transport systems that are (to some degree) in
   line with this document.

   o  Apple's Network.framework:

      *  [A very brief introduction should be added]

      *  Documentation: https://developer.apple.com/documentation/
network [1]

   o  NEAT:

      *  NEAT is the output of the European H2020 research project
         "NEAT"; it is a user-space library for protocol-independent
         communication on top of TCP, UDP and SCTP, with many more
         features such as a policy manager.

https://developer.apple.com/documentation/network
https://developer.apple.com/documentation/network
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      *  Code: https://github.com/NEAT-project/neat [2]

      *  NEAT project: https://www.neat-project.org [3]

   o  PyTAPS:

      *  A TAPS implementation based on Python asyncio, offering
         protocol-independent communication to applications on top of
         TCP, UDP and TLS, with support for multicast.

      *  Code: https://github.com/fg-inet/python-asyncio-taps [4]
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