
TAPS Working Group                                      B. Trammell, Ed.
Internet-Draft                                                ETH Zurich
Intended status: Informational                             M. Welzl, Ed.
Expires: November 1, 2018                             University of Oslo
                                                             T. Enghardt
                                                               TU Berlin
                                                            G. Fairhurst
                                                  University of Aberdeen
                                                           M. Kuehlewind
                                                              ETH Zurich
                                                              C. Perkins
                                                   University of Glasgow
                                                               P. Tiesel
                                                               TU Berlin
                                                                 C. Wood
                                                              Apple Inc.
                                                          April 30, 2018

An Abstract Application Layer Interface to Transport Services
draft-ietf-taps-interface-00

Abstract

   This document describes an abstract programming interface to the
   transport layer, following the Transport Services Architecture.  It
   supports the asynchronous, atomic transmission of messages over
   transport protocols and network paths dynamically selected at
   runtime.  It is intended to replace the traditional BSD sockets API
   as the lowest common denominator interface to the transport layer, in
   an environment where endpoints have multiple interfaces and potential
   transport protocols to select from.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

Trammell, et al.        Expires November 1, 2018                [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/


Internet-Draft               TAPS Interface                   April 2018

   This Internet-Draft will expire on November 1, 2018.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
2.  Terminology and Notation  . . . . . . . . . . . . . . . . . .   4
3.  Interface Design Principles . . . . . . . . . . . . . . . . .   5
4.  API Summary . . . . . . . . . . . . . . . . . . . . . . . . .   6
5.  Pre-Establishment Phase . . . . . . . . . . . . . . . . . . .   6
5.1.  Specifying Endpoints  . . . . . . . . . . . . . . . . . .   7
5.2.  Specifying Transport Parameters . . . . . . . . . . . . .   8
5.2.1.  Reliable Data Transfer  . . . . . . . . . . . . . . .  10
5.2.2.  Preservation of data ordering . . . . . . . . . . . .  10
5.2.3.  Configure reliability on a per-Message basis  . . . .  11

       5.2.4.  Use 0-RTT session establishment with an idempotent
               Message . . . . . . . . . . . . . . . . . . . . . . .  11

5.2.5.  Multistream Connections in Group  . . . . . . . . . .  11
5.2.6.  Notification of excessive retransmissions . . . . . .  11
5.2.7.  Notification of ICMP soft error message arrival . . .  12
5.2.8.  Control checksum coverage on sending or receiving . .  12
5.2.9.  Interface Type  . . . . . . . . . . . . . . . . . . .  12
5.2.10. Capacity Profile  . . . . . . . . . . . . . . . . . .  13

5.3.  Specifying Security Parameters and Callbacks  . . . . . .  13
6.  Establishing Connections  . . . . . . . . . . . . . . . . . .  15
6.1.  Active Open: Initiate . . . . . . . . . . . . . . . . . .  15
6.2.  Passive Open: Listen  . . . . . . . . . . . . . . . . . .  16
6.3.  Peer-to-Peer Establishment: Rendezvous  . . . . . . . . .  17
6.4.  Connection Groups . . . . . . . . . . . . . . . . . . . .  18

7.  Sending Data  . . . . . . . . . . . . . . . . . . . . . . . .  19
7.1.  Send Parameters . . . . . . . . . . . . . . . . . . . . .  20
7.1.1.  Lifetime  . . . . . . . . . . . . . . . . . . . . . .  21
7.1.2.  Niceness  . . . . . . . . . . . . . . . . . . . . . .  21
7.1.3.  Ordered . . . . . . . . . . . . . . . . . . . . . . .  21

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info


Trammell, et al.        Expires November 1, 2018                [Page 2]



Internet-Draft               TAPS Interface                   April 2018

7.1.4.  Idempotent  . . . . . . . . . . . . . . . . . . . . .  21
7.1.5.  Corruption Protection Length  . . . . . . . . . . . .  22
7.1.6.  Transmission Profile  . . . . . . . . . . . . . . . .  22

7.2.  Batching Sends  . . . . . . . . . . . . . . . . . . . . .  22
7.3.  Sender-side Framing . . . . . . . . . . . . . . . . . . .  23

8.  Receiving Data  . . . . . . . . . . . . . . . . . . . . . . .  23
8.1.  Receiver-side De-framing over Stream Protocols  . . . . .  25

9.  Setting and Querying of Connection Properties . . . . . . . .  26
9.1.  Protocol Properties . . . . . . . . . . . . . . . . . . .  27

10. Connection Termination  . . . . . . . . . . . . . . . . . . .  28
11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  29
12. Security Considerations . . . . . . . . . . . . . . . . . . .  29
13. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  29
14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  30
14.1.  Normative References . . . . . . . . . . . . . . . . . .  30
14.2.  Informative References . . . . . . . . . . . . . . . . .  30

Appendix A.  Additional Properties  . . . . . . . . . . . . . . .  31
A.1.  Protocol and Path Selection Properties  . . . . . . . . .  31
A.1.1.  Application Intents . . . . . . . . . . . . . . . . .  32

A.2.  Protocol Properties . . . . . . . . . . . . . . . . . . .  34
A.3.  Send Parameters . . . . . . . . . . . . . . . . . . . . .  34

Appendix B.  Sample API definition in Go  . . . . . . . . . . . .  34
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  35

1.  Introduction

   The BSD Unix Sockets API's SOCK_STREAM abstraction, by bringing
   network sockets into the UNIX programming model, allowing anyone who
   knew how to write programs that dealt with sequential-access files to
   also write network applications, was a revolution in simplicity.  The
   simplicity of this API is a key reason the Internet won the protocol
   wars of the 1980s.  SOCK_STREAM is tied to the Transmission Control
   Protocol (TCP), specified in 1981 [RFC0793].  TCP has scaled
   remarkably well over the past three and a half decades, but its total
   ubiquity has hidden an uncomfortable fact: the network is not really
   a file, and stream abstractions are too simplistic for many modern
   application programming models.

   In the meantime, the nature of Internet access, and the variety of
   Internet transport protocols, is evolving.  The challenges that new
   protocols and access paradigms present to the sockets API and to
   programming models based on them inspire the design principles of a
   new approach, which we outline in Section 3.

   As a first step to realizing this design, [I-D.pauly-taps-arch]
   describes a high-level architecture for transport services.  This
   document builds a modern abstract programming interface atop this
   architecture, deriving specific path and protocol selection

https://datatracker.ietf.org/doc/html/rfc0793


Trammell, et al.        Expires November 1, 2018                [Page 3]



Internet-Draft               TAPS Interface                   April 2018

   properties and supported transport features from the analysis
   provided in [RFC8095] and [I-D.ietf-taps-minset].

2.  Terminology and Notation

   This API is described in terms of Objects, which an application can
   interact with; Actions the application can perform on these Objects;
   Events, which an Object can send to an application asynchronously;
   and Parameters associated with these Actions and Events.

   The following notations, which can be combined, are used in this
   document:

   o  An Action creates an Object:

   Object := Action()

   o  An Action is performed on an Object:

   Object.Action()

   o  An Object sends an Event:

   Object -> Event<>

   o  An Action takes a set of Parameters; an Event contains a set of
      Parameters:

   Action(parameter, parameter, ...) / Event<parameter, parameter, ...>

   Actions associated with no Object are Actions on the abstract
   interface itself; they are equivalent to Actions on a per-application
   global context.

   How these abstract concepts map into concrete implementations of this
   API in a given language on a given platform is largely dependent on
   the features of the language and the platform.  Actions could be
   implemented as functions or method calls, for instance, and Events
   could be implemented via callback passing or other asynchronous
   calling conventions.  The method for registering callbacks and
   handlers is left as an implementation detail, with the caveat that
   the interface for receiving Messages must require the application to
   invoke the Connection.Receive() Action once per Message to be
   received (see Section 8).

   This specification treats Events and errors similarly.  Errors, just
   as any other Events, may occur asynchronously in network
   applications.  However, it is recommended that implementations of

https://datatracker.ietf.org/doc/html/rfc8095


Trammell, et al.        Expires November 1, 2018                [Page 4]



Internet-Draft               TAPS Interface                   April 2018

   this interface also return errors immediately, according to the error
   handling idioms of the implementation platform, for errors which can
   be immediately detected, such as inconsistency in transport
   parameters.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Interface Design Principles

   The design of the interface specified in this document is based on a
   set of princples, themselves an elaboration on the architectural
   design principles defined in [I-D.pauly-taps-arch].  The interface
   defined in this document provides:

   o  A single interface to a variety of transport protocols to be used
      in a variety of application design patterns, independent of the
      properties of the application and the Protocol Stacks that will be
      used at runtime, such that all common specialized features of
      these protocol stacks are made available to the application as
      necessary in a transport-independent way, to enable applications
      written to a single API to make use of transport protocols in
      terms of the features they provide;

   o  Explicit support for security properties as first-order transport
      features, and for long-term caching of cryptographic identities
      and parameters for associations among endpoints;

   o  Asynchronous Connection establishment, transmission, and
      reception, allowing most application interactions with the
      transport layer to be Event-driven, in line with developments in
      modern platforms and programming languages;

   o  Explicit support for multistreaming and multipath transport
      protocols, and the grouping of related Connections into Connection
      Groups through cloning of Connections, to allow applications to
      take full advantage of new transport protocols supporting these
      features; and

   o  Atomic transmission of data, using application-assisted framing
      and deframing where the underlying transport does not provide
      these.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174


Trammell, et al.        Expires November 1, 2018                [Page 5]



Internet-Draft               TAPS Interface                   April 2018

4.  API Summary

   The Transport Services Interface is the basic common abstract
   application programming interface to the Transport Services
   Architecture defined in [I-D.pauly-taps-arch].  An application
   primarily interacts with this interface through two Objects,
   Preconnections and Connections.  A Preconnection represents a set of
   parameters and constraints on the selection and configuration of
   paths and protocols to establish a Connection with a remote endpoint.
   A Connection represents a transport Protocol Stack on which data can
   be sent to and received from a remote endpoint.  Connections can be
   created from Preconnections in three ways: by initiating the
   Preconnection (i.e., actively opening, as in a client), through
   listening on the Preconnection (i.e., passively opening, as in a
   server), or rendezvousing on the Preconnection (i.e. peer to peer
   establishment).

   Once a Connection is established, data can be sent on it in the form
   of Messages.  The interface supports the preservation of message
   boundaries both via explicit Protocol Stack support, and via
   application support through a deframing callback which finds message
   boundaries in a stream.  Messages are received asynchronously through
   a callback registered by the application.  Errors and other
   notifications also happen asynchronously on the Connection.

   In the following sections, we describe the details of application
   interaction with Objects through Actions and Events in each phase of
   a Connection, following the phases described in
   [I-D.pauly-taps-arch].

5.  Pre-Establishment Phase

   The pre-establishment phase allows applications to specify parameters
   for the Connections they're about to make, or to query the API about
   potential connections they could make.

   A Preconnection Object represents a potential Connection.  It has
   state that describes parameters of a Connection that might exist in
   the future.  This state comprises Local Endpoint and Remote Endpoint
   Objects that denote the endpoints of the potential Connection (see

Section 5.1), the transport parameters (see Section 5.2), and the
   security parameters (see Section 5.3):

      Preconnection := NewPreconnection(LocalEndpoint,
                                        RemoteEndpoint,
                                        TransportParams,
                                        SecurityParams)



Trammell, et al.        Expires November 1, 2018                [Page 6]



Internet-Draft               TAPS Interface                   April 2018

   The Local Endpoint MUST be specified if the Preconnection is used to
   Listen() for incoming Connections, but is OPTIONAL if it is used to
   Initiate() connections.  The Remote Endpoint MUST be specified in the
   Preconnection is used to Initiate() Connections, but is OPTIONAL if
   it is used to Listen() for incoming Connections.  The Local Endpoint
   and the Remote Endpoint MUST both be specified if a peer-to-peer
   Rendezvous is to occur based on the Preconnection.

   Framers (see Section 7.3) and deframers (see Section 8.1), if
   necessary, should be bound to the Preconnection during pre-
   establishment.

5.1.  Specifying Endpoints

   The transport services API uses the Local Endpoint and Remote
   Endpoint types to refer to the endpoints of a transport connection.
   Subtypes of these represent various different types of endpoint
   identifiers, such as IP addresses, DNS names, and interface names, as
   well as port numbers and service names.

   RemoteSpecifier := NewRemoteEndpoint()
   RemoteSpecifier.WithHostname("example.com")
   RemoteSpecifier.WithService("https")

   RemoteSpecifier := NewRemoteEndpoint()
   RemoteSpecifier.WithIPv6Address(2001:db8:4920:e29d:a420:7461:7073:0a)
   RemoteSpecifier.WithPort(443)

   RemoteSpecifier := NewRemoteEndpoint()
   RemoteSpecifier.WithIPv4Address(192.0.2.21)
   RemoteSpecifier.WithPort(443)

   LocalSpecifier := NewLocalEndpoint()
   LocalSpecifier.WithInterface("en0")
   LocalSpecifier.WithPort(443)

   LocalSpecifier := NewLocalEndpoint()
   LocalSpecifier.WithStunServer(address, port, credentials)

   Implementations may also support additional endpoint representations
   and provide a single NewEndpoint() call that takes different endpoint
   representations.

   Multiple endpoint identifiers can be specified for each Local
   Endpoint and RemoteEndoint.  For example, a Local Endpoint could be
   configured with two interface names, or a Remote Endpoint could be
   specified via both IPv4 and IPv6 addresses.  These multiple
   identifiers refer to the same transport endpoint.



Trammell, et al.        Expires November 1, 2018                [Page 7]



Internet-Draft               TAPS Interface                   April 2018

   The transport services API will resolve names internally, when the
   Initiate(), Listen(), or Rendezvous() method is called establish a
   Connection.  The API does not need the application to resolve names,
   and premature name resolution can damage performance by limiting the
   scope for alternate path discovery during Connection establishment.
   The Resolve() method is, however, provided to resolve a Local
   Endpoint or a Remote Endpoint in cases where this is required, for
   example with some NAT traversal protocols (see Section 6.3).

5.2.  Specifying Transport Parameters

   A Preconnection Object holds parameters reflecting the application's
   requirements and preferences for the transport.  These include
   protocol and path selection parameters, as well as Generic and
   Specific Protocol Properties for configuration of the detailed
   operation of the selected Protocol Stacks.

   All Transport Parameters are organized within a single namespace
   shared with Send Parameters (see Section 7.1).  These transport
   parameters take values of parameter-specific types.

   Note that it is possible for a set of specified transport parameters
   to be internally inconsistent, or to be inconsistent with the later
   use of the API by the application.  Application developers can reduce
   inconsistency by only using the most stringent preference levels when
   failure to meet a preference would break the application's
   functionality (e.g. the Reliable Data Transfer preference, which is a
   core assumption of many application protocols).  Implementations of
   this interface should also raise any detected errors in configuration
   as early as possible, to help ensure these inconsistencies are caught
   early in the development process.

   The protocol(s) and path(s) selected as candidates during Connection
   establishment are determined by a set of properties.  Since there
   could be paths over which some transport protocols are unable to
   operate, or remote endpoints that support only specific network
   addresses or transports, transport protocol selection is necessarily
   tied to path selection.  This may involve choosing between multiple
   local interfaces that are connected to different access networks.

   The type of most Protocol and Path Selection properties is
   "preference" and has with five different preference levels:



Trammell, et al.        Expires November 1, 2018                [Page 8]



Internet-Draft               TAPS Interface                   April 2018

   +------------+------------------------------------------------------+
   | Preference | Effect                                               |
   +------------+------------------------------------------------------+
   | Require    | Select only protocols/paths providing the property,  |
   |            | fail otherwise                                       |
   |            |                                                      |
   | Prefer     | Prefer protocols/paths providing the property,       |
   |            | proceed otherwise                                    |
   |            |                                                      |
   | Ignore     | Cancel any default preference for this property      |
   |            |                                                      |
   | Avoid      | Prefer protocols/paths not providing the property,   |
   |            | proceed otherwise                                    |
   |            |                                                      |
   | Prohibit   | Select only protocols/paths not providing the        |
   |            | property, fail otherwise                             |
   +------------+------------------------------------------------------+

   Internally, the transport system will first exclude all protocols and
   paths that match a Prohibit, then only keep candidates that match a
   Require, then sort candidates according to Preferred properties, and
   then use Avoided properties as a tiebreaker.  In case of conflicts
   between protocol and path selection properties, path selection
   properties take precedence.  For example, if an application indicates
   a preference for a specific path, but also a preference for a
   protocol not available on this path, the transport system will try
   the path first, so the protocol selection property might not have an
   effect.

   An implementation of this interface must provide sensible defaults
   for protocol and path selection properties.  The defaults given for
   each property below represent a configuration that can be implemented
   over TCP.  An alternate set of default Protocol Selection Properties
   would represent a configuration that can be implemented over UDP.

   All transport parameters used in the pre-establishment phase are
   collected in a TransportParameters Object that is passed to the
   Preconnection Object.

   TransportParameters := NewTransportParameters()

   The Individual parameters are then added to the TransportParameters
   Object.  While Protocol Properties use the "add" call, Transport
   Preferences use special calls for the levels defined in Section 5.2.



Trammell, et al.        Expires November 1, 2018                [Page 9]



Internet-Draft               TAPS Interface                   April 2018

   TransportParameters.Add(parameter, value)

   TransportParameters.Require(preference)
   TransportParameters.Prefer(preference)
   TransportParameters.Ignore(preference)
   TransportParameters.Avoid(preference)
   TransportParameters.Prohibit(preference)

   For an existing Connection, the Transport Parameters can be queried
   any time by using the following call on the Connection Object:

   TransportParameters := Connection.GetTransportParameters()

   Note that most properties are only considered for Connection
   establishment and can not be changed after a Connection is
   established; however, they can be queried.  See Section 9.

   A Connection gets its Transport Parameters either by being explicitly
   configured via a Preconnection, or by inheriting them from an
   antecedent via cloning; see Section 6.4 for more.

   In addition to protocol and path selection properties, the transport
   parameters may also contain Generic and/or Specific Protocol
   Properties (see Section 9.1).  These properties will be passed to the
   selected candidate Protocol Stack(s) to configure them before
   candidate Connection establishment.

   The following properties can be used during Protocol and Path
   selection:

5.2.1.  Reliable Data Transfer

   Type: Preference

   This property specifies whether the application wishes to use a
   transport protocol that that provides mechanisms to help ensure that
   all data is received and without corruption on the other side.  This
   also entails being notified when a Connection is closed or aborted.
   This property applies to Connections and Connection Groups.  This is
   a strict requirement.  The default is to enable Reliable Data
   Transfer.

5.2.2.  Preservation of data ordering

   Type: Preference

   This property specifies whether the application wishes to use a
   transport protocol that provides mechanisms to ensure that data is



Trammell, et al.        Expires November 1, 2018               [Page 10]



Internet-Draft               TAPS Interface                   April 2018

   received by the application on the other end in the same order as it
   was sent.  This property applies to Connections and Connection
   Groups.  This is a strict requirement.  The default is to preserve
   data ordering.

5.2.3.  Configure reliability on a per-Message basis

   Type: Preference

   This property specifies whether an application considers it useful to
   indicate its reliability requirements on a per-Message basis.  This
   property applies to Connections and Connection Groups.  This is not a
   strict requirement.  The default is to not have this option.

5.2.4.  Use 0-RTT session establishment with an idempotent Message

   Type: Preference

   This property specifies whether an application would like to supply a
   Message to the transport protocol before Connection establishment,
   which will then be reliably transferred to the other side before or
   during Connection establishment, potentially multiple times.  See
   also Section 7.1.4.  This is a strict requirement.  The default is to
   not have this option.

5.2.5.  Multistream Connections in Group

   Type: Preference

   This property specifies that the application would prefer multiple
   Connections within a Connection Group to be provided by streams of a
   single underlying transport connection where possible.  This is not a
   strict requirement.  The default is to not have this option.

5.2.6.  Notification of excessive retransmissions

   Type: Boolean

   This property specifies whether an application considers it useful to
   be informed in case sent data was retransmitted more often than a
   certain threshold.  When set to true, the effect is twofold: The
   application may receive events in case excessive retransmissions.  In
   addition, the transport system considers this as a preference to use
   transports stacks that can provide this notification.  This is not a
   strict requirement.  If set to false, no notification of excessive
   retransmissions will be sent and this transport feature is ignored
   for protocol selection.



Trammell, et al.        Expires November 1, 2018               [Page 11]



Internet-Draft               TAPS Interface                   April 2018

   This property applies to Connections and Connection Groups.  The
   default is to have this option.

5.2.7.  Notification of ICMP soft error message arrival

   Type: Boolean

   This property specifies whether an application considers it useful to
   be informed when an ICMP error message arrives that does not force
   termination of a connection.  When set to true, received ICMP errors
   will be available as SoftErrors.  Note that even if a protocol
   supporting this property is selected, not all ICMP errors will
   necessarily be delivered, so applications cannot rely on receiving
   them.  Setting this option also implies a preference to prefer
   transports stacks that can provide this notification.  If not set, no
   events will be sent for ICMP soft error message and this transport
   feature is ignored for protocol selection.

   This property applies to Connections and Connection Groups.  The
   default is not to have this option.

5.2.8.  Control checksum coverage on sending or receiving

   Type: Preference

   This property specifies whether the application considers it useful
   to enable / disable / configure a checksum when sending data, or
   decide whether to require a checksum or not when receiving data.
   This property applies to Connections and Connection Groups.  This is
   not a strict requirement, as it signifies a reduction in reliability.
   The default is full checksum coverage without being able to change
   it, and requiring a checksum when receiving.

5.2.9.  Interface Type

   Type: Tuple (Enumeration, Preference)

   This property specifies which kind of access network interface, e.g.,
   WiFi, Ethernet, or LTE, to prefer over others for this Connection, in
   case they are available.  In general, Interface Types should be used
   only with the "Prefer" and "Prohibit" preference level.
   Specifically, using the "Require" preference level for Interface Type
   may limit path selection in a way that is detrimental to
   connectivity.  The default is to use the default interface configured
   in the system policy.  The valid values for the access network
   interface kinds are implementation specific.



Trammell, et al.        Expires November 1, 2018               [Page 12]



Internet-Draft               TAPS Interface                   April 2018

5.2.10.  Capacity Profile

   Type: Enumeration

   This property specifies the application's expectation of the
   dominating traffic pattern for this Connection.  This implies that
   the transport system should optimize for the capacity profile
   specified.  This can influence path and protocol selection.  The
   following values are valid for Capacity Profile:

   Default:  The application makes no representation about its expected
      capacity profile.  No special optimizations of the tradeoff
      between delay, delay variation, and bandwidth efficiency should be
      made when selecting and configuring stacks.

   Low Latency:  Response time (latency) should be optimized at the
      expense of bandwidth efficiency and delay variation when sending
      this message.  This can be used by the system to disable the
      coalescing of multiple small Messages into larger packets (Nagle's
      algorithm); to prefer immediate acknowledgment from the peer
      endpoint when supported by the underlying transport; to signal a
      preference for lower-latency, higher-loss treatment; and so on.

   Constant Rate:  The application expects to send/receive data at a
      constant rate after Connection establishment.  Delay and delay
      variation should be minimized at the expense of bandwidth
      efficiency.  This implies that the Connection may fail if the
      desired rate cannot be maintained across the Path.  A transport
      may interpret this capacity profile as preferring a circuit
      breaker [RFC8084] to a rate adaptive congestion controller.

   Scavenger/Bulk:  The application is not interactive.  It expects to
      send/receive a large amount of data, without any urgency.  This
      can be used to select protocol stacks with scavenger transmission
      control, to signal a preference for less-than-best-effort
      treatment, and so on.

5.3.  Specifying Security Parameters and Callbacks

   Common parameters such as TLS ciphersuites are known to
   implementations.  Clients SHOULD use common safe defaults for these
   values whenever possible.  However, as discussed in
   [I-D.pauly-taps-transport-security], many transport security
   protocols require specific security parameters and constraints from
   the client at the time of configuration and actively during a
   handshake.  These configuration parameters are created as follows

   SecurityParameters := NewSecurityParameters()

https://datatracker.ietf.org/doc/html/rfc8084


Trammell, et al.        Expires November 1, 2018               [Page 13]



Internet-Draft               TAPS Interface                   April 2018

   Security configuration parameters and sample usage follow:

   o  Local identity and private keys: Used to perform private key
      operations and prove one's identity to the Remote Endpoint.
      (Note, if private keys are not available, e.g., since they are
      stored in HSMs, handshake callbacks MUST be used.  See below for
      details.)

   SecurityParameters.AddIdentity(identity)
   SecurityParameters.AddPrivateKey(privateKey, publicKey)

   o  Supported algorithms: Used to restrict what parameters are used by
      underlying transport security protocols.  When not specified,
      these algorithms SHOULD default to known and safe defaults for the
      system.  Parameters include: ciphersuites, supported groups, and
      signature algorithms.

SecurityParameters.AddSupportedGroup(22)    // secp256k1
SecurityParameters.AddCiphersuite(0xCCA9)   // 
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
SecurityParameters.AddSignatureAlgorithm(7) // ed25519

   o  Session cache: Used to tune cache capacity, lifetime, re-use, and
      eviction policies, e.g., LRU or FIFO.

   SecurityParameters.SetSessionCacheCapacity(1024)     // 1024 elements
   SecurityParameters.SetSessionCacheLifetime(24*60*60) // 24 hours
   SecurityParameters.SetSessionCacheReuse(1)           // One-time use

   o  Pre-shared keying material: Used to install pre-shared keying
      material established out-of-band.  Each pre-shared keying material
      is associated with some identity that typically identifies its use
      or has some protocol-specific meaning to the Remote Endpoint.

   SecurityParameters.AddPreSharedKey(key, identity)

   Security decisions, especially pertaining to trust, are not static.
   Thus, once configured, parameters must also be supplied during live
   handshakes.  These are best handled as client-provided callbacks.
   Security handshake callbacks include:

   o  Trust verification callback: Invoked when a Remote Endpoint's
      trust must be validated before the handshake protocol can proceed.

   TrustCallback := NewCallback({
     // Handle trust, return the result
   })
   SecurityParameters.SetTrustVerificationCallback(trustCallback)



Trammell, et al.        Expires November 1, 2018               [Page 14]



Internet-Draft               TAPS Interface                   April 2018

   o  Identity challenge callback: Invoked when a private key operation
      is required, e.g., when local authentication is requested by a
      remote.

   ChallengeCallback := NewCallback({
     // Handle challenge
   })
   SecurityParameters.SetIdentityChallengeCallback(challengeCallback)

   Like transport parameters, security parameters are inherited during
   cloning (see Section 6.4).

6.  Establishing Connections

   Before a Connection can be used for data transfer, it must be
   established.  Establishment ends the pre-establishment phase; all
   transport and cryptographic parameter specification must be complete
   before establishment, as these parameters will be used to select
   candidate Paths and Protocol Stacks for the Connection.
   Establishment may be active, using the Initiate() Action; passive,
   using the Listen() Action; or simultaneous for peer-to-peer, using
   the Rendezvous() Action.  These Actions are described in the
   subsections below.

6.1.  Active Open: Initiate

   Active open is the Action of establishing a Connection to a Remote
   Endpoint presumed to be listening for incoming Connection requests.
   Active open is used by clients in client-server interactions.  Active
   open is supported by this interface through the Initiate Action:

   Connection := Preconnection.Initiate()

   Before calling Initiate, the caller must have populated a
   Preconnection Object with a Remote Endpoint specifier, optionally a
   Local Endpoint specifier (if not specified, the system will attempt
   to determine a suitable Local Endpoint), as well as all parameters
   necessary for candidate selection.  After calling Initiate, no
   further parameters may be bound to the Connection.  The Initiate()
   call consumes the Preconnection and creates a Connection Object.  A
   Preconnection can only be initiated once.

   Once Initiate is called, the candidate Protocol Stack(s) may cause
   one or more candidate transport-layer connections to be created to
   the specified remote endpoint.  The caller may immediately begin
   sending Messages on the Connection (see Section 7) after calling
   Initate(); note that any idempotent data sent while the Connection is



Trammell, et al.        Expires November 1, 2018               [Page 15]



Internet-Draft               TAPS Interface                   April 2018

   being established may be sent multiple times or on multiple
   candidates.

   The following Events may be sent by the Connection after Initiate()
   is called:

   Connection -> Ready<>

   The Ready Event occurs after Initiate has established a transport-
   layer connection on at least one usable candidate Protocol Stack over
   at least one candidate Path.  No Receive Events (see Section 8) will
   occur before the Ready Event for Connections established using
   Initiate.

   Connection -> InitiateError<>

   An InitiateError occurs either when the set of transport and
   cryptographic parameters cannot be fulfilled on a Connection for
   initiation (e.g. the set of available Paths and/or Protocol Stacks
   meeting the constraints is empty) or reconciled with the local and/or
   remote endpoints; when the remote specifier cannot be resolved; or
   when no transport-layer connection can be established to the remote
   endpoint (e.g. because the remote endpoint is not accepting
   connections, or the application is prohibited from opening a
   Connection by the operating system).

6.2.  Passive Open: Listen

   Passive open is the Action of waiting for Connections from remote
   endpoints, commonly used by servers in client-server interactions.
   Passive open is supported by this interface through the Listen
   Action:

   Preconnection.Listen()

   Before calling Listen, the caller must have initialized the
   Preconnection during the pre-establishment phase with a Local
   Endpoint specifier, as well as all parameters necessary for Protocol
   Stack selection.  A Remote Endpoint may optionally be specified, to
   constrain what Connections are accepted.  The Listen() Action
   consumes the Preconnection.  Once Listen() has been called, no
   further parameters may be bound to the Preconnection, and no
   subsequent establishment call may be made on the Preconnection.

   Preconnection -> ConnectionReceived<Connection>

   The ConnectionReceived Event occurs when a Remote Endpoint has
   established a transport-layer connection to this Preconnection (for



Trammell, et al.        Expires November 1, 2018               [Page 16]



Internet-Draft               TAPS Interface                   April 2018

   Connection-oriented transport protocols), or when the first Message
   has been received from the Remote Endpoint (for Connectionless
   protocols), causing a new Connection to be created.  The resulting
   Connection is contained within the ConnectionReceived event, and is
   ready to use as soon as it is passed to the application via the
   event.

   Preconnection -> ListenError<>

   A ListenError occurs either when the Preconnection cannot be
   fulfilled for listening, when the Local Endpoint (or Remote Endpoint,
   if specified) cannot be resolved, or when the application is
   prohibited from listening by policy.

6.3.  Peer-to-Peer Establishment: Rendezvous

   Simultaneous peer-to-peer Connection establishment is supported by
   the Rendezvous() Action:

   Preconnection.Rendezvous()

   The Preconnection Object must be specified with both a Local Endpoint
   and a Remote Endpoint, and also the transport and security parameters
   needed for Protocol Stack selection.  The Rendezvous() Action causes
   the Preconnection to listen on the Local Endpoint for an incoming
   Connection from the Remote Endpoint, while simultaneously trying to
   establish a Connection from the Local Endpoint to the Remote
   Endpoint.  This corresponds to a TCP simultaneous open, for example.

   The Rendezvous() Action consumes the Preconnection.  Once
   Rendezvous() has been called, no further parameters may be bound to
   the Preconnection, and no subsequent establishment call may be made
   on the Preconnection.

   Preconnection -> RendezvousDone<Connection>

   The RendezvousDone<> Event occurs when a Connection is established
   with the Remote Endpoint.  For Connection-oriented transports, this
   occurs when the transport-layer connection is established; for
   Connectionless transports, it occurs when the first Message is
   received from the Remote Endpoint.  The resulting Connection is
   contained within the RendezvousDone<> Event, and is ready to use as
   soon as it is passed to the application via the Event.

   Preconnection -> RendezvousError<msgRef, error>

   An RendezvousError occurs either when the Preconnection cannot be
   fulfilled for listening, when the Local Endpoint or Remote Endpoint



Trammell, et al.        Expires November 1, 2018               [Page 17]



Internet-Draft               TAPS Interface                   April 2018

   cannot be resolved, when no transport-layer connection can be
   established to the Remote Endpoint, or when the application is
   prohibited from rendezvous by policy.

   When using some NAT traversal protocols, e.g., ICE [RFC5245], it is
   expected that the Local Endpoint will be configured with some method
   of discovering NAT bindings, e.g., a STUN server.  In this case, the
   Local Endpoint may resolve to a mixture of local and server reflexive
   addresses.  The Resolve() method on the Preconnection can be used to
   discover these bindings:

   PreconnectionBindings := Preconnection.Resolve()

   The Resolve() call returns a list of Preconnection Objects, that
   represent the concrete addresses, local and server reflexive, on
   which a Rendezvous() for the Preconnection will listen for incoming
   Connections.  This list can be passed to a peer via a signalling
   protocol, such as SIP or WebRTC, to configure the remote.

6.4.  Connection Groups

   Groups of Connections can be created using the Clone Action:

   Connection := Connection.Clone()

   Calling Clone on a Connection yields a group of two Connections: the
   parent Connection on which Clone was called, and the resulting clone
   Connection.  These connections are "entangled" with each other, and
   become part of a Connection group.  Calling Clone on any of these two
   Connections adds a third Connection to the group, and so on.
   Connections in a Connection Group share all their properties, and
   changing the properties on one Connection in the group changes the
   property for all others.

   If the underlying Protocol Stack does not support cloning, or cannot
   create a new stream on the given Connection, then attempts to clone a
   connection will result in a CloneError:

   Connection -> CloneError<>

   There is only one Protocol Property that is not entangled: niceness
   is kept as a separate per-Connection Property for individual
   Connections in the group.  Niceness works as in Section 7.1.2: when
   allocating available network capacity among Connections in a
   Connection Group, sends on Connections with higher Niceness values
   will be prioritized over sends on Connections with lower Niceness
   values.  An ideal transport system implementation would assign the
   Connection the capacity share (M-N) x C / M, where N is the

https://datatracker.ietf.org/doc/html/rfc5245


Trammell, et al.        Expires November 1, 2018               [Page 18]



Internet-Draft               TAPS Interface                   April 2018

   Connection's Niceness value, M is the maximum Niceness value used by
   all Connections in the group and C is the total available capacity.
   However, the niceness setting is purely advisory, and no guarantees
   are given about capacity allocation and each implementation is free
   to implement exact capacity allocation as it sees fit.

7.  Sending Data

   Once a Connection has been established, it can be used for sending
   data.  Data is sent by passing a Message Object and additional
   parameters Section 7.1 to the Send Action on an established
   Connection:

   Connection.Send(Message, sendParameters)

   The type of the Message to be passed is dependent on the
   implementation, and on the constraints on the Protocol Stacks implied
   by the Connection's transport parameters.  It may itself contain an
   array of octets to be transmitted in the transport protocol payload,
   or be transformable to an array of octets by a sender-side framer
   (see Section 7.3).

   Some transport protocols can deliver arbitrarily sized Messages, but
   other protocols constrain the maximum Message size.  Applications can
   query the protocol property Maximum Message Size on Send to determine
   the maximum size.

   There may also be system and Protocol Stack dependent limits on the
   size of a Message which can be transmitted atomically.  For that
   reason, the Message object passed to the Send action may also be a
   partial Message, either representing the whole data object and
   information about the range of bytes to send from it, or an object
   referring back to the larger whole Message.  The details of partial
   Message sending are implementation-dependent.

   If Send is called on a Connection which has not yet been established,
   an Initiate Action will be implicitly performed simultaneously with
   the Send.  Used together with the Idempotent property (see

Section 7.1.4), this can be used to send data during establishment
   for 0-RTT session resumption on Protocol Stacks that support it.

   Like all Actions in this interface, the Send Action is asynchronous.

   Connection -> Sent<msgRef>

   The Sent Event occurs when a previous Send Action has completed,
   i.e., when the data derived from the Message has been passed down or
   through the underlying Protocol Stack and is no longer the



Trammell, et al.        Expires November 1, 2018               [Page 19]



Internet-Draft               TAPS Interface                   April 2018

   responsibility of the implementation of this interface.  The exact
   disposition of the Message when the Sent Event occurs is specific to
   the implementation and the constraints on the Protocol Stacks implied
   by the Connection's transport parameters.  The Sent Event contains an
   implementation-specific reference to the Message to which it applies.

   Sent Events allow an application to obtain an understanding of the
   amount of buffering it creates.  That is, if an application calls the
   Send Action multiple times without waiting for a Sent Event, it has
   created more buffer inside the transport system than an application
   that only issues a Send after this Event fires.

   Connection -> Expired<msgRef>

   The Expired Event occurs when a previous Send Action expired before
   completion; i.e. when the Message was not sent before its Lifetime
   (see Section 7.1.1) expired.  This is separate from SendError, as it
   is an expected behavior for partially reliable transports.  The
   Expired Event contains an implementation-specific reference to the
   Message to which it applies.

   Connection -> SendError<msgRef>

   A SendError occurs when a Message could not be sent due to an error
   condition: an attempt to send a Message which is too large for the
   system and Protocol Stack to handle, some failure of the underlying
   Protocol Stack, or a set of send parameters not consistent with the
   Connection's transport parameters.  The SendError contains an
   implementation-specific reference to the Message to which it applies.

7.1.  Send Parameters

   The Send Action takes per-Message send parameters which control how
   the contents will be sent down to the underlying Protocol Stack and
   transmitted.

   If Send Parameters should be overridden for a specific Message, an
   empty sent parameter Object can be acquired and all desired Send
   Parameters can be added to that Object.  A sendParameters Object can
   be reused for sending multiple contents with the same properties.

   SendParameters := NewSendParameters()
   SendParameters.Add(parameter, value)

   The Send Parameters share a single namespace with the Transport
   Parameters (see Section 5.2).  This allows the specification of
   Protocol Properties that can be overridden on a per-Message basis.



Trammell, et al.        Expires November 1, 2018               [Page 20]



Internet-Draft               TAPS Interface                   April 2018

   Send Parameters may be inconsistent with the properties of the
   Protocol Stacks underlying the Connection on which a given Message is
   sent.  For example, infinite Lifetime is not possible on a Message
   over a Connection not providing reliability.  Sending a Message with
   Send Properties inconsistent with the Transport Preferences on the
   Connection yields an error.

   The following send parameters are supported:

7.1.1.  Lifetime

   Lifetime specifies how long a particular Message can wait to be sent
   to the remote endpoint before it is irrelevant and no longer needs to
   be (re-)transmitted.  When a Message's Lifetime is infinite, it must
   be transmitted reliably.  The type and units of Lifetime are
   implementation-specific.

7.1.2.  Niceness

   Niceness represents an unbounded hierarchy of priorities of Messages,
   relative to other Messages sent over the same Connection and/or
   Connection Group (see Section 6.4).  It is most naturally represented
   as a non-negative integer.  A Message with Niceness 0 will yield to a
   Message with Niceness 1, which will yield to a Message with Niceness
   2, and so on.  Niceness may be used as a sender-side scheduling
   construct only, or be used to specify priorities on the wire for
   Protocol Stacks supporting prioritization.

   Note that this inversion of normal schemes for expressing priority
   has a convenient property: priority increases as both Niceness and
   Lifetime decrease.

7.1.3.  Ordered

   Ordered is a boolean property.  If true, this Message should be
   delivered after the last Message passed to the same Connection via
   the Send Action; if false, this Message may be delivered out of
   order.

7.1.4.  Idempotent

   Idempotent is a boolean property.  If true, the application-layer
   entity in the Message is safe to send to the remote endpoint more
   than once for a single Send Action.  It is used to mark data safe for
   certain 0-RTT establishment techniques, where retransmission of the
   0-RTT data may cause the remote application to receive the Message
   multiple times.



Trammell, et al.        Expires November 1, 2018               [Page 21]



Internet-Draft               TAPS Interface                   April 2018

7.1.5.  Corruption Protection Length

   This numeric property specifies the length of the section of the
   Message, starting from byte 0, that the application assumes will be
   received without corruption due to lower layer errors.  It is used to
   specify options for simple integrity protection via checksums.  By
   default, the entire Message is protected by checksum.  A value of 0
   means that no checksum is required, and a special value (e.g. -1) can
   be used to indicate the default.  Only full coverage is guaranteed,
   any other requests are advisory.

7.1.6.  Transmission Profile

   This enumerated property specifies the application's preferred
   tradeoffs for sending this Message; it is a per-Message override of
   the Capacity Profile protocol and path selection property (see

Section 5.2.10).

   The following values are valid for Transmission Profile:

   Default:  No special optimizations of the tradeoff between delay,
      delay variation, and bandwidth efficiency should be made when
      sending this message.

   Low Latency:  Response time (latency) should be optimized at the
      expense of bandwidth efficiency and delay variation when sending
      this message.  This can be used by the system to disable the
      coalescing of multiple small Messages into larger packets (Nagle's
      algorithm); to prefer immediate acknowledgment from the peer
      endpoint when supported by the underlying transport; to signal a
      preference for lower-latency, higher-loss treatment; and so on.

   Constant Rate:  Delay and delay variation should be minimized at the
      expense of bandwidth efficiency.

   Scavenger/Bulk:  This Message may be sent at the system's leisure.
      This can be used to signal a preference for less-than-best-effort
      treatment, to delay sending until lower-cost paths are available,
      and so on.

7.2.  Batching Sends

   In order to reduce the overhead of sending multiple small Messages on
   a Connection, the application may want to batch several Send actions
   together.  This provides a hint to the system that the sending of
   these Messages should be coalesced when possible, and that sending
   any of the batched Messages may be delayed until the last Message in
   the batch is enqueued.



Trammell, et al.        Expires November 1, 2018               [Page 22]



Internet-Draft               TAPS Interface                   April 2018

   Connection.Batch(
       Connection.Send(Message, sendParameters)
       Connection.Send(Message, sendParameters)
   )

7.3.  Sender-side Framing

   Sender-side framing allows a caller to provide the interface with a
   function that takes a Message of an appropriate application-layer
   type and returns an array of octets, the on-the-wire representation
   of the Message to be handed down to the Protocol Stack.  It consists
   of a Framer Object with a single Action, Frame.  Since the Framer
   depends on the protocol used at the application layer, it is bound to
   the Preconnection during the pre-establishment phase:

   Preconnection.FrameWith(Framer)

   OctetArray := Framer.Frame(Message)

   Sender-side framing is a convenience feature of the interface, for
   parity with receiver-side framing (see Section 8.1).

8.  Receiving Data

   Once a Connection is established, Messages may be received on it.
   The application can indicate that it is ready to receive Messages by
   calling Receive() on the Connection.

   Connection.Receive(ReceiveHandler, maxLength)

   Receive takes a ReceiveHandler, which can handle the Received Event
   and the ReceiveError error.  Each call to Receive will result in at
   most one Received event being sent to the handler, though
   implementations may provide convenience functions to indicate
   readiness to receive a larger but finite number of Messages with a
   single call.  This allows an application to provide backpressure to
   the transport stack when it is temporarily not ready to receive
   messages.

   Receive also takes an optional maxLength argument, the maximum size
   (in bytes of data) Message the application is currently prepared to
   receive.  The default value for maxLength is infinite.  If an
   incoming Message is larger than the minimum of this size and the
   maximum Message size on receive for the Connection's Protocol Stack,
   it will be received as a partial Message.  Note that maxLength does
   not guarantee that the application will receive that many bytes if
   they are available; the interface may return partial Messages smaller
   than maxLength according to implementation constraints.



Trammell, et al.        Expires November 1, 2018               [Page 23]



Internet-Draft               TAPS Interface                   April 2018

   Connection -> Received<Message>

   As with sending, the type of the Message to be passed is dependent on
   the implementation, and on the constraints on the Protocol Stacks
   implied by the Connection's transport parameters.  The Message may
   also contain metadata from protocols in the Protocol Stack; which
   metadata is available is Protocol Stack dependent.  In particular,
   when this information is available, the value of the Explicit
   Congestion Notification (ECN) field is contained in such metadata.
   This information can be used for logging and debugging purposes, and
   for building applications which need access to information about the
   transport internals for their own operation.

   The Message Object must provide some method to retrieve an octet
   array containing application data, corresponding to a single message
   within the underlying Protocol Stack's framing.  See Section 8.1 for
   handling framing in situations where the Protocol Stack provides
   octet-stream transport only.

   The Message Object passed to Received is complete and atomic, unless
   one of the following conditions holds:

   o  the underlying Protocol Stack supports message boundary
      preservation, and the size of the Message is larger than the
      buffers available for a single message;

   o  the underlying Protocol Stack does not support message boundary
      preservation, and the deframer (see Section 8.1) cannot determine
      the end of the message using the buffer space it has available; or

   o  the underlying Protocol Stack does not support message boundary
      preservation, and no deframer was supplied by the application

   The Message Object passed to Received will indicate one of the
   following:

   1.  this is a complete message;

   2.  this is a partial message containing a section of a message with
       a known message boundary (made partial for local buffering
       reasons, either by the underlying Protocol Stack or the
       deframer).  In this case, the Message Object passed to Received
       may contain the byte offset of the data in the partial Message
       within the full Message, an indication whether this is the last
       (highest-offset) partial Message in the full Message, and an
       optional reference to the full Message it belongs to; or



Trammell, et al.        Expires November 1, 2018               [Page 24]



Internet-Draft               TAPS Interface                   April 2018

   3.  this is a partial message containing data with no definite
       message boundary, i.e. the only known message boundary is given
       by termination of the Connection

   Note that in the absence of message boundary preservation and without
   deframing, the entire Connection is represented as one large message
   of indeterminate length.

   Connection -> ReceiveError<>

   A ReceiveError occurs when data is received by the underlying
   Protocol Stack that cannot be fully retrieved or deframed, or when
   some other indication is received that reception has failed.  Such
   conditions that irrevocably lead the the termination of the
   Connection are signaled using ConnectionError instead (see

Section 10).

8.1.  Receiver-side De-framing over Stream Protocols

   The Receive Event is intended to be fired once per application-layer
   Message sent by the remote endpoint; i.e., it is a desired property
   of this interface that a Send at one end of a Connection maps to
   exactly one Receive on the other end.  This is possible with Protocol
   Stacks that provide message boundary preservation, but is not the
   case over Protocol Stacks that provide a simple octet stream
   transport.

   For preserving message boundaries over stream transports, this
   interface provides receiver-side de-framing.  This facility is based
   on the observation that, since many of our current application
   protocols evolved over TCP, which does not provide message boundary
   preservation, and since many of these protocols require message
   boundaries to function, each application layer protocol has defined
   its own framing.  A Deframer allows an application to push this de-
   framing down into the interface, in order to transform an octet
   stream into a sequence of Messages.

   Concretely, receiver-side de-framing allows a caller to provide the
   interface with a function that takes an octet stream, as provided by
   the underlying Protocol Stack, reads and returns a single Message of
   an appropriate type for the application and platform, and leaves the
   octet stream at the start of the next Message to deframe.  It
   consists of a Deframer Object with a single Action, Deframe.  Since
   the Deframer depends on the protocol used at the application layer,
   it is bound to the Preconnection during the pre-establishment phase:



Trammell, et al.        Expires November 1, 2018               [Page 25]



Internet-Draft               TAPS Interface                   April 2018

   Preconnection.DeframeWith(Deframer)

   Message := Deframer.Deframe(OctetStream, ...)

9.  Setting and Querying of Connection Properties

   At any point, the application can set and query the properties of a
   Connection.  Depending on the phase the Connection is in, the
   Connection properties will include different information.

   ConnectionProperties := Connection.GetProperties()

   Connection.SetProperties()

   Connection properties include:

   o  The status of the Connection, which can be one of the following:
      Establishing, Established, Closing, or Closed.

   o  Transport Features of the protocols that conform to the Required
      and Prohibited Transport Preferences, which might be selected by
      the transport system during Establishment.  These features
      correspond to the properties given in Section 5.2 and can only be
      queried.

   o  Transport Features of the Protocol Stacks that were selected and
      instantiated, once the Connection has been established.  These
      features correspond to the properties given in Section 5.2 and can
      only be queried.  Instead of preference levels, these features
      have boolean values indicating whether or not they were selected.
      Note that these transport features may not fully reflect the
      specified parameters given in the pre-establishment phase.  For
      example, a certain Protocol Selection Property that an application
      specified as Preferred may not actually be present in the chosen
      Protocol Stack Instances because none of the currently available
      transport protocols had this feature.

   o  Protocol Properties of the Protocol Stack in use (see Section 9.1
      below).  These can be set or queried.  Certain specific procotol
      queries may be read-only, on a protocol- and property-specific
      basis.

   o  Path Properties of the path(s) in use, once the Connection has
      been established.  These properties can be derived from the local
      provisioning domain, measurements by the Protocol Stack, or other
      sources.  They can only be queried.



Trammell, et al.        Expires November 1, 2018               [Page 26]



Internet-Draft               TAPS Interface                   April 2018

9.1.  Protocol Properties

   Protocol Properties represent the configuration of the selected
   Protocol Stacks backing a Connection.  Some properties apply
   generically across multiple transport protocols, while other
   properties only apply to specific protocols.  The default settings of
   these properties will vary based on the specific protocols being used
   and the system's configuration.

   Note that Protocol Properties are also set during pre-establishment,
   as transport parameters, to preconfigure Protocol Stacks during
   establishment.

   Generic Protocol Properties include:

   o  Relative niceness: This numeric property is similar to the
      Niceness send property (see Section 7.1.2), a non-negative integer
      representing the relative inverse priority of this Connection
      relative to other Connections in the same Connection Group.  It
      has no effect on Connections not part of a Connection Group.  As
      noted in Section 6.4, this property is not entangled when
      Connections are cloned.

   o  Timeout for aborting Connection: This numeric property specifies
      how long to wait before aborting a Connection during
      establishment, or before deciding that a Connection has failed
      after establishment.  It is given in seconds.

   o  Retransmission threshold before excessive retransmission
      notification: This numeric property specifies after how many
      retransmissions to inform the application about "Excessive
      Retransmissions".

   o  Required minimum coverage of the checksum for receiving: This
      numeric property specifies the part of the received data that
      needs to be covered by a checksum.  It is given in Bytes.  A value
      of 0 means that no checksum is required, and a special value
      (e.g., -1) indicates full checksum coverage.

   o  Connection group transmission scheduler: This enumerated property
      specifies which scheduler should be used among Connections within
      a Connection Group.  It applies to Connection Groups; the set of
      schedulers can be taken from [I-D.ietf-tsvwg-sctp-ndata].

   o  Maximum message size concurrent with Connection establishment:
      This numeric property represents the maximum Message size that can
      be sent before or during Connection establishment, see also

Section 7.1.4.  It is given in Bytes.  This property is read-only.



Trammell, et al.        Expires November 1, 2018               [Page 27]



Internet-Draft               TAPS Interface                   April 2018

   o  Maximum Message size before fragmentation or segmentation: This
      numeric property, if applicable, represents the maximum Message
      size that can be sent without incurring network-layer
      fragmentation and/or transport layer segmentation at the sender.
      This property is read-only.

   o  Maximum Message size on send: This numeric property represents the
      maximum Message size that can be sent.  This property is read-
      only.

   o  Maximum Message size on receive: This numeric property represents
      the maximum Message size that can be received.  This property is
      read-only.

   In order to specify Specific Protocol Properties, Transport System
   implementations may offer applications to attach a set of options to
   the Preconnection Object, associated with a specific protocol.  For
   example, an application could specify a set of TCP Options to use if
   and only if TCP is selected by the system.  Such properties must not
   be assumed to apply across different protocols.  Attempts to set
   specific protocol properties on a Protocol Stack not containing that
   specific protocol are simply ignored, and do not raise an error.

10.  Connection Termination

   Close terminates a Connection after satisfying all the requirements
   that were specified regarding the delivery of Messages that the
   application has already given to the transport system.  For example,
   if reliable delivery was requested for a Message handed over before
   calling Close, the transport system will ensure that this Message is
   indeed delivered.  If the Remote Endpoint still has data to send, it
   cannot be received after this call.

   Connection.Close()

   The Closed Event can inform the application that the Remote Endpoint
   has closed the Connection; however, there is no guarantee that a
   remote close will be signaled.

   Connection -> Closed<>

   Abort terminates a Connection without delivering remaining data:

   Connection.Abort()

   A ConnectionError can inform the application that the other side has
   aborted the Connection; however, there is no guarantee that an abort
   will be signaled:



Trammell, et al.        Expires November 1, 2018               [Page 28]



Internet-Draft               TAPS Interface                   April 2018

   Connection -> ConnectionError<>

   A SoftError can inform the application about the receipt of an ICMP
   error message that does not force termination of the connection, if
   the underlying protocol stack supports access to soft errors;
   however, even if the underlying stack supports it, there is no
   guarantee that a soft error will be signaled.

   Connection -> SoftError<>

11.  IANA Considerations

   RFC-EDITOR: Please remove this section before publication.

   This document has no Actions for IANA.

12.  Security Considerations

   This document describes a generic API for interacting with a
   transport services (TAPS) system.  Part of this API includes
   configuration details for transport security protocols, as discussed
   in Section Section 5.3.  It does not recommend use (or disuse) of
   specific algorithms or protocols.  Any API-compatible transport
   security protocol should work in a TAPS system.

13.  Acknowledgements

   This work has received funding from the European Union's Horizon 2020
   research and innovation programme under grant agreements No. 644334
   (NEAT) and No. 688421 (MAMI).

   This work has been supported by Leibniz Prize project funds of DFG -
   German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
   FE 570/4-1).

   This work has been supported by the UK Engineering and Physical
   Sciences Research Council under grant EP/R04144X/1.

   Thanks to Stuart Cheshire, Josh Graessley, David Schinazi, and Eric
   Kinnear for their implementation and design efforts, including Happy
   Eyeballs, that heavily influenced this work.  Thanks to Laurent Chuat
   and Jason Lee for initial work on the Post Sockets interface, from
   which this work has evolved.



Trammell, et al.        Expires November 1, 2018               [Page 29]



Internet-Draft               TAPS Interface                   April 2018

14.  References

14.1.  Normative References

   [I-D.ietf-taps-minset]
              Welzl, M. and S. Gjessing, "A Minimal Set of Transport
              Services for TAPS Systems", draft-ietf-taps-minset-03
              (work in progress), March 2018.

   [I-D.ietf-tsvwg-rtcweb-qos]
              Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
              Packet Markings for WebRTC QoS", draft-ietf-tsvwg-rtcweb-

qos-18 (work in progress), August 2016.

   [I-D.ietf-tsvwg-sctp-ndata]
              Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
              "Stream Schedulers and User Message Interleaving for the
              Stream Control Transmission Protocol", draft-ietf-tsvwg-

sctp-ndata-13 (work in progress), September 2017.

   [I-D.pauly-taps-arch]
              Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G.,
              Perkins, C., Tiesel, P., and C. Wood, "An Architecture for
              Transport Services", draft-pauly-taps-arch-00 (work in
              progress), February 2018.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2.  Informative References

   [I-D.pauly-taps-transport-security]
              Pauly, T., Perkins, C., Rose, K., and C. Wood, "A Survey
              of Transport Security Protocols", draft-pauly-taps-

transport-security-02 (work in progress), March 2018.

   [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

              <https://www.rfc-editor.org/info/rfc793>.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-minset-03
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-18
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-18
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-13
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-13
https://datatracker.ietf.org/doc/html/draft-pauly-taps-arch-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-02
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-02
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793


Trammell, et al.        Expires November 1, 2018               [Page 30]



Internet-Draft               TAPS Interface                   April 2018

   [RFC5245]  Rosenberg, J., "Interactive Connectivity Establishment
              (ICE): A Protocol for Network Address Translator (NAT)
              Traversal for Offer/Answer Protocols", RFC 5245,
              DOI 10.17487/RFC5245, April 2010,
              <https://www.rfc-editor.org/info/rfc5245>.

   [RFC8084]  Fairhurst, G., "Network Transport Circuit Breakers",
BCP 208, RFC 8084, DOI 10.17487/RFC8084, March 2017,

              <https://www.rfc-editor.org/info/rfc8084>.

   [RFC8095]  Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
              Ed., "Services Provided by IETF Transport Protocols and
              Congestion Control Mechanisms", RFC 8095,
              DOI 10.17487/RFC8095, March 2017,
              <https://www.rfc-editor.org/info/rfc8095>.

Appendix A.  Additional Properties

   The interface specified by this document represents the minimal
   common interface to an endpoint in the transport services
   architecture [I-D.pauly-taps-arch], based upon that architecture and
   on the minimal set of transport service features elaborated in
   [I-D.ietf-taps-minset].  However, the interface has been designed
   with extension points to allow the implementation of features beyond
   those in the minimal common interface: Protocol Selection Properties,
   Path Selection Properties, and options on Message send are open sets.
   Implementations of the interface are free to extend these sets to
   provide additional expressiveness to applications written on top of
   them.

   This appendix enumerates a few additional parameters and properties
   that could be used to enhance transport protocol and/or path
   selection, or the transmission of messages given a Protocol Stack
   that implements them.  These are not part of the interface, and may
   be removed from the final document, but are presented here to support
   discussion within the TAPS working group as to whether they should be
   added to a future revision of the base specification.

A.1.  Protocol and Path Selection Properties

   The following protocol and path selection properties might be made
   available in addition to those specified in Section 5.2:

   o  Suggest a timeout to the Remote Endpoint: This boolean property
      specifies whether an application considers it useful to propose a
      timeout until the Connection is assumed to be lost.  This property
      applies to Connections and Connection Groups.  This is not a
      strict requirement.  The default is to have this option.

https://datatracker.ietf.org/doc/html/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://datatracker.ietf.org/doc/html/bcp208
https://datatracker.ietf.org/doc/html/rfc8084
https://www.rfc-editor.org/info/rfc8084
https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095


Trammell, et al.        Expires November 1, 2018               [Page 31]



Internet-Draft               TAPS Interface                   April 2018

      [EDITOR'S NOTE: For discussion of this option, see
https://github.com/taps-api/drafts/issues/109]

   o  Request not to delay acknowledgment of Message: This boolean
      property specifies whether an application considers it useful to
      request for Message that its acknowledgment be sent out as early
      as possible instead of potentially being bundled with other
      acknowledgments.  This property applies to Connections and
      Connection groups.  This is not a strict requirement.  The default
      is to not have this option.  [EDITOR'S NOTE: For discussion of
      this option, see https://github.com/taps-api/drafts/issues/90]

A.1.1.  Application Intents

   Application Intents are a group of transport properties expressing
   what an application wants to achieve, knows, assumes or prefers
   regarding its communication.  They are not strict requirements.  In
   particular, they should not be used to express any Quality of Service
   expectations that an application might have.  Instead, an application
   should express its intentions and its expected traffic
   characteristics in order to help the transport system make decisions
   that best match it, but on a best-effort basis.  Even though
   Application Intents do not represent Quality of Service requirements,
   a transport system may use them to determine a DSCP value, e.g.
   similar to Table 1 in [I-D.ietf-tsvwg-rtcweb-qos].

   Application Intents can influence protocol selection, protocol
   configuration, path selection, and endpoint selection.  For example,
   setting the "Timeliness" Intent to "Interactive" may lead the
   transport system to disable the Nagle algorithm for a Connection,
   while setting the "Timeliness" to "Background" may lead it to setting
   the DSCP value to "scavenger".  If the "Size to be Sent" Intent is
   set on an individual Message, it may influence path selection.

   Specifying Application Intents is not mandatory.  An application can
   specify any combination of Application Intents.  If specified,
   Application Intents are defined as parameters passed to the
   Preconnection Object, and may influence the Connection established
   from that Preconnection.  If a Connection is cloned to form a
   Connection Group, and associated Application Intents are cloned along
   with the other transport parameters.  Some Intents have also
   corresponding Message Properties, similar to the properties in

Section 7.1.

   Application Intents can be added to this interface as Transport
   Preferences with the "Prefer" preference level.

https://github
https://github


Trammell, et al.        Expires November 1, 2018               [Page 32]



Internet-Draft               TAPS Interface                   April 2018

A.1.1.1.  Traffic Category

   This Intent specifies what the application expect the dominating
   traffic pattern to be.

   Possible Category values are:

   Query:  Single request / response style workload, latency bound

   Control:  Long lasting low bandwidth control channel, not bandwidth
      bound

   Stream:  Stream of data with steady data rate

   Bulk:  Bulk transfer of large Messages, presumably bandwidth bound

   The default is to not assume any particular traffic pattern.  Most
   categories suggest the use of other intents to further describe the
   traffic pattern anticipated, e.g., the bulk category suggesting the
   use of the Message Size intents or the stream category suggesting the
   Stream Bitrate and Duration intents.

A.1.1.2.  Size to be Sent / Received

   This Intent specifies what the application expects the size of a
   transfer to be.  It is a numeric property and given in Bytes.

A.1.1.3.  Duration

   This Intent specifies what the application expects the lifetime of a
   transfer to be.  It is a numeric property and given in milliseconds.

A.1.1.4.  Send / Receive Bit-rate

   This Intent specifies what the application expects the bit-rate of a
   transfer to be.  It is a numeric property and given in Bytes per
   second.

A.1.1.5.  Cost Preferences

   This Intent describes what an application prefers regarding monetary
   costs, e.g., whether it considers it acceptable to utilize limited
   data volume.  It provides hints to the transport system on how to
   handle trade-offs between cost and performance or reliability.  This
   Intent can also apply to an individual Messages.

   No Expense:  Avoid transports associated with monetary cost



Trammell, et al.        Expires November 1, 2018               [Page 33]



Internet-Draft               TAPS Interface                   April 2018

   Optimize Cost:  Prefer inexpensive transports and accept service
      degradation

   Balance Cost:  Use system policy to balance cost and other criteria

   Ignore Cost:  Ignore cost, choose transport solely based on other
      criteria

   The default is "Balance Cost".

A.2.  Protocol Properties

   The following protocol properties might be made available in addition
   to those in Section 9.1:

   o  Abort timeout to suggest to the Remote Endpoint: This numeric
      property specifies the timeout to propose to the Remote Endpoint.
      It is given in seconds.  [EDITOR'S NOTE: For discussion of this
      property, see https://github.com/taps-api/drafts/issues/109]

A.3.  Send Parameters

   The following send parameters might be made available in addition to
   those specified in Section 7.1:

   o  Immediate: Immediate is a boolean property.  If true, the caller
      prefers immediacy to efficient capacity usage for this Message.
      For example, this means that the Message should not be bundled
      with other Message into the same transmission by the underlying
      Protocol Stack.

   o  Send Bitrate: This numeric property in Bytes per second specifies
      at what bitrate the application wishes the Message to be sent.  A
      transport supporting this feature will not exceed the requested
      Send Bitrate even if flow-control and congestion control allow
      higher bitrates.  This helps to avid bursty traffic pattern on
      busy video streaming servers.

Appendix B.  Sample API definition in Go

   This document defines an abstract interface.  To illustrate how this
   would map concretely into a programming language, an API interface
   definition in Go is available online at https://github.com/mami-

project/postsocket.  Documentation for this API - an illustration of
   the documentation an application developer would see for an instance
   of this interface - is available online at

https://godoc.org/github.com/mami-project/postsocket.  This API

https://github
https://github.com/mami-project/postsocket
https://github.com/mami-project/postsocket
https://godoc.org/github.com/mami-project/postsocket


Trammell, et al.        Expires November 1, 2018               [Page 34]



Internet-Draft               TAPS Interface                   April 2018

   definition will be kept largely in sync with the development of this
   abstract interface definition.

Authors' Addresses

   Brian Trammell (editor)
   ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Email: ietf@trammell.ch

   Michael Welzl (editor)
   University of Oslo
   PO Box 1080 Blindern
   0316  Oslo
   Norway

   Email: michawe@ifi.uio.no

   Theresa Enghardt
   TU Berlin
   Marchstrasse 23
   10587 Berlin
   Germany

   Email: theresa@inet.tu-berlin.de

   Godred Fairhurst
   University of Aberdeen
   Fraser Noble Building
   Aberdeen, AB24 3UE
   Scotland

   Email: gorry@erg.abdn.ac.uk
   URI:   http://www.erg.abdn.ac.uk/

http://www.erg.abdn.ac.uk/


Trammell, et al.        Expires November 1, 2018               [Page 35]



Internet-Draft               TAPS Interface                   April 2018

   Mirja Kuehlewind
   ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Email: mirja.kuehlewind@tik.ee.ethz.ch

   Colin Perkins
   University of Glasgow
   School of Computing Science
   Glasgow  G12 8QQ
   United Kingdom

   Email: csp@csperkins.org

   Philipp S. Tiesel
   TU Berlin
   Marchstrasse 23
   10587 Berlin
   Germany

   Email: philipp@inet.tu-berlin.de

   Chris Wood
   Apple Inc.
   1 Infinite Loop
   Cupertino, California 95014
   United States of America

   Email: cawood@apple.com



Trammell, et al.        Expires November 1, 2018               [Page 36]


