
TAPS Working Group B. Trammell, Ed.
Internet-Draft Google
Intended status: Standards Track M. Welzl, Ed.
Expires: January 9, 2020 University of Oslo
 T. Enghardt
 TU Berlin
 G. Fairhurst
 University of Aberdeen
 M. Kuehlewind
 ETH Zurich
 C. Perkins
 University of Glasgow
 P. Tiesel
 TU Berlin
 C. Wood
 T. Pauly
 Apple Inc.
 July 08, 2019

An Abstract Application Layer Interface to Transport Services
draft-ietf-taps-interface-04

Abstract

 This document describes an abstract programming interface to the
 transport layer, following the Transport Services Architecture. It
 supports the asynchronous, atomic transmission of messages over
 transport protocols and network paths dynamically selected at
 runtime. It is intended to replace the traditional BSD sockets API
 as the lowest common denominator interface to the transport layer, in
 an environment where endpoints have multiple interfaces and potential
 transport protocols to select from.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Trammell, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TAPS Interface July 2019

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology and Notation 5
3. Interface Design Principles 6
4. API Summary . 7
4.1. Usage Examples . 8
4.1.1. Server Example 8
4.1.2. Client Example 9
4.1.3. Peer Example . 10

4.2. Transport Properties 11
4.2.1. Transport Property Names 12
4.2.2. Transport Property Types 13

4.3. Scope of the Interface Definition 13
5. Pre-Establishment Phase 14
5.1. Specifying Endpoints 14
5.2. Specifying Transport Properties 16
5.2.1. Reliable Data Transfer (Connection) 18
5.2.2. Preservation of Message Boundaries 18
5.2.3. Configure Per-Message Reliability 18
5.2.4. Preservation of Data Ordering 18

 5.2.5. Use 0-RTT Session Establishment with an Idempotent
 Message . 19

5.2.6. Multistream Connections in Group 19
5.2.7. Full Checksum Coverage on Sending 19
5.2.8. Full Checksum Coverage on Receiving 19
5.2.9. Congestion control 19
5.2.10. Interface Instance or Type 20
5.2.11. Provisioning Domain Instance or Type 21
5.2.12. Parallel Use of Multiple Paths 21
5.2.13. Direction of communication 22

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Trammell, et al. Expires January 9, 2020 [Page 2]

Internet-Draft TAPS Interface July 2019

5.2.14. Notification of excessive retransmissions 22
5.2.15. Notification of ICMP soft error message arrival . . . 22

5.3. Specifying Security Parameters and Callbacks 22
5.3.1. Pre-Connection Parameters 23
5.3.2. Connection Establishment Callbacks 24

6. Establishing Connections 24
6.1. Active Open: Initiate 24
6.2. Passive Open: Listen 26
6.3. Peer-to-Peer Establishment: Rendezvous 27
6.4. Connection Groups . 28

7. Sending Data . 29
7.1. Basic Sending . 29
7.2. Sending Replies . 30
7.3. Send Events . 30
7.3.1. Sent . 31
7.3.2. Expired . 31
7.3.3. SendError . 31

7.4. Message Properties 31
7.4.1. Lifetime . 32
7.4.2. Priority . 33
7.4.3. Ordered . 33
7.4.4. Idempotent . 34
7.4.5. Final . 34
7.4.6. Corruption Protection Length 35
7.4.7. Reliable Data Transfer (Message) 35
7.4.8. Message Capacity Profile Override 35
7.4.9. Singular Transmission 36

7.5. Partial Sends . 36
7.6. Batching Sends . 37
7.7. Send on Active Open: InitiateWithSend 37

8. Receiving Data . 38
8.1. Enqueuing Receives 38
8.2. Receive Events . 39
8.2.1. Received . 39
8.2.2. ReceivedPartial 39
8.2.3. ReceiveError . 40

8.3. Receive Message Properties 40
8.3.1. ECN . 41
8.3.2. Early Data . 41
8.3.3. Receiving Final Messages 41

9. Message Contexts . 41
10. Message Framers . 42
10.1. Defining Message Framers 43
10.2. Adding Message Framers to Connections 43
10.3. Framing Meta-Data 43
10.4. Message Framer Lifetime 44
10.5. Sender-side Message Framing 44
10.6. Receiver-side Message Framing 45

Trammell, et al. Expires January 9, 2020 [Page 3]

Internet-Draft TAPS Interface July 2019

11. Managing Connections . 46
11.1. Generic Connection Properties 47

 11.1.1. Retransmission Threshold Before Excessive
 Retransmission Notification 47
 11.1.2. Required Minimum Corruption Protection Coverage for
 Receiving . 48

11.1.3. Priority (Connection) 48
11.1.4. Timeout for Aborting Connection 48
11.1.5. Connection Group Transmission Scheduler 49

 11.1.6. Maximum Message Size Concurrent with Connection
 Establishment 49
 11.1.7. Maximum Message Size Before Fragmentation or
 Segmentation . 49

11.1.8. Maximum Message Size on Send 49
11.1.9. Maximum Message Size on Receive 49
11.1.10. Capacity Profile 50
11.1.11. Bounds on Send or Receive Rate 51
11.1.12. TCP-specific Property: User Timeout 52

11.2. Soft Errors . 52
11.3. Excessive retransmissions 52

12. Connection Termination 53
13. Connection State and Ordering of Operations and Events . . . 53
14. IANA Considerations . 54
15. Security Considerations 54
16. Acknowledgements . 55
17. References . 55
17.1. Normative References 55
17.2. Informative References 56

Appendix A. Additional Properties 57
A.1. Experimental Transport Properties 58
A.1.1. Cost Preferences 58

Appendix B. Sample API definition in Go 59
Appendix C. Relationship to the Minimal Set of Transport

 Services for End Systems 59
 Authors' Addresses . 62

1. Introduction

 The BSD Unix Sockets API's SOCK_STREAM abstraction, by bringing
 network sockets into the UNIX programming model, allowing anyone who
 knew how to write programs that dealt with sequential-access files to
 also write network applications, was a revolution in simplicity. The
 simplicity of this API is a key reason the Internet won the protocol
 wars of the 1980s. SOCK_STREAM is tied to the Transmission Control
 Protocol (TCP), specified in 1981 [RFC0793]. TCP has scaled
 remarkably well over the past three and a half decades, but its total
 ubiquity has hidden an uncomfortable fact: the network is not really

https://datatracker.ietf.org/doc/html/rfc0793

Trammell, et al. Expires January 9, 2020 [Page 4]

Internet-Draft TAPS Interface July 2019

 a file, and stream abstractions are too simplistic for many modern
 application programming models.

 In the meantime, the nature of Internet access, and the variety of
 Internet transport protocols, is evolving. The challenges that new
 protocols and access paradigms present to the sockets API and to
 programming models based on them inspire the design principles of a
 new approach, which we outline in Section 3.

 As a first step to realizing this design, [I-D.ietf-taps-arch]
 describes a high-level architecture for transport services. This
 document builds a modern abstract programming interface atop this
 architecture, deriving specific path and protocol selection
 properties and supported transport features from the analysis
 provided in [RFC8095], [I-D.ietf-taps-minset], and
 [I-D.ietf-taps-transport-security].

2. Terminology and Notation

 This API is described in terms of Objects, which an application can
 interact with; Actions the application can perform on these Objects;
 Events, which an Object can send to an application asynchronously;
 and Parameters associated with these Actions and Events.

 The following notations, which can be combined, are used in this
 document:

 o An Action creates an Object:

 Object := Action()

 o An Action creates an array of Objects:

 []Object := Action()

 o An Action is performed on an Object:

 Object.Action()

 o An Object sends an Event:

 Object -> Event<>

 o An Action takes a set of Parameters; an Event contains a set of
 Parameters. Action parameters whose names are suffixed with a
 question mark are optional.

 Action(param0, param1?, ...) / Event<param0, param1, ...>

https://datatracker.ietf.org/doc/html/rfc8095

Trammell, et al. Expires January 9, 2020 [Page 5]

Internet-Draft TAPS Interface July 2019

 Actions associated with no Object are Actions on the abstract
 interface itself; they are equivalent to Actions on a per-application
 global context.

 How these abstract concepts map into concrete implementations of this
 API in a given language on a given platform is largely dependent on
 the features of the language and the platform. Actions could be
 implemented as functions or method calls, for instance, and Events
 could be implemented via callbacks, communicating sequential
 processes, or other asynchronous calling conventions. The method for
 dispatching and handling Events is left as an implementation detail,
 with the caveat that the interface for receiving Messages must
 require the application to invoke the Connection.Receive() Action
 once per Message to be received (see Section 8).

 This specification treats Events and errors similarly. Errors, just
 as any other Events, may occur asynchronously in network
 applications. However, it is recommended that implementations of
 this interface also return errors immediately, according to the error
 handling idioms of the implementation platform, for errors which can
 be immediately detected, such as inconsistency in Transport
 Properties.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Interface Design Principles

 The design of the interface specified in this document is based on a
 set of princples, themselves an elaboration on the architectural
 design principles defined in [I-D.ietf-taps-arch]. The interface
 defined in this document provides:

 o A single interface to a variety of transport protocols to be used
 in a variety of application design patterns, independent of the
 properties of the application and the Protocol Stacks that will be
 used at runtime, such that all common specialized features of
 these protocol stacks are made available to the application as
 necessary in a transport-independent way, to enable applications
 written to a single API to make use of transport protocols in
 terms of the features they provide;

 o Message- as opposed to stream-orientation, using application-
 assisted framing and deframing where the underlying transport does
 not provide these;

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Trammell, et al. Expires January 9, 2020 [Page 6]

Internet-Draft TAPS Interface July 2019

 o Asynchronous Connection establishment, transmission, and
 reception, allowing concurrent operations during establishment and
 supporting event-driven application interactions with the
 transport layer, in line with developments in modern platforms and
 programming languages;

 o Explicit support for security properties as first-order transport
 features, and for long-term caching of cryptographic identities
 and parameters for associations among endpoints; and

 o Explicit support for multistreaming and multipath transport
 protocols, and the grouping of related Connections into Connection
 Groups through cloning of Connections, to allow applications to
 take full advantage of new transport protocols supporting these
 features.

4. API Summary

 The Transport Services Interface is the basic common abstract
 application programming interface to the Transport Services
 Architecture defined in [I-D.ietf-taps-arch].

 An application primarily interacts with this interface through two
 Objects, Preconnections and Connections. A Preconnection represents
 a set of properties and constraints on the selection and
 configuration of paths and protocols to establish a Connection with a
 remote endpoint. A Connection represents a transport Protocol Stack
 on which data can be sent to and/or received from a remote endpoint
 (i.e., depending on the kind of transport, connections can be bi-
 directional or unidirectional). Connections can be created from
 Preconnections in three ways: by initiating the Preconnection (i.e.,
 actively opening, as in a client), through listening on the
 Preconnection (i.e., passively opening, as in a server), or
 rendezvousing on the Preconnection (i.e. peer to peer
 establishment).

 Once a Connection is established, data can be sent on it in the form
 of Messages. The interface supports the preservation of message
 boundaries both via explicit Protocol Stack support, and via
 application support through a Message Framer which finds message
 boundaries in a stream. Messages are received asynchronously through
 a callback registered by the application. Errors and other
 notifications also happen asynchronously on the Connection.

Section 5, Section 6, Section 7, Section 8, and Section 12 describe
 the details of application interaction with Objects through Actions
 and Events in each phase of a Connection, following the phases
 described in [I-D.ietf-taps-arch].

Trammell, et al. Expires January 9, 2020 [Page 7]

Internet-Draft TAPS Interface July 2019

4.1. Usage Examples

 The following usage examples illustrate how an application might use
 a Transport Services Interface to:

 o Act as a server, by listening for incoming connections, receiving
 requests, and sending responses, see Section 4.1.1.

 o Act as a client, by connecting to a remote endpoint using
 Initiate, sending requests, and receiving responses, see

Section 4.1.2.

 o Act as a peer, by connecting to a remote endpoint using Rendezvous
 while simultaneously waiting for incoming Connections, sending
 Messages, and receiving Messages, see Section 4.1.3.

 The examples in this section presume that a transport protocol is
 available between the endpoints which provides Reliable Data
 Transfer, Preservation of data ordering, and Preservation of Message
 Boundaries. In this case, the application can choose to receive only
 complete messages.

 If none of the available transport protocols provides Preservation of
 Message Boundaries, but there is a transport protocol which provides
 a reliable ordered byte stream, an application may receive this byte
 stream as partial Messages and transform it into application-layer
 Messages. Alternatively, an application may provide a Message
 Framer, which can transform a byte stream into a sequence of Messages
 (Section 10.6).

4.1.1. Server Example

 This is an example of how an application might listen for incoming
 Connections using the Transport Services Interface, receive a
 request, and send a response.

Trammell, et al. Expires January 9, 2020 [Page 8]

Internet-Draft TAPS Interface July 2019

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithInterface("any")
 LocalSpecifier.WithService("https")

 TransportProperties := NewTransportProperties()
 TransportProperties.Require(preserve-msg-boundaries)
 // Reliable Data Transfer and Preserve Order are Required by default

 SecurityParameters := NewSecurityParameters()
 SecurityParameters.AddIdentity(identity)
 SecurityParameters.AddPrivateKey(privateKey, publicKey)

 // Specifying a remote endpoint is optional when using Listen()
 Preconnection := NewPreconnection(LocalSpecifier,
 None,
 TransportProperties,
 SecurityParameters)

 Listener := Preconnection.Listen()

 Listener -> ConnectionReceived<Connection>

 // Only receive complete messages
 Connection.Receive()

 Connection -> Received(messageDataRequest, messageContext)

 Connection.Send(messageDataResponse)

 Connection.Close()

 // Stop listening for incoming Connections
 Listener.Stop()

4.1.2. Client Example

 This is an example of how an application might connect to a remote
 application using the Transport Services Interface, send a request,
 and receive a response.

Trammell, et al. Expires January 9, 2020 [Page 9]

Internet-Draft TAPS Interface July 2019

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithHostname("example.com")
 RemoteSpecifier.WithService("https")

 TransportProperties := NewTransportProperties()
 TransportProperties.Require(preserve-msg-boundaries)
 // Reliable Data Transfer and Preserve Order are Required by default

 SecurityParameters := NewSecurityParameters()
 TrustCallback := New Callback({
 // Verify identity of the remote endpoint, return the result
 })
 SecurityParameters.SetTrustVerificationCallback(TrustCallback)

 // Specifying a local endpoint is optional when using Initiate()
 Preconnection := NewPreconnection(None,
 RemoteSpecifier,
 TransportPreperties,
 SecurityParameters)

 Connection := Preconnection.Initiate()

 Connection -> Ready<>

 Connection.Send(messageDataRequest)

 // Only receive complete messages
 Connection.Receive()

 Connection -> Received(messageDataResponse, messageContext)

 Connection.Close()

4.1.3. Peer Example

 This is an example of how an application might establish a connection
 with a peer using Rendezvous(), send a Message, and receive a
 Message.

Trammell, et al. Expires January 9, 2020 [Page 10]

Internet-Draft TAPS Interface July 2019

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithPort(9876)

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithHostname("example.com")
 RemoteSpecifier.WithPort(9877)

 TransportProperties := NewTransportProperties()
 TransportProperties.Require(preserve-msg-boundaries)
 // Reliable Data Transfer and Preserve Order are Required by default

 SecurityParameters := NewSecurityParameters()
 SecurityParameters.AddIdentity(identity)
 SecurityParameters.AddPrivateKey(privateKey, publicKey)

 TrustCallback := New Callback({
 // Verify identity of the remote endpoint, return the result
 })
 SecurityParameters.SetTrustVerificationCallback(trustCallback)

 // Both local and remote endpoint must be specified
 Preconnection := NewPreconnection(LocalSpecifier,
 RemoteSpecifier,
 TransportPreperties,
 SecurityParameters)

 Preconnection.Rendezvous()

 Preconnection -> RendezvousDone<Connection>

 Connection.Send(messageDataRequest)

 // Only receive complete messages
 Connection.Receive()

 Connection -> Received(messageDataResponse, messageContext)

 Connection.Close()

4.2. Transport Properties

 Each application using the Transport Services Interface declares its
 preferences for how the transport service should operate using
 properties at each stage of the lifetime of a connection. During
 pre-establishment, Selection Properties (see Section 5.2) are used to
 specify which paths and protocol stacks can be used and are preferred
 by the application, and Connection Properties (see Section 11.1) can
 be used to influence decisions made during establishment and to fine-

Trammell, et al. Expires January 9, 2020 [Page 11]

Internet-Draft TAPS Interface July 2019

 tune the eventually established connection. These Connection
 Properties can also be used later, to monitor and fine-tune
 established connections. The behavior of the selected protocol
 stack(s) when sending Messages is controlled by Message Properties
 (see Section 7.4).

 Collectively, Selection, Connection, and Message Properties can be
 referred to as Transport Properties. All Transport Properties,
 regardless of the phase in which they are used, are organized within
 a single namespace. This enables setting them as defaults in earlier
 stages and querying them in later stages: - Connection Properties can
 be set on Preconnections - Message Properties can be set on
 Preconnections and Connections - The effect of Selection Properties
 can be queried on Connections and Messages

 Note that Configuring Connection Properties and Message Properties on
 Preconnections is preferred over setting them later. Connection
 Properties specified early on may be used as additional input to the
 selection process. Also note that Protocol Specific Properties, see

Section 4.2.1, should not be used as an input to the selection
 process.

4.2.1. Transport Property Names

 Transport Properties are referred to by property names. These names
 are lower-case strings whereby words are separated by hyphens. These
 names serve two purposes:

 o Allow different components of a TAPS implementation to pass
 Transport Properties, e.g., between a language frontend and a
 policy manager, or as a representation of properties retrieved
 from a file or other storage.

 o Make code of different TAPS implementations look similar.

 Transport Property Names are hierarchically organized in the form
 [<Namespace>.]<PropertyName>.

 o The Namespace part is empty for well known, generic properties,
 i.e., for properties defined by an RFC which are not protocol
 specific.

 o Protocol Specific Properties must use the protocol acronym as
 Namespace, e.g., "tcp" for TCP specific Transport Properties. For
 IETF protocols, property names under these namespaces SHOULD be
 defined in an RFC.

Trammell, et al. Expires January 9, 2020 [Page 12]

Internet-Draft TAPS Interface July 2019

 o Vendor or implementation specific properties must use a a string
 identifying the vendor or implementation as Namespace.

4.2.2. Transport Property Types

 Transport Properties can have one of a set of data types:

 o Boolean: can take the values "true" and "false"; representation is
 implementation-dependent.

 o Integer: can take positive or negative numeric integer values;
 range and representation is implementation-dependent.

 o Numeric: can take positive or negative numeric values; range and
 representation is implementation-dependent.

 o Enumeration: can take one value of a finite set of values,
 dependent on the property itself. The representation is
 implementation dependent; however, implementations MUST provide a
 method for the application to determine the entire set of possible
 values for each property.

 o Preference: can take one of five values (Prohibit, Avoid, Ignore,
 Prefer, Require) for the level of preference of a given property
 during protocol selection; see Section 5.2.

4.3. Scope of the Interface Definition

 This document defines a language- and platform-independent interface
 to a Transport Services system. Given the wide variety of languages
 and language conventions used to write applications that use the
 transport layer to connect to other applications over the Internet,
 this independence makes this interface necessarily abstract. While
 there is no interoperability benefit to tightly defining how the
 interface be presented to application programmers in diverse
 platforms, maintaining the "shape" of the abstract interface across
 these platforms reduces the effort for programmers who learn the
 transport services interface to apply their knowledge in multiple
 platforms. We therefore make the following recommendations:

 o Actions, Events, and Errors in implementations of this interface
 SHOULD carry the names given for them in the document, subject to
 capitalization and punctuation conventions in the language of the
 implementation, unless the implementation itself uses different
 names for substantially equivalent objects for networking by
 convention.

Trammell, et al. Expires January 9, 2020 [Page 13]

Internet-Draft TAPS Interface July 2019

 o Implementations of this interface SHOULD implement each Selection
 Property, Connection Property, and Message Context Property
 specified in this document, exclusive of appendices, even if said
 implementation is a non-operation, e.g. because transport
 protocols implementing a given Property are not available on the
 platform.

 o Implementations may use other representations for Transport
 Property Names, e.g., by providing constants or static singleton
 objects, but should provide a straight-forward mapping between
 their representation and the property names specified here.

5. Pre-Establishment Phase

 The pre-establishment phase allows applications to specify properties
 for the Connections they are about to make, or to query the API about
 potential connections they could make.

 A Preconnection Object represents a potential Connection. It has
 state that describes properties of a Connection that might exist in
 the future. This state comprises Local Endpoint and Remote Endpoint
 Objects that denote the endpoints of the potential Connection (see

Section 5.1), the Selection Properties (see Section 5.2), any
 preconfigured Connection Properties (Section 11.1), and the security
 parameters (see Section 5.3):

 Preconnection := NewPreconnection(LocalEndpoint,
 RemoteEndpoint,
 TransportProperties,
 SecurityParams)

 The Local Endpoint MUST be specified if the Preconnection is used to
 Listen() for incoming Connections, but is OPTIONAL if it is used to
 Initiate() connections. The Remote Endpoint MUST be specified if the
 Preconnection is used to Initiate() Connections, but is OPTIONAL if
 it is used to Listen() for incoming Connections. The Local Endpoint
 and the Remote Endpoint MUST both be specified if a peer-to-peer
 Rendezvous is to occur based on the Preconnection.

 Message Framers (see Section 10), if required, should be added to the
 Preconnection during pre-establishment.

5.1. Specifying Endpoints

 The transport services API uses the Local Endpoint and Remote
 Endpoint types to refer to the endpoints of a transport connection.
 Subtypes of these represent various different types of endpoint

Trammell, et al. Expires January 9, 2020 [Page 14]

Internet-Draft TAPS Interface July 2019

 identifiers, such as IP addresses, DNS names, and interface names, as
 well as port numbers and service names.

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithHostname("example.com")
 RemoteSpecifier.WithService("https")

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithIPv6Address(2001:db8:4920:e29d:a420:7461:7073:0a)
 RemoteSpecifier.WithPort(443)

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithIPv4Address(192.0.2.21)
 RemoteSpecifier.WithPort(443)

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithInterface("en0")
 LocalSpecifier.WithPort(443)

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithStunServer(address, port, credentials)

 Implementations may also support additional endpoint representations
 and provide a single NewEndpoint() call that takes different endpoint
 representations.

 Multiple endpoint identifiers can be specified for each Local
 Endpoint and Remote Endpoint. For example, a Local Endpoint could be
 configured with two interface names, or a Remote Endpoint could be
 specified via both IPv4 and IPv6 addresses. These multiple
 identifiers refer to the same transport endpoint.

 The transport services API resolves names internally, when the
 Initiate(), Listen(), or Rendezvous() method is called establish a
 Connection. The API explicitly does not require the application to
 resolve names, though there is a tradeoff between early and late
 binding of addresses to names. Early binding allows the API
 implementation to reduce connection setup latency, at the cost of
 potentially limited scope for alternate path discovery during
 Connection establishment, as well as potential additional information
 leakage about application interest when used with a resolution method
 (such as DNS without TLS) which does not protect query
 confidentiality.

 The Resolve() action on Preconnection can be used by the application
 to force early binding when required, for example with some Network
 Address Translator (NAT) traversal protocols (see Section 6.3).

Trammell, et al. Expires January 9, 2020 [Page 15]

Internet-Draft TAPS Interface July 2019

5.2. Specifying Transport Properties

 A Preconnection Object holds properties reflecting the application's
 requirements and preferences for the transport. These include
 Selection Properties for selecting protocol stacks and paths, as well
 as Connection Properties for configuration of the detailed operation
 of the selected Protocol Stacks.

 The protocol(s) and path(s) selected as candidates during
 establishment are determined and configured using these properties.
 Since there could be paths over which some transport protocols are
 unable to operate, or remote endpoints that support only specific
 network addresses or transports, transport protocol selection is
 necessarily tied to path selection. This may involve choosing
 between multiple local interfaces that are connected to different
 access networks.

 Most Selection Properties are represented as preferences, which can
 have one of five preference levels:

 +------------+--+
 | Preference | Effect |
 +------------+--+
Require	Select only protocols/paths providing the property,
	fail otherwise
Prefer	Prefer protocols/paths providing the property,
	proceed otherwise
Ignore	No preference
Avoid	Prefer protocols/paths not providing the property,
	proceed otherwise
Prohibit	Select only protocols/paths not providing the
	property, fail otherwise
 +------------+--+

 In addition, the pseudo-level "Default" can be used to reset the
 property to the default level used by the implementation. This level
 will never show up when queuing the value of a preference - the
 effective preference must be returned instead.

 Internally, the transport system will first exclude all protocols and
 paths that match a Prohibit, then exclude all protocols and paths
 that do not match a Require, then sort candidates according to
 Preferred properties, and then use Avoided properties as a
 tiebreaker. Selection Properties which select paths take preference

Trammell, et al. Expires January 9, 2020 [Page 16]

Internet-Draft TAPS Interface July 2019

 over those which select protocols. For example, if an application
 indicates a preference for a specific path by specifying an
 interface, but also a preference for a protocol not available on this
 path, the transport system will try the path first, ignoring the
 preference.

 Selection, and Connection Properties, as well as defaults for Message
 Properties, can be added to a Preconnection to configure the
 selection process, and to further configure the eventually selected
 protocol stack(s). They are collected into a TransportProperties
 object to be passed into a Preconnection object:

 TransportProperties := NewTransportProperties()

 Individual properties are then added to the TransportProperties
 Object:

 TransportProperties.Add(property, value)

 Selection Properties can be added to a TransportProperties object
 using special actions for each preference level i.e,
 "TransportProperties.Add(some_property, avoid)" is equivalent to
 "TransportProperties.Avoid(some_property)":

 TransportProperties.Require(property)
 TransportProperties.Prefer(property)
 TransportProperties.Ignore(property)
 TransportProperties.Avoid(property)
 TransportProperties.Prohibit(property)
 TransportProperties.Default(property)

 For an existing Connection, the Transport Properties can be queried
 any time by using the following call on the Connection Object:

 TransportProperties := Connection.GetTransportProperties()

 A Connection gets its Transport Properties either by being explicitly
 configured via a Preconnection, by configuration after establishment,
 or by inheriting them from an antecedent via cloning; see Section 6.4
 for more.

Section 11.1 provides a list of Connection Properties, while
 Selection Properties are listed in the subsections below. Note that
 many properties are only considered during establishment, and can not
 be changed after a Connection is established; however, they can be
 queried. Querying a Selection Property after establishment yields
 the value Required for properties of the selected protocol and path,

Trammell, et al. Expires January 9, 2020 [Page 17]

Internet-Draft TAPS Interface July 2019

 Avoid for properties avoided during selection, and Ignore for all
 other properties.

 An implementation of this interface must provide sensible defaults
 for Selection Properties. The recommended defaults given for each
 property below represent a configuration that can be implemented over
 TCP. An alternate set of default Protocol Selection Properties would
 represent a configuration that can be implemented over UDP.

5.2.1. Reliable Data Transfer (Connection)

 Name: reliability

 This property specifies whether the application needs to use a
 transport protocol that ensures that all data is received on the
 other side without corruption. This also entails being notified when
 a Connection is closed or aborted. The recommended default is to
 Require Reliable Data Transfer.

5.2.2. Preservation of Message Boundaries

 Name: preserve-msg-boundaries

 This property specifies whether the application needs or prefers to
 use a transport protocol that preserves message boundaries. The
 recommended default is to Prefer Preservation of Message Boundaries.

5.2.3. Configure Per-Message Reliability

 Name: per-msg-reliability

 This property specifies whether an application considers it useful to
 indicate its reliability requirements on a per-Message basis. This
 property applies to Connections and Connection Groups. The
 recommended default is to Ignore this option.

5.2.4. Preservation of Data Ordering

 Name: preserve-order

 This property specifies whether the application wishes to use a
 transport protocol that can ensure that data is received by the
 application on the other end in the same order as it was sent. The
 recommended default is to Require Preservation of data ordering.

Trammell, et al. Expires January 9, 2020 [Page 18]

Internet-Draft TAPS Interface July 2019

5.2.5. Use 0-RTT Session Establishment with an Idempotent Message

 Name: zero-rtt-msg

 This property specifies whether an application would like to supply a
 Message to the transport protocol before Connection establishment,
 which will then be reliably transferred to the other side before or
 during Connection establishment, potentially multiple times (i.e.,
 multiple copies of the message data may be passed to the Remote
 Endpoint). See also Section 7.4.4. The recommended default is to
 Ignore this option. Note that disabling this property has no effect
 for protocols that are not connection-oriented and do not protect
 against duplicated messages, e.g., UDP.

5.2.6. Multistream Connections in Group

 Name: multistreaming

 This property specifies that the application would prefer multiple
 Connections within a Connection Group to be provided by streams of a
 single underlying transport connection where possible. The
 recommended default is to Prefer this option.

5.2.7. Full Checksum Coverage on Sending

 Name: per-msg-checksum-len-send

 This property specifies whether the application desires protection
 against corruption for all data transmitted on this Connection.
 Disabling this property may enable to control checksum coverage later
 (see Section 7.4.6). The recommended default is to Require this
 option.

5.2.8. Full Checksum Coverage on Receiving

 Name: per-msg-checksum-len-recv

 This property specifies whether the application desires protection
 against corruption for all data received on this Connection. The
 recommended default is to Require this option.

5.2.9. Congestion control

 Name: congestion-control

 This property specifies whether the application would like the
 Connection to be congestion controlled or not. Note that if a
 Connection is not congestion controlled, an application using such a

Trammell, et al. Expires January 9, 2020 [Page 19]

Internet-Draft TAPS Interface July 2019

 Connection should itself perform congestion control in accordance
 with [RFC2914]. Also note that reliability is usually combined with
 congestion control in protocol implementations, rendering "reliable
 but not congestion controlled" a request that is unlikely to succeed.
 The recommended default is to Require that the Connection is
 congestion controlled.

5.2.10. Interface Instance or Type

 Name: interface

 Type: Set (Preference, Enumeration)

 This property allows the application to select which specific network
 interfaces or categories of interfaces it wants to "Require",
 "Prohibit", "Prefer", or "Avoid".

 In contrast to other Selection Properties, this property is a tuple
 of an (Enumerated) interface identifier and a preference, and can
 either be implemented directly as such, or for making one preference
 available for each interface and interface type available on the
 system.

 Note that marking a specific interface as "Required" strictly limits
 path selection to a single interface, and leads to less flexible and
 resilient connection establishment.

 The set of valid interface types is implementation- and system-
 specific. For example, on a mobile device, there may be "Wi-Fi" and
 "Cellular" interface types available; whereas on a desktop computer,
 there may be "Wi-Fi" and "Wired Ethernet" interface types available.
 Implementations should provide all types that are supported on some
 system to all systems, in order to allow applications to write
 generic code. For example, if a single implementation is used on
 both mobile devices and desktop devices, it should define the
 "Cellular" interface type for both systems, since an application may
 want to always "Prohibit Cellular". Note that marking a specific
 interface type as "Required" limits path selection to a small set of
 interfaces, and leads to less flexible and resilient connection
 establishment.

 The set of interface types is expected to change over time as new
 access technologies become available.

 Interface types should not be treated as a proxy for properties of
 interfaces such as metered or unmetered network access. If an
 application needs to prohibit metered interfaces, this should be

https://datatracker.ietf.org/doc/html/rfc2914

Trammell, et al. Expires January 9, 2020 [Page 20]

Internet-Draft TAPS Interface July 2019

 specified via Provisioning Domain attributes (see Section 5.2.11) or
 another specific property.

5.2.11. Provisioning Domain Instance or Type

 Name: pvd

 Type: Set (Preference, Enumeration)

 Similar to interface instances and types (see Section 5.2.10), this
 property allows the application to control path selection by
 selecting which specific Provisioning Domains or categories of
 Provisioning Domains it wants to "Require", "Prohibit", "Prefer", or
 "Avoid". Provisioning Domains define consistent sets of network
 properties that may be more specific than network interfaces
 [RFC7556].

 As with interface instances and types, this property is a tuple of an
 (Enumerated) PvD identifier and a preference, and can either be
 implemented directly as such, or for making one preference available
 for each interface and interface type available on the system.

 The identification of a specific Provisioning Domain (PvD) is defined
 to be implementation- and system-specific, since there is not a
 portable standard format for a PvD identitfier. For example, this
 identifier may be a string name or an integer. As with requiring
 specific interfaces, requiring a specific PvD strictly limits path
 selection.

 Categories or types of PvDs are also defined to be implementation-
 and system-specific. These may be useful to identify a service that
 is provided by a PvD. For example, if an application wants to use a
 PvD that provides a Voice-Over-IP service on a Cellular network, it
 can use the relevant PvD type to require some PvD that provides this
 service, without needing to look up a particular instance. While
 this does restrict path selection, it is broader than requiring
 specific PvD instances or interface instances, and should be
 preferred over these options.

5.2.12. Parallel Use of Multiple Paths

 Name: multipath

 This property specifies whether an application considers it useful to
 transfer data across multiple paths between the same end hosts.
 Generally, in most cases, this will improve performance (e.g.,
 achieve greater throughput). One possible side-effect is increased

https://datatracker.ietf.org/doc/html/rfc7556

Trammell, et al. Expires January 9, 2020 [Page 21]

Internet-Draft TAPS Interface July 2019

 jitter, which may be problematic for delay-sensitive applications.
 The recommended default is to Prefer this option.

5.2.13. Direction of communication

 Name: direction

 Type: Enumeration

 This property specifies whether an application wants to use the
 connection for sending and/or receiving data. Possible values are:

 Bidirectional (default): The connection must support sending and
 receiving data

 Unidirectional send: The connection must support sending data

 Unidirectional receive: The connection must support receiving data

 In case a unidirectional connection is requested, but unidirectional
 connections are not supported by the transport protocol, the system
 should fall back to bidirectional transport.

5.2.14. Notification of excessive retransmissions

 Name: :retransmit-notify

 This property specifies whether an application considers it useful to
 be informed in case sent data was retransmitted more often than a
 certain threshold. The recommended default is to Ignore this option.

5.2.15. Notification of ICMP soft error message arrival

 Name: :soft-error-notify

 This property specifies whether an application considers it useful to
 be informed when an ICMP error message arrives that does not force
 termination of a connection. When set to true, received ICMP errors
 will be available as SoftErrors. Note that even if a protocol
 supporting this property is selected, not all ICMP errors will
 necessarily be delivered, so applications cannot rely on receiving
 them. The recommended default is to Ignore this option.

5.3. Specifying Security Parameters and Callbacks

 Most security parameters, e.g., TLS ciphersuites, local identity and
 private key, etc., may be configured statically. Others are
 dynamically configured during connection establishment. Thus, we

Trammell, et al. Expires January 9, 2020 [Page 22]

Internet-Draft TAPS Interface July 2019

 partition security parameters and callbacks based on their place in
 the lifetime of connection establishment. Similar to Transport
 Properties, both parameters and callbacks are inherited during
 cloning (see Section 6.4).

5.3.1. Pre-Connection Parameters

 Common parameters such as TLS ciphersuites are known to
 implementations. Clients should use common safe defaults for these
 values whenever possible. However, as discussed in
 [I-D.ietf-taps-transport-security], many transport security protocols
 require specific security parameters and constraints from the client
 at the time of configuration and actively during a handshake. These
 configuration parameters are created as follows:

 SecurityParameters := NewSecurityParameters()

 Security configuration parameters and sample usage follow:

 o Local identity and private keys: Used to perform private key
 operations and prove one's identity to the Remote Endpoint.
 (Note, if private keys are not available, e.g., since they are
 stored in hardware security modules (HSMs), handshake callbacks
 must be used. See below for details.)

 SecurityParameters.AddIdentity(identity)
 SecurityParameters.AddPrivateKey(privateKey, publicKey)

 o Supported algorithms: Used to restrict what parameters are used by
 underlying transport security protocols. When not specified,
 these algorithms should default to known and safe defaults for the
 system. Parameters include: ciphersuites, supported groups, and
 signature algorithms.

SecurityParameters.AddSupportedGroup(secp256k1)
SecurityParameters.AddCiphersuite(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256)
SecurityParameters.AddSignatureAlgorithm(ed25519)

 o Session cache management: Used to tune cache capacity, lifetime,
 re-use, and eviction policies, e.g., LRU or FIFO. Constants and
 policies for these interfaces are implementation-specific.

 SecurityParameters.SetSessionCacheCapacity(MAX_CACHE_ELEMENTS)
 SecurityParameters.SetSessionCacheLifetime(SECONDS_PER_DAY)
 SecurityParameters.SetSessionCachePolicy(CachePolicyOneTimeUse)

 o Pre-Shared Key import: Used to install pre-shared keying material
 established out-of-band. Each pre-shared keying material is

Trammell, et al. Expires January 9, 2020 [Page 23]

Internet-Draft TAPS Interface July 2019

 associated with some identity that typically identifies its use or
 has some protocol-specific meaning to the Remote Endpoint.

 SecurityParameters.AddPreSharedKey(key, identity)

5.3.2. Connection Establishment Callbacks

 Security decisions, especially pertaining to trust, are not static.
 Once configured, parameters may also be supplied during connection
 establishment. These are best handled as client-provided callbacks.
 Security handshake callbacks that may be invoked during connection
 establishment include:

 o Trust verification callback: Invoked when a Remote Endpoint's
 trust must be validated before the handshake protocol can proceed.

 TrustCallback := NewCallback({
 // Handle trust, return the result
 })
 SecurityParameters.SetTrustVerificationCallback(trustCallback)

 o Identity challenge callback: Invoked when a private key operation
 is required, e.g., when local authentication is requested by a
 remote.

 ChallengeCallback := NewCallback({
 // Handle challenge
 })
 SecurityParameters.SetIdentityChallengeCallback(challengeCallback)

6. Establishing Connections

 Before a Connection can be used for data transfer, it must be
 established. Establishment ends the pre-establishment phase; all
 transport properties and cryptographic parameter specification must
 be complete before establishment, as these will be used to select
 candidate Paths and Protocol Stacks for the Connection.
 Establishment may be active, using the Initiate() Action; passive,
 using the Listen() Action; or simultaneous for peer-to-peer, using
 the Rendezvous() Action. These Actions are described in the
 subsections below.

6.1. Active Open: Initiate

 Active open is the Action of establishing a Connection to a Remote
 Endpoint presumed to be listening for incoming Connection requests.
 Active open is used by clients in client-server interactions. Active
 open is supported by this interface through the Initiate Action:

Trammell, et al. Expires January 9, 2020 [Page 24]

Internet-Draft TAPS Interface July 2019

 Connection := Preconnection.Initiate(timeout?)

 The timeout parameter specifies how long to wait before aborting
 Active open. Before calling Initiate, the caller must have populated
 a Preconnection Object with a Remote Endpoint specifier, optionally a
 Local Endpoint specifier (if not specified, the system will attempt
 to determine a suitable Local Endpoint), as well as all properties
 necessary for candidate selection.

 The Initiate() Action consumes the Preconnection. Once Initiate()
 has been called, no further properties may be added to the
 Preconnection, and no subsequent establishment call may be made on
 the Preconnection.

 Once Initiate is called, the candidate Protocol Stack(s) may cause
 one or more candidate transport-layer connections to be created to
 the specified remote endpoint. The caller may immediately begin
 sending Messages on the Connection (see Section 7) after calling
 Initate(); note that any idempotent data sent while the Connection is
 being established may be sent multiple times or on multiple
 candidates.

 The following Events may be sent by the Connection after Initiate()
 is called:

 Connection -> Ready<>

 The Ready Event occurs after Initiate has established a transport-
 layer connection on at least one usable candidate Protocol Stack over
 at least one candidate Path. No Receive Events (see Section 8) will
 occur before the Ready Event for Connections established using
 Initiate.

 Connection -> InitiateError<>

 An InitiateError occurs either when the set of transport properties
 and security parameters cannot be fulfilled on a Connection for
 initiation (e.g. the set of available Paths and/or Protocol Stacks
 meeting the constraints is empty) or reconciled with the local and/or
 remote endpoints; when the remote specifier cannot be resolved; or
 when no transport-layer connection can be established to the remote
 endpoint (e.g. because the remote endpoint is not accepting
 connections, the application is prohibited from opening a Connection
 by the operating system, or the establishment attempt has timed out
 for any other reason).

 See also Section 7.7 to combine Connection establishment and
 transmission of the first message in a single action.

Trammell, et al. Expires January 9, 2020 [Page 25]

Internet-Draft TAPS Interface July 2019

6.2. Passive Open: Listen

 Passive open is the Action of waiting for Connections from remote
 endpoints, commonly used by servers in client-server interactions.
 Passive open is supported by this interface through the Listen Action
 and returns a Listener object:

 Listener := Preconnection.Listen()

 Before calling Listen, the caller must have initialized the
 Preconnection during the pre-establishment phase with a Local
 Endpoint specifier, as well as all properties necessary for Protocol
 Stack selection. A Remote Endpoint may optionally be specified, to
 constrain what Connections are accepted. The Listen() Action returns
 a Listener object. Once Listen() has been called, properties added
 to the Preconnection have no effect on the Listener and the
 Preconnection can be disposed of or reused.

 Listening continues until the global context shuts down, or until the
 Stop action is performed on the Listener object:

 Listener.Stop()

 After Stop() is called, the Listener can be disposed of.

 Listener -> ConnectionReceived<Connection>

 The ConnectionReceived Event occurs when a Remote Endpoint has
 established a transport-layer connection to this Listener (for
 Connection-oriented transport protocols), or when the first Message
 has been received from the Remote Endpoint (for Connectionless
 protocols), causing a new Connection to be created. The resulting
 Connection is contained within the ConnectionReceived event, and is
 ready to use as soon as it is passed to the application via the
 event.

 Listener -> ListenError<>

 A ListenError occurs either when the Properties of the Preconnection
 cannot be fulfilled for listening, when the Local Endpoint (or Remote
 Endpoint, if specified) cannot be resolved, or when the application
 is prohibited from listening by policy.

 Listener -> Stopped<>

 A Stopped event occurs after the Listener has stopped listening.

Trammell, et al. Expires January 9, 2020 [Page 26]

Internet-Draft TAPS Interface July 2019

6.3. Peer-to-Peer Establishment: Rendezvous

 Simultaneous peer-to-peer Connection establishment is supported by
 the Rendezvous() Action:

 Preconnection.Rendezvous()

 The Preconnection Object must be specified with both a Local Endpoint
 and a Remote Endpoint, and also the transport properties and security
 parameters needed for Protocol Stack selection.

 The Rendezvous() Action causes the Preconnection to listen on the
 Local Endpoint for an incoming Connection from the Remote Endpoint,
 while simultaneously trying to establish a Connection from the Local
 Endpoint to the Remote Endpoint. This corresponds to a TCP
 simultaneous open, for example.

 The Rendezvous() Action consumes the Preconnection. Once
 Rendezvous() has been called, no further properties may be added to
 the Preconnection, and no subsequent establishment call may be made
 on the Preconnection.

 Preconnection -> RendezvousDone<Connection>

 The RendezvousDone<> Event occurs when a Connection is established
 with the Remote Endpoint. For Connection-oriented transports, this
 occurs when the transport-layer connection is established; for
 Connectionless transports, it occurs when the first Message is
 received from the Remote Endpoint. The resulting Connection is
 contained within the RendezvousDone<> Event, and is ready to use as
 soon as it is passed to the application via the Event.

 Preconnection -> RendezvousError<messageContext, error>

 An RendezvousError occurs either when the Preconnection cannot be
 fulfilled for listening, when the Local Endpoint or Remote Endpoint
 cannot be resolved, when no transport-layer connection can be
 established to the Remote Endpoint, or when the application is
 prohibited from rendezvous by policy.

 When using some NAT traversal protocols, e.g., Interactive
 Connectivity Establishment (ICE) [RFC5245], it is expected that the
 Local Endpoint will be configured with some method of discovering NAT
 bindings, e.g., a Session Traversal Utilities for NAT (STUN) server.
 In this case, the Local Endpoint may resolve to a mixture of local
 and server reflexive addresses. The Resolve() action on the
 Preconnection can be used to discover these bindings:

https://datatracker.ietf.org/doc/html/rfc5245

Trammell, et al. Expires January 9, 2020 [Page 27]

Internet-Draft TAPS Interface July 2019

 []Preconnection := Preconnection.Resolve()

 The Resolve() call returns a list of Preconnection Objects, that
 represent the concrete addresses, local and server reflexive, on
 which a Rendezvous() for the Preconnection will listen for incoming
 Connections. These resolved Preconnections will share all other
 Properties with the Preconnection from which they are derived, though
 some Properties may be made more-specific by the resolution process.
 This list can be passed to a peer via a signalling protocol, such as
 SIP [RFC3261] or WebRTC [RFC7478], to configure the remote.

6.4. Connection Groups

 Entangled Connections can be created using the Clone Action:

 Connection := Connection.Clone()

 Calling Clone on a Connection yields a group of two Connections: the
 parent Connection on which Clone was called, and the resulting cloned
 Connection. These connections are "entangled" with each other, and
 become part of a Connection Group. Calling Clone on any of these two
 Connections adds a third Connection to the Connection Group, and so
 on. Connections in a Connection Group share all Protocol Properties
 that are not applicable to a Message.

 In addition, incoming entangled Connections can be received by
 creating a Listener on an existing connection:

 Listener := Connection.Listen()

 Changing one of these Protocol Properties on one Connection in the
 group changes it for all others. Per-Message Protocol Properties,
 however, are not entangled. For example, changing "Timeout for
 aborting Connection" (see Section 11.1.4) on one Connection in a
 group will automatically change this Protocol Property for all
 Connections in the group in the same way. However, changing
 "Lifetime" (see Section 7.4.1) of a Message will only affect a single
 Message on a single Connection, entangled or not.

 If the underlying protocol supports multi-streaming, it is natural to
 use this functionality to implement Clone. In that case, entangled
 Connections are multiplexed together, giving them similar treatment
 not only inside endpoints but also across the end-to-end Internet
 path.

 If the underlying Protocol Stack does not support cloning, or cannot
 create a new stream on the given Connection, then attempts to clone a
 Connection will result in a CloneError:

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc7478

Trammell, et al. Expires January 9, 2020 [Page 28]

Internet-Draft TAPS Interface July 2019

 Connection -> CloneError<>

 The Protocol Property "Priority" operates on entangled Connections as
 in Section 7.4.2: when allocating available network capacity among
 Connections in a Connection Group, sends on Connections with higher
 Priority values will be prioritized over sends on Connections with
 lower Priority values. An ideal transport system implementation
 would assign each Connection the capacity share (M-N) x C / M, where
 N is the Connection's Priority value, M is the maximum Priority value
 used by all Connections in the group and C is the total available
 capacity. However, the Priority setting is purely advisory, and no
 guarantees are given about the way capacity is shared. Each
 implementation is free to implement a way to share capacity that it
 sees fit.

7. Sending Data

 Once a Connection has been established, it can be used for sending
 data. Data is sent as Messages, which allow the application to
 communicate the boundaries of the data being transferred. By
 default, Send enqueues a complete Message, and takes optional per-
 Message properties (see Section 7.1). All Send actions are
 asynchronous, and deliver events (see Section 7.3). Sending partial
 Messages for streaming large data is also supported (see

Section 7.5).

 Messages are sent on a Connection using the Send action:

messageContext := Connection.Send(messageData, messageContext?, endOfMessage?)

 where messageData is the data object to send.

 The optional messageContext parameter supports per-message properties
 and is described in Section 7.4. If provided, the Message Context
 object returned is identical to the one that was passed.

 The optional endOfMessage parameter supports partial sending and is
 described in Section 7.5.

 The MessageContext returned by Send can be used to identify send
 events (see Section 7.3) related to a specific message or to inspect
 meta-data related to the message sent.

7.1. Basic Sending

 The most basic form of sending on a connection involves enqueuing a
 single Data block as a complete Message, with default Message
 Properties. Message data is transferred as an array of bytes, and

Trammell, et al. Expires January 9, 2020 [Page 29]

Internet-Draft TAPS Interface July 2019

 the resulting object contains both the byte array and the length of
 the array.

 messageData := "hello".bytes()
 Connection.Send(messageData)

 The interpretation of a Message to be sent is dependent on the
 implementation, and on the constraints on the Protocol Stacks implied
 by the Connection's transport properties. For example, a Message may
 be a single datagram for UDP Connections; or an HTTP Request for HTTP
 Connections.

 Some transport protocols can deliver arbitrarily sized Messages, but
 other protocols constrain the maximum Message size. Applications can
 query the Connection Property "Maximum Message size on send"
 (Section 11.1.8) to determine the maximum size allowed for a single
 Message. If a Message is too large to fit in the Maximum Message
 Size for the Connection, the Send will fail with a SendError event
 (Section 7.3.3). For example, it is invalid to send a Message over a
 UDP connection that is larger than the available datagram sending
 size.

7.2. Sending Replies

 When a message is sent in response to a message received, the
 application may use the Message Context of the received Message to
 construct a Message Context for the reply.

 replyMessageContext := requestMessageContext.reply()

 By using the "replyMessageContext", the transport system is informed
 that the message to be sent is a response and can map the response to
 the same underlying transport connection or stream the request was
 received from. The concept of Message Contexts is described in

Section 9.

7.3. Send Events

 Like all Actions in this interface, the Send Action is asynchronous.
 There are several Events that can be delivered in response to Sending
 a Message.

 Note that if partial Sends are used (Section 7.5), there will still
 be exactly one Send Event delivered for each call to Send. For
 example, if a Message expired while two requests to Send data for
 that Message are outstanding, there will be two Expired events
 delivered.

Trammell, et al. Expires January 9, 2020 [Page 30]

Internet-Draft TAPS Interface July 2019

7.3.1. Sent

 Connection -> Sent<messageContext>

 The Sent Event occurs when a previous Send Action has completed,
 i.e., when the data derived from the Message has been passed down or
 through the underlying Protocol Stack and is no longer the
 responsibility of this interface. The exact disposition of the
 Message (i.e., whether it has actually been transmitted, moved into a
 buffer on the network interface, moved into a kernel buffer, and so
 on) when the Sent Event occurs is implementation-specific. The Sent
 Event contains an implementation-specific reference to the Message to
 which it applies.

 Sent Events allow an application to obtain an understanding of the
 amount of buffering it creates. That is, if an application calls the
 Send Action multiple times without waiting for a Sent Event, it has
 created more buffer inside the transport system than an application
 that always waits for the Sent Event before calling the next Send
 Action.

7.3.2. Expired

 Connection -> Expired<messageContext>

 The Expired Event occurs when a previous Send Action expired before
 completion; i.e. when the Message was not sent before its Lifetime
 (see Section 7.4.1) expired. This is separate from SendError, as it
 is an expected behavior for partially reliable transports. The
 Expired Event contains an implementation-specific reference to the
 Message to which it applies.

7.3.3. SendError

 Connection -> SendError<messageContext>

 A SendError occurs when a Message could not be sent due to an error
 condition: an attempt to send a Message which is too large for the
 system and Protocol Stack to handle, some failure of the underlying
 Protocol Stack, or a set of Message Properties not consistent with
 the Connection's transport properties. The SendError contains an
 implementation-specific reference to the Message to which it applies.

7.4. Message Properties

 Applications may need to annotate the Messages they send with extra
 information to control how data is scheduled and processed by the
 transport protocols in the Connection. Therefore a message context

Trammell, et al. Expires January 9, 2020 [Page 31]

Internet-Draft TAPS Interface July 2019

 containing these properties can be passed to the Send Action. For
 other uses of the message context, see Section 9.

 Note that message properties are per-Message, not per-Send if partial
 Messages are sent (Section 7.5). All data blocks associated with a
 single Message share properties specified in the Message Contexts.
 For example, it would not make sense to have the beginning of a
 Message expire, but allow the end of a Message to still be sent.

 A MessageContext object contains metadata for Messages to be sent or
 received.

 messageData := "hello".bytes()
 messageContext := NewMessageContext()
 messageContext.add(parameter, value)
 Connection.Send(messageData, messageContext)

 The simpler form of Send, which does not take any messageContext, is
 equivalent to passing a default MessageContext without adding any
 Message Properties to it.

 If an application wants to override Message Properties for a specific
 message, it can acquire an empty MessageContext Object and add all
 desired Message Properties to that Object. It can then reuse the
 same messageContext Object for sending multiple Messages with the
 same properties.

 Properties may be added to a MessageContext object only before the
 context is used for sending. Once a messageContext has been used
 with a Send call, modifying any of its properties is invalid.

 Message Properties may be inconsistent with the properties of the
 Protocol Stacks underlying the Connection on which a given Message is
 sent. For example, a Connection must provide reliability to allow
 setting an infinitie value for the lifetime property of a Message.
 Sending a Message with Message Properties inconsistent with the
 Selection Properties of the Connection yields an error.

 The following Message Properties are supported:

7.4.1. Lifetime

 Name: msg-lifetime

 Type: Integer

 Recommended default: infinite

Trammell, et al. Expires January 9, 2020 [Page 32]

Internet-Draft TAPS Interface July 2019

 Lifetime specifies how long a particular Message can wait to be sent
 to the remote endpoint before it is irrelevant and no longer needs to
 be (re-)transmitted. This is a hint to the transport system - it is
 not guaranteed that a Message will not be sent when its Lifetime has
 expired.

 Setting a Message's Lifetime to infinite indicates that the
 application does not wish to apply a time constraint on the
 transmission of the Message, but it does not express a need for
 reliable delivery; reliability is adjustable per Message via the
 "Reliable Data Transfer (Message)" property (see Section 7.4.7). The
 type and units of Lifetime are implementation-specific.

7.4.2. Priority

 Name: msg-prio

 Type: Integer (non-negative)

 Recommended default: 100

 This property represents a hierarchy of priorities. It can specify
 the priority of a Message, relative to other Messages sent over the
 same Connection.

 A Message with Priority 0 will yield to a Message with Priority 1,
 which will yield to a Message with Priority 2, and so on. Priorities
 may be used as a sender-side scheduling construct only, or be used to
 specify priorities on the wire for Protocol Stacks supporting
 prioritization.

 Note that this property is not a per-message override of the
 connection Priority - see Section 11.1.3. Both Priority properties
 may interact, but can be used independently and be realized by
 different mechanisms.

7.4.3. Ordered

 Name: msg-ordered

 Type: Boolean

 Default: true

 If true, it specifies that the receiver-side transport protocol stack
 only deliver the Message to the receiving application after the
 previous ordered Message which was passed to the same Connection via
 the Send Action, when such a Message exists. If false, the Message

Trammell, et al. Expires January 9, 2020 [Page 33]

Internet-Draft TAPS Interface July 2019

 may be delivered to the receiving application out of order. This
 property is used for protocols that support preservation of data
 ordering, see Section 5.2.4, but allow out-of-order delivery for
 certain messages.

7.4.4. Idempotent

 Name: idempotent

 Type: Boolean

 Default: false

 If true, it specifies that a Message is safe to send to the remote
 endpoint more than once for a single Send Action. It is used to mark
 data safe for certain 0-RTT establishment techniques, where
 retransmission of the 0-RTT data may cause the remote application to
 receive the Message multiple times.

 Note that for protocols that do not protect against duplicated
 messages, e.g., UDP, all messages MUST be marked as Idempotent. In
 order to enable protocol selection to choose such a protocol,
 Idempotent MUST be added to the TransportProperties passed to the
 Preconnection. If such a protocol was chosen, disabling Idempotent
 on individual messages MUST result in a SendError.

7.4.5. Final

 Type: Boolean

 Name: final

 Default: false

 If true, this Message is the last one that the application will send
 on a Connection. This allows underlying protocols to indicate to the
 Remote Endpoint that the Connection has been effectively closed in
 the sending direction. For example, TCP-based Connections can send a
 FIN once a Message marked as Final has been completely sent,
 indicated by marking endOfMessage. Protocols that do not support
 signalling the end of a Connection in a given direction will ignore
 this property.

 Note that a Final Message must always be sorted to the end of a list
 of Messages. The Final property overrides Priority and any other
 property that would re-order Messages. If another Message is sent
 after a Message marked as Final has already been sent on a

Trammell, et al. Expires January 9, 2020 [Page 34]

Internet-Draft TAPS Interface July 2019

 Connection, the Send Action for the new Message will cause a
 SendError Event.

7.4.6. Corruption Protection Length

 Name: msg-checksum-len

 Type: Integer (non-negative with -1 as special value)

 Default: full coverage

 This property specifies the minimum length of the section of the
 Message, starting from byte 0, that the application requires to be
 delivered without corruption due to lower layer errors. It is used
 to specify options for simple integrity protection via checksums. A
 value of 0 means that no checksum is required, and -1 means that the
 entire Message is protected by a checksum. Only full coverage is
 guaranteed, any other requests are advisory.

7.4.7. Reliable Data Transfer (Message)

 Name: msg-reliable

 Type: Boolean

 Default: true

 When true, this property specifies that a message should be sent in
 such a way that the transport protocol ensures all data is received
 on the other side without corruption. Changing the 'Reliable Data
 Transfer' property on Messages is only possible for Connections that
 were established with the Selection Property 'Reliable Data Transfer
 (Connection)' enabled. When this is not the case, changing it will
 generate an error. Disabling this property indicates that the
 transport system may disable retransmissions or other reliability
 mechanisms for this particular Message, but such disabling is not
 guaranteed.

7.4.8. Message Capacity Profile Override

 Name: msg-capacity-profile

 Type: Enumeration

 This enumerated property specifies the application's preferred
 tradeoffs for sending this Message; it is a per-Message override of
 the Capacity Profile protocol and path selection property (see

Section 11.1.10).

Trammell, et al. Expires January 9, 2020 [Page 35]

Internet-Draft TAPS Interface July 2019

 The following values are valid for Transmission Profile:

 Default: No special optimizations of the tradeoff between delay,
 delay variation, and bandwidth efficiency should be made when
 sending this message.

 Low Latency: Response time (latency) should be optimized at the
 expense of efficiently using the available capacity when sending
 this message. This can be used by the system to disable the
 coalescing of multiple small Messages into larger packets (Nagle's
 algorithm); to prefer immediate acknowledgment from the peer
 endpoint when supported by the underlying transport; to signal a
 preference for lower-latency, higher-loss treatment; and so on.

 [TODO: This is inconsistent with {prop-cap-profile}} - needs to be
 fixed]

7.4.9. Singular Transmission

 Name: singular-transmission

 Type: Boolean

 Default: false

 This property specifies that a message should be sent and received as
 a single packet without transport-layer segmentation or network-layer
 fragmentation. Attempts to send a message with this property set
 with a size greater to the transport's current estimate of its
 maximum transmission segment size will result in a "SendError". When
 used with transports supporting this functionality and running over
 IP version 4, the Don't Fragment bit will be set.

7.5. Partial Sends

 It is not always possible for an application to send all data
 associated with a Message in a single Send Action. The Message data
 may be too large for the application to hold in memory at one time,
 or the length of the Message may be unknown or unbounded.

 Partial Message sending is supported by passing an endOfMessage
 boolean parameter to the Send Action. This value is always true by
 default, and the simpler forms of Send are equivalent to passing true
 for endOfMessage.

 The following example sends a Message in two separate calls to Send.

Trammell, et al. Expires January 9, 2020 [Page 36]

Internet-Draft TAPS Interface July 2019

 messageContext := NewMessageContext()
 messageContext.add(parameter, value)

 messageData := "hel".bytes()
 endOfMessage := false
 Connection.Send(messageData, messageContext, endOfMessage)

 messageData := "lo".bytes()
 endOfMessage := true
 Connection.Send(messageData, messageContext, endOfMessage)

 All data sent with the same MessageContext object will be treated as
 belonging to the same Message, and will constitute an in-order series
 until the endOfMessage is marked. Once the end of the Message is
 marked, the MessageContext object may be re-used as a new Message
 with identical parameters.

7.6. Batching Sends

 To reduce the overhead of sending multiple small Messages on a
 Connection, the application may want to batch several Send actions
 together. This provides a hint to the system that the sending of
 these Messages should be coalesced when possible, and that sending
 any of the batched Messages may be delayed until the last Message in
 the batch is enqueued.

 Connection.Batch(
 Connection.Send(messageData)
 Connection.Send(messageData)
)

7.7. Send on Active Open: InitiateWithSend

 For application-layer protocols where the Connection initiator also
 sends the first message, the InitiateWithSend() action combines
 Connection initiation with a first Message sent:

Connection := Preconnection.InitiateWithSend(messageData, messageContext?,
timeout?)

 Whenever possible, a messageContext should be provided to declare the
 message passed to InitiateWithSend as idempotent. This allows the
 transport system to make use of 0-RTT establishment in case this is
 supported by the available protocol stacks. When the selected
 stack(s) do not support transmitting data upon connection
 establishment, InitiateWithSend is identical to Initiate() followed
 by Send().

Trammell, et al. Expires January 9, 2020 [Page 37]

Internet-Draft TAPS Interface July 2019

 Neither partial sends nor send batching are supported by
 InitiateWithSend().

 The Events that may be sent after InitiateWithSend() are equivalent
 to those that would be sent by an invocation of Initate() followed
 immediately by an invocation of Send(), with the caveat that a send
 failure that occurs because the Connection could not be established
 will not result in a SendError separate from the InitiateError
 signaling the failure of Connection establishment.

8. Receiving Data

 Once a Connection is established, it can be used for receiving data.
 As with sending, data is received in terms of Messages. Receiving is
 an asynchronous operation, in which each call to Receive enqueues a
 request to receive new data from the connection. Once data has been
 received, or an error is encountered, an event will be delivered to
 complete the Receive request (see Section 8.2).

 As with sending, the type of the Message to be passed is dependent on
 the implementation, and on the constraints on the Protocol Stacks
 implied by the Connection's transport parameters.

8.1. Enqueuing Receives

 Receive takes two parameters to specify the length of data that an
 application is willing to receive, both of which are optional and
 have default values if not specified.

 Connection.Receive(minIncompleteLength?, maxLength?)

 By default, Receive will try to deliver complete Messages in a single
 event (Section 8.2.1).

 The application can set a minIncompleteLength value to indicates the
 smallest partial Message data size in bytes that should be delivered
 in response to this Receive. By default, this value is infinite,
 which means that only complete Messages should be delivered (see

Section 8.2.2 and Section 10.6 for more information on how this is
 accomplished). If this value is set to some smaller value, the
 associated receive event will be triggered only when at least that
 many bytes are available, or the Message is complete with fewer
 bytes, or the system needs to free up memory. Applications should
 always check the length of the data delivered to the receive event
 and not assume it will be as long as minIncompleteLength in the case
 of shorter complete Messages or memory issues.

Trammell, et al. Expires January 9, 2020 [Page 38]

Internet-Draft TAPS Interface July 2019

 The maxLength argument indicates the maximum size of a Message in
 bytes the application is currently prepared to receive. The default
 value for maxLength is infinite. If an incoming Message is larger
 than the minimum of this size and the maximum Message size on receive
 for the Connection's Protocol Stack, it will be delivered via
 ReceivedPartial events (Section 8.2.2).

 Note that maxLength does not guarantee that the application will
 receive that many bytes if they are available; the interface may
 return ReceivedPartial events with less data than maxLength according
 to implementation constraints.

8.2. Receive Events

 Each call to Receive will be paired with a single Receive Event,
 which can be a success or an error. This allows an application to
 provide backpressure to the transport stack when it is temporarily
 not ready to receive messages.

8.2.1. Received

 Connection -> Received<messageData, messageContext>

 A Received event indicates the delivery of a complete Message. It
 contains two objects, the received bytes as messageData, and the
 metadata and properties of the received Message as messageContext.

 The messageData object provides access to the bytes that were
 received for this Message, along with the length of the byte array.
 The messageContext is provided to enable retrieving metadata about
 the message and referring to the message, e.g., to send replies and
 map responses to their requests. See Section 9 for details.

 See Section 10.6 for handling Message framing in situations where the
 Protocol Stack only provides a byte-stream transport.

8.2.2. ReceivedPartial

Connection -> ReceivedPartial<messageData, messageContext, endOfMessage>

 If a complete Message cannot be delivered in one event, one part of
 the Message may be delivered with a ReceivedPartial event. In order
 to continue to receive more of the same Message, the application must
 invoke Receive again.

 Multiple invocations of ReceivedPartial deliver data for the same
 Message by passing the same MessageContext, until the endOfMessage
 flag is delivered or a ReceiveError occurs. All partial blocks of a

Trammell, et al. Expires January 9, 2020 [Page 39]

Internet-Draft TAPS Interface July 2019

 single Message are delivered in order without gaps. This event does
 not support delivering discontiguous partial Messages.

 If the minIncompleteLength in the Receive request was set to be
 infinite (indicating a request to receive only complete Messages),
 the ReceivedPartial event may still be delivered if one of the
 following conditions is true:

 o the underlying Protocol Stack supports message boundary
 preservation, and the size of the Message is larger than the
 buffers available for a single message;

 o the underlying Protocol Stack does not support message boundary
 preservation, and the Message Framer (see Section 10.6) cannot
 determine the end of the message using the buffer space it has
 available; or

 o the underlying Protocol Stack does not support message boundary
 preservation, and no Message Framer was supplied by the
 application

 Note that in the absence of message boundary preservation or a
 Message Framer, all bytes received on the Connection will be
 represented as one large Message of indeterminate length.

8.2.3. ReceiveError

 Connection -> ReceiveError<messageContext>

 A ReceiveError occurs when data is received by the underlying
 Protocol Stack that cannot be fully retrieved or parsed, or when some
 other indication is received that reception has failed. Such
 conditions that irrevocably lead to the termination of the Connection
 are signaled using ConnectionError instead (see Section 12).

 The ReceiveError event passes an optional associated MessageContext.
 This may indicate that a Message that was being partially received
 previously, but had not completed, encountered an error and will not
 be completed.

8.3. Receive Message Properties

 Each Message Context may contain metadata from protocols in the
 Protocol Stack; which metadata is available is Protocol Stack
 dependent. These are exposed though additional read-only Message
 Properties that can be queried from the MessageContext object (see

Section 9) passed by the receive event. The following metadata
 values are supported:

Trammell, et al. Expires January 9, 2020 [Page 40]

Internet-Draft TAPS Interface July 2019

8.3.1. ECN

 When available, Message metadata carries the value of the Explicit
 Congestion Notification (ECN) field. This information can be used
 for logging and debugging purposes, and for building applications
 which need access to information about the transport internals for
 their own operation.

8.3.2. Early Data

 In some cases it may be valuable to know whether data was read as
 part of early data transfer (before connection establishment has
 finished). This is useful if applications need to treat early data
 separately, e.g., if early data has different security properties
 than data sent after connection establishment. In the case of TLS
 1.3, client early data can be replayed maliciously (see [RFC8446]).
 Thus, receivers may wish to perform additional checks for early data
 to ensure it is idempotent or not replayed. If TLS 1.3 is available
 and the recipient Message was sent as part of early data, the
 corresponding metadata carries a flag indicating as such. If early
 data is enabled, applications should check this metadata field for
 Messages received during connection establishment and respond
 accordingly.

8.3.3. Receiving Final Messages

 The Message Context can indicate whether or not this Message is the
 Final Message on a Connection. For any Message that is marked as
 Final, the application can assume that there will be no more Messages
 received on the Connection once the Message has been completely
 delivered. This corresponds to the Final property that may be marked
 on a sent Message Section 7.4.5.

 Some transport protocols and peers may not support signaling of the
 Final property. Applications therefore should not rely on receiving
 a Message marked Final to know that the other endpoint is done
 sending on a connection.

 Any calls to Receive once the Final Message has been delivered will
 result in errors.

9. Message Contexts

 Using the MessageContext object, the application can set and retrieve
 meta-data of the message, including Message Properties (see

Section 7.4) and framing meta-data (see Section 10.3). Therefore, a
 MessageContext object can be passed to the Send action and is retuned
 by each Send and Receive related events.

https://datatracker.ietf.org/doc/html/rfc8446

Trammell, et al. Expires January 9, 2020 [Page 41]

Internet-Draft TAPS Interface July 2019

 Message properties can be set and queried using the Message Context:

 MessageContext.add(scope?, parameter, value)
 PropertyValue := MessageContext.get(scope?, property)

 To get or set Message Properties, the optional scope parameter is
 left empty, for framing meta-data, the framer is passed.

 For MessageContexts returned by send events (see Section 7.3) and
 receive events (see Section 8.2), the application can query
 information about the local and remote endpoint:

 RemoteEndpoint := MessageContext.GetRemoteEndpoint()
 LocalEndpoint := MessageContext.GetLocalEndpoint()

 Message Contexts can also be used to send messages that are flagged
 as a reply to other messages, see Section 7.2 for details. If the
 message received was send by the remote endpoint as a reply to an
 earlier message and the transports provides this information, the
 MessageContext of the original request can be accessed using the
 Message Context of the reply:

 RequestMessageContext := MessageContext.GetOriginalRequest()

10. Message Framers

 Message Framers are pieces of code that define simple transformations
 between application Message data and raw transport protocol data. A
 Framer can encapsulate or encode outbound Messages, and decapsulate
 or decode inbound data into Messages.

 Message Framers allow message boundaries to be preserved when using a
 Connection object, even when using byte-stream transports. This
 facility is designed based on the fact that many of the current
 application protocols evolved over TCP, which does not provide
 message boundary preservation, and since many of these protocols
 require message boundaries to function, each application layer
 protocol has defined its own framing.

 While many protocols can be represented as Message Framers, for the
 purposes of the Transport Services interface these are ways for
 applications or application frameworks to define their own Message
 parsing to be included within a Connection's Protocol Stack. As an
 example, TLS can serve the purpose of framing data over TCP, but is
 exposed as a protocol natively supported by the Transport Services
 interface.

Trammell, et al. Expires January 9, 2020 [Page 42]

Internet-Draft TAPS Interface July 2019

 Most Message Framers fall into one of two categories: - Header-
 prefixed record formats, such as a basic Type-Length-Value (TLV)
 structure - Delimeter-separated formats, such as HTTP/1.1.

 Note that while Message Framers add the most value when placed above
 a protocol that otherwise does not preserve message boundaries, they
 can also be used with datagram- or message-based protocols. In these
 cases, they add an additional transformation to further encode or
 encapsulate, and can potentially support packing multiple
 application-layer Messages into individual transport datagrams.

10.1. Defining Message Framers

 A Message Framer is primarily defined by the set of code that handles
 events for a framer implementation, specifically how it handles
 inbound and outbound data parsing.

 Applications can instantiate a Message Framer upon which they will
 receive framing events, or use a Message Framer defined by another
 library.

 framer := NewMessageFramer()

 Message Framer objects will deliver events to code that is written
 either as part of the application or a helper library. This piece of
 code will be referred to as the "framer implementation".

10.2. Adding Message Framers to Connections

 The Message Framer object can be added to one or more Preconnections
 to run on top of transport protocols. Multiple Framers may be added.
 If multiple Framers are added, the last one added runs first when
 framing outbound messages, and last when parsing inbound data.

 Preconnection.AddFramer(framer)

 Framers have the ability to also dynamically modify Protocol Stacks,
 as described in Section 10.4.

10.3. Framing Meta-Data

 When sending Messages, applications can add specific Message values
 to a MessageContext (Section 9) that is intended for a Framer. This
 can be used, for example, to set the type of a Message for a TLV
 format. The namespace of values is custom for each unique Message
 Framer.

Trammell, et al. Expires January 9, 2020 [Page 43]

Internet-Draft TAPS Interface July 2019

 messageContext := NewMessageContext()
 messageContext.add(framer, key, value)
 Connection.Send(messageData, messageContext)

 When an application receives a MessageContext in a Receive event, it
 can also look to see if a value was set by a specific Message Framer.

 messageContext.get(framer, key) -> value

10.4. Message Framer Lifetime

 When a Connection establishment attempt begins, an event is delivered
 to notify the framer implementation that a new Connection is being
 created. Similarly, a stop event is delivered when a Connection is
 being torn down. The framer implementation can use the Connection
 object to look up specific properties of the Connection or the
 network being used that may influence how to frame Messages.

 MessageFramer -> Start(Connection)
 MessageFramer -> Stop(Connection)

 When Message Framer generates a "Start" event, the framer
 implementation has the opportunity to start writing some data prior
 to the Connection delivering its "Ready" event. This allows the
 implementation to communicate control data to the remote endpoint
 that can be used to parse Messages.

 MessageFramer.MakeConnectionReady(Connection)

 At any time if the implementation encounters a fatal error, it can
 also cause the Connection to fail and provide an error.

 MessageFramer.FailConnection(Connection, Error)

 Before an implementation marks a Message Framer as ready, it can also
 dynamically add a protocol or framer above it in the stack. This
 allows protocols like STARTTLS, that need to add TLS conditionally,
 to modify the Protocol Stack based on a handshake result.

 otherFramer := NewMessageFramer()
 MessageFramer.PrependFramer(Connection, otherFramer)

10.5. Sender-side Message Framing

 Message Framers generate an event whenever a Connection sends a new
 Message.

MessageFramer -> NewSentMessage<Connection, MessageData, MessageContext,
IsEndOfMessage>

Trammell, et al. Expires January 9, 2020 [Page 44]

Internet-Draft TAPS Interface July 2019

 Upon receiving this event, a framer implementation is responsible for
 performing any necessary transformations and sending the resulting
 data to the next protocol. Implementations SHOULD ensure that there
 is a way to pass the original data through without copying to improve
 performance.

 MessageFramer.Send(Connection, Data)

 To provide an example, a simple protocol that adds a length as a
 header would receive the "NewSentMessage" event, create a data
 representation of the length of the Message data, and then send a
 block of data that is the concatenation of the length header and the
 original Message data.

10.6. Receiver-side Message Framing

 In order to parse an received flow of data into Messages, the Message
 Framer notifies the framer implementation whenever new data is
 available to parse.

 MessageFramer -> HandleReceivedData<Connection>

 Upon receiving this event, the framer implementation can inspect the
 inbound data. The data is parsed from a particular cursor
 representing the unprocessed data. The application requests a
 specific amount of data it needs to have available in order to parse.
 If the data is not available, the parse fails.

MessageFramer.Parse(Connection, MinimumIncompleteLength, MaximumLength) ->
(Data, MessageContext, IsEndOfMessage)

 The framer implementation can directly advance the receive cursor
 once it has parsed data to effectively discard data (for example,
 discard a header once the content has been parsed).

 To deliver a Message to the application, the framer implementation
 can either directly deliever data that it has allocated, or deliver a
 range of data directly from the underlying transport and
 simulatenously advance the receive cursor.

MessageFramer.AdvanceReceiveCursor(Connection, Length)
MessageFramer.DeliverAndAdvanceReceiveCursor(Connection, MessageContext,
Length, IsEndOfMessage)
MessageFramer.Deliver(Connection, MessageContext, Data, IsEndOfMessage)

 Note that "MessageFramer.DeliverAndAdvanceReceiveCursor" allows the
 framer implementation to earmark bytes as part of a Message even
 before they are received by the transport. This allows the delivery
 of very large Messages without requiring the implementation to

 directly inspect all of the bytes.

Trammell, et al. Expires January 9, 2020 [Page 45]

Internet-Draft TAPS Interface July 2019

 To provide an example, a simple protocol that parses a length as a
 header value would receive the "HandleReceivedData" event, and call
 "Parse" with a minimum and maximum set to the length of the header
 field. Once the parse succeeded, it would call
 "AdvanceReceiveCursor" with the length of the header field, and then
 call "DeliverAndAdvanceReceiveCursor" with the length of the body
 that was parsed from the header, marking the new Message as complete.

11. Managing Connections

 During pre-establishment and after establishment, connections can be
 configured and queried using Connection Properties, and asynchronous
 information may be available about the state of the connection via
 Soft Errors.

 Connection Properties represent the configuration and state of the
 selected Protocol Stack(s) backing a Connection. These Connection
 Properties may be Generic, applying regardless of transport protocol,
 or Specific, applicable to a single implementation of a single
 transport protocol stack. Generic Connection Properties are defined
 in Section 11.1 below. Specific Protocol Properties are defined in a
 transport- and implementation-specific way, and must not be assumed
 to apply across different protocols. Attempts to set Specific
 Protocol Properties on a protocol stack not containing that specific
 protocol are simply ignored, and do not raise an error; however, too
 much reliance by an application on Specific Protocol Properties may
 significantly reduce the flexibility of a transport services
 implementation.

 The application can set and query Connection Properties on a per-
 Connection basis. Connection Properties that are not read-only can
 be set during pre-establishment (see Section 5.2), as well as on
 connections directly using the SetProperty action:

 Connection.SetProperty(property, value)

 At any point, the application can query Connection Properties.

 ConnectionProperties := Connection.GetProperties()

 Depending on the status of the connection, the queried Connection
 Properties will include different information:

 o The connection state, which can be one of the following:
 Establishing, Established, Closing, or Closed.

 o Whether the connection can be used to send data. A connection can
 not be used for sending if the connection was created with the

Trammell, et al. Expires January 9, 2020 [Page 46]

Internet-Draft TAPS Interface July 2019

 Selection Property "Direction of Communication" set to
 "unidirectional receive" or if a Message marked as "Final" was
 sent over this connection, see Section 7.4.5.

 o Whether the connection can be used to receive data. A connection
 can not be used for reading if the connection was created with the
 Selection Property "Direction of Communication" set to
 "unidirectional send" or if a Message marked as "Final" was
 received, see Section 8.3.3. The latter is only supported by
 certain transport protocols, e.g., by TCP as half-closed
 connection.

 o For Connections that are Establishing: Transport Properties that
 the application specified on the Preconnection, see Section 5.2.

 o For Connections that are Established, Closing, or Closed:
 Selection (Section 5.2) and Connection Properties (Section 11.1)
 of the actual protocols that were selected and instantiated.
 Selection Properties indicate whether or not the Connection has or
 offers a certain Selection Property. Note that the actually
 instantiated protocol stack may not match all Protocol Selection
 Properties that the application specified on the Preconnection.
 For example, a certain Protocol Selection Property that an
 application specified as Preferred may not actually be present in
 the chosen protocol stack because none of the currently available
 transport protocols had this feature.

 o For Connections that are Established, additional properties of the
 path(s) in use. These properties can be derived from the local
 provisioning domain [RFC7556], measurements by the Protocol Stack,
 or other sources.

11.1. Generic Connection Properties

 The Connection Properties defined as independent, and available on
 all Connections are defined in the subsections below.

 Note that many protocol properties have a corresponding selection
 property, which prefers protocols providing a specific transport
 feature that controlled by that protocol property. [EDITOR'S NOTE:
 todo: add these cross-references up to Section 5.2]

11.1.1. Retransmission Threshold Before Excessive Retransmission
 Notification

 Name: retransmit-notify-threshold

 Type: Integer

https://datatracker.ietf.org/doc/html/rfc7556

Trammell, et al. Expires January 9, 2020 [Page 47]

Internet-Draft TAPS Interface July 2019

 Default: -1

 This property specifies after how many retransmissions to inform the
 application about "Excessive Retransmissions". The special value -1
 means that this notification is disabled.

11.1.2. Required Minimum Corruption Protection Coverage for Receiving

 Name: recv-checksum-len

 Type: Integer

 Default: -1

 This property specifies the part of the received data that needs to
 be covered by a checksum. It is given in Bytes. A value of 0 means
 that no checksum is required, and the special value -1 indicates full
 checksum coverage.

11.1.3. Priority (Connection)

 Name: conn-prio

 Type: Integer

 Default: 100

 This Property is a non-negative integer representing the relative
 inverse priority of this Connection relative to other Connections in
 the same Connection Group. It has no effect on Connections not part
 of a Connection Group. As noted in Section 6.4, this property is not
 entangled when Connections are cloned.

11.1.4. Timeout for Aborting Connection

 Name: conn-timeout

 Type: Numeric

 Default: -1

 This property specifies how long to wait before deciding that a
 Connection has failed when trying to reliably deliver data to the
 destination. Adjusting this Property will only take effect when the
 underlying stack supports reliability. The special value -1 means
 that this timeout is not scheduled to happen.

Trammell, et al. Expires January 9, 2020 [Page 48]

Internet-Draft TAPS Interface July 2019

11.1.5. Connection Group Transmission Scheduler

 Name: conn-scheduler

 Type: Enumeration

 Default: Weighted Fair Queueing (see Section 3.6 in [RFC8260])

 This property specifies which scheduler should be used among
 Connections within a Connection Group, see Section 6.4. The set of
 schedulers can be taken from [RFC8260].

11.1.6. Maximum Message Size Concurrent with Connection Establishment

 Name: zero-rtt-msg-max-len

 Type: Integer (read only)

 This property represents the maximum Message size that can be sent
 before or during Connection establishment, see also Section 7.4.4.
 It is given in Bytes.

11.1.7. Maximum Message Size Before Fragmentation or Segmentation

 Name: singular-transmission-msg-max-len

 Type: Integer (read only)

 This property, if applicable, represents the maximum Message size
 that can be sent without incurring network-layer fragmentation or
 transport layer segmentation at the sender.

11.1.8. Maximum Message Size on Send

 Name: send-msg-max-len

 Type: Integer (read only)

 This property represents the maximum Message size that can be sent.

11.1.9. Maximum Message Size on Receive

 Name: recv-msg-max-len

 Type: Integer (read only)

 This numeric property represents the maximum Message size that can be
 received.

https://datatracker.ietf.org/doc/html/rfc8260#section-3.6
https://datatracker.ietf.org/doc/html/rfc8260

Trammell, et al. Expires January 9, 2020 [Page 49]

Internet-Draft TAPS Interface July 2019

11.1.10. Capacity Profile

 Name: conn-capacity-profile

 This property specifies the desired network treatment for traffic
 sent by the application and the tradeoffs the application is prepared
 to make in path and protocol selection to receive that desired
 treatment. When the capacity profile is set to a value other than
 Default, the transport system should select paths and profiles to
 optimize for the capacity profile specified. The following values
 are valid for the Capacity Profile:

 Default: The application makes no representation about its expected
 capacity profile. No special optimizations of the tradeoff
 between delay, delay variation, and bandwidth efficiency should be
 made when selecting and configuring transport protocol stacks.
 Transport system implementations that map the requested capacity
 profile onto per-connection DSCP signaling without multiplexing
 SHOULD assign the DSCP Default Forwarding [RFC2474] PHB; when the
 Connection is multiplexed, the guidelines in Section 6 of
 [RFC7657] apply.

 Scavenger: The application is not interactive. It expects to send
 and/or receive data without any urgency. This can, for example,
 be used to select protocol stacks with scavenger transmission
 control and/or to assign the traffic to a lower-effort service.
 Transport system implementations that map the requested capacity
 profile onto per-connection DSCP signaling without multiplexing
 SHOULD assign the DSCP Less than Best Effort [LE-PHB] PHB; when
 the Connection is multiplexed, the guidelines in Section 6 of
 [RFC7657] apply.

 Low Latency/Interactive: The application is interactive, and prefers
 loss to latency. Response time should be optimized at the expense
 of bandwidth efficiency and delay variation when sending on this
 connection. This can be used by the system to disable the
 coalescing of multiple small Messages into larger packets (Nagle's
 algorithm); to prefer immediate acknowledgment from the peer
 endpoint when supported by the underlying transport; and so on.
 Transport system implementations that map the requested capacity
 profile onto per-connection DSCP signaling without multiplexing
 SHOULD assign the DSCP Expedited Forwarding [RFC3246] PHB; when
 the Connection is multiplexed, the guidelines in Section 6 of
 [RFC7657] apply.

 Low Latency/Non-Interactive: The application prefers loss to latency
 but is not interactive. Response time should be optimized at the
 expense of bandwidth efficiency and delay variation when sending

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc3246
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc7657#section-6

Trammell, et al. Expires January 9, 2020 [Page 50]

Internet-Draft TAPS Interface July 2019

 on this connection.Transport system implementations that map the
 requested capacity profile onto per-connection DSCP signaling
 without multiplexing SHOULD assign a DSCP Assured Forwarding
 (AF21,AF22,AF23,AF24) [RFC2597] PHB; when the Connection is
 multiplexed, the guidelines in Section 6 of [RFC7657] apply.

 Constant-Rate Streaming: The application expects to send/receive
 data at a constant rate after Connection establishment. Delay and
 delay variation should be minimized at the expense of bandwidth
 efficiency. This implies that the Connection may fail if the
 desired rate cannot be maintained across the Path. A transport
 may interpret this capacity profile as preferring a circuit
 breaker [RFC8084] to a rate-adaptive congestion controller.
 Transport system implementations that map the requested capacity
 profile onto per-connection DSCP signaling without multiplexing
 SHOULD assign a DSCP Assured Forwarding (AF31,AF32,AF33,AF34)
 [RFC2597] PHB; when the Connection is multiplexed, the guidelines
 in Section 6 of [RFC7657] apply.

 High Throughput Data: The application expects to send/receive data
 at the maximum rate allowed by its congestion controller over a
 relatively long period of time. Transport system implementations
 that map the requested capacity profile onto per-connection DSCP
 signaling without multiplexing SHOULD assign a DSCP Assured
 Forwarding (AF11,AF12,AF13,AF14) [RFC2597] PHB per Section 4.8 of
 [RFC4594]. When the Connection is multiplexed, the guidelines in

Section 6 of [RFC7657] apply.

 The Capacity Profile for a selected protocol stack may be modified on
 a per-Message basis using the Transmission Profile Message Property;
 see Section 7.4.8.

11.1.11. Bounds on Send or Receive Rate

 Name: max-send-rate / max-recv-rate

 Type: Numeric / Numeric

 Default: -1 / -1 (unlimited, for both values)

 This property specifies an upper-bound rate that a transfer is not
 expected to exceed (even if flow control and congestion control allow
 higher rates), and/or a lower-bound rate below which the application
 does not deem a data transfer useful. It is given in bits per
 second. The special value -1 indicates that no bound is specified.

https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc8084
https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/rfc7657#section-6
https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/rfc4594#section-4.8
https://datatracker.ietf.org/doc/html/rfc4594#section-4.8
https://datatracker.ietf.org/doc/html/rfc7657#section-6

Trammell, et al. Expires January 9, 2020 [Page 51]

Internet-Draft TAPS Interface July 2019

11.1.12. TCP-specific Property: User Timeout

 This property specifies, for the case TCP becomes the chosen
 transport protocol:

 Advertised User Timeout (name: tcp.user-timeout-value, type:
 Integer):
 a time value (default: the TCP default) to be advertised via the
 User Timeout Option (UTO) for the TCP at the remote endpoint to
 adapt its own "Timeout for aborting Connection" (see

Section 11.1.4) value accordingly.

 User Timeout Enabled (name: tcp.user-timeout, type: Boolean): a bool
 ean (default false) to control whether the UTO option is enabled
 for a connection. This applies to both sending and receiving.

 Changeable (name: tcp.user-timeout-recv, type: Boolean): a boolean
 (default true) which controls whether the "Timeout for aborting
 Connection" (see Section 11.1.4) may be changed based on a UTO
 option received from the remote peer. This boolean becomes false
 when "Timeout for aborting Connection" (see Section 11.1.4) is
 used.

 All of the above parameters are optional (e.g., it is possible to
 specify "User Timeout Enabled" as true, but not specify an Advertised
 User Timeout value; in this case, the TCP default will be used).

11.2. Soft Errors

 Asynchronous introspection is also possible, via the SoftError Event.
 This event informs the application about the receipt of an ICMP error
 message related to the Connection. This will only happen if the
 underlying protocol stack supports access to soft errors; however,
 even if the underlying stack supports it, there is no guarantee that
 a soft error will be signaled.

 Connection -> SoftError<>

11.3. Excessive retransmissions

 This event notifies the application of excessive retransmissions,
 based on a configured threshold (see Section 11.1.1). This will only
 happen if the underlying protocol stack supports reliability and,
 with it, such notifications.

 Connection -> ExcessiveRetransmission<>

Trammell, et al. Expires January 9, 2020 [Page 52]

Internet-Draft TAPS Interface July 2019

12. Connection Termination

 Close terminates a Connection after satisfying all the requirements
 that were specified regarding the delivery of Messages that the
 application has already given to the transport system. For example,
 if reliable delivery was requested for a Message handed over before
 calling Close, the transport system will ensure that this Message is
 indeed delivered. If the Remote Endpoint still has data to send, it
 cannot be received after this call.

 Connection.Close()

 The Closed Event can inform the application that the Remote Endpoint
 has closed the Connection; however, there is no guarantee that a
 remote Close will indeed be signaled.

 Connection -> Closed<>

 Abort terminates a Connection without delivering remaining data:

 Connection.Abort()

 A ConnectionError informs the application that data to could not be
 delivered after a timeout, or the other side has aborted the
 Connection; however, there is no guarantee that an Abort will indeed
 be signaled.

 Connection -> ConnectionError<>

13. Connection State and Ordering of Operations and Events

 As this interface is designed to be independent of an
 implementation's concurrency model, the details of how exactly
 actions are handled, and on which threads/callbacks events are
 dispatched, are implementation dependent.

 Each transition of connection state is associated with one of more
 events:

 o Ready<> occurs when a Connection created with Initiate() or
 InitiateWithSend() transitions to Established state.

 o ConnectionReceived<> occurs when a Connection created with
 Listen() transitions to Established state.

 o RendezvousDone<> occurs when a Connection created with
 Rendezvous() transitions to Established state.

Trammell, et al. Expires January 9, 2020 [Page 53]

Internet-Draft TAPS Interface July 2019

 o Closed<> occurs when a Connection transitions to Closed state
 without error.

 o InitiateError<> occurs when a Connection created with Initiate()
 transitions from Establishing state to Closed state due to an
 error.

 o ConnectionError<> occurs when a Connection transitions to Closed
 state due to an error in all other circumstances.

 The interface provides the following guarantees about the ordering of
 operations:

 o Sent<> events will occur on a Connection in the order in which the
 Messages were sent (i.e., delivered to the kernel or to the
 network interface, depending on implementation).

 o Received<> will never occur on a Connection before it is
 Established; i.e. before a Ready<> event on that Connection, or a
 ConnectionReceived<> or RendezvousDone<> containing that
 Connection.

 o No events will occur on a Connection after it is Closed; i.e.,
 after a Closed<> event, an InitiateError<> or ConnectionError<> on
 that connection. To ensure this ordering, Closed<> will not occur
 on a Connection while other events on the Connection are still
 locally outstanding (i.e., known to the interface and waiting to
 be dealt with by the application). ConnectionError<> may occur
 after Closed<>, but the interface must gracefully handle all cases
 where application ignores these errors.

14. IANA Considerations

 RFC-EDITOR: Please remove this section before publication.

 This document has no Actions for IANA. Later versions of this
 document may create IANA registries for generic transport property
 names and transport property namespaces (see Section 4.2.1).

15. Security Considerations

 This document describes a generic API for interacting with a
 transport services (TAPS) system. Part of this API includes
 configuration details for transport security protocols, as discussed
 in Section 5.3. It does not recommend use (or disuse) of specific
 algorithms or protocols. Any API-compatible transport security
 protocol should work in a TAPS system.

Trammell, et al. Expires January 9, 2020 [Page 54]

Internet-Draft TAPS Interface July 2019

16. Acknowledgements

 This work has received funding from the European Union's Horizon 2020
 research and innovation programme under grant agreements No. 644334
 (NEAT) and No. 688421 (MAMI).

 This work has been supported by Leibniz Prize project funds of DFG -
 German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
 FE 570/4-1).

 This work has been supported by the UK Engineering and Physical
 Sciences Research Council under grant EP/R04144X/1.

 Thanks to Stuart Cheshire, Josh Graessley, David Schinazi, and Eric
 Kinnear for their implementation and design efforts, including Happy
 Eyeballs, that heavily influenced this work. Thanks to Laurent Chuat
 and Jason Lee for initial work on the Post Sockets interface, from
 which this work has evolved.

17. References

17.1. Normative References

 [I-D.ietf-taps-arch]
 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G.,
 Perkins, C., Tiesel, P., and C. Wood, "An Architecture for
 Transport Services", draft-ietf-taps-arch-03 (work in
 progress), March 2019.

 [I-D.ietf-tsvwg-rtcweb-qos]
 Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
 Packet Markings for WebRTC QoS", draft-ietf-tsvwg-rtcweb-

qos-18 (work in progress), August 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-03
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-18
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-18
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Trammell, et al. Expires January 9, 2020 [Page 55]

Internet-Draft TAPS Interface July 2019

17.2. Informative References

 [I-D.ietf-taps-minset]
 Welzl, M. and S. Gjessing, "A Minimal Set of Transport
 Services for End Systems", draft-ietf-taps-minset-11 (work
 in progress), September 2018.

 [I-D.ietf-taps-transport-security]
 Wood, C., Enghardt, T., Pauly, T., Perkins, C., and K.
 Rose, "A Survey of Transport Security Protocols", draft-

ietf-taps-transport-security-06 (work in progress), March
 2019.

 [LE-PHB] Bless, R., "A Lower Effort Per-Hop Behavior (LE PHB) for
 Differentiated Services", draft-ietf-tsvwg-le-phb-10 (work
 in progress), March 2019.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597,
 DOI 10.17487/RFC2597, June 1999,
 <https://www.rfc-editor.org/info/rfc2597>.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
RFC 2914, DOI 10.17487/RFC2914, September 2000,

 <https://www.rfc-editor.org/info/rfc2914>.

 [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
 J., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <https://www.rfc-editor.org/info/rfc3246>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-minset-11
https://datatracker.ietf.org/doc/html/draft-ietf-taps-transport-security-06
https://datatracker.ietf.org/doc/html/draft-ietf-taps-transport-security-06
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-le-phb-10
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc2597
https://www.rfc-editor.org/info/rfc2597
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://www.rfc-editor.org/info/rfc2914
https://datatracker.ietf.org/doc/html/rfc3246
https://www.rfc-editor.org/info/rfc3246
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261

Trammell, et al. Expires January 9, 2020 [Page 56]

Internet-Draft TAPS Interface July 2019

 [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <https://www.rfc-editor.org/info/rfc4594>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <https://www.rfc-editor.org/info/rfc5245>.

 [RFC7478] Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use Cases and Requirements", RFC 7478,
 DOI 10.17487/RFC7478, March 2015,
 <https://www.rfc-editor.org/info/rfc7478>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

 [RFC8084] Fairhurst, G., "Network Transport Circuit Breakers",
BCP 208, RFC 8084, DOI 10.17487/RFC8084, March 2017,

 <https://www.rfc-editor.org/info/rfc8084>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

Appendix A. Additional Properties

 The interface specified by this document represents the minimal
 common interface to an endpoint in the transport services
 architecture [I-D.ietf-taps-arch], based upon that architecture and
 on the minimal set of transport service features elaborated in
 [I-D.ietf-taps-minset]. However, the interface has been designed

https://datatracker.ietf.org/doc/html/rfc4594
https://www.rfc-editor.org/info/rfc4594
https://datatracker.ietf.org/doc/html/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://datatracker.ietf.org/doc/html/rfc7478
https://www.rfc-editor.org/info/rfc7478
https://datatracker.ietf.org/doc/html/rfc7556
https://www.rfc-editor.org/info/rfc7556
https://datatracker.ietf.org/doc/html/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://datatracker.ietf.org/doc/html/bcp208
https://datatracker.ietf.org/doc/html/rfc8084
https://www.rfc-editor.org/info/rfc8084
https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095
https://datatracker.ietf.org/doc/html/rfc8260
https://www.rfc-editor.org/info/rfc8260

Trammell, et al. Expires January 9, 2020 [Page 57]

Internet-Draft TAPS Interface July 2019

 with extension points to allow the implementation of features beyond
 those in the minimal common interface: Protocol Selection Properties,
 Path Selection Properties, and Message Properties are open sets.
 Implementations of the interface are free to extend these sets to
 provide additional expressiveness to applications written on top of
 them.

 This appendix enumerates a few additional properties that could be
 used to enhance transport protocol and/or path selection, or the
 transmission of messages given a Protocol Stack that implements them.
 These are not part of the interface, and may be removed from the
 final document, but are presented here to support discussion within
 the TAPS working group as to whether they should be added to a future
 revision of the base specification.

A.1. Experimental Transport Properties

 The following Transport Properties might be made available in
 addition to those specified in Section 5.2, Section 11.1, and

Section 7.4.

A.1.1. Cost Preferences

 [EDITOR'S NOTE: At IETF 103, opinions were that this property should
 stay, but it was also said that this is maybe not "on the right
 level". If / when moving it to the main text, note that this is
 meant to be applicable to a Preconnection or a Message.]

 Name: cost-preferences

 Type: Enumeration

 This property describes what an application prefers regarding
 monetary costs, e.g., whether it considers it acceptable to utilize
 limited data volume. It provides hints to the transport system on
 how to handle trade-offs between cost and performance or reliability.

 Possible values are:

 No Expense: Avoid transports associated with monetary cost

 Optimize Cost: Prefer inexpensive transports and accept service
 degradation

 Balance Cost: Use system policy to balance cost and other criteria

 Ignore Cost: Ignore cost, choose transport solely based on other
 criteria

Trammell, et al. Expires January 9, 2020 [Page 58]

Internet-Draft TAPS Interface July 2019

 The default is "Balance Cost".

Appendix B. Sample API definition in Go

 This document defines an abstract interface. To illustrate how this
 would map concretely into a programming language, an API interface
 definition in Go is available online at https://github.com/mami-

project/postsocket. Documentation for this API - an illustration of
 the documentation an application developer would see for an instance
 of this interface - is available online at

https://godoc.org/github.com/mami-project/postsocket. This API
 definition will be kept largely in sync with the development of this
 abstract interface definition.

Appendix C. Relationship to the Minimal Set of Transport Services for
 End Systems

 [I-D.ietf-taps-minset] identifies a minimal set of transport services
 that end systems should offer. These services make all transport
 features offered by TCP, MPTCP, UDP, UDP-Lite, SCTP and LEDBAT
 available that 1) require interaction with the application, and 2) do
 not get in the way of a possible implementation over TCP or, with
 limitations, UDP. The following text explains how this minimal set
 is reflected in the present API. For brevity, this uses the list in
 Section 4.1 of [I-D.ietf-taps-minset], updated according to the
 discussion in Section 5 of [I-D.ietf-taps-minset].

 [EDITOR'S NOTE: This is early text. In the future, this section will
 contain backward references, which we currently avoid because things
 are still being moved around and names / categories etc. are
 changing.]

 o Connect:
 "Initiate" Action.

 o Listen:
 "Listen" Action.

 o Specify number of attempts and/or timeout for the first
 establishment message:
 "Timeout for aborting Connection Establishment" Property, using a
 time value.

 o Disable MPTCP:
 "Parallel Use of Multiple Paths" Property.

 o Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment:

https://github.com/mami-project/postsocket
https://github.com/mami-project/postsocket
https://godoc.org/github.com/mami-project/postsocket

Trammell, et al. Expires January 9, 2020 [Page 59]

Internet-Draft TAPS Interface July 2019

 "InitiateWithSend" Action.

 o Hand over a message to reliably transfer during connection
 establishment:
 "InitiateWithSend" Action.

 o Change timeout for aborting connection (using retransmit limit or
 time value):
 "Timeout for aborting Connection" property, using a time value.

 o Timeout event when data could not be delivered for too long:
 "ConnectionError" Event.

 o Suggest timeout to the peer:
 TCP-specific Property: User Timeout.

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold):
 "Notification of excessive retransmissions" property.

 o Notification of ICMP error message arrival:
 "Notification of ICMP soft error message arrival" property.

 o Choose a scheduler to operate between streams of an association:
 "Connection group transmission scheduler" property.

 o Configure priority or weight for a scheduler:
 "Priority (Connection)" property.

 o "Specify checksum coverage used by the sender" and "Disable
 checksum when sending":
 "Corruption Protection Length" property (value 0 to disable).

 o "Specify minimum checksum coverage required by receiver" and
 "Disable checksum requirement when receiving":
 "Required minimum coverage of the checksum for receiving" property
 (value 0 to disable).

 o "Specify DF" field and "Request not to bundle messages:"
 The "Singular Transmission" Message property combines both of
 these requests, i.e. if a request not to bundle messages is made,
 this also turns off DF in case of protocols that allow this (only
 UDP and UDP-Lite, which cannot bundle messages anyway).

 o Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface:
 "Maximum Message size before fragmentation or segmentation"
 property.

Trammell, et al. Expires January 9, 2020 [Page 60]

Internet-Draft TAPS Interface July 2019

 o Get max. transport-message size that may be received from the
 configured interface:
 "Maximum Message size on receive" property.

 o Obtain ECN field:
 "ECN" is a defined metadata value as part of the Message Receive
 Context.

 o "Specify DSCP field", "Disable Nagle algorithm", "Enable and
 configure a 'Low Extra Delay Background Transfer'":
 As suggested in Section 5.5 of [I-D.ietf-taps-minset], these
 transport features are collectively offered via the "Capacity
 profile" property.

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side:
 This is offered by the "Close" Action with slightly changed
 semantics in line with the discussion in Section 5.2 of
 [I-D.ietf-taps-minset].

 o "Abort without delivering remaining data, causing an event
 informing the application on the other side" and "Abort without
 delivering remaining data, not causing an event informing the
 application on the other side":
 This is offered by the "Abort" action without promising that this
 is signaled to the other side. If it is, a "ConnectionError"
 Event will fire at the peer.

 o "Reliably transfer data, with congestion control", "Reliably
 transfer a message, with congestion control" and "Unreliably
 transfer a message":
 Reliability is controlled via the "Reliable Data Transfer
 (Message)" Message property. Transmitting data without delimiters
 is done by not using a Framer. The choice of congestion control
 is provided via the "Congestion control" property.

 o Configurable Message Reliability:
 The "Lifetime" Message Property implements a time-based way to
 configure message reliability.

 o "Ordered message delivery (potentially slower than unordered)" and
 "Unordered message delivery (potentially faster than ordered)":
 The two transport features are controlled via the Message property
 "Ordered".

 o Request not to delay the acknowledgement (SACK) of a message:

Trammell, et al. Expires January 9, 2020 [Page 61]

Internet-Draft TAPS Interface July 2019

 Should the protocol support it, this is one of the transport
 features the transport system can use when an application uses the
 Capacity Profile Property with value "Low Latency/Interactive".

 o Receive data (with no message delimiting):
 "Received" Event without using a Message Framer.

 o Receive a message:
 "Received" Event. Section 5.1 of [I-D.ietf-taps-minset] discusses
 how messages can be obtained from a bytestream in case of
 implementation over TCP. Here, this is dealt with by Message
 Framers.

 o Information about partial message arrival:
 "ReceivedPartial" Event.

 o Notification of send failures:
 "Expired" and "SendError" Events.

 o Notification that the stack has no more user data to send:
 Applications can obtain this information via the "Sent" Event.

 o Notification to a receiver that a partial message delivery has
 been aborted:
 "ReceiveError" Event.

Authors' Addresses

 Brian Trammell (editor)
 Google
 Gustav-Gull-Platz 1
 8004 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Michael Welzl (editor)
 University of Oslo
 PO Box 1080 Blindern
 0316 Oslo
 Norway

 Email: michawe@ifi.uio.no

Trammell, et al. Expires January 9, 2020 [Page 62]

Internet-Draft TAPS Interface July 2019

 Theresa Enghardt
 TU Berlin
 Marchstrasse 23
 10587 Berlin
 Germany

 Email: theresa@inet.tu-berlin.de

 Godred Fairhurst
 University of Aberdeen
 Fraser Noble Building
 Aberdeen, AB24 3UE
 Scotland

 Email: gorry@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk/

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

 Philipp S. Tiesel
 TU Berlin
 Einsteinufer 25
 10587 Berlin
 Germany

 Email: philipp@tiesel.net

http://www.erg.abdn.ac.uk/

Trammell, et al. Expires January 9, 2020 [Page 63]

Internet-Draft TAPS Interface July 2019

 Chris Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

Trammell, et al. Expires January 9, 2020 [Page 64]

