
Workgroup: TAPS Working Group

Internet-Draft: draft-ietf-taps-impl-11

Published: 9 January 2022

Intended Status: Informational

Expires: 13 July 2022

Authors: A. Brunstrom, Ed.

Karlstad University

T. Pauly, Ed.

Apple Inc.

T. Enghardt

Netflix

P. Tiesel

SAP SE

M. Welzl

University of Oslo

Implementing Interfaces to Transport Services

Abstract

The Transport Services system enables applications to use transport

protocols flexibly for network communication and defines a protocol-

independent Transport Services Application Programming Interface

(API) that is based on an asynchronous, event-driven interaction

pattern. This document serves as a guide to implementation on how to

build such a system.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Implementing Connection Objects

3. Implementing Pre-Establishment

3.1. Configuration-time errors

3.2. Role of system policy

4. Implementing Connection Establishment

4.1. Structuring Candidates as a Tree

4.1.1. Branch Types

4.1.2. Branching Order-of-Operations

4.1.3. Sorting Branches

4.2. Candidate Gathering

4.2.1. Gathering Endpoint Candidates

4.3. Candidate Racing

4.3.1. Simultaneous

4.3.2. Staggered

4.3.3. Failover

4.4. Completing Establishment

4.4.1. Determining Successful Establishment

4.5. Establishing multiplexed connections

4.6. Handling connectionless protocols

4.7. Implementing listeners

4.7.1. Implementing listeners for Connected Protocols

4.7.2. Implementing listeners for Connectionless Protocols

4.7.3. Implementing listeners for Multiplexed Protocols

5. Implementing Sending and Receiving Data

5.1. Sending Messages

5.1.1. Message Properties

5.1.2. Send Completion

5.1.3. Batching Sends

5.2. Receiving Messages

5.3. Handling of data for fast-open protocols

6. Implementing Message Framers

6.1. Defining Message Framers

6.2. Sender-side Message Framing

6.3. Receiver-side Message Framing

7. Implementing Connection Management

7.1. Pooled Connection

7.2. Handling Path Changes

8. Implementing Connection Termination

9. Cached State

9.1. Protocol state caches

9.2. Performance caches

10. Specific Transport Protocol Considerations

10.1. TCP

¶

10.2. MPTCP

10.3. UDP

10.4. UDP-Lite

10.5. UDP Multicast Receive

10.6. SCTP

11. IANA Considerations

12. Security Considerations

12.1. Considerations for Candidate Gathering

12.2. Considerations for Candidate Racing

13. Acknowledgements

14. References

14.1. Normative References

14.2. Informative References

Appendix A. API Mapping Template

Appendix B. Additional Properties

B.1. Properties Affecting Sorting of Branches

Appendix C. Reasons for errors

Appendix D. Existing Implementations

Authors' Addresses

1. Introduction

The Transport Services architecture [I-D.ietf-taps-arch] defines a

system that allows applications to flexibly use transport networking

protocols. The API that such a system exposes to applications is

defined as the Transport Services API [I-D.ietf-taps-interface].

This API is designed to be generic across multiple transport

protocols and sets of protocols features.

This document serves as a guide to implementation on how to build a

system that provides a Transport Services API. It is the job of an

implementation of a Transport Services system to turn the requests

of an application into decisions on how to establish connections,

and how to transfer data over those connections once established.

The terminology used in this document is based on the Architecture

[I-D.ietf-taps-arch].

2. Implementing Connection Objects

The connection objects that are exposed to applications for

Transport Services are:

the Preconnection, the bundle of Properties that describes the

application constraints on, and preferences for, the transport;

the Connection, the basic object that represents a flow of data

as Messages in either direction between the Local and Remote

Endpoints;

¶

¶

¶

*

¶

*

¶

and the Listener, a passive waiting object that delivers new

Connections.

Preconnection objects should be implemented as bundles of properties

that an application can both read and write. A Preconnection object

influences a Connection only at one point in time: when the

Connection is created. Connection objects represent the interface

between the application and the implementation to manage transport

state, and conduct data transfer. During the process of

establishment (Section 4), the Connection will not be bound to a

specific transport protocol instance, since multiple candidate

Protocol Stacks might be raced.

Once a Preconnection has been used to create an outbound Connection

or a Listener, the implementation should ensure that the copy of the

properties held by the Connection or Listener is not affected when

the application makes changes to a Preconnection object. This may

involve the implementation performing a deep-copy, copying the

object with all the objects that it references.

Once the Connection is established, Transport Services

implementation maps actions and events to the details of the chosen

Protocol Stack. For example, the same Connection object may

ultimately represent a single instance of one transport protocol

(e.g., a TCP connection, a TLS session over TCP, a UDP flow with

fully-specified Local and Remote Endpoints, a DTLS session, a SCTP

stream, a QUIC stream, or an HTTP/2 stream). The properties held by

a Connection or Listener is independent of other connections that

are not part of the same Connection Group.

Connection establishment is only a local operation for a Datagram

transport (e.g., UDP(-Lite)), which serves to simplify the local

send/receive functions and to filter the traffic for the specified

addresses and ports [RFC8085].

Once Initiate has been called, the Selection Properties and Endpoint

information are immutable (i.e, an application is not able to later

modify Selection Properties on the original Preconnection object).

Listener objects are created with a Preconnection, at which point

their configuration should be considered immutable by the

implementation. The process of listening is described in Section

4.7.

3. Implementing Pre-Establishment

During pre-establishment the application specifies one or more

Endpoints to be used for communication as well as protocol

preferences and constraints via Selection Properties and, if

desired, also Connection Properties. Generally, Connection

*

¶

¶

¶

¶

¶

¶

Properties should be configured as early as possible, because they

can serve as input to decisions that are made by the implementation

(e.g., the Capacity Profile can guide usage of a protocol offering

scavenger-type congestion control).

The implementation stores these properties as a part of the

Preconnection object for use during connection establishment. For

Selection Properties that are not provided by the application, the

implementation must use the default values specified in the

Transport Services API ([I-D.ietf-taps-interface]).

3.1. Configuration-time errors

The Transport Services system should have a list of supported

protocols available, which each have transport features reflecting

the capabilities of the protocol. Once an application specifies its

Transport Properties, the transport system matches the required and

prohibited properties against the transport features of the

available protocols.

In the following cases, failure should be detected during pre-

establishment:

A request by an application for Protocol Properties that cannot

be satisfied by any of the available protocols. For example, if

an application requires "Configure Reliability per Message", but

no such feature is available in any protocol the host running the

transport system on the host running the transport system this

should result in an error, e.g., when SCTP is not supported by

the operating system.

A request by an application for Protocol Properties that are in

conflict with each other, i.e., the required and prohibited

properties cannot be satisfied by the same protocol. For example,

if an application prohibits "Reliable Data Transfer" but then

requires "Configure Reliability per Message", this mismatch

should result in an error.

To avoid allocating resources that are not finally needed, it is

important that configuration-time errors fail as early as possible.

3.2. Role of system policy

The properties specified during pre-establishment have a close

relationship to system policy. The implementation is responsible for

combining and reconciling several different sources of preferences

¶

¶

¶

¶

*

¶

*

¶

¶

when establishing Connections. These include, but are not limited

to:

Application preferences, i.e., preferences specified during the

pre-establishment via Selection Properties.

Dynamic system policy, i.e., policy compiled from internally

and externally acquired information about available network

interfaces, supported transport protocols, and current/previous

Connections. Examples of ways to externally retrieve policy-

support information are through OS-specific statistics/

measurement tools and tools that reside on middleboxes and

routers.

Default implementation policy, i.e., predefined policy by OS or

application.

In general, any protocol or path used for a connection must conform

to all three sources of constraints. A violation that occurs at any

of the policy layers should cause a protocol or path to be

considered ineligible for use. For an example of application

preferences leading to constraints, an application may prohibit the

use of metered network interfaces for a given Connection to avoid

user cost. Similarly, the system policy at a given time may prohibit

the use of such a metered network interface from the application's

process. Lastly, the implementation itself may default to

disallowing certain network interfaces unless explicitly requested

by the application and allowed by the system.

It is expected that the database of system policies and the method

of looking up these policies will vary across various platforms. An

implementation should attempt to look up the relevant policies for

the system in a dynamic way to make sure it is reflecting an

accurate version of the system policy, since the system's policy

regarding the application's traffic may change over time due to user

or administrative changes.

4. Implementing Connection Establishment

The process of establishing a network connection begins when an

application expresses intent to communicate with a Remote Endpoint

by calling Initiate. (At this point, any constraints or requirements

the application may have on the connection are available from pre-

establishment.) The process can be considered complete once there is

at least one Protocol Stack that has completed any required setup to

the point that it can transmit and receive the application's data.

Connection establishment is divided into two top-level steps:

Candidate Gathering, to identify the paths, protocols, and endpoints

to use, and Candidate Racing (see Section 4.2.2 of [I-D.ietf-taps-

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

arch]), in which the necessary protocol handshakes are conducted so

that the transport system can select which set to use.

This document structures the candidates for racing as a tree as

terminological convention. While a a tree structure is not the only

way in which racing can be implemented, it does ease the

illustration of how racing works.

The most simple example of this process might involve identifying

the single IP address to which the implementation wishes to connect,

using the system's current default interface or path, and starting a

TCP handshake to establish a stream to the specified IP address.

However, each step may also differ depending on the requirements of

the connection: if the endpoint is defined as a hostname and port,

then there may be multiple resolved addresses that are available;

there may also be multiple interfaces or paths available, other than

the default system interface; and some protocols may not need any

transport handshake to be considered "established" (such as UDP),

while other connections may utilize layered protocol handshakes,

such as TLS over TCP.

Whenever an implementation has multiple options for connection

establishment, it can view the set of all individual connection

establishment options as a single, aggregate connection

establishment. The aggregate set conceptually includes every valid

combination of endpoints, paths, and protocols. As an example,

consider an implementation that initiates a TCP connection to a

hostname + port endpoint, and has two valid interfaces available

(Wi-Fi and LTE). The hostname resolves to a single IPv4 address on

the Wi-Fi network, and resolves to the same IPv4 address on the LTE

network, as well as a single IPv6 address. The aggregate set of

connection establishment options can be viewed as follows:

Any one of these sub-entries on the aggregate connection attempt

would satisfy the original application intent. The concern of this

section is the algorithm defining which of these options to try,

when, and in what order.

During Candidate Gathering, an implementation first excludes all

protocols and paths that match a Prohibit or do not match all

Require properties. Then, the implementation will sort branches

according to Preferred properties, Avoided properties, and possibly

other criteria.

¶

¶

¶

¶

Aggregate [Endpoint: www.example.com:80] [Interface: Any] [Protocol: TCP]

|-> [Endpoint: 192.0.2.1:80] [Interface: Wi-Fi] [Protocol: TCP]

|-> [Endpoint: 192.0.2.1:80] [Interface: LTE] [Protocol: TCP]

|-> [Endpoint: 2001:DB8::1.80] [Interface: LTE] [Protocol: TCP]

¶

¶

¶

4.1. Structuring Candidates as a Tree

As noted above, the considereration of multiple candidates in a

gathering and racing process can be conceptually structured as a

tree; this terminological convention is used throughout this

document.

Each leaf node of the tree represents a single, coherent connection

attempt, with an endpoint, a path, and a set of protocols that can

directly negotiate and send data on the network. Each node in the

tree that is not a leaf represents a connection attempt that is

either underspecified, or else includes multiple distinct options.

For example, when connecting on an IP network, a connection attempt

to a hostname and port is underspecified, because the connection

attempt requires a resolved IP address as its Remote Endpoint. In

this case, the node represented by the connection attempt to the

hostname is a parent node, with child nodes for each IP address.

Similarly, an implementation that is allowed to connect using

multiple interfaces will have a parent node of the tree for the

decision between the paths, with a branch for each interface.

The example aggregate connection attempt above can be drawn as a

tree by grouping the addresses resolved on the same interface into

branches:

The rest of this section will use a notation scheme to represent

this tree. The parent (or trunk) node of the tree will be

represented by a single integer, such as "1". Each child of that

node will have an integer that identifies it, from 1 to the number

of children. That child node will be uniquely identified by

concatenating its integer to it's parents identifier with a dot in

between, such as "1.1" and "1.2". Each node will be summarized by a

tuple of three elements: endpoint, path, and protocol. The above

example can now be written more succinctly as:

¶

¶

¶

 ||

 +==========================+

 | www.example.com:80/Any |

 +==========================+

 // \\

+==========================+ +==========================+

| www.example.com:80/Wi-Fi | | www.example.com:80/LTE |

+==========================+ +==========================+

 || // \\

 +====================+ +====================+ +======================+

 | 192.0.2.1:80/Wi-Fi | | 192.0.2.1:80/LTE | | 2001:DB8::1.80/LTE |

 +====================+ +====================+ +======================+

¶

¶

When an implementation views this aggregate set of connection

attempts as a single connection establishment, it only will use one

of the leaf nodes to transfer data. Thus, when a single leaf node

becomes ready to use, then the entire connection attempt is ready to

use by the application. Another way to represent this is that every

leaf node updates the state of its parent node when it becomes

ready, until the trunk node of the tree is ready, which then

notifies the application that the connection as a whole is ready to

use.

A connection establishment tree may be degenerate, and only have a

single leaf node, such as a connection attempt to an IP address over

a single interface with a single protocol.

A parent node may also only have one child (or leaf) node, such as a

when a hostname resolves to only a single IP address.

4.1.1. Branch Types

There are three types of branching from a parent node into one or

more child nodes. Any parent node of the tree must only use one type

of branching.

4.1.1.1. Derived Endpoints

If a connection originally targets a single endpoint, there may be

multiple endpoints of different types that can be derived from the

original. The connection library creates an ordered list of the

derived endpoints according to application preference, system policy

and expected performance.

DNS hostname-to-address resolution is the most common method of

endpoint derivation. When trying to connect to a hostname endpoint

on a traditional IP network, the implementation should send DNS

queries for both A (IPv4) and AAAA (IPv6) records if both are

supported on the local interface. The algorithm for ordering and

racing these addresses should follow the recommendations in Happy

Eyeballs [RFC8305].

1 [www.example.com:80, Any, TCP]

 1.1 [www.example.com:80, Wi-Fi, TCP]

 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]

 1.2 [www.example.com:80, LTE, TCP]

 1.2.1 [192.0.2.1:80, LTE, TCP]

 1.2.2 [2001:DB8::1.80, LTE, TCP]

¶

¶

¶

1 [192.0.2.1:80, Wi-Fi, TCP]¶

¶

1 [www.example.com:80, Wi-Fi, TCP]

 1.1 [192.0.2.1:80, Wi-Fi, TCP]

¶

¶

¶

¶

DNS-Based Service Discovery [RFC6763] can also provide an endpoint

derivation step. When trying to connect to a named service, the

client may discover one or more hostname and port pairs on the local

network using multicast DNS [RFC6762]. These hostnames should each

be treated as a branch that can be attempted independently from

other hostnames. Each of these hostnames might resolve to one or

more addresses, which would create multiple layers of branching.

4.1.1.2. Alternate Paths

If a client has multiple network interfaces available to it, e.g., a

mobile client with both Wi-Fi and Cellular connectivity, it can

attempt a connection over any of the interfaces. This represents a

branch point in the connection establishment. Similar to a derived

endpoint, the interfaces should be ranked based on preference,

system policy, and performance. Attempts should be started on one

interface, and then on other interfaces successively after delays

based on expected round-trip-time or other available metrics.

This same approach applies to any situation in which the client is

aware of multiple links or views of the network. Multiple Paths,

each with a coherent set of addresses, routes, DNS server, and more,

may share a single interface. A path may also represent a virtual

interface service such as a Virtual Private Network (VPN).

The list of available paths should be constrained by any

requirements or prohibitions the application sets, as well as system

policy.

4.1.1.3. Protocol Options

Differences in possible protocol compositions and options can also

provide a branching point in connection establishment. This allows

clients to be resilient to situations in which a certain protocol is

not functioning on a server or network.

1 [www.example.com:80, Wi-Fi, TCP]

 1.1 [2001:DB8::1.80, Wi-Fi, TCP]

 1.2 [192.0.2.1:80, Wi-Fi, TCP]

 1.3 [2001:DB8::2.80, Wi-Fi, TCP]

 1.4 [2001:DB8::3.80, Wi-Fi, TCP]

¶

¶

1 [term-printer._ipp._tcp.meeting.ietf.org, Wi-Fi, TCP]

 1.1 [term-printer.meeting.ietf.org:631, Wi-Fi, TCP]

 1.1.1 [31.133.160.18.631, Wi-Fi, TCP]

¶

¶

1 [192.0.2.1:80, Any, TCP]

 1.1 [192.0.2.1:80, Wi-Fi, TCP]

 1.2 [192.0.2.1:80, LTE, TCP]

¶

¶

¶

¶

This approach is commonly used for connections with optional proxy

server configurations. A single connection might have several

options available: an HTTP-based proxy, a SOCKS-based proxy, or no

proxy. These options should be ranked and attempted in succession.

This approach also allows a client to attempt different sets of

application and transport protocols that, when available, could

provide preferable features. For example, the protocol options could

involve QUIC [I-D.ietf-quic-transport] over UDP on one branch, and

HTTP/2 [RFC7540] over TLS over TCP on the other:

Another example is racing SCTP with TCP:

Implementations that support racing protocols and protocol options

should maintain a history of which protocols and protocol options

successfully established, on a per-network and per-endpoint basis

(see Section 9.2). This information can influence future racing

decisions to prioritize or prune branches.

4.1.2. Branching Order-of-Operations

Branch types must occur in a specific order relative to one another

to avoid creating leaf nodes with invalid or incompatible settings.

In the example above, it would be invalid to branch for derived

endpoints (the DNS results for www.example.com) before branching

between interface paths, since there are situations when the results

will be different across networks due to private names or different

supported IP versions. Implementations must be careful to branch in

an order that results in usable leaf nodes whenever there are

multiple branch types that could be used from a single node.

¶

1 [www.example.com:80, Any, HTTP/TCP]

 1.1 [192.0.2.8:80, Any, HTTP/HTTP Proxy/TCP]

 1.2 [192.0.2.7:10234, Any, HTTP/SOCKS/TCP]

 1.3 [www.example.com:80, Any, HTTP/TCP]

 1.3.1 [192.0.2.1:80, Any, HTTP/TCP]

¶

¶

1 [www.example.com:443, Any, Any HTTP]

 1.1 [www.example.com:443, Any, QUIC/UDP]

 1.1.1 [192.0.2.1:443, Any, QUIC/UDP]

 1.2 [www.example.com:443, Any, HTTP2/TLS/TCP]

 1.2.1 [192.0.2.1:443, Any, HTTP2/TLS/TCP]

¶

¶

1 [www.example.com:80, Any, Any Stream]

 1.1 [www.example.com:80, Any, SCTP]

 1.1.1 [192.0.2.1:80, Any, SCTP]

 1.2 [www.example.com:80, Any, TCP]

 1.2.1 [192.0.2.1:80, Any, TCP]

¶

¶

¶

The order of operations for branching should be:

Alternate Paths

Protocol Options

Derived Endpoints

where a lower number indicates higher precedence and therefore

higher placement in the tree. Branching between paths is the first

in the list because results across multiple interfaces are likely

not related to one another: endpoint resolution may return different

results, especially when using locally resolved host and service

names, and which protocols are supported and preferred may differ

across interfaces. Thus, if multiple paths are attempted, the

overall connection can be seen as a race between the available paths

or interfaces.

Protocol options are next checked in order. Whether or not a set of

protocol, or protocol-specific options, can successfully connect is

generally not dependent on which specific IP address is used.

Furthermore, the protocol stacks being attempted may influence or

altogether change the endpoints being used. Adding a proxy to a

connection's branch will change the endpoint to the proxy's IP

address or hostname. Choosing an alternate protocol may also modify

the ports that should be selected.

Branching for derived endpoints is the final step, and may have

multiple layers of derivation or resolution, such as DNS service

resolution and DNS hostname resolution.

For example, if the application has indicated both a preference for

WiFi over LTE and for a feature only available in SCTP, branches

will be first sorted accord to path selection, with WiFi at the top.

Then, branches with SCTP will be sorted to the top within their

subtree according to the properties influencing protocol selection.

However, if the implementation has current cache information that

SCTP is not available on the path over WiFi, there is no SCTP node

in the WiFi subtree. Here, the path over WiFi will be tried first,

and, if connection establishment succeeds, TCP will be used. So the

Selection Property of preferring WiFi takes precedence over the

Property that led to a preference for SCTP.

¶

1. ¶

2. ¶

3. ¶

¶

¶

¶

¶

1. [www.example.com:80, Any, Any Stream]

1.1 [192.0.2.1:80, Wi-Fi, Any Stream]

1.1.1 [192.0.2.1:80, Wi-Fi, TCP]

1.2 [192.0.3.1:80, LTE, Any Stream]

1.2.1 [192.0.3.1:80, LTE, SCTP]

1.2.2 [192.0.3.1:80, LTE, TCP]

¶

4.1.3. Sorting Branches

Implementations should sort the branches of the tree of connection

options in order of their preference rank, from most preferred to

least preferred. Leaf nodes on branches with higher rankings

represent connection attempts that will be raced first.

Implementations should order the branches to reflect the preferences

expressed by the application for its new connection, including

Selection Properties, which are specified in [I-D.ietf-taps-

interface].

In addition to the properties provided by the application, an

implementation may include additional criteria such as cached

performance estimates, see Section 9.2, or system policy, see

Section 3.2, in the ranking. Two examples of how Selection and

Connection Properties may be used to sort branches are provided

below:

"Interface Instance or Type": If the application specifies an

interface type to be preferred or avoided, implementations should

accordingly rank the paths. If the application specifies an

interface type to be required or prohibited, an implementation is

expeceted to not include the non-conforming paths.

"Capacity Profile": An implementation can use the Capacity

Profile to prefer paths that match an application's expected

traffic pattern. This match will use cached performance

estimates, see Section 9.2:

Scavenger: Prefer paths with the highest expected available

capacity, but minimising impact on other traffic, based on the

observed maximum throughput;

Low Latency/Interactive: Prefer paths with the lowest expected

Round Trip Time, based on observed round trip time estimates;

Low Latency/Non-Interactive: Prefer paths with a low expected

Round Trip Time, but can tolerate delay variation;

Constant-Rate Streaming: Prefer paths that are expected to

satisy the requested Stream Send or Stream Receive Bitrate,

based on the observed maximum throughput;

Capacity-Seeking: Prefer adapting to paths to determine the

highest available capacity, based on the observed maximum

throughput.

Implementations process the Properties in the following order:

Prohibit, Require, Prefer, Avoid. If Selection Properties contain

any prohibited properties, the implementation should first purge

¶

¶

*

¶

*

¶

-

¶

-

¶

-

¶

-

¶

-

¶

branches containing nodes with these properties. For required

properties, it should only keep branches that satisfy these

requirements. Finally, it should order the branches according to the

preferred properties, and finally use any avoided properties as a

tiebreaker. When ordering branches, an implementation can give more

weight to properties that the application has explicitly set, than

to the properties that are default.

The available protocols and paths on a specific system and in a

specific context can change; therefore, the result of sorting and

the outcome of racing may vary, even when using the same Selection

and Connection Properties. However, an implementation ought to

provide a consistent outcome to applications, e.g., by preferring

protocols and paths that are already used by existing Connections

that specified similar Properties.

4.2. Candidate Gathering

The step of gathering candidates involves identifying which paths,

protocols, and endpoints may be used for a given Connection. This

list is determined by the requirements, prohibitions, and

preferences of the application as specified in the Selection

Properties.

4.2.1. Gathering Endpoint Candidates

Both Local and Remote Endpoint Candidates must be discovered during

connection establishment. To support Interactive Connectivity

Establishment (ICE) [RFC8445], or similar protocols that involve

out-of-band indirect signalling to exchange candidates with the

Remote Endpoint, it is important to query the set of candidate Local

Endpoints, and provide the protocol stack with a set of candidate

Remote Endpoints, before the Local Endpoint attempts to establish

connections.

4.2.1.1. Local Endpoint candidates

The set of possible Local Endpoints is gathered. In the simple case,

this merely enumerates the local interfaces and protocols, and

allocates ephemeral source ports. For example, a system that has

WiFi and Ethernet and supports IPv4 and IPv6 might gather four

candidate Local Endpoints (IPv4 on Ethernet, IPv6 on Ethernet, IPv4

on WiFi, and IPv6 on WiFi) that can form the source for a transient.

If NAT traversal is required, the process of gathering Local

Endpoints becomes broadly equivalent to the ICE candidate gathering

phase (see Section 5.1.1. of [RFC8445]). The endpoint determines its

server reflexive Local Endpoints (i.e., the translated address of a

Local Endpoint, on the other side of a NAT, e.g via a STUN sever

[RFC5389]) and relayed Local Endpoints (e.g., via a TURN server

¶

¶

¶

¶

¶

[RFC5766] or other relay), for each interface and network protocol.

These are added to the set of candidate Local Endpoints for this

connection.

Gathering Local Endpoints is primarily a local operation, although

it might involve exchanges with a STUN server to derive server

reflexive Local Endpoints, or with a TURN server or other relay to

derive relayed Local Endpoints. However, it does not involve

communication with the Remote Endpoint.

4.2.1.2. Remote Endpoint Candidates

The Remote Endpoint is typically a name that needs to be resolved

into a set of possible addresses that can be used for communication.

Resolving the Remote Endpoint is the process of recursively

performing such name lookups, until fully resolved, to return the

set of candidates for the Remote Endpoint of this connection.

How this resolution is done will depend on the type of the Remote

Endpoint, and can also be specific to each Local Endpoint. A common

case is when the Remote Endpoint is a DNS name, in which case it is

resolved to give a set of IPv4 and IPv6 addresses representing that

name. Some types of Remote Endpoint might require more complex

resolution. Resolving the Remote Endpoint for a peer-to-peer

connection might involve communication with a rendezvous server,

which in turn contacts the peer to gain consent to communicate and

retrieve its set of candidate Local Endpoints, which are returned

and form the candidate remote addresses for contacting that peer.

Resolving the Remote Endpoint is not a local operation. It will

involve a directory service, and can require communication with the

Remote Endpoint to rendezvous and exchange peer addresses. This can

expose some or all of the candidate Local Endpoints to the Remote

Endpoint.

4.3. Candidate Racing

The primary goal of the Candidate Racing process is to successfully

negotiate a protocol stack to an endpoint over an interface to

connect a single leaf node of the tree with as little delay and as

few unnecessary connections attempts as possible. Optimizing these

two factors improves the user experience, while minimizing network

load.

This section covers the dynamic aspect of connection establishment.

The tree described above is a useful conceptual and architectural

model. However, an implementation is unable to know the full tree

before it is formed and many of the possible branches ultimately

might not be used.

¶

¶

¶

¶

¶

¶

¶

There are three different approaches to racing the attempts for

different nodes of the connection establishment tree:

Simultaneous

Staggered

Failover

Each approach is appropriate in different use-cases and branch

types. However, to avoid consuming unnecessary network resources,

implementations should not use simultaneous racing as a default

approach.

The timing algorithms for racing should remain independent across

branches of the tree. Any timers or racing logic is isolated to a

given parent node, and is not ordered precisely with regards to

other children of other nodes.

4.3.1. Simultaneous

Simultaneous racing is when multiple alternate branches are started

without waiting for any one branch to make progress before starting

the next alternative. This means the attempts are effectively

simultaneous. Simultaneous racing should be avoided by

implementations, since it consumes extra network resources and

establishes state that might not be used.

4.3.2. Staggered

Staggered racing can be used whenever a single node of the tree has

multiple child nodes. Based on the order determined when building

the tree, the first child node will be initiated immediately,

followed by the next child node after some delay. Once that second

child node is initiated, the third child node (if present) will

begin after another delay, and so on until all child nodes have been

initiated, or one of the child nodes successfully completes its

negotiation.

Staggered racing attempts can proceed in parallel. Implementations

should not terminate an earlier child connection attempt upon

starting a secondary child.

If a child node fails to establish connectivity (as in Section

4.4.1) before the delay time has expired for the next child, the

next child should be started immediately.

Staggered racing between IP addresses for a generic Connection

should follow the Happy Eyeballs algorithm described in [RFC8305].

¶

1. ¶

2. ¶

3. ¶

¶

¶

¶

¶

¶

¶

[RFC8421] provides guidance for racing when performing Interactive

Connectivity Establishment (ICE).

Generally, the delay before starting a given child node ought to be

based on the length of time the previously started child node is

expected to take before it succeeds or makes progress in connection

establishment. Algorithms like Happy Eyeballs choose a delay based

on how long the transport connection handshake is expected to take.

When performing staggered races in multiple branch types (such as

racing between network interfaces, and then racing between IP

addresses), a longer delay may be chosen for some branch types. For

example, when racing between network interfaces, the delay should

also take into account the amount of time it takes to prepare the

network interface (such as radio association) and name resolution

over that interface, in addition to the delay that would be added

for a single transport connection handshake.

Since the staggered delay can be chosen based on dynamic

information, such as predicted round-trip time, implementations

should define upper and lower bounds for delay times. These bounds

are implementation-specific, and may differ based on which branch

type is being used.

4.3.3. Failover

If an implementation or application has a strong preference for one

branch over another, the branching node may choose to wait until one

child has failed before starting the next. Failure of a leaf node is

determined by its protocol negotiation failing or timing out;

failure of a parent branching node is determined by all of its

children failing.

An example in which failover is recommended is a race between a

protocol stack that uses a proxy and a protocol stack that bypasses

the proxy. Failover is useful in case the proxy is down or

misconfigured, but any more aggressive type of racing may end up

unnecessarily avoiding a proxy that was preferred by policy.

4.4. Completing Establishment

The process of connection establishment completes when one leaf node

of the tree has successfully completed negotiation with the Remote

Endpoint, or else all nodes of the tree have failed to connect. The

first leaf node to complete its connection is then used by the

application to send and receive data.

Successes and failures of a given attempt should be reported up to

parent nodes (towards the trunk of the tree). For example, in the

following case, if 1.1.1 fails to connect, it reports the failure to

1.1. Since 1.1 has no other child nodes, it also has failed and

¶

¶

¶

¶

¶

¶

reports that failure to 1. Because 1.2 has not yet failed, 1 is not

considered to have failed. Since 1.2 has not yet started, it is

started and the process continues. Similarly, if 1.1.1 successfully

connects, then it marks 1.1 as connected, which propagates to the

trunk node 1. At this point, the connection as a whole is considered

to be successfully connected and ready to process application data.

If a leaf node has successfully completed its connection, all other

attempts should be made ineligible for use by the application for

the original request. New connection attempts that involve

transmitting data on the network ought not to be started after

another leaf node has already successfully completed, because the

connection as a whole has now been established. An implementation

may choose to let certain handshakes and negotiations complete in

order to gather metrics to influence future connections. Keeping

additional connections is generally not recommended since those

attempts were slower to connect and may exhibit less desirable

properties.

4.4.1. Determining Successful Establishment

Implementations may select the criteria by which a leaf node is

considered to be successfully connected differently on a per-

protocol basis. If the only protocol being used is a transport

protocol with a clear handshake, like TCP, then the obvious choice

is to declare that node "connected" when the last packet of the

three-way handshake has been received. If the only protocol being

used is an connectionless protocol, like UDP, the implementation may

consider the node fully "connected" the moment it determines a route

is present, before sending any packets on the network, see further

Section 4.6.

For protocol stacks with multiple handshakes, the decision becomes

more nuanced. If the protocol stack involves both TLS and TCP, an

implementation could determine that a leaf node is connected after

the TCP handshake is complete, or it can wait for the TLS handshake

to complete as well. The benefit of declaring completion when the

TCP handshake finishes, and thus stopping the race for other

branches of the tree, is reduced burden on the network and Remote

Endpoints from further connection attempts that are likely to be

abandoned. On the other hand, by waiting until the TLS handshake is

complete, an implementation avoids the scenario in which a TCP

handshake completes quickly, but TLS negotiation is either very slow

¶

1 [www.example.com:80, Any, TCP]

 1.1 [www.example.com:80, Wi-Fi, TCP]

 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]

 1.2 [www.example.com:80, LTE, TCP]

...

¶

¶

¶

or fails altogether in particular network conditions or to a

particular endpoint. To avoid the issue of TLS possibly failing, the

implementation should not generate a Ready event for the Connection

until TLS is established.

If all of the leaf nodes fail to connect during racing, i.e. none of

the configurations that satisfy all requirements given in the

Transport Properties actually work over the available paths, then

the transport system should notify the application with an

InitiateError event. An InitiateError event should also be generated

in case the transport system finds no usable candidates to race.

4.5. Establishing multiplexed connections

Multiplexing several Connections over a single underlying transport

connection requires that the Connections to be multiplexed belong to

the same Connection Group (as is indicated by the application using

the Clone call). When the underlying transport connection supports

multi-streaming, the Transport Services System can map each

Connection in the Connection Group to a different stream. Thus, when

the Connections that are offered to an application by the Transport

Services API are multiplexed, the Transport Services implementation

can establish a new Connection by simply beginning to use a new

stream of an already established transport Connection and there is

no need for a connection establishment procedure. This, then, also

means that there may not be any "establishment" message (like a TCP

SYN), but the application can simply start sending or receiving.

Therefore, when the Initiate action of a Transport Services API is

called without Messages being handed over, it cannot be guaranteed

that the Remote Endpoint will have any way to know about this, and

hence a passive endpoint's ConnectionReceived event might not be

called until data is received. Instead, calling the

ConnectionReceived event could be delayed until the first Message

arrives.

4.6. Handling connectionless protocols

While protocols that use an explicit handshake to validate a

Connection to a peer can be used for racing multiple establishment

attempts in parallel, connectionless protocols such as raw UDP do

not offer a way to validate the presence of a peer or the usability

of a Connection without application feedback. An implementation

should consider such a protocol stack to be established as soon as

the Transport Services system has selected a path on which to send

data.

However, if a peer is not reachable over the network using the

connectionless protocol, or data cannot be exchanged for any other

reason, the application may want to attempt using another candidate

¶

¶

¶

¶

Protocol Stack. The implementation should maintain the list of other

candidate Protocol Stacks that were eligible to use.

4.7. Implementing listeners

When an implementation is asked to Listen, it registers with the

system to wait for incoming traffic to the Local Endpoint. If no

Local Endpoint is specified, the implementation should use an

ephemeral port.

If the Selection Properties do not require a single network

interface or path, but allow the use of multiple paths, the Listener

object should register for incoming traffic on all of the network

interfaces or paths that conform to the Properties. The set of

available paths can change over time, so the implementation should

monitor network path changes, and change the registration of the

Listener across all usable paths as appropriate. When using multiple

paths, the Listener is generally expected to use the same port for

listening on each.

If the Selection Properties allow multiple protocols to be used for

listening, and the implementation supports it, the Listener object

should support receiving inbound connections for each eligible

protocol on each eligible path.

4.7.1. Implementing listeners for Connected Protocols

Connected protocols such as TCP and TLS-over-TCP have a strong

mapping between the Local and Remote Endpoints (four-tuple) and

their protocol connection state. These map into Connection objects.

Whenever a new inbound handshake is being started, the Listener

should generate a new Connection object and pass it to the

application.

4.7.2. Implementing listeners for Connectionless Protocols

Connectionless protocols such as UDP and UDP-lite generally do not

provide the same mechanisms that connected protocols do to offer

Connection objects. Implementations should wait for incoming packets

for connectionless protocols on a listening port and should perform

four-tuple matching of packets to either existing Connection objects

or the creation of new Connection objects. On platforms with

facilities to create a "virtual connection" for connectionless

protocols implementations should use these mechanisms to minimise

the handling of datagrams intended for already created Connection

objects.

¶

¶

¶

¶

¶

¶

4.7.3. Implementing listeners for Multiplexed Protocols

Protocols that provide multiplexing of streams into a single four-

tuple can listen both for entirely new connections (a new HTTP/2

stream on a new TCP connection, for example) and for new sub-

connections (a new HTTP/2 stream on an existing connection). If the

abstraction of Connection presented to the application is mapped to

the multiplexed stream, then the Listener should deliver new

Connection objects in the same way for either case. The

implementation should allow the application to introspect the

Connection Group marked on the Connections to determine the grouping

of the multiplexing.

5. Implementing Sending and Receiving Data

The most basic mapping for sending a Message is an abstraction of

datagrams, in which the transport protocol naturally deals in

discrete packets. Each Message here corresponds to a single

datagram. Generally, these will be short enough that sending and

receiving will always use a complete Message.

For protocols that expose byte-streams, the only delineation

provided by the protocol is the end of the stream in a given

direction. Each Message in this case corresponds to the entire

stream of bytes in a direction. These Messages may be quite long, in

which case they can be sent in multiple parts.

Protocols that provide the framing (such as length-value protocols,

or protocols that use delimiters) may support Message sizes that do

not fit within a single datagram. Each Message for framing protocols

corresponds to a single frame, which may be sent either as a

complete Message in the underlying protocol, or in multiple parts.

5.1. Sending Messages

The effect of the application sending a Message is determined by the

top-level protocol in the established Protocol Stack. That is, if

the top-level protocol provides an abstraction of framed messages

over a connection, the receiving application will be able to obtain

multiple Messages on that connection, even if the framing protocol

is built on a byte-stream protocol like TCP.

5.1.1. Message Properties

Lifetime: this should be implemented by removing the Message from

the queue of pending Messages after the Lifetime has expired. A

queue of pending Messages within the transport system

implementation that have yet to be handed to the Protocol Stack

can always support this property, but once a Message has been

sent into the send buffer of a protocol, only certain protocols

¶

¶

¶

¶

¶

*

may support removing a message. For example, an implementation

cannot remove bytes from a TCP send buffer, while it can remove

data from a SCTP send buffer using the partial reliability

extension [RFC8303]. When there is no standing queue of Messages

within the system, and the Protocol Stack does not support the

removal of a Message from the stack's send buffer, this property

may be ignored.

Priority: this represents the ability to prioritize a Message

over other Messages. This can be implemented by the system re-

ordering Messages that have yet to be handed to the Protocol

Stack, or by giving relative priority hints to protocols that

support priorities per Message. For example, an implementation of

HTTP/2 could choose to send Messages of different Priority on

streams of different priority.

Ordered: when this is false, this disables the requirement of in-

order-delivery for protocols that support configurable ordering.

When the protocol stack does not support configurable ordering,

this property may be ignored.

Safely Replayable: when this is true, this means that the Message

can be used by a transport mechanism that might transfer it

multiple times - e.g., as a result of racing multiple transports

or as part of TCP Fast Open. Also, protocols that do not protect

against duplicated messages, such as UDP (when used directly,

without a protocol layered atop), can only be used with Messages

that are Safely Replayable. When a transport system is permitted

to replay messages, replay protection could be provided by the

application.

Final: when this is true, this means that the sender will not

send any further messages. The Connection need not be closed (in

case the Protocol Stack supports half-close operation, like TCP).

Any messages sent after a Final message will result in a

SendError.

Corruption Protection Length: when this is set to any value other

than Full Coverage, it sets the minimum protection in protocols

that allow limiting the checksum length (e.g. UDP-Lite). If the

protocol stack does not support checksum length limitation, this

property may be ignored.

Reliable Data Transfer (Message): When true, the property

specifies that the Message must be reliably transmitted. When

false, and if unreliable transmission is supported by the

underlying protocol, then the Message should be unreliably

transmitted. If the underlying protocol does not support

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

unreliable transmission, the Message should be reliably

transmitted.

Message Capacity Profile Override: When true, this expresses a

wish to override the Generic Connection Property Capacity Profile

for this Message. Depending on the value, this can, for example,

be implemented by changing the DSCP value of the associated

packet (note that the guidelines in Section 6 of [RFC7657] apply;

e.g., the DSCP value should not be changed for different packets

within a reliable transport protocol session or DCCP connection).

No Fragmentation: When set, this property limits the message size

to the Maximum Message Size Before Fragmentation or Segmentation

(see Section 10.1.7 of [I-D.ietf-taps-interface]). Messages

larger than this size generate an error. Setting this avoids

transport-layer segmentation or network-layer fragmentation. When

used with transports running over IP version 4 the Don't Fragment

bit will be set to avoid on-path IP fragmentation ([RFC8304]).

5.1.2. Send Completion

The application should be notified whenever a Message or partial

Message has been consumed by the Protocol Stack, or has failed to

send. The time at which a Message is considered to have been

consumed by the Protocol Stack may vary depending on the protocol.

For example, for a basic datagram protocol like UDP, this may

correspond to the time when the packet is sent into the interface

driver. For a protocol that buffers data in queues, like TCP, this

may correspond to when the data has entered the send buffer. The

time at which a message failed to send is when Transport Services

implementation (including the Protocol Stack) has not successfully

sent the entire Message content or partial Message content on any

open candidate connection; this can depend on protocol-specific

timeouts.

5.1.3. Batching Sends

Since sending a Message may involve a context switch between the

application and the Transport Services system, sending patterns that

involve multiple small Messages can incur high overhead if each

needs to be enqueued separately. To avoid this, the application can

indicate a batch of Send actions through the API. When this is used,

the implementation can defer the processing of Messages until the

batch is complete.

5.2. Receiving Messages

Similar to sending, Receiving a Message is determined by the top-

level protocol in the established Protocol Stack. The main

difference with Receiving is that the size and boundaries of the

¶

*

¶

*

¶

¶

¶

Message are not known beforehand. The application can communicate in

its Receive action the parameters for the Message, which can help

the Transport Services implementation know how much data to deliver

and when. For example, if the application only wants to receive a

complete Message, the implementation should wait until an entire

Message (datagram, stream, or frame) is read before delivering any

Message content to the application. This requires the implementation

to understand where messages end, either via a supplied deframer or

because the top-level protocol in the established Protocol Stack

preserves message boundaries. If the top-level protocol only

supports a byte-stream and no framers were supported, the

application can control the flow of received data by specifying the

minimum number of bytes of Message content it wants to receive at

one time.

If a Connection finishes before a requested Receive action can be

satisfied, the Transport Services API should deliver any partial

Message content outstanding, or if none is available, an indication

that there will be no more received Messages.

5.3. Handling of data for fast-open protocols

Several protocols allow sending higher-level protocol or application

data during their protocol establishment, such as TCP Fast Open

[RFC7413] and TLS 1.3 [RFC8446]. This approach is referred to as

sending Zero-RTT (0-RTT) data. This is a desirable feature, but

poses challenges to an implementation that uses racing during

connection establishment.

The amount of data that can be sent as 0-RTT data varies by protocol

and can be queried by the application using the Maximum Message Size

Concurrent with Connection Establishment Connection Property. An

implementation can set this property according to the protocols that

it will race based on the given Selection Properties when the

application requests to establish a connection.

If the application has 0-RTT data to send in any protocol

handshakes, it needs to provide this data before the handshakes have

begun. When racing, this means that the data should be provided

before the process of connection establishment has begun. If the

application wants to send 0-RTT data, it must indicate this to the

implementation by setting the Safely Replayable send parameter to

true when sending the data. In general, 0-RTT data may be replayed

(for example, if a TCP SYN contains data, and the SYN is

retransmitted, the data will be retransmitted as well but may be

considered as a new connection instead of a retransmission). Also,

when racing connections, different leaf nodes have the opportunity

to send the same data independently. If data is truly safely

replayable, this should be permissible.

¶

¶

¶

¶

¶

Once the application has provided its 0-RTT data, a Transport

Services implementation should keep a copy of this data and provide

it to each new leaf node that is started and for which a 0-RTT

protocol is being used.

It is also possible that protocol stacks within a particular leaf

node use 0-RTT handshakes without any safely replayable application

data. For example, TCP Fast Open could use a Client Hello from TLS

as its 0-RTT data, shortening the cumulative handshake time.

0-RTT handshakes often rely on previous state, such as TCP Fast Open

cookies, previously established TLS tickets, or out-of-band

distributed pre-shared keys (PSKs). Implementations should be aware

of security concerns around using these tokens across multiple

addresses or paths when racing. In the case of TLS, any given ticket

or PSK should only be used on one leaf node, since servers will

likely reject duplicate tickets in order to prevent replays (see

section-8.1 [RFC8446]). If implementations have multiple tickets

available from a previous connection, each leaf node attempt can use

a different ticket. In effect, each leaf node will send the same

early application data, yet encoded (encrypted) differently on the

wire.

6. Implementing Message Framers

Message Framers are functions that define simple transformations

between application Message data and raw transport protocol data. A

Framer can encapsulate or encode outbound Messages, and decapsulate

or decode inbound data into Messages.

While many protocols can be represented as Message Framers, for the

purposes of the Transport Services API, these are ways for

applications or application frameworks to define their own Message

parsing to be included within a Connection's Protocol Stack. As an

example, TLS is exposed as a protocol natively supported by the

Transport Services API, even though it could also serve the purpose

of framing data over TCP.

Most Message Framers fall into one of two categories:

Header-prefixed record formats, such as a basic Type-Length-Value

(TLV) structure

Delimiter-separated formats, such as HTTP/1.1.

Common Message Framers can be provided by a Transport Services

implementation, but an implementation ought to allow custom Message

Framers to be defined by the application or some other piece of

software. This section describes one possible API for defining

Message Framers as an example.

¶

¶

¶

¶

¶

¶

*

¶

* ¶

¶

6.1. Defining Message Framers

A Message Framer is primarily defined by the code that handles

events for a framer implementation, specifically how it handles

inbound and outbound data parsing. The function that implements

custom framing logic will be referred to as the "framer

implementation", which may be provided by a Transport Services

implementation or the application itself. The Message Framer refers

to the object or function within the main Connection implementation

that delivers events to the custom framer implementation whenever

data is ready to be parsed or framed.

When a Connection establishment attempt begins, an event can be

delivered to notify the framer implementation that a new Connection

is being created. Similarly, a stop event can be delivered when a

Connection is being torn down. The framer implementation can use the

Connection object to look up specific properties of the Connection

or the network being used that may influence how to frame Messages.

When a Message Framer generates a Start event, the framer

implementation has the opportunity to start writing some data prior

to the Connection delivering its Ready event. This allows the

implementation to communicate control data to the Remote Endpoint

that can be used to parse Messages.

Similarly, when a Message Framer generates a Stop event, the framer

implementation has the opportunity to write some final data or clear

up its local state before the Closed event is delivered to the

Application. The framer implementation can indicate that it has

finished with this.

At any time if the implementation encounters a fatal error, it can

also cause the Connection to fail and provide an error.

Should the framer implementation deem the candidate selected during

racing unsuitable, it can signal this to the Transport Services API

by failing the Connection prior to marking it as ready. If there are

no other candidates available, the Connection will fail. Otherwise,

the Connection will select a different candidate and the Message

Framer will generate a new Start event.

¶

¶

MessageFramer -> Start(Connection)

MessageFramer -> Stop(Connection)

¶

¶

MessageFramer.MakeConnectionReady(Connection)¶

¶

MessageFramer.MakeConnectionClosed(Connection)¶

¶

MessageFramer.FailConnection(Connection, Error)¶

¶

Before an implementation marks a Message Framer as ready, it can

also dynamically add a protocol or framer above it in the stack.

This allows protocols that need to add TLS conditionally, like

STARTTLS [RFC3207], to modify the Protocol Stack based on a

handshake result.

A Message Framer might also choose to go into a passthrough mode

once an initial exchange or handshake has been completed, such as

the STARTTLS case mentioned above. This can also be useful for proxy

protocols like SOCKS [RFC1928] or HTTP CONNECT [RFC7230]. In such

cases, a Message Framer implementation can intercept sending and

receiving of messages at first, but then indicate that no more

processing is needed.

6.2. Sender-side Message Framing

Message Framers generate an event whenever a Connection sends a new

Message.

Upon receiving this event, a framer implementation is responsible

for performing any necessary transformations and sending the

resulting data back to the Message Framer, which will in turn send

it to the next protocol. Implementations SHOULD ensure that there is

a way to pass the original data through without copying to improve

performance.

To provide an example, a simple protocol that adds a length as a

header would receive the NewSentMessage event, create a data

representation of the length of the Message data, and then send a

block of data that is the concatenation of the length header and the

original Message data.

6.3. Receiver-side Message Framing

In order to parse a received flow of data into Messages, the Message

Framer notifies the framer implementation whenever new data is

available to parse.

¶

otherFramer := NewMessageFramer()

MessageFramer.PrependFramer(Connection, otherFramer)

¶

¶

MessageFramer.StartPassthrough()¶

¶

MessageFramer -> NewSentMessage<Connection, MessageData, MessageContext, IsEndOfMessage>¶

¶

MessageFramer.Send(Connection, Data)¶

¶

¶

MessageFramer -> HandleReceivedData<Connection>¶

Upon receiving this event, the framer implementation can inspect the

inbound data. The data is parsed from a particular cursor

representing the unprocessed data. The application requests a

specific amount of data it needs to have available in order to

parse. If the data is not available, the parse fails.

The framer implementation can directly advance the receive cursor

once it has parsed data to effectively discard data (for example,

discard a header once the content has been parsed).

To deliver a Message to the application, the framer implementation

can either directly deliver data that it has allocated, or deliver a

range of data directly from the underlying transport and

simultaneously advance the receive cursor.

Note that MessageFramer.DeliverAndAdvanceReceiveCursor allows the

framer implementation to earmark bytes as part of a Message even

before they are received by the transport. This allows the delivery

of very large Messages without requiring the implementation to

directly inspect all of the bytes.

To provide an example, a simple protocol that parses a length as a

header value would receive the HandleReceivedData event, and call

Parse with a minimum and maximum set to the length of the header

field. Once the parse succeeded, it would call AdvanceReceiveCursor

with the length of the header field, and then call

DeliverAndAdvanceReceiveCursor with the length of the body that was

parsed from the header, marking the new Message as complete.

7. Implementing Connection Management

Once a Connection is established, the Transport Services API allows

applications to interact with the Connection by modifying or

inspecting Connection Properties. A Connection can also generate

events in the form of Soft Errors.

The set of Connection Properties that are supported for setting and

getting on a Connection are described in [I-D.ietf-taps-interface].

For any properties that are generic, and thus could apply to all

protocols being used by a Connection, the Transport Services

implementation should store the properties in storage common to all

protocols, and notify all protocol instances in the Protocol Stack

whenever the properties have been modified by the application. For

protocol-specfic properties, such as the User Timeout that applies

¶

MessageFramer.Parse(Connection, MinimumIncompleteLength, MaximumLength) -> (Data, MessageContext, IsEndOfMessage)¶

¶

¶

MessageFramer.AdvanceReceiveCursor(Connection, Length)

MessageFramer.DeliverAndAdvanceReceiveCursor(Connection, MessageContext, Length, IsEndOfMessage)

MessageFramer.Deliver(Connection, MessageContext, Data, IsEndOfMessage)

¶

¶

¶

¶

to TCP, the Transport Services implementation only needs to update

the relevant protocol instance.

If an error is encountered in setting a property (for example, if

the application tries to set a TCP-specific property on a Connection

that is not using TCP), the action should fail gracefully. The

application may be informed of the error, but the Connection itself

should not be terminated.

The Transport Services API should allow protocol instances in the

Protocol Stack to pass up arbitrary generic or protocol-specific

errors that can be delivered to the application as Soft Errors.

These allow the application to be informed of ICMP errors, and other

similar events.

7.1. Pooled Connection

For applications that do not need in-order delivery of Messages, the

Transport Services implementation may distribute Messages of a

single Connection across several underlying transport connections or

multiple streams of multi-streaming connections between endpoints,

as long as all of these satisfy the Selection Properties. The

Transport Services implementation will then hide this connection

management and only expose a single Connection object, which we here

call a "Pooled Connection". This is in contrast to Connection

Groups, which explicitly expose combined treatment of Connections,

giving the application control over multiplexing, for example.

Pooled Connections can be useful when the application using the

Transport Services system implements a protocol such as HTTP, which

employs request/response pairs and does not require in-order

delivery of responses. This enables implementations of Transport

Services systems to realize transparent connection coalescing,

connection migration, and to perform per-message endpoint and path

selection by choosing among multiple underlying connections.

7.2. Handling Path Changes

When a path change occurs, e.g., when the IP address of an interface

changes or a new interface becomes available, the Transport Services

implementation is responsible for notifying the Protocol Instance of

the change. The path change may interrupt connectivity on a path for

an active connection or provide an opportunity for a transport that

supports multipath or migration to adapt to the new paths. Note

that, in the model of the Transport Services API, migration is

considered a part of multipath connectivity; it is just a limiting

policy on multipath usage. If the multipath Selection Property is

set to Disabled, migration is disallowed.

¶

¶

¶

¶

¶

¶

For protocols that do not support multipath or migration, the

Protocol Instances should be informed of the path change, but should

not be forcibly disconnected if the previously used path becomes

unavailable. There are many common user scenarios that can lead to a

path becoming temporarily unavailable, and then recovering before

the transport protocol reaches a timeout error. These are

particularly common using mobile devices. Examples include: an

Ethernet cable becoming unplugged and then plugged back in; a device

losing a Wi-Fi signal while a user is in an elevator, and

reattaching when the user leaves the elevator; and a user losing the

radio signal while riding a train through a tunnel. If the device is

able to rejoin a network with the same IP address, a stateful

transport connection can generally resume. Thus, while it is useful

for a Protocol Instance to be aware of a temporary loss of

connectivity, the Transport Services implementation should not

aggressively close connections in these scenarios.

If the Protocol Stack includes a transport protocol that supports

multipath connectivity, the Transport Services implementation should

also inform the Protocol Instance of potentially new paths that

become permissible based on the multipath Selection Property and the

multipath-policy Connection Property choices made by the

application. A protocol can then establish new subflows over new

paths while an active path is still available or, if migration is

supported, also after a break has been detected, and should attempt

to tear down subflows over paths that are no longer used. The

Connection Property multipath-policy of the Transport Services API

allows an application to indicate when and how different paths

should be used. However, detailed handling of these policies is

still implementation-specific. For example, if the multipath

Selection Property is set to active, the decision about when to

create a new path or to announce a new path or set of paths to the

Remote Endpoint, e.g., in the form of additional IP addresses, is

implementation-specific. If the Protocol Stack includes a transport

protocol that does not support multipath, but does support migrating

between paths, the update to the set of available paths can trigger

the connection to be migrated.

In case of Pooled Connections Section 7.1, the Transport Services

implementation may add connections over new paths to the pool if

permissible based on the multipath policy and Selection Properties.

In case a previously used path becomes unavailable, the transport

system may disconnect all connections that require this path, but

should not disconnect the pooled connection object exposed to the

application. The strategy to do so is implementation-specific, but

should be consistent with the behavior of multipath transports.

¶

¶

¶

8. Implementing Connection Termination

With TCP, when an application closes a connection, this means that

it has no more data to send (but expects all data that has been

handed over to be reliably delivered). However, with TCP only,

"close" does not mean that the application will stop receiving data.

This is related to TCP's ability to support half-closed connections.

SCTP is an example of a protocol that does not support such half-

closed connections. Hence, with SCTP, the meaning of "close" is

stricter: an application has no more data to send (but expects all

data that has been handed over to be reliably delivered), and will

also not receive any more data.

Implementing a protocol independent transport system means that the

exposed semantics must be the strictest subset of the semantics of

all supported protocols. Hence, as is common with all reliable

transport protocols, after a Close action, the application can

expect to have its reliability requirements honored regarding the

data provided to the Transport Services API, but it cannot expect to

be able to read any more data after calling Close.

Abort differs from Close only in that no guarantees are given

regarding any data that the application sent to the Transport

Services API before calling Abort.

As explained in Section 4.5, when a new stream is multiplexed on an

already existing connection of a Transport Protocol Instance, there

is no need for a connection establishment procedure. Because the

Connections that are offered by a Transport Services implementation

can be implemented as streams that are multiplexed on a transport

protocol's connection, it can therefore not be guaranteed an

Initiate action from one endpoint provokes a ConnectionReceived

event at its peer.

For Close (provoking a Finished event) and Abort (provoking a

ConnectionError event), the same logic applies: while it is

desirable to be informed when a peer closes or aborts a Connection,

whether this is possible depends on the underlying protocol, and no

guarantees can be given. With SCTP, the transport system can use the

stream reset procedure to cause a Finish event upon a Close action

from the peer [NEAT-flow-mapping].

9. Cached State

Beyond a single Connection's lifetime, it is useful for an

implementation to keep state and history. This cached state can help

improve future Connection establishment due to re-using results and

credentials, and favoring paths and protocols that performed well in

the past.

¶

¶

¶

¶

¶

¶

¶

Cached state may be associated with different endpoints for the same

Connection, depending on the protocol generating the cached content.

For example, session tickets for TLS are associated with specific

endpoints, and thus should be cached based on a Connection's

hostname endpoint (if applicable). However, performance

characteristics of a path are more likely tied to the IP address and

subnet being used.

9.1. Protocol state caches

Some protocols will have long-term state to be cached in association

with endpoints. This state often has some time after which it is

expired, so the implementation should allow each protocol to specify

an expiration for cached content.

Examples of cached protocol state include:

The DNS protocol can cache resolution answers (A and AAAA

queries, for example), associated with a Time To Live (TTL) to be

used for future hostname resolutions without requiring asking the

DNS resolver again.

TLS caches session state and tickets based on a hostname, which

can be used for resuming sessions with a server.

TCP can cache cookies for use in TCP Fast Open.

Cached protocol state is primarily used during Connection

establishment for a single Protocol Stack, but may be used to

influence an implementation's preference between several candidate

Protocol Stacks. For example, if two IP address endpoints are

otherwise equally preferred, an implementation may choose to attempt

a connection to an address for which it has a TCP Fast Open cookie.

Applications can use the Transport Services API to request that a

Connection Group maintain a separate cache for protocol state.

Connections in the group will not use cached state from connections

outside the group, and connections outside the group will not use

state cached from connections inside the group. This may be

necessary, for example, if application-layer identifiers rotate and

clients wish to avoid linkability via trackable TLS tickets or TFO

cookies.

9.2. Performance caches

In addition to protocol state, Protocol Instances should provide

data into a performance-oriented cache to help guide future protocol

and path selection. Some performance information can be gathered

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

generically across several protocols to allow predictive comparisons

between protocols on given paths:

Observed Round Trip Time

Connection Establishment latency

Connection Establishment success rate

These items can be cached on a per-address and per-subnet

granularity, and averaged between different values. The information

should be cached on a per-network basis, since it is expected that

different network attachments will have different performance

characteristics. Besides Protocol Instances, other system entities

may also provide data into performance-oriented caches. This could

for instance be signal strength information reported by radio modems

like Wi-Fi and mobile broadband or information about the battery-

level of the device. Furthermore, the system may cache the observed

maximum throughput on a path as an estimate of the available

bandwidth.

An implementation should use this information, when possible, to

influence preference between candidate paths, endpoints, and

protocol options. Eligible options that historically had

significantly better performance than others should be selected

first when gathering candidates (see Section 4.2) to ensure better

performance for the application.

The reasonable lifetime for cached performance values will vary

depending on the nature of the value. Certain information, like the

connection establishment success rate to a Remote Endpoint using a

given protocol stack, can be stored for a long period of time (hours

or longer), since it is expected that the capabilities of the Remote

Endpoint are not changing very quickly. On the other hand, the Round

Trip Time observed by TCP over a particular network path may vary

over a relatively short time interval. For such values, the

implementation should remove them from the cache more quickly, or

treat older values with less confidence/weight.

[I-D.ietf-tcpm-2140bis] provides guidance about sharing of TCP

Control Block information between connections on initialization.

10. Specific Transport Protocol Considerations

Each protocol that is supported by a Transport Services

implementation should have a well-defined API mapping. API mappings

for a protocol are important for Connections in which a given

protocol is the "top" of the Protocol Stack. For example, the

mapping of the Send function for TCP applies to Connections in which

the application directly sends over TCP.

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

Each protocol has a notion of Connectedness. Possible values for

Connectedness are:

Connectionless. Connectionless protocols do not establish

explicit state between endpoints, and do not perform a handshake

during Connection establishment.

Connected. Connected protocols establish state between endpoints,

and perform a handshake during Connection establishment. The

handshake may be 0-RTT to send data or resume a session, but

bidirectional traffic is required to confirm connectedness.

Multiplexing Connected. Multiplexing Connected protocols share

properties with Connected protocols, but also explictly support

opening multiple application-level flows. This means that they

can support cloning new Connection objects without a new explicit

handshake.

Protocols also define a notion of Data Unit. Possible values for

Data Unit are:

Byte-stream. Byte-stream protocols do not define any Message

boundaries of their own apart from the end of a stream in each

direction.

Datagram. Datagram protocols define Message boundaries at the

same level of transmission, such that only complete (not partial)

Messages are supported.

Message. Message protocols support Message boundaries that can be

sent and received either as complete or partial Messages. Maximum

Message lengths can be defined, and Messages can be partially

reliable.

Below, terms in capitals with a dot (e.g., "CONNECT.SCTP") refer to

the primitives with the same name in section 4 of [RFC8303]. For

further implementation details, the description of these primitives

in [RFC8303] points to section 3 of [RFC8303] and section 3 of

[RFC8304], which refers back to the relevant specifications for each

protocol. This back-tracking method applies to all elements of

[RFC8923] (see appendix D of [I-D.ietf-taps-interface]): they are

listed in appendix A of [RFC8923] with an implementation hint in the

same style, pointing back to section 4 of [RFC8303].

This document defines the API mappings for protocols defined in

[RFC8923]. Other protocol mappings can be provided as separate

documents, following the mapping template Appendix A.

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

Connection Object:

Initiate:

InitiateWithSend:

Ready:

InitiateError:

ConnectionError:

Listen:

ConnectionReceived:

Clone:

10.1. TCP

Connectedness: Connected

Data Unit: Byte-stream

API mappings for TCP are as follows:

TCP connections between two hosts map directly

to Connection objects.

CONNECT.TCP. Calling Initiate on a TCP Connection causes

it to reserve a local port, and send a SYN to the Remote

Endpoint.

CONNECT.TCP with parameter user message. Early

safely replayable data is sent on a TCP Connection in the SYN, as

TCP Fast Open data.

A TCP Connection is ready once the three-way handshake is

complete.

Failure of CONNECT.TCP. TCP can throw various errors

during connection setup. Specifically, it is important to handle

a RST being sent by the peer during the handshake.

Once established, TCP throws errors whenever the

connection is disconnected, such as due to receiving a RST from

the peer.

LISTEN.TCP. Calling Listen for TCP binds a local port and

prepares it to receive inbound SYN packets from peers.

TCP Listeners will deliver new connections once

they have replied to an inbound SYN with a SYN-ACK.

Calling Clone on a TCP Connection creates a new Connection

with equivalent parameters. These Connections, and Connections

generated via later calls to Clone on an Establied Connection,

form a Connection Group. To realize entanglement for these

Connections, with the exception of Connection Priority, changing

a Connection Property on one of them must affect the Connection

Properties of the others too. No guarantees of honoring the

Connection Property Connection Priority are given, and thus it is

safe for an implementation of a transport system to ignore this

property. When it is reasonable to assume that Connections

traverse the same path (e.g., when they share the same

encapsulation), support for it can also experimentally be

implemented using a congestion control coupling mechanism (see

for example [TCP-COUPLING] or [RFC3124]).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Send:

Receive:

Close:

Abort:

Connection Object:

SEND.TCP. TCP does not on its own preserve Message

boundaries. Calling Send on a TCP connection lays out the bytes

on the TCP send stream without any other delineation. Any Message

marked as Final will cause TCP to send a FIN once the Message has

been completely written, by calling CLOSE.TCP immediately upon

successful termination of SEND.TCP. Note that transmitting a

Message marked as Final should not cause the Closed event to be

delivered to the application, as it will still be possible to

receive data until the peer closes or aborts the TCP connection.

With RECEIVE.TCP, TCP delivers a stream of bytes without

any Message delineation. All data delivered in the Received or

ReceivedPartial event will be part of a single stream-wide

Message that is marked Final (unless a Message Framer is used).

EndOfMessage will be delivered when the TCP Connection has

received a FIN (CLOSE-EVENT.TCP) from the peer. Note that

reception of a FIN should not cause the Closed event to be

delivered to the application, as it will still be possible for

the application to send data.

Calling Close on a TCP Connection indicates that the

Connection should be gracefully closed (CLOSE.TCP) by sending a

FIN to the peer. It will then still be possible to receive data

until the peer closes or aborts the TCP connection. The Closed

event will be issued upon reception of a FIN.

Calling Abort on a TCP Connection indicates that the

Connection should be immediately closed by sending a RST to the

peer (ABORT.TCP).

10.2. MPTCP

Connectedness: Connected

Data Unit: Byte-stream

the Transport Services API mappings for MPTCP are identical to TCP.

MPTCP adds support for multipath properties, such as "Multipath

Transport" and "Policy for using Multipath Transports".

10.3. UDP

Connectedness: Connectionless

Data Unit: Datagram

API mappings for UDP are as follows:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Initiate:

InitiateWithSend:

Ready:

InitiateError:

ConnectionError:

Listen:

ConnectionReceived:

Clone:

Send:

Receive:

Close:

Abort:

UDP connections represent a pair of specific IP addresses and

ports on two hosts.

CONNECT.UDP. Calling Initiate on a UDP Connection causes

it to reserve a local port, but does not generate any traffic.

Early data on a UDP Connection does not have any

special meaning. The data is sent whenever the Connection is

Ready.

A UDP Connection is ready once the system has reserved a

local port and has a path to send to the Remote Endpoint.

UDP Connections can only generate errors on

initiation due to port conflicts on the local system.

Once in use, UDP throws "soft errors" (ERROR.UDP(-

Lite)) upon receiving ICMP notifications indicating failures in

the network.

LISTEN.UDP. Calling Listen for UDP binds a local port and

prepares it to receive inbound UDP datagrams from peers.

UDP Listeners will deliver new connections once

they have received traffic from a new Remote Endpoint.

Calling Clone on a UDP Connection creates a new Connection

with equivalent parameters. The two Connections are otherwise

independent.

SEND.UDP(-Lite). Calling Send on a UDP connection sends the

data as the payload of a complete UDP datagram. Marking Messages

as Final does not change anything in the datagram's contents.

Upon sending a UDP datagram, some relevant fields and flags in

the IP header can be controlled: DSCP (SET_DSCP.UDP(-Lite)), DF

in IPv4 (SET_DF.UDP(-Lite)) and ECN flag (SET_ECN.UDP(-Lite)).

RECEIVE.UDP(-Lite). UDP only delivers complete Messages to

Received, each of which represents a single datagram received in

a UDP packet. Upon receiving a UDP datagram, the ECN flag from

the IP header can be obtained (GET_ECN.UDP(-Lite)).

Calling Close on a UDP Connection (ABORT.UDP(-Lite))

releases the local port reservation.

Calling Abort on a UDP Connection (ABORT.UDP(-Lite)) is

identical to calling Close.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Connection Object:

Initiate:

InitiateWithSend:

Ready:

InitiateError:

ConnectionError:

Listen:

10.4. UDP-Lite

Connectedness: Connectionless

Data Unit: Datagram

The Transport Services API mappings for UDP-Lite are identical to

UDP. Properties that require checksum coverage are not supported by

UDP-Lite, such as "Corruption Protection Length", "Full Checksum

Coverage on Sending", "Required Minimum Corruption Protection

Coverage for Receiving", and "Full Checksum Coverage on Receiving".

10.5. UDP Multicast Receive

Connectedness: Connectionless

Data Unit: Datagram

API mappings for Receiving Multicast UDP are as follows:

Established UDP Multicast Receive connections

represent a pair of specific IP addresses and ports. The

"unidirectional receive" transport property is required, and the

Local Endpoint must be configured with a group IP address and a

port.

Calling Initiate on a UDP Multicast Receive Connection

causes an immediate InitiateError. This is an unsupported

operation.

Calling InitiateWithSend on a UDP Multicast

Receive Connection causes an immediate InitiateError. This is an

unsupported operation.

A UDP Multicast Receive Connection is ready once the system

has received traffic for the appropriate group and port.

UDP Multicast Receive Connections generate an

InitiateError if Initiate is called.

Once in use, UDP throws "soft errors" (ERROR.UDP(-

Lite)) upon receiving ICMP notifications indicating failures in

the network.

LISTEN.UDP. Calling Listen for UDP Multicast Receive binds

a local port, prepares it to receive inbound UDP datagrams from

peers, and issues a multicast host join. If a Remote Endpoint

with an address is supplied, the join is Source-specific

Multicast, and the path selection is based on the route to the

Remote Endpoint. If a Remote Endpoint is not supplied, the join

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ConnectionReceived:

Clone:

Send:

Receive:

Close:

Abort:

Connection Object:

is Any-source Multicast, and the path selection is based on the

outbound route to the group supplied in the Local Endpoint.

There are cases where it is required to open multiple connections

for the same address(es). For example, one Connection might be

opened for a multicast group to for a multicast control bus, and

another application later opens a separate Connection to the same

group to send signals to and/or receive signals from the common bus.

In such cases, the Transport Services system needs to explicitly

enable re-use of the same set of addresses (equivalent to setting

SO_REUSEADDR in the socket API).

UDP Multicast Receive Listeners will deliver

new connections once they have received traffic from a new Remote

Endpoint.

Calling Clone on a UDP Multicast Receive Connection creates

a new Connection with equivalent parameters. The two Connections

are otherwise independent.

SEND.UDP(-Lite). Calling Send on a UDP Multicast Receive

connection causes an immediate SendError. This is an unsupported

operation.

RECEIVE.UDP(-Lite). The Receive operation in a UDP

Multicast Receive connection only delivers complete Messages to

Received, each of which represents a single datagram received in

a UDP packet. Upon receiving a UDP datagram, the ECN flag from

the IP header can be obtained (GET_ECN.UDP(-Lite)).

Calling Close on a UDP Multicast Receive Connection

(ABORT.UDP(-Lite)) releases the local port reservation and leaves

the group.

Calling Abort on a UDP Multicast Receive Connection

(ABORT.UDP(-Lite)) is identical to calling Close.

10.6. SCTP

Connectedness: Connected

Data Unit: Message

API mappings for SCTP are as follows:

Connection objects can be mapped to an SCTP

association or a stream in an SCTP association. Mapping

Connection objects to SCTP streams is called "stream mapping" and

has additional requirements as follows. The following explanation

assumes a client-server communication model.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Initiate:

Stream mapping requires an association to already be in place

between the client and the server, and it requires the server to

understand that a new incoming stream should be represented as a new

Connection Object by the Transport Services system. A new SCTP

stream is created by sending an SCTP message with a new stream id.

Thus, to implement stream mapping, the Transport Services API MUST

provide a newly created Connection Object to the application upon

the reception of such a message. The necessary semantics to

implement a Transport Services system Close and Abort primitives are

provided by the stream reconfiguration (reset) procedure described

in [RFC6525]. This also allows to re-use a stream id after resetting

("closing") the stream. To implement this functionality, SCTP stream

reconfiguration [RFC6525] MUST be supported by both the client and

the server side.

To avoid head-of-line blocking, stream mapping SHOULD only be

implemented when both sides support message interleaving [RFC8260].

This allows a sender to schedule transmissions between multiple

streams without risking that transmission of a large message on one

stream might block transmissions on other streams for a long time.

To avoid conflicts between stream ids, the following procedure is

recommended: the first Connection, for which the SCTP association

has been created, MUST always use stream id zero. All additional

Connections are assigned to unused stream ids in growing order. To

avoid a conflict when both endpoints map new Connections

simultaneously, the peer which initiated association MUST use even

stream ids whereas the remote side MUST map its Connections to odd

stream ids. Both sides maintain a status map of the assigned stream

ids. Generally, new streams SHOULD consume the lowest available

(even or odd, depending on the side) stream id; this rule is

relevant when lower ids become available because Connection objects

associated with the streams are closed.

SCTP stream mapping as described here has been implemented in a

research prototype; a desription of this implementation is given in

[NEAT-flow-mapping].

If this is the only Connection object that is assigned to

the SCTP Association or stream mapping is not used, CONNECT.SCTP

is called. Else, unless the Selection Property

activeReadBeforeSend is Preferred or Required, a new stream is

used: if there are enough streams available, Initiate is a local

operation that assigns a new stream id to the Connection object.

The number of streams is negotiated as a parameter of the prior

CONNECT.SCTP call, and it represents a trade-off between local

resource usage and the number of Connection objects that can be

mapped without requiring a reconfiguration signal. When running

out of streams, ADD_STREAM.SCTP must be called.

¶

¶

¶

¶

¶

InitiateWithSend:

Ready:

InitiateError:

ConnectionError:

Listen:

ConnectionReceived:

Clone:

Priority (Connection):

Send:

Receive:

If this is the only Connection object that is

assigned to the SCTP association or stream mapping is not used,

CONNECT.SCTP is called with the "user message" parameter. Else, a

new stream is used (see Initiate for how to handle running out of

streams), and this just sends the first message on a new stream.

Initiate or InitiateWithSend returns without an error, i.e.

SCTP's four-way handshake has completed. If an association with

the peer already exists, stream mapping is used and enough

streams are available, a Connection Object instantly becomes

Ready after calling Initiate or InitiateWithSend.

Failure of CONNECT.SCTP.

TIMEOUT.SCTP or ABORT-EVENT.SCTP.

LISTEN.SCTP. If an association with the peer already exists

and stream mapping is used, Listen just expects to receive a new

message with a new stream id (chosen in accordance with the

stream id assignment procedure described above).

LISTEN.SCTP returns without an error (a result

of successful CONNECT.SCTP from the peer), or, in case of stream

mapping, the first message has arrived on a new stream (in this

case, Receive is also invoked).

Calling Clone on an SCTP association creates a new

Connection object and assigns it a new stream id in accordance

with the stream id assignment procedure described above. If there

are not enough streams available, ADD_STREAM.SCTP must be called.

When this value is changed, or a Message

with Message Property Priority is sent, and there are multiple

Connection objects assigned to the same SCTP association,

CONFIGURE_STREAM_SCHEDULER.SCTP is called to adjust the

priorities of streams in the SCTP association.

SEND.SCTP. Message Properties such as Lifetime and Ordered

map to parameters of this primitive.

RECEIVE.SCTP. The "partial flag" of RECEIVE.SCTP invokes a

ReceivedPartial event.

Close: If this is the only Connection object that is assigned to the

SCTP association, CLOSE.SCTP is called, and the Closed event will be

delivered to the application upon the ensuing CLOSE-EVENT.SCTP.

Else, the Connection object is one out of several Connection objects

that are assigned to the same SCTP assocation, and RESET_STREAM.SCTP

must be called, which informs the peer that the stream will no

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

longer be used for mapping and can be used by future Initiate,

InitiateWithSend or Listen calls. At the peer, the event

RESET_STREAM-EVENT.SCTP will fire, which the peer must answer by

issuing RESET_STREAM.SCTP too. The resulting local RESET_STREAM-

EVENT.SCTP informs the Transport Services system that the stream id

can now be re-used by the next Initiate, InitiateWithSend or Listen

calls, and invokes a Closed event towards the application.

Abort: If this is the only Connection object that is assigned to the

SCTP association, ABORT.SCTP is called. Else, the Connection object

is one out of several Connection objects that are assigned to the

same SCTP assocation, and shutdown proceeds as described under

Close.

11. IANA Considerations

RFC-EDITOR: Please remove this section before publication.

This document has no actions for IANA.

12. Security Considerations

[I-D.ietf-taps-arch] outlines general security consideration and

requirements for any system that implements the Transport Services

archtecture. [I-D.ietf-taps-interface] provides further discussion

on security and privacy implications of the Transport Services API.

This document provides additional guidance on implementation

specifics for the Transport Services API and as such the security

considerations in both of these documents apply. The next two

subsections discuss further considerations that are specific to

mechanisms specified in this document.

12.1. Considerations for Candidate Gathering

Implementations should avoid downgrade attacks that allow network

interference to cause the implementation to select less secure, or

entirely insecure, combinations of paths and protocols.

12.2. Considerations for Candidate Racing

See Section 5.3 for security considerations around racing with 0-RTT

data.

An attacker that knows a particular device is racing several options

during connection establishment may be able to block packets for the

first connection attempt, thus inducing the device to fall back to a

secondary attempt. This is a problem if the secondary attempts have

worse security properties that enable further attacks.

Implementations should ensure that all options have equivalent

security properties to avoid incentivizing attacks.

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-taps-arch]

[I-D.ietf-taps-interface]

Since results from the network can determine how a connection

attempt tree is built, such as when DNS returns a list of resolved

endpoints, it is possible for the network to cause an implementation

to consume significant on-device resources. Implementations should

limit the maximum amount of state allowed for any given node,

including the number of child nodes, especially when the state is

based on results from the network.

13. Acknowledgements

This work has received funding from the European Union's Horizon

2020 research and innovation programme under grant agreement No.

644334 (NEAT) and No. 815178 (5GENESIS).

This work has been supported by Leibniz Prize project funds of DFG -

German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011

(FKZ FE 570/4-1).

This work has been supported by the UK Engineering and Physical

Sciences Research Council under grant EP/R04144X/1.

This work has been supported by the Research Council of Norway under

its "Toppforsk" programme through the "OCARINA" project.

Thanks to Colin Perkins, Tom Jones, Karl-Johan Grinnemo, Gorry

Fairhurst, for their contributions to the design of this

specification. Thanks also to Stuart Cheshire, Josh Graessley, David

Schinazi, and Eric Kinnear for their implementation and design

efforts, including Happy Eyeballs, that heavily influenced this

work.

14. References

14.1. Normative References

Pauly, T., Trammell, B., Brunstrom, A.,

Fairhurst, G., and C. Perkins, "An Architecture for

Transport Services", Work in Progress, Internet-Draft,

draft-ietf-taps-arch-12, 3 January 2022, <https://

www.ietf.org/archive/id/draft-ietf-taps-arch-12.txt>.

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,

Kuehlewind, M., Perkins, C., Tiesel, P. S., Wood, C. A.,

Pauly, T., and K. Rose, "An Abstract Application Layer

Interface to Transport Services", Work in Progress,

Internet-Draft, draft-ietf-taps-interface-14, 3 January

2022, <https://www.ietf.org/archive/id/draft-ietf-taps-

interface-14.txt>.

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-taps-arch-12.txt
https://www.ietf.org/archive/id/draft-ietf-taps-arch-12.txt
https://www.ietf.org/archive/id/draft-ietf-taps-interface-14.txt
https://www.ietf.org/archive/id/draft-ietf-taps-interface-14.txt

[RFC7413]

[RFC7540]

[RFC8303]

[RFC8304]

[RFC8305]

[RFC8421]

[RFC8446]

[RFC8923]

[I-D.ietf-quic-transport]

[I-D.ietf-tcpm-2140bis]

Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP

Fast Open", RFC 7413, DOI 10.17487/RFC7413, December

2014, <https://www.rfc-editor.org/info/rfc7413>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of

Transport Features Provided by IETF Transport Protocols",

RFC 8303, DOI 10.17487/RFC8303, February 2018, <https://

www.rfc-editor.org/info/rfc8303>.

Fairhurst, G. and T. Jones, "Transport Features of the

User Datagram Protocol (UDP) and Lightweight UDP (UDP-

Lite)", RFC 8304, DOI 10.17487/RFC8304, February 2018,

<https://www.rfc-editor.org/info/rfc8304>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/info/rfc8305>.

Martinsen, P., Reddy, T., and P. Patil, "Guidelines for

Multihomed and IPv4/IPv6 Dual-Stack Interactive

Connectivity Establishment (ICE)", BCP 217, RFC 8421, DOI

10.17487/RFC8421, July 2018, <https://www.rfc-editor.org/

info/rfc8421>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Welzl, M. and S. Gjessing, "A Minimal Set of Transport

Services for End Systems", RFC 8923, DOI 10.17487/

RFC8923, October 2020, <https://www.rfc-editor.org/info/

rfc8923>.

14.2. Informative References

Iyengar, J. and M. Thomson, "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-34,

14 January 2021, <https://www.ietf.org/archive/id/draft-

ietf-quic-transport-34.txt>.

Touch, J., Welzl, M., and S. Islam, "TCP

Control Block Interdependence", Work in Progress,

https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8303
https://www.rfc-editor.org/info/rfc8303
https://www.rfc-editor.org/info/rfc8304
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8421
https://www.rfc-editor.org/info/rfc8421
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc8923
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt

[NEAT-flow-mapping]

[RFC1928]

[RFC3124]

[RFC3207]

[RFC5389]

[RFC5766]

[RFC6525]

[RFC6762]

[RFC6763]

[RFC7230]

Internet-Draft, draft-ietf-tcpm-2140bis-11, 12 April

2021, <https://www.ietf.org/archive/id/draft-ietf-

tcpm-2140bis-11.txt>.

"Transparent Flow Mapping for NEAT", IFIP

NETWORKING 2017 Workshop on Future of Internet Transport

(FIT 2017) , 2017.

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D.,

and L. Jones, "SOCKS Protocol Version 5", RFC 1928, DOI

10.17487/RFC1928, March 1996, <https://www.rfc-

editor.org/info/rfc1928>.

Balakrishnan, H. and S. Seshan, "The Congestion Manager",

RFC 3124, DOI 10.17487/RFC3124, June 2001, <https://

www.rfc-editor.org/info/rfc3124>.

Hoffman, P., "SMTP Service Extension for Secure SMTP over

Transport Layer Security", RFC 3207, DOI 10.17487/

RFC3207, February 2002, <https://www.rfc-editor.org/info/

rfc3207>.

Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,

"Session Traversal Utilities for NAT (STUN)", RFC 5389,

DOI 10.17487/RFC5389, October 2008, <https://www.rfc-

editor.org/info/rfc5389>.

Mahy, R., Matthews, P., and J. Rosenberg, "Traversal

Using Relays around NAT (TURN): Relay Extensions to

Session Traversal Utilities for NAT (STUN)", RFC 5766,

DOI 10.17487/RFC5766, April 2010, <https://www.rfc-

editor.org/info/rfc5766>.

Stewart, R., Tuexen, M., and P. Lei, "Stream Control

Transmission Protocol (SCTP) Stream Reconfiguration", RFC

6525, DOI 10.17487/RFC6525, February 2012, <https://

www.rfc-editor.org/info/rfc6525>.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,

DOI 10.17487/RFC6762, February 2013, <https://www.rfc-

editor.org/info/rfc6762>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/info/rfc6763>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

https://www.ietf.org/archive/id/draft-ietf-tcpm-2140bis-11.txt
https://www.ietf.org/archive/id/draft-ietf-tcpm-2140bis-11.txt
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc3124
https://www.rfc-editor.org/info/rfc3124
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc6525
https://www.rfc-editor.org/info/rfc6525
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7230

[RFC7657]

[RFC8085]

[RFC8260]

[RFC8445]

[TCP-COUPLING]

Black, D., Ed. and P. Jones, "Differentiated Services

(Diffserv) and Real-Time Communication", RFC 7657, DOI

10.17487/RFC7657, November 2015, <https://www.rfc-

editor.org/info/rfc7657>.

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

March 2017, <https://www.rfc-editor.org/info/rfc8085>.

Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,

"Stream Schedulers and User Message Interleaving for the

Stream Control Transmission Protocol", RFC 8260, DOI

10.17487/RFC8260, November 2017, <https://www.rfc-

editor.org/info/rfc8260>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

info/rfc8445>.

"ctrlTCP: Reducing Latency through Coupled,

Heterogeneous Multi-Flow TCP Congestion Control", IEEE

INFOCOM Global Internet Symposium (GI) workshop (GI 2018)

, n.d..

Appendix A. API Mapping Template

Any protocol mapping for the Transport Services API should follow a

common template.

Connectedness: (Connectionless/Connected/Multiplexing Connected)

Data Unit: (Byte-stream/Datagram/Message)

Connection Object:

Initiate:

InitiateWithSend:

Ready:

InitiateError:

ConnectionError:

Listen:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445

ConnectionReceived:

Clone:

Send:

Receive:

Close:

Abort:

Appendix B. Additional Properties

This appendix discusses implementation considerations for additional

parameters and properties that could be used to enhance transport

protocol and/or path selection, or the transmission of messages

given a Protocol Stack that implements them. These are not part of

the interface, and may be removed from the final document, but are

presented here to support discussion within the TAPS working group

as to whether they should be added to a future revision of the base

specification.

B.1. Properties Affecting Sorting of Branches

In addition to the Protocol and Path Selection Properties discussed

in Section 4.1.3, the following properties under discussion can

influence branch sorting:

Bounds on Send or Receive Rate: If the application indicates a

bound on the expected Send or Receive bitrate, an implementation

may prefer a path that can likely provide the desired bandwidth,

based on cached maximum throughput, see Section 9.2. The

application may know the Send or Receive Bitrate from metadata in

adaptive HTTP streaming, such as MPEG-DASH.

Cost Preferences: If the application indicates a preference to

avoid expensive paths, and some paths are associated with a

monetary cost, an implementation should decrease the ranking of

such paths. If the application indicates that it prohibits using

expensive paths, paths that are associated with a cost should be

purged from the decision tree.

Appendix C. Reasons for errors

The Transport Services API [I-D.ietf-taps-interface] allows for the

several generic error types to specify a more detailed reason as to

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

why an error occurred. This appendix lists some of the possible

reasons.

InvalidConfiguration: The transport properties and endpoints

provided by the application are either contradictory or

incomplete. Examples include the lack of a Remote Endpoint on an

active open or using a multicast group address while not

requesting a unidirectional receive.

NoCandidates: The configuration is valid, but none of the

available transport protocols can satisfy the transport

properties provided by the application.

ResolutionFailed: The remote or local specifier provided by the

application can not be resolved.

EstablishmentFailed: The Transport Services system was unable to

establish a transport-layer connection to the Remote Endpoint

specified by the application.

PolicyProhibited: The system policy prevents the transport system

from performing the action requested by the application.

NotCloneable: The protocol stack is not capable of being cloned.

MessageTooLarge: The message size is too big for the transport

system to handle.

ProtocolFailed: The underlying protocol stack failed.

InvalidMessageProperties: The message properties are either

contradictory to the transport properties or they can not be

satisfied by the transport system.

DeframingFailed: The data that was received by the underlying

protocol stack could not be deframed.

ConnectionAborted: The connection was aborted by the peer.

Timeout: Delivery of a message was not possible after a timeout.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

Appendix D. Existing Implementations

This appendix gives an overview of existing implementations, at the

time of writing, of transport systems that are (to some degree) in

line with this document.

Apple's Network.framework:

Network.framework is a transport-level API built for C,

Objective-C, and Swift. It a connect-by-name API that supports

transport security protocols. It provides userspace

implementations of TCP, UDP, TLS, DTLS, proxy protocols, and

allows extension via custom framers.

Documentation: https://developer.apple.com/documentation/

network

NEAT and NEATPy:

NEAT is the output of the European H2020 research project

"NEAT"; it is a user-space library for protocol-independent

communication on top of TCP, UDP and SCTP, with many more

features such as a policy manager.

Code: https://github.com/NEAT-project/neat

NEAT project: https://www.neat-project.org

NEATPy is a Python shim over NEAT which updates the NEAT API

to be in line with version 6 of the Transport Services API

draft.

Code: https://github.com/theagilepadawan/NEATPy

PyTAPS:

A TAPS implementation based on Python asyncio, offering

protocol-independent communication to applications on top of

TCP, UDP and TLS, with support for multicast.

Code: https://github.com/fg-inet/python-asyncio-taps

Authors' Addresses

Anna Brunstrom (editor)

Karlstad University

Universitetsgatan 2

651 88 Karlstad

Sweden

¶

* ¶

-

¶

-

¶

* ¶

-

¶

- ¶

- ¶

-

¶

- ¶

* ¶

-

¶

- ¶

https://developer.apple.com/documentation/network
https://developer.apple.com/documentation/network
https://github.com/NEAT-project/neat
https://www.neat-project.org
https://github.com/theagilepadawan/NEATPy
https://github.com/fg-inet/python-asyncio-taps

Email: anna.brunstrom@kau.se

Tommy Pauly (editor)

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Theresa Enghardt

Netflix

121 Albright Way

Los Gatos, CA 95032,

United States of America

Email: ietf@tenghardt.net

Philipp S. Tiesel

SAP SE

Konrad-Zuse-Ring 10

14469 Potsdam

Germany

Email: philipp@tiesel.net

Michael Welzl

University of Oslo

PO Box 1080 Blindern

0316 Oslo

Norway

Email: michawe@ifi.uio.no

mailto:anna.brunstrom@kau.se
mailto:tpauly@apple.com
mailto:ietf@tenghardt.net
mailto:philipp@tiesel.net
mailto:michawe@ifi.uio.no

	Implementing Interfaces to Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Implementing Connection Objects
	3. Implementing Pre-Establishment
	3.1. Configuration-time errors
	3.2. Role of system policy

	4. Implementing Connection Establishment
	4.1. Structuring Candidates as a Tree
	4.1.1. Branch Types
	4.1.1.1. Derived Endpoints
	4.1.1.2. Alternate Paths
	4.1.1.3. Protocol Options

	4.1.2. Branching Order-of-Operations
	4.1.3. Sorting Branches

	4.2. Candidate Gathering
	4.2.1. Gathering Endpoint Candidates
	4.2.1.1. Local Endpoint candidates
	4.2.1.2. Remote Endpoint Candidates

	4.3. Candidate Racing
	4.3.1. Simultaneous
	4.3.2. Staggered
	4.3.3. Failover

	4.4. Completing Establishment
	4.4.1. Determining Successful Establishment

	4.5. Establishing multiplexed connections
	4.6. Handling connectionless protocols
	4.7. Implementing listeners
	4.7.1. Implementing listeners for Connected Protocols
	4.7.2. Implementing listeners for Connectionless Protocols
	4.7.3. Implementing listeners for Multiplexed Protocols

	5. Implementing Sending and Receiving Data
	5.1. Sending Messages
	5.1.1. Message Properties
	5.1.2. Send Completion
	5.1.3. Batching Sends

	5.2. Receiving Messages
	5.3. Handling of data for fast-open protocols

	6. Implementing Message Framers
	6.1. Defining Message Framers
	6.2. Sender-side Message Framing
	6.3. Receiver-side Message Framing

	7. Implementing Connection Management
	7.1. Pooled Connection
	7.2. Handling Path Changes

	8. Implementing Connection Termination
	9. Cached State
	9.1. Protocol state caches
	9.2. Performance caches

	10. Specific Transport Protocol Considerations
	10.1. TCP
	10.2. MPTCP
	10.3. UDP
	10.4. UDP-Lite
	10.5. UDP Multicast Receive
	10.6. SCTP

	11. IANA Considerations
	12. Security Considerations
	12.1. Considerations for Candidate Gathering
	12.2. Considerations for Candidate Racing

	13. Acknowledgements
	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. API Mapping Template
	Appendix B. Additional Properties
	B.1. Properties Affecting Sorting of Branches

	Appendix C. Reasons for errors
	Appendix D. Existing Implementations
	Authors' Addresses

