
TAPS M. Welzl
Internet-Draft S. Gjessing
Intended status: Informational University of Oslo
Expires: September 1, 2018 February 28, 2018

A Minimal Set of Transport Services for TAPS Systems
draft-ietf-taps-minset-02

Abstract

 This draft recommends a minimal set of IETF Transport Services
 offered by end systems supporting TAPS, and gives guidance on
 choosing among the available mechanisms and protocols. It is based
 on the set of transport features in RFC 8303.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 1, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Welzl & Gjessing Expires September 1, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Minimal TAPS Transport Services February 2018

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. The Minimal Set of Transport Features 5
3.1. ESTABLISHMENT, AVAILABILITY and TERMINATION 5
3.2. MAINTENANCE . 8
3.2.1. Connection groups 8
3.2.2. Individual connections 10

3.3. DATA Transfer . 10
3.3.1. Sending Data . 10
3.3.2. Receiving Data 11

4. Conclusion . 12
5. Acknowledgements . 12
6. IANA Considerations . 12
7. Security Considerations 12
8. References . 13
8.1. Normative References 13
8.2. Informative References 13

Appendix A. Deriving the minimal set 15
 A.1. Step 1: Categorization -- The Superset of Transport
 Features . 15

A.1.1. CONNECTION Related Transport Features 17
A.1.2. DATA Transfer Related Transport Features 32

 A.2. Step 2: Reduction -- The Reduced Set of Transport
 Features . 37

A.2.1. CONNECTION Related Transport Features 38
A.2.2. DATA Transfer Related Transport Features 39

A.3. Step 3: Discussion 40
A.3.1. Sending Messages, Receiving Bytes 40
A.3.2. Stream Schedulers Without Streams 41
A.3.3. Early Data Transmission 42
A.3.4. Sender Running Dry 43
A.3.5. Capacity Profile 43
A.3.6. Security . 44
A.3.7. Packet Size . 44

Appendix B. Revision information 45
 Authors' Addresses . 46

1. Introduction

 The task of any system that implements TAPS is to offer transport
 services to its applications, i.e. the applications running on top of
 the transport system, without binding them to a particular transport
 protocol. Currently, the set of transport services that most
 applications use is based on TCP and UDP (and protocols that are
 layered on top of them); this limits the ability for the network
 stack to make use of features of other transport protocols. For

Welzl & Gjessing Expires September 1, 2018 [Page 2]

Internet-Draft Minimal TAPS Transport Services February 2018

 example, if a protocol supports out-of-order message delivery but
 applications always assume that the network provides an ordered
 bytestream, then the network stack can not immediately deliver a
 message that arrives out-of-order: doing so would break a fundamental
 assumption of the application. The net result is unnecessary head-
 of-line blocking delay.

 By exposing the transport services of multiple transport protocols, a
 TAPS transport system can make it possible to use these services
 without having to statically bind an application to a specific
 transport protocol. The first step towards the design of such a
 system was taken by [RFC8095], which surveys a large number of
 transports, and [RFC8303] as well as [RFC8304], which identify the
 specific transport features that are exposed to applications by the
 protocols TCP, MPTCP, UDP(-Lite) and SCTP as well as the LEDBAT
 congestion control mechanism. This memo is based on these documents
 and follows the same terminology (also listed below). Because the
 considered transport protocols conjointly cover a wide range of
 transport features, there is reason to hope that the resulting set
 (and the reasoning that led to it) will also apply to many aspects of
 other transport protocols.

 The number of transport features of current IETF transports is large,
 and exposing all of them has a number of disadvantages: generally,
 the more functionality is exposed, the less freedom a transport
 system has to automate usage of the various functions of its
 available set of transport protocols. Some functions only exist in
 one particular protocol, and if an application would use them, this
 would statically tie the application to this protocol, counteracting
 the purpose of TAPS. Also, if the number of exposed features is
 exceedingly large, a transport system might become very difficult to
 use for an application programmer. Taking [RFC8303] as a basis, this
 document therefore develops a minimal set of transport features,
 removing the ones that could be harmful to the purpose of TAPS but
 keeping the ones that must be retained for applications to benefit
 from useful transport functionality.

 Applications use a wide variety of APIs today. The transport
 features in the minimal set in this document must be reflected in
 all network APIs in order for the underlying functionality to
 become usable everywhere. For example, it does not help an
 application that talks to a middleware if only the Berkeley Sockets
 API is extended to offer "unordered message delivery", but the
 middleware only offers an ordered bytestream. Both the Berkeley
 Sockets API and the middleware would have to expose the "unordered
 message delivery" transport feature (alternatively, there may be ways
 for certain types of middleware to use this transport feature without
 exposing it, based on knowledge about the applications -- but this is

https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8304
https://datatracker.ietf.org/doc/html/rfc8303

Welzl & Gjessing Expires September 1, 2018 [Page 3]

Internet-Draft Minimal TAPS Transport Services February 2018

 not the general case). In most situations, in the interest of being
 as flexible and efficient as possible, the best choice will be for a
 middleware or library to expose at least all of the transport
 features that are recommended as a "minimal set" here.

 This "minimal set" can be implemented one-sided over TCP (or UDP, if
 certain limitations are put in place). This means that a sender-side
 TAPS system implementing it can talk to a non-TAPS TCP (or UDP)
 receiver, and a receiver-side TAPS system implementing it can talk to
 a non-TAPS TCP (or UDP) sender.

2. Terminology

 The following terms are used throughout this document, and in
 subsequent documents produced by TAPS that describe the composition
 and decomposition of transport services.

 Transport Feature: a specific end-to-end feature that the transport
 layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.
 Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides a
 complete service to an application.
 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.
 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g., a protocol stack (RTP
 over UDP).
 Application: an entity that uses the transport layer for end-to-end
 delivery data across the network (this may also be an upper layer
 protocol or tunnel encapsulation).
 Application-specific knowledge: knowledge that only applications
 have.
 Endpoint: an entity that communicates with one or more other
 endpoints using a transport protocol.
 Connection: shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints.
 Socket: the combination of a destination IP address and a
 destination port number.

 Moreover, throughout the document, the protocol name "UDP(-Lite)" is
 used when discussing transport features that are equivalent for UDP
 and UDP-Lite; similarly, the protocol name "TCP" refers to both TCP
 and MPTCP.

Welzl & Gjessing Expires September 1, 2018 [Page 4]

Internet-Draft Minimal TAPS Transport Services February 2018

3. The Minimal Set of Transport Features

 Based on the categorization, reduction and discussion in Appendix A,
 this section describes the minimal set of transport features that is
 offered by end systems supporting TAPS. The described transport
 system can be implemented over TCP; elements of the system that may
 prohibit implementation over UDP are marked with "!UDP". To
 implement a transport system that can also work over UDP, these
 marked transport features should be excluded.

 As in Appendix A, Appendix A.2 and [RFC8303], we categorize the
 minimal set of transport features as 1) CONNECTION related
 (ESTABLISHMENT, AVAILABILITY, MAINTENANCE, TERMINATION) and 2) DATA
 Transfer related (Sending Data, Receiving Data, Errors). Here, the
 focus is on connections that the transport system offers, as opposed
 to connections of transport protocols that the transport system uses.

3.1. ESTABLISHMENT, AVAILABILITY and TERMINATION

 A connection must first be "created" to allow for some initial
 configuration to be carried out before the transport system can
 actively or passively establish communication with a remote endpoint.
 All configuration parameters in Section 3.2 can be used initially,
 although some of them may only take effect when a connection has been
 established with a chosen transport protocol. Configuring a
 connection early helps a transport system make the right decisions.
 For example, grouping information can influence the transport system
 to implement a connection as a stream of a multi-streaming protocol's
 existing association or not.

 For ungrouped connections, early configuration is necessary because
 it allows the transport system to know which protocols it should try
 to use (to steer a mechanism such as "Happy Eyeballs"
 [I-D.grinnemo-taps-he]). In particular, a transport system that only
 makes a one-time choice for a particular protocol must know early
 about strict requirements that must be kept, or it can end up in a
 deadlock situation (e.g., having chosen UDP and later be asked to
 support reliable transfer). As a possibility to correctly handle
 these cases, we provide the following decision tree (this is derived
 from Appendix A.2.1 excluding authentication, as explained in

Section 7):

https://datatracker.ietf.org/doc/html/rfc8303

Welzl & Gjessing Expires September 1, 2018 [Page 5]

Internet-Draft Minimal TAPS Transport Services February 2018

 - Will it ever be necessary to offer any of the following?
 * Reliably transfer data
 * Notify the peer of closing/aborting
 * Preserve data ordering

 Yes: SCTP or TCP can be used.
 - Is any of the following useful to the application?
 * Choosing a scheduler to operate between connections
 in a group, with the possibility to configure a priority
 or weight per connection
 * Configurable message reliability
 * Unordered message delivery
 * Request not to delay the acknowledgement (SACK) of a message

 Yes: SCTP is preferred.
 No:
 - Is any of the following useful to the application?
 * Hand over a message to reliably transfer (possibly
 multiple times) before connection establishment
 * Suggest timeout to the peer
 * Notification of Excessive Retransmissions (early
 warning below abortion threshold)
 * Notification of ICMP error message arrival

 Yes: TCP is preferred.
 No: SCTP and TCP are equally preferable.

 No: all protocols can be used.
 - Is any of the following useful to the application?
 * Specify checksum coverage used by the sender
 * Specify minimum checksum coverage required by receiver

 Yes: UDP-Lite is preferred.
 No: UDP is preferred.

 Note that this decision tree is not optimal for all cases. For
 example, if an application wants to use "Specify checksum coverage
 used by the sender", which is only offered by UDP-Lite, and
 "Configure priority or weight for a scheduler", which is only offered
 by SCTP, the above decision tree will always choose UDP-Lite, making
 it impossible to use SCTP's schedulers with priorities between
 grouped connections. The transport system must know which choice is
 more important for the application in order to make the best
 decision. We caution implementers to be aware of the full set of
 trade-offs, for which we recommend consulting the list in

Appendix A.2.1 when deciding how to initialize a connection.

Welzl & Gjessing Expires September 1, 2018 [Page 6]

Internet-Draft Minimal TAPS Transport Services February 2018

 To summarize, the following parameters serve as input for the
 transport system to help it choose and configure a suitable protocol:

 o Reliability: a boolean that should be set to true when any of the
 following will be useful to the application: reliably transfer
 data; notify the peer of closing/aborting; preserve data ordering.
 o Checksum_coverage: a boolean to specify whether it will be useful
 to the application to specify checksum coverage when sending or
 receiving.
 o Config_msg_prio: a boolean that should be set to true when any of
 the following per-message configuration or prioritization
 mechanisms will be useful to the application: choosing a scheduler
 to operate between grouped connections, with the possibility to
 configure a priority or weight per connection; configurable
 message reliability; unordered message delivery; requesting not to
 delay the acknowledgement (SACK) of a message.
 o Earlymsg_timeout_notifications: a boolean that should be set to
 true when any of the following will be useful to the application:
 hand over a message to reliably transfer (possibly multiple times)
 before connection establishment; suggest timeout to the peer;
 notification of excessive retransmissions (early warning below
 abortion threshold); notification of ICMP error message arrival.

 Once a connection is created, it can be queried for the maximum
 amount of data that an application can possibly expect to have
 reliably transmitted before or during transport connection
 establishment (with zero being a possible answer) (see

Section 3.2.1). An application can also give the connection a
 message for reliable transmission before or during connection
 establishment (!UDP); the transport system will then try to transmit
 it as early as possible. An application can facilitate sending a
 message particularly early by marking it as "idempotent" (see

Section 3.3.1); in this case, the receiving application must be
 prepared to potentially receive multiple copies of the message
 (because idempotent messages are reliably transferred, asking for
 idempotence is not necessary for systems that support UDP).

 After creation, a transport system can actively establish
 communication with a peer, or it can passively listen for incoming
 connection requests. Note that active establishment may or may not
 trigger a notification on the listening side. It is possible that
 the first notification on the listening side is the arrival of the
 first data that the active side sends (a receiver-side transport
 system could handle this by continuing to block a "Listen" call,
 immediately followed by issuing "Receive", for example; callback-
 based implementations could simply skip the equivalent of "Listen").
 This also means that the active opening side is assumed to be the
 first side sending data.

Welzl & Gjessing Expires September 1, 2018 [Page 7]

Internet-Draft Minimal TAPS Transport Services February 2018

 A transport system can actively close a connection, i.e. terminate it
 after reliably delivering all remaining data to the peer (if reliable
 data delivery was requested earlier (!UDP)), in which case the peer
 is notified that the connection is closed. Alternatively, a
 connection can be aborted without delivering outstanding data to the
 peer. In case reliable or partially reliable data delivery was
 requested earlier (!UDP), the peer is notified that the connection is
 aborted. A timeout can be configured to abort a connection when data
 could not be delivered for too long (!UDP); however, timeout-based
 abortion does not notify the peer application that the connection has
 been aborted. Because half-closed connections are not supported,
 when a host implementing TAPS receives a notification that the peer
 is closing or aborting the connection (!UDP), its peer may not be
 able to read outstanding data. This means that unacknowledged data
 residing a transport system's send buffer may have to be dropped from
 that buffer upon arrival of a "close" or "abort" notification from
 the peer.

3.2. MAINTENANCE

 A transport system must offer means to group connections, but it
 cannot guarantee truly grouping them using the transport protocols
 that it uses (e.g., it cannot be guaranteed that connections become
 multiplexed as streams on a single SCTP association when SCTP may not
 be available). The transport system must therefore ensure that
 group- versus non-group-configurations are handled correctly in some
 way (e.g., by applying the configuration to all grouped connections
 even when they are not multiplexed, or informing the application
 about grouping success or failure).

 As a general rule, any configuration described below should be
 carried out as early as possible to aid the transport system's
 decision making.

3.2.1. Connection groups

 The following transport features and notifications (some directly
 from Appendix A.2, some new or changed, based on the discussion in

Appendix A.3) automatically apply to all grouped connections:

 (!UDP) Configure a timeout: this can be done with the following
 parameters:

 o A timeout value for aborting connections, in seconds
 o A timeout value to be suggested to the peer (if possible), in
 seconds
 o The number of retransmissions after which the application should
 be notifed of "Excessive Retransmissions"

Welzl & Gjessing Expires September 1, 2018 [Page 8]

Internet-Draft Minimal TAPS Transport Services February 2018

 Configure urgency: this can be done with the following parameters:

 o A number to identify the type of scheduler that should be used to
 operate between connections in the group (no guarantees given).
 Schedulers are defined in [RFC8260].
 o A "capacity profile" number to identify how an application wants
 to use its available capacity. Choices can be "lowest possible
 latency at the expense of overhead" (which would disable any
 Nagle-like algorithm), "scavenger", or values that help determine
 the DSCP value for a connection (e.g. similar to table 1 in
 [I-D.ietf-tsvwg-rtcweb-qos]).
 o A buffer limit (in bytes); when the sender has less then the
 provided limit of bytes in the buffer, the application may be
 notified. Notifications are not guaranteed, and it is optional
 for a transport system to support buffer limit values greater than
 0. Note that this limit and its notification should operate
 across the buffers of the whole transport system, i.e. also any
 potential buffers that the transport system itself may use on top
 of the transport's send buffer.

 Following Appendix A.3.7, these properties can be queried:

 o The maximum message size that may be sent without fragmentation
 via the configured interface. This is optional for a transport
 system to offer, and may return an error ("not available"). It
 can aid applications implementing Path MTU Discovery.
 o The maximum transport message size that can be sent, in bytes.
 Irrespective of fragmentation, there is a size limit for the
 messages that can be handed over to SCTP or UDP(-Lite); because
 the service provided by a transport system is independent of the
 transport protocol, it must allow an application to query this
 value -- the maximum size of a message in an Application-Framed-
 Bytestream (see Appendix A.3.1). This may also return an error
 when data is not delimited ("not available").
 o The maximum transport message size that can be received from the
 configured interface, in bytes (or "not available").
 o The maximum amount of data that can possibly be sent before or
 during connection establishment, in bytes.

 In addition to the already mentioned closing / aborting notifications
 and possible send errors, the following notifications can occur:

 o Excessive Retransmissions: the configured (or a default) number of
 retransmissions has been reached, yielding this early warning
 below an abortion threshold.
 o ICMP Arrival (parameter: ICMP message): an ICMP packet carrying
 the conveyed ICMP message has arrived.

https://datatracker.ietf.org/doc/html/rfc8260

Welzl & Gjessing Expires September 1, 2018 [Page 9]

Internet-Draft Minimal TAPS Transport Services February 2018

 o ECN Arrival (parameter: ECN value): a packet carrying the conveyed
 ECN value has arrived. This can be useful for applications
 implementing congestion control.
 o Timeout (parameter: s seconds): data could not be delivered for s
 seconds.
 o Drain: the send buffer has either drained below the configured
 buffer limit or it has become completely empty. This is a generic
 notification that tries to enable uniform access to
 "TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification (as
 discussed in Appendix A.3.4 -- SCTP's "SENDER DRY" is a special
 case where the threshold (for unsent data) is 0 and there is also
 no more unacknowledged data in the send buffer).

3.2.2. Individual connections

 Configure priority or weight for a scheduler, as described in
 [RFC8260].

 Configure checksum usage: this can be done with the following
 parameters, but there is no guarantee that any checksum limitations
 will indeed be enforced (the default behavior is "full coverage,
 checksum enabled"):

 o A boolean to enable / disable usage of a checksum when sending
 o The desired coverage (in bytes) of the checksum used when sending
 o A boolean to enable / disable requiring a checksum when receiving
 o The required minimum coverage (in bytes) of the checksum when
 receiving

3.3. DATA Transfer

3.3.1. Sending Data

 When sending a message, no guarantees are given about the
 preservation of message boundaries to the peer; if message boundaries
 are needed, the receiving application at the peer must know about
 them beforehand (or the transport system cannot use TCP). Note that
 an application should already be able to hand over data before the
 transport system establishes a connection with a chosen transport
 protocol. Regarding the message that is being handed over, the
 following parameters can be used:

 o Reliability: this parameter is used to convey a choice of: fully
 reliable (!UDP), unreliable without congestion control, unreliable
 (!UDP), partially reliable (see [RFC3758] and [RFC7496] for
 details on how to specify partial reliability) (!UDP). The latter
 two choices are optional for a transport system to offer and may
 result in full reliability. Note that applications sending

https://datatracker.ietf.org/doc/html/rfc8260
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc7496

Welzl & Gjessing Expires September 1, 2018 [Page 10]

Internet-Draft Minimal TAPS Transport Services February 2018

 unreliable data without congestion control should themselves
 perform congestion control in accordance with [RFC2914].
 o (!UDP) Ordered: this boolean parameter lets an application choose
 between ordered message delivery (true) and possibly unordered,
 potentially faster message delivery (false).
 o Bundle: a boolean that expresses a preference for allowing to
 bundle messages (true) or not (false). No guarantees are given.
 o DelAck: a boolean that, if false, lets an application request that
 the peer would not delay the acknowledgement for this message.
 o Fragment: a boolean that expresses a preference for allowing to
 fragment messages (true) or not (false), at the IP level. No
 guarantees are given.
 o (!UDP) Idempotent: a boolean that expresses whether a message is
 idempotent (true) or not (false). Idempotent messages may arrive
 multiple times at the receiver (but they will arrive at least
 once). When data is idempotent it can be used by the receiver
 immediately on a connection establishment attempt. Thus, if data
 is handed over before the transport system establishes a
 connection with a chosen transport protocol, stating that a
 message is idempotent facilitates transmitting it to the peer
 application particularly early.

 An application can be notified of a failure to send a specific
 message. There is no guarantee of such notifications, i.e. send
 failures can also silently occur.

3.3.2. Receiving Data

 A receiving application obtains an "Application-Framed Bytestream"
 (AFra-Bytestream); this concept is further described in

Appendix A.3.1). In line with TCP's receiver semantics, an AFra-
 Bytestream is just a stream of bytes to the receiver. If message
 boundaries were specified by the sender, a receiver-side transport
 system implementing only the minimum set of transport services
 defined here will still not inform the receiving application about
 them (this limitation is only needed for transport systems that are
 implemented to directly use TCP).

 Different from TCP's semantics, if the sending application has
 allowed that messages are not fully reliably transferred, or
 delivered out of order, then such re-ordering or unreliability may be
 reflected per message in the arriving data. Messages will always
 stay intact - i.e. if an incomplete message is contained at the end
 of the arriving data block, this message is guaranteed to continue in
 the next arriving data block.

https://datatracker.ietf.org/doc/html/rfc2914

Welzl & Gjessing Expires September 1, 2018 [Page 11]

Internet-Draft Minimal TAPS Transport Services February 2018

4. Conclusion

 By decoupling applications from transport protocols, a TAPS transport
 system provides a different abstraction level than the Berkeley
 sockets interface. As with high- vs. low-level programming
 languages, a higher abstraction level allows more freedom for
 automation below the interface, yet it takes some control away from
 the application programmer. This is the design trade-off that a
 transport system developer is facing, and this document provides
 guidance on the design of this abstraction level. Some transport
 features are currently rarely offered by APIs, yet they must be
 offered or they can never be used ("functional" transport features).
 Other transport features are offered by the APIs of the protocols
 covered here, but not exposing them in a TAPS API would allow for
 more freedom to automate protocol usage in a transport system. The
 minimal set presented in this document is an effort to find a middle
 ground that can be recommended for transport systems to implement, on
 the basis of the transport features discussed in [RFC8303].

5. Acknowledgements

 The authors would like to thank all the participants of the TAPS
 Working Group and the NEAT and MAMI research projects for valuable
 input to this document. We especially thank Michael Tuexen for help
 with connection connection establishment/teardown and Gorry Fairhurst
 for his suggestions regarding fragmentation and packet sizes. This
 work has received funding from the European Union's Horizon 2020
 research and innovation programme under grant agreement No. 644334
 (NEAT).

6. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

7. Security Considerations

 Authentication, confidentiality protection, and integrity protection
 are identified as transport features by [RFC8095]. As currently
 deployed in the Internet, these features are generally provided by a
 protocol or layer on top of the transport protocol; no current full-
 featured standards-track transport protocol provides all of these
 transport features on its own. Therefore, these transport features
 are not considered in this document, with the exception of native
 authentication capabilities of TCP and SCTP for which the security
 considerations in [RFC5925] and [RFC4895] apply. Security is

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc4895

Welzl & Gjessing Expires September 1, 2018 [Page 12]

Internet-Draft Minimal TAPS Transport Services February 2018

 discussed further in a separate TAPS document
 [I-D.pauly-taps-transport-security].

8. References

8.1. Normative References

 [RFC8303] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",

RFC 8303, DOI 10.17487/RFC8303, February 2018,
 <https://www.rfc-editor.org/info/rfc8303>.

8.2. Informative References

 [COBS] Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", September 1997,
 <http://stuartcheshire.org/papers/COBSforToN.pdf>.

 [I-D.grinnemo-taps-he]
 Grinnemo, K., Brunstrom, A., Hurtig, P., Khademi, N., and
 Z. Bozakov, "Happy Eyeballs for Transport Selection",

draft-grinnemo-taps-he-03 (work in progress), July 2017.

 [I-D.ietf-tsvwg-rtcweb-qos]
 Jones, P., Dhesikan, S., Jennings, C., and D. Druta, "DSCP
 Packet Markings for WebRTC QoS", draft-ietf-tsvwg-rtcweb-

qos-18 (work in progress), August 2016.

 [I-D.pauly-taps-transport-security]
 Pauly, T., Rose, K., and C. Wood, "A Survey of Transport
 Security Protocols", draft-pauly-taps-transport-

security-01 (work in progress), January 2018.

 [LBE-draft]
 Bless, R., "A Lower Effort Per-Hop Behavior (LE PHB)",
 Internet-draft draft-tsvwg-le-phb-03, February 2018.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
RFC 2914, DOI 10.17487/RFC2914, September 2000,

 <https://www.rfc-editor.org/info/rfc2914>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <https://www.rfc-editor.org/info/rfc3758>.

https://datatracker.ietf.org/doc/html/rfc8303
https://www.rfc-editor.org/info/rfc8303
http://stuartcheshire.org/papers/COBSforToN.pdf
https://datatracker.ietf.org/doc/html/draft-grinnemo-taps-he-03
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-18
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-18
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-01
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-01
https://datatracker.ietf.org/doc/html/draft-tsvwg-le-phb-03
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://www.rfc-editor.org/info/rfc2914
https://datatracker.ietf.org/doc/html/rfc3758
https://www.rfc-editor.org/info/rfc3758

Welzl & Gjessing Expires September 1, 2018 [Page 13]

Internet-Draft Minimal TAPS Transport Services February 2018

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <https://www.rfc-editor.org/info/rfc4895>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC7305] Lear, E., Ed., "Report from the IAB Workshop on Internet
 Technology Adoption and Transition (ITAT)", RFC 7305,
 DOI 10.17487/RFC7305, July 2014,
 <https://www.rfc-editor.org/info/rfc7305>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partially Reliable Stream
 Control Transmission Protocol Extension", RFC 7496,
 DOI 10.17487/RFC7496, April 2015,
 <https://www.rfc-editor.org/info/rfc7496>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

 [RFC8304] Fairhurst, G. and T. Jones, "Transport Features of the
 User Datagram Protocol (UDP) and Lightweight UDP (UDP-
 Lite)", RFC 8304, DOI 10.17487/RFC8304, February 2018,
 <https://www.rfc-editor.org/info/rfc8304>.

https://datatracker.ietf.org/doc/html/rfc4895
https://www.rfc-editor.org/info/rfc4895
https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc7305
https://www.rfc-editor.org/info/rfc7305
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7496
https://www.rfc-editor.org/info/rfc7496
https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095
https://datatracker.ietf.org/doc/html/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://datatracker.ietf.org/doc/html/rfc8304
https://www.rfc-editor.org/info/rfc8304

Welzl & Gjessing Expires September 1, 2018 [Page 14]

Internet-Draft Minimal TAPS Transport Services February 2018

 [WWDC2015]
 Lakhera, P. and S. Cheshire, "Your App and Next Generation
 Networks", Apple Worldwide Developers Conference 2015, San
 Francisco, USA, June 2015,
 <https://developer.apple.com/videos/wwdc/2015/?id=719>.

Appendix A. Deriving the minimal set

 We approach the construction of a minimal set of transport features
 in the following way:

 1. Categorization: the superset of transport features from [RFC8303]
 is presented, and transport features are categorized for later
 reduction.
 2. Reduction: a shorter list of transport features is derived from
 the categorization in the first step. This removes all transport
 features that do not require application-specific knowledge or
 cannot be implemented with TCP or UDP.
 3. Discussion: the resulting list shows a number of peculiarities
 that are discussed, to provide a basis for constructing the
 minimal set.
 4. Construction: Based on the reduced set and the discussion of the
 transport features therein, a minimal set is constructed.

 The first three steps as well as the underlying rationale for
 constructing the minimal set are described in this appendix. The
 minimal set itself is described in Section 3.

A.1. Step 1: Categorization -- The Superset of Transport Features

 Following [RFC8303], we divide the transport features into two main
 groups as follows:

 1. CONNECTION related transport features
 - ESTABLISHMENT
 - AVAILABILITY
 - MAINTENANCE
 - TERMINATION

 2. DATA Transfer related transport features
 - Sending Data
 - Receiving Data
 - Errors

 We assume that applications have no specific requirements that need
 knowledge about the network, e.g. regarding the choice of network
 interface or the end-to-end path. Even with these assumptions, there

https://developer.apple.com/videos/wwdc/2015/?id=719
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303

Welzl & Gjessing Expires September 1, 2018 [Page 15]

Internet-Draft Minimal TAPS Transport Services February 2018

 are certain requirements that are strictly kept by transport
 protocols today, and these must also be kept by a transport system.
 Some of these requirements relate to transport features that we call
 "Functional".

 Functional transport features provide functionality that cannot be
 used without the application knowing about them, or else they violate
 assumptions that might cause the application to fail. For example,
 ordered message delivery is a functional transport feature: it cannot
 be configured without the application knowing about it because the
 application's assumption could be that messages always arrive in
 order. Failure includes any change of the application behavior that
 is not performance oriented, e.g. security.

 "Change DSCP" and "Disable Nagle algorithm" are examples of transport
 features that we call "Optimizing": if a transport system
 autonomously decides to enable or disable them, an application will
 not fail, but a transport system may be able to communicate more
 efficiently if the application is in control of this optimizing
 transport feature. These transport features require application-
 specific knowledge (e.g., about delay/bandwidth requirements or the
 length of future data blocks that are to be transmitted).

 The transport features of IETF transport protocols that do not
 require application-specific knowledge and could therefore be
 transparently utilized by a transport system are called
 "Automatable".

 Finally, some transport features are aggregated and/or slightly
 changed in the description below. These transport features are
 marked as "ADDED". The corresponding transport features are
 automatable, and they are listed immediately below the "ADDED"
 transport feature.

 In this description, transport services are presented following the
 nomenclature "CATEGORY.[SUBCATEGORY].SERVICENAME.PROTOCOL",
 equivalent to "pass 2" in [RFC8303]. We also sketch how some of the
 TAPS transport features can be implemented by a transport system.
 For all transport features that are categorized as "functional" or
 "optimizing", and for which no matching TCP and/or UDP primitive
 exists in "pass 2" of [RFC8303], a brief discussion on how to
 implement them over TCP and/or UDP is included.

 We designate some transport features as "automatable" on the basis of
 a broader decision that affects multiple transport features:

 o Most transport features that are related to multi-streaming were
 designated as "automatable". This was done because the decision

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303

Welzl & Gjessing Expires September 1, 2018 [Page 16]

Internet-Draft Minimal TAPS Transport Services February 2018

 on whether to use multi-streaming or not does not depend on
 application-specific knowledge. This means that a connection that
 is exhibited to an application could be implemented by using a
 single stream of an SCTP association instead of mapping it to a
 complete SCTP association or TCP connection. This could be
 achieved by using more than one stream when an SCTP association is
 first established (CONNECT.SCTP parameter "outbound stream
 count"), maintaining an internal stream number, and using this
 stream number when sending data (SEND.SCTP parameter "stream
 number"). Closing or aborting a connection could then simply free
 the stream number for future use. This is discussed further in

Appendix A.3.2.
 o All transport features that are related to using multiple paths or
 the choice of the network interface were designated as
 "automatable". Choosing a path or an interface does not depend on
 application-specific knowledge. For example, "Listen" could
 always listen on all available interfaces and "Connect" could use
 the default interface for the destination IP address.

A.1.1. CONNECTION Related Transport Features

 ESTABLISHMENT:

 o Connect
 Protocols: TCP, SCTP, UDP(-Lite)
 Functional because the notion of a connection is often reflected
 in applications as an expectation to be able to communicate after
 a "Connect" succeeded, with a communication sequence relating to
 this transport feature that is defined by the application
 protocol.
 Implementation: via CONNECT.TCP, CONNECT.SCTP or CONNECT.UDP(-
 Lite).

 o Specify which IP Options must always be used
 Protocols: TCP, UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Request multiple streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

Welzl & Gjessing Expires September 1, 2018 [Page 17]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Limit the number of inbound streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Specify number of attempts and/or timeout for the first
 establishment message
 Protocols: TCP, SCTP
 Functional because this is closely related to potentially assumed
 reliable data delivery for data that is sent before or during
 connection establishment.
 Implementation: Using a parameter of CONNECT.TCP and CONNECT.SCTP.
 Implementation over UDP: Do nothing (this is irrelevant in case of
 UDP because there, reliable data delivery is not assumed).

 o Obtain multiple sockets
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Disable MPTCP
 Protocols: MPTCP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.
 Implementation: via a boolean parameter in CONNECT.MPTCP.

 o Configure authentication
 Protocols: TCP, SCTP
 Functional because this has a direct influence on security.
 Implementation: via parameters in CONNECT.TCP and CONNECT.SCTP.
 Implementation over TCP: With TCP, this allows to configure Master
 Key Tuples (MKTs) to authenticate complete segments (including the
 TCP IPv4 pseudoheader, TCP header, and TCP data). With SCTP, this
 allows to specify which chunk types must always be authenticated.
 Authenticating only certain chunk types creates a reduced level of
 security that is not supported by TCP; to be compatible, this
 should therefore only allow to authenticate all chunk types. Key
 material must be provided in a way that is compatible with both
 [RFC4895] and [RFC5925].

https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5925

Welzl & Gjessing Expires September 1, 2018 [Page 18]

Internet-Draft Minimal TAPS Transport Services February 2018

 Implementation over UDP: Not possible.

 o Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point
 Protocols: SCTP
 Functional because it allows to send extra data for the sake of
 identifying an adaptation layer, which by itself is application-
 specific.
 Implementation: via a parameter in CONNECT.SCTP.
 Implementation over TCP: not possible.
 Implementation over UDP: not possible.

 o Request to negotiate interleaving of user messages
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in CONNECT.SCTP.

 o Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment
 Protocols: TCP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via a parameter in CONNECT.TCP.
 Implementation over UDP: not possible.

 o Hand over a message to reliably transfer during connection
 establishment
 Protocols: SCTP
 Functional because this can only work if the message is limited in
 size, making it closely tied to properties of the data that an
 application sends or expects to receive.
 Implementation: via a parameter in CONNECT.SCTP.
 Implementation over UDP: not possible.

 o Enable UDP encapsulation with a specified remote UDP port number
 Protocols: SCTP
 Automatable because UDP encapsulation relates to knowledge about
 the network, not the application.

Welzl & Gjessing Expires September 1, 2018 [Page 19]

Internet-Draft Minimal TAPS Transport Services February 2018

 AVAILABILITY:

 o Listen
 Protocols: TCP, SCTP, UDP(-Lite)
 Functional because the notion of accepting connection requests is
 often reflected in applications as an expectation to be able to
 communicate after a "Listen" succeeded, with a communication
 sequence relating to this transport feature that is defined by the
 application protocol.
 ADDED. This differs from the 3 automatable transport features
 below in that it leaves the choice of interfaces for listening
 open.
 Implementation: by listening on all interfaces via LISTEN.TCP (not
 providing a local IP address) or LISTEN.SCTP (providing SCTP port
 number / address pairs for all local IP addresses). LISTEN.UDP(-
 Lite) supports both methods.

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Listen, N specified local interfaces
 Protocols: SCTP
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Listen, all local interfaces
 Protocols: TCP, SCTP, UDP(-Lite)
 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 o Specify which IP Options must always be used
 Protocols: TCP, UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

Welzl & Gjessing Expires September 1, 2018 [Page 20]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Disable MPTCP
 Protocols: MPTCP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Configure authentication
 Protocols: TCP, SCTP
 Functional because this has a direct influence on security.
 Implementation: via parameters in LISTEN.TCP and LISTEN.SCTP.
 Implementation over TCP: With TCP, this allows to configure Master
 Key Tuples (MKTs) to authenticate complete segments (including the
 TCP IPv4 pseudoheader, TCP header, and TCP data). With SCTP, this
 allows to specify which chunk types must always be authenticated.
 Authenticating only certain chunk types creates a reduced level of
 security that is not supported by TCP; to be compatible, this
 should therefore only allow to authenticate all chunk types. Key
 material must be provided in a way that is compatible with both
 [RFC4895] and [RFC5925].
 Implementation over UDP: not possible.

 o Obtain requested number of streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Limit the number of inbound streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point
 Protocols: SCTP
 Functional because it allows to send extra data for the sake of
 identifying an adaptation layer, which by itself is application-
 specific.
 Implementation: via a parameter in LISTEN.SCTP.
 Implementation over TCP: not possible.
 Implementation over UDP: not possible.

https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5925

Welzl & Gjessing Expires September 1, 2018 [Page 21]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Request to negotiate interleaving of user messages
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via a parameter in LISTEN.SCTP.

 MAINTENANCE:

 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP, SCTP
 Functional because this is closely related to potentially assumed
 reliable data delivery.
 Implementation: via CHANGE_TIMEOUT.TCP or CHANGE_TIMEOUT.SCTP.
 Implementation over UDP: not possible (UDP is unreliable and there
 is no connection timeout).

 o Suggest timeout to the peer
 Protocols: TCP
 Functional because this is closely related to potentially assumed
 reliable data delivery.
 Implementation: via CHANGE_TIMEOUT.TCP.
 Implementation over UDP: not possible (UDP is unreliable and there
 is no connection timeout).

 o Disable Nagle algorithm
 Protocols: TCP, SCTP
 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.
 Implementation: via DISABLE_NAGLE.TCP and DISABLE_NAGLE.SCTP.
 Implementation over UDP: do nothing (UDP does not implement the
 Nagle algorithm).

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP
 Automatable because this informs about network-specific knowledge.

Welzl & Gjessing Expires September 1, 2018 [Page 22]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 Protocols: TCP
 Optimizing because it is an early warning to the application,
 informing it of an impending functional event.
 Implementation: via ERROR.TCP.
 Implementation over UDP: do nothing (there is no abortion
 threshold).

 o Add path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Remove path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Set primary path
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Suggest primary path to the peer
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

Welzl & Gjessing Expires September 1, 2018 [Page 23]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Configure Path Switchover
 Protocols: SCTP
 Automatable because the usage of multiple paths to communicate to
 the same end host relates to knowledge about the network, not the
 application.

 o Obtain status (query or notification)
 Protocols: SCTP, MPTCP
 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window size; current local
 congestion window sizes; number of unacknowledged DATA chunks;
 number of DATA chunks pending receipt; primary path; most recent
 SRTT on primary path; RTO on primary path; SRTT and RTO on other
 destination addresses; MTU per path; interleaving supported yes/no
 MPTCP parameters: subflow-list (identified by source-IP; source-
 Port; destination-IP; destination-Port)
 Automatable because these parameters relate to knowledge about the
 network, not the application.

 o Specify DSCP field
 Protocols: TCP, SCTP, UDP(-Lite)
 Optimizing because choosing a suitable DSCP value requires
 application-specific knowledge.
 Implementation: via SET_DSCP.TCP / SET_DSCP.SCTP / SET_DSCP.UDP(-
 Lite)

 o Notification of ICMP error message arrival
 Protocols: TCP, UDP(-Lite)
 Optimizing because these messages can inform about success or
 failure of functional transport features (e.g., host unreachable
 relates to "Connect")
 Implementation: via ERROR.TCP or ERROR.UDP(-Lite).

 o Obtain information about interleaving support
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: via STATUS.SCTP.

Welzl & Gjessing Expires September 1, 2018 [Page 24]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Change authentication parameters
 Protocols: TCP, SCTP
 Functional because this has a direct influence on security.
 Implementation: via SET_AUTH.TCP and SET_AUTH.SCTP.
 Implementation over TCP: With SCTP, this allows to adjust key_id,
 key, and hmac_id. With TCP, this allows to change the preferred
 outgoing MKT (current_key) and the preferred incoming MKT
 (rnext_key), respectively, for a segment that is sent on the
 connection. Key material must be provided in a way that is
 compatible with both [RFC4895] and [RFC5925].
 Implementation over UDP: not possible.

 o Obtain authentication information
 Protocols: SCTP
 Functional because authentication decisions may have been made by
 the peer, and this has an influence on the necessary application-
 level measures to provide a certain level of security.
 Implementation: via GET_AUTH.SCTP.
 Implementation over TCP: With SCTP, this allows to obtain key_id
 and a chunk list. With TCP, this allows to obtain current_key and
 rnext_key from a previously received segment. Key material must
 be provided in a way that is compatible with both [RFC4895] and
 [RFC5925].
 Implementation over UDP: not possible.

 o Reset Stream
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Notification of Stream Reset
 Protocols: STCP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Reset Association
 Protocols: SCTP
 Automatable because deciding to reset an association does not
 require application-specific knowledge.
 Implementation: via RESET_ASSOC.SCTP.

https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5925

Welzl & Gjessing Expires September 1, 2018 [Page 25]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Notification of Association Reset
 Protocols: STCP
 Automatable because this notification does not relate to
 application-specific knowledge.

 o Add Streams
 Protocols: SCTP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Notification of Added Stream
 Protocols: STCP
 Automatable because using multi-streaming does not require
 application-specific knowledge.
 Implementation: see Appendix A.3.2.

 o Choose a scheduler to operate between streams of an association
 Protocols: SCTP
 Optimizing because the scheduling decision requires application-
 specific knowledge. However, if a transport system would not use
 this, or wrongly configure it on its own, this would only affect
 the performance of data transfers; the outcome would still be
 correct within the "best effort" service model.
 Implementation: using SET_STREAM_SCHEDULER.SCTP.
 Implementation over TCP: do nothing.
 Implementation over UDP: do nothing.

 o Configure priority or weight for a scheduler
 Protocols: SCTP
 Optimizing because the priority or weight requires application-
 specific knowledge. However, if a transport system would not use
 this, or wrongly configure it on its own, this would only affect
 the performance of data transfers; the outcome would still be
 correct within the "best effort" service model.
 Implementation: using CONFIGURE_STREAM_SCHEDULER.SCTP.
 Implementation over TCP: do nothing.
 Implementation over UDP: do nothing.

 o Configure send buffer size

Welzl & Gjessing Expires September 1, 2018 [Page 26]

Internet-Draft Minimal TAPS Transport Services February 2018

 Protocols: SCTP
 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application (see also
 the discussion in Appendix A.3.4).

 o Configure receive buffer (and rwnd) size
 Protocols: SCTP
 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application.

 o Configure message fragmentation
 Protocols: SCTP
 Automatable because fragmentation relates to knowledge about the
 network and the Operating System, not the application.
 Implementation: by always enabling it with
 CONFIG_FRAGMENTATION.SCTP and auto-setting the fragmentation size
 based on network or Operating System conditions.

 o Configure PMTUD
 Protocols: SCTP
 Automatable because Path MTU Discovery relates to knowledge about
 the network, not the application.

 o Configure delayed SACK timer
 Protocols: SCTP
 Automatable because the receiver-side decision to delay sending
 SACKs relates to knowledge about the network, not the application
 (it can be relevant for a sending application to request not to
 delay the SACK of a message, but this is a different transport
 feature).

 o Set Cookie life value
 Protocols: SCTP
 Functional because it relates to security (possibly weakened by
 keeping a cookie very long) versus the time between connection
 establishment attempts. Knowledge about both issues can be
 application-specific.

Welzl & Gjessing Expires September 1, 2018 [Page 27]

Internet-Draft Minimal TAPS Transport Services February 2018

 Implementation over TCP: the closest specified TCP functionality
 is the cookie in TCP Fast Open; for this, [RFC7413] states that
 the server "can expire the cookie at any time to enhance security"
 and section 4.1.2 describes an example implementation where
 updating the key on the server side causes the cookie to expire.
 Alternatively, for implementations that do not support TCP Fast
 Open, this transport feature could also affect the validity of SYN
 cookies (see Section 3.6 of [RFC4987]).
 Implementation over UDP: do nothing.

 o Set maximum burst
 Protocols: SCTP
 Automatable because it relates to knowledge about the network, not
 the application.

 o Configure size where messages are broken up for partial delivery
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation over TCP: not possible.
 Implementation over UDP: not possible.

 o Disable checksum when sending
 Protocols: UDP
 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity.
 Implementation: via SET_CHECKSUM_ENABLED.UDP.
 Implementation over TCP: do nothing.

 o Disable checksum requirement when receiving
 Protocols: UDP
 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity.
 Implementation: via SET_CHECKSUM_REQUIRED.UDP.
 Implementation over TCP: do nothing.

 o Specify checksum coverage used by the sender
 Protocols: UDP-Lite

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc4987#section-3.6

Welzl & Gjessing Expires September 1, 2018 [Page 28]

Internet-Draft Minimal TAPS Transport Services February 2018

 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity.
 Implementation: via SET_CHECKSUM_COVERAGE.UDP-Lite.
 Implementation over TCP: do nothing.

 o Specify minimum checksum coverage required by receiver
 Protocols: UDP-Lite
 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity.
 Implementation: via SET_MIN_CHECKSUM_COVERAGE.UDP-Lite.
 Implementation over TCP: do nothing.

 o Specify DF field
 Protocols: UDP(-Lite)
 Optimizing because the DF field can be used to carry out Path MTU
 Discovery, which can lead an application to choose message sizes
 that can be transmitted more efficiently.
 Implementation: via MAINTENANCE.SET_DF.UDP(-Lite) and
 SEND_FAILURE.UDP(-Lite).
 Implementation over TCP: do nothing. With TCP the sender is not
 in control of transport message sizes, making this functionality
 irrelevant.

 o Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 Protocols: UDP(-Lite)
 Optimizing because this can lead an application to choose message
 sizes that can be transmitted more efficiently.
 Implementation over TCP: do nothing: this information is not
 available with TCP.

 o Get max. transport-message size that may be received from the
 configured interface
 Protocols: UDP(-Lite)
 Optimizing because this can, for example, influence an
 application's memory management.
 Implementation over TCP: do nothing: this information is not
 available with TCP.

Welzl & Gjessing Expires September 1, 2018 [Page 29]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Specify TTL/Hop count field
 Protocols: UDP(-Lite)
 Automatable because a transport system can use a large enough
 system default to avoid communication failures. Allowing an
 application to configure it differently can produce notifications
 of ICMP error message arrivals that yield information which only
 relates to knowledge about the network, not the application.

 o Obtain TTL/Hop count field
 Protocols: UDP(-Lite)
 Automatable because the TTL/Hop count field relates to knowledge
 about the network, not the application.

 o Specify ECN field
 Protocols: UDP(-Lite)
 Automatable because the ECN field relates to knowledge about the
 network, not the application.

 o Obtain ECN field
 Protocols: UDP(-Lite)
 Optimizing because this information can be used by an application
 to better carry out congestion control (this is relevant when
 choosing a data transmission transport service that does not
 already do congestion control).
 Implementation over TCP: do nothing: this information is not
 available with TCP.

 o Specify IP Options
 Protocols: UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

 o Obtain IP Options
 Protocols: UDP(-Lite)
 Automatable because IP Options relate to knowledge about the
 network, not the application.

Welzl & Gjessing Expires September 1, 2018 [Page 30]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Enable and configure a "Low Extra Delay Background Transfer"
 Protocols: A protocol implementing the LEDBAT congestion control
 mechanism
 Optimizing because whether this service is appropriate or not
 depends on application-specific knowledge. However, wrongly using
 this will only affect the speed of data transfers (albeit
 including other transfers that may compete with the transport
 system's transfer in the network), so it is still correct within
 the "best effort" service model.
 Implementation: via CONFIGURE.LEDBAT and/or SET_DSCP.TCP /
 SET_DSCP.SCTP / SET_DSCP.UDP(-Lite) [LBE-draft].
 Implementation over TCP: do nothing.
 Implementation over UDP: do nothing.

 TERMINATION:

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP, SCTP
 Functional because the notion of a connection is often reflected
 in applications as an expectation to have all outstanding data
 delivered and no longer be able to communicate after a "Close"
 succeeded, with a communication sequence relating to this
 transport feature that is defined by the application protocol.
 Implementation: via CLOSE.TCP and CLOSE.SCTP.
 Implementation over UDP: not possible.

 o Abort without delivering remaining data, causing an event
 informing the application on the other side
 Protocols: TCP, SCTP
 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded. On both sides of a connection, an
 application protocol may define a communication sequence relating
 to this transport feature.
 Implementation: via ABORT.TCP and ABORT.SCTP.
 Implementation over UDP: not possible.

 o Abort without delivering remaining data, not causing an event
 informing the application on the other side

Welzl & Gjessing Expires September 1, 2018 [Page 31]

Internet-Draft Minimal TAPS Transport Services February 2018

 Protocols: UDP(-Lite)
 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded. On both sides of a connection, an
 application protocol may define a communication sequence relating
 to this transport feature.
 Implementation: via ABORT.UDP(-Lite).
 Implementation over TCP: stop using the connection, wait for a
 timeout.

 o Timeout event when data could not be delivered for too long
 Protocols: TCP, SCTP
 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.
 Implementation: via TIMEOUT.TCP and TIMEOUT.SCTP.
 Implementation over UDP: do nothing: this event will not occur
 with UDP.

A.1.2. DATA Transfer Related Transport Features

A.1.2.1. Sending Data

 o Reliably transfer data, with congestion control
 Protocols: TCP, SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.TCP and SEND.SCTP.
 Implementation over UDP: not possible.

 o Reliably transfer a message, with congestion control
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Implementation over TCP: via SEND.TCP. With SEND.TCP, messages
 will not be identifiable by the receiver.
 Implementation over UDP: not possible.

Welzl & Gjessing Expires September 1, 2018 [Page 32]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Unreliably transfer a message
 Protocols: SCTP, UDP(-Lite)
 Optimizing because only applications know about the time
 criticality of their communication, and reliably transfering a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.
 ADDED. This differs from the 2 automatable transport features
 below in that it leaves the choice of congestion control open.
 Implementation: via SEND.SCTP or SEND.UDP(-Lite).
 Implementation over TCP: use SEND.TCP. With SEND.TCP, messages
 will be sent reliably, and they will not be identifiable by the
 receiver.

 o Unreliably transfer a message, with congestion control
 Protocols: SCTP
 Automatable because congestion control relates to knowledge about
 the network, not the application.

 o Unreliably transfer a message, without congestion control
 Protocols: UDP(-Lite)
 Automatable because congestion control relates to knowledge about
 the network, not the application.

 o Configurable Message Reliability
 Protocols: SCTP
 Optimizing because only applications know about the time
 criticality of their communication, and reliably transfering a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.
 Implementation: via SEND.SCTP.
 Implementation over TCP: By using SEND.TCP and ignoring this
 configuration: based on the assumption of the best-effort service
 model, unnecessarily delivering data does not violate application
 expectations. Moreover, it is not possible to associate the
 requested reliability to a "message" in TCP anyway.
 Implementation over UDP: not possible.

 o Choice of stream
 Protocols: SCTP

Welzl & Gjessing Expires September 1, 2018 [Page 33]

Internet-Draft Minimal TAPS Transport Services February 2018

 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable. Implementation: see Appendix A.3.2.

 o Choice of path (destination address)
 Protocols: SCTP
 Automatable because it requires using multiple sockets, but
 obtaining multiple sockets in the CONNECTION.ESTABLISHMENT
 category is automatable.

 o Ordered message delivery (potentially slower than unordered)
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Implementation over TCP: By using SEND.TCP. With SEND.TCP,
 messages will not be identifiable by the receiver.
 Implementation over UDP: not possible.

 o Unordered message delivery (potentially faster than ordered)
 Protocols: SCTP, UDP(-Lite)
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via SEND.SCTP.
 Implementation over TCP: By using SEND.TCP and always sending data
 ordered: based on the assumption of the best-effort service model,
 ordered delivery may just be slower and does not violate
 application expectations. Moreover, it is not possible to
 associate the requested delivery order to a "message" in TCP
 anyway.

 o Request not to bundle messages
 Protocols: SCTP
 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.
 Implementation: via SEND.SCTP.
 Implementation over TCP: By using SEND.TCP and DISABLE_NAGLE.TCP
 to disable the Nagle algorithm when the request is made and enable
 it again when the request is no longer made. Note that this is
 not fully equivalent because it relates to the time of issuing the
 request rather than a specific message.

Welzl & Gjessing Expires September 1, 2018 [Page 34]

Internet-Draft Minimal TAPS Transport Services February 2018

 Implementation over UDP: do nothing (UDP never bundles messages).

 o Specifying a "payload protocol-id" (handed over as such by the
 receiver)
 Protocols: SCTP
 Functional because it allows to send extra application data with
 every message, for the sake of identification of data, which by
 itself is application-specific.
 Implementation: SEND.SCTP.
 Implementation over TCP: not possible.
 Implementation over UDP: not possible.

 o Specifying a key id to be used to authenticate a message
 Protocols: SCTP
 Functional because this has a direct influence on security.
 Implementation: via a parameter in SEND.SCTP.
 Implementation over TCP: This could be emulated by using
 SET_AUTH.TCP before and after the message is sent. Note that this
 is not fully equivalent because it relates to the time of issuing
 the request rather than a specific message.
 Implementation over UDP: not possible.

 o Request not to delay the acknowledgement (SACK) of a message
 Protocols: SCTP
 Optimizing because only an application knows for which message it
 wants to quickly be informed about success / failure of its
 delivery.
 Implementation over TCP: do nothing.
 Implementation over UDP: do nothing.

A.1.2.2. Receiving Data

 o Receive data (with no message delimiting)
 Protocols: TCP
 Functional because a transport system must be able to send and
 receive data.
 Implementation: via RECEIVE.TCP.
 Implementation over UDP: do nothing (hand over a message, let the
 application ignore message boundaries).

Welzl & Gjessing Expires September 1, 2018 [Page 35]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Receive a message
 Protocols: SCTP, UDP(-Lite)
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via RECEIVE.SCTP and RECEIVE.UDP(-Lite).
 Implementation over TCP: not possible.

 o Choice of stream to receive from
 Protocols: SCTP
 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.
 Implementation: see Appendix A.3.2.

 o Information about partial message arrival
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation: via RECEIVE.SCTP.
 Implementation over TCP: do nothing: this information is not
 available with TCP.
 Implementation over UDP: do nothing: this information is not
 available with UDP.

A.1.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Appendix A.1.2.1).

 o Notification of send failures
 Protocols: SCTP, UDP(-Lite)
 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.
 ADDED. This differs from the 2 automatable transport features
 below in that it does not distinugish between unsent and
 unacknowledged messages.
 Implementation: via SENDFAILURE-EVENT.SCTP and SEND_FAILURE.UDP(-
 Lite).
 Implementation over TCP: do nothing: this notification is not
 available and will therefore not occur with TCP.

Welzl & Gjessing Expires September 1, 2018 [Page 36]

Internet-Draft Minimal TAPS Transport Services February 2018

 o Notification of an unsent (part of a) message
 Protocols: SCTP, UDP(-Lite)
 Automatable because the distinction between unsent and
 unacknowledged is network-specific.

 o Notification of an unacknowledged (part of a) message
 Protocols: SCTP
 Automatable because the distinction between unsent and
 unacknowledged is network-specific.

 o Notification that the stack has no more user data to send
 Protocols: SCTP
 Optimizing because reacting to this notification requires the
 application to be involved, and ensuring that the stack does not
 run dry of data (for too long) can improve performance.
 Implementation over TCP: do nothing. See also the discussion in

Appendix A.3.4.
 Implementation over UDP: do nothing. This notification is not
 available and will therefore not occur with UDP.

 o Notification to a receiver that a partial message delivery has
 been aborted
 Protocols: SCTP
 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.
 Implementation over TCP: do nothing. This notification is not
 available and will therefore not occur with TCP.
 Implementation over UDP: do nothing. This notification is not
 available and will therefore not occur with UDP.

A.2. Step 2: Reduction -- The Reduced Set of Transport Features

 By hiding automatable transport features from the application, a
 transport system can gain opportunities to automate the usage of
 network-related functionality. This can facilitate using the
 transport system for the application programmer and it allows for
 optimizations that may not be possible for an application. For
 instance, system-wide configurations regarding the usage of multiple
 interfaces can better be exploited if the choice of the interface is

Welzl & Gjessing Expires September 1, 2018 [Page 37]

Internet-Draft Minimal TAPS Transport Services February 2018

 not entirely up to the application. Therefore, since they are not
 strictly necessary to expose in a transport system, we do not include
 automatable transport features in the reduced set of transport
 features. This leaves us with only the transport features that are
 either optimizing or functional.

 A transport system should be able to communicate via TCP or UDP if
 alternative transport protocols are found not to work. For many
 transport features, this is possible -- often by simply not doing
 anything when a specific request is made. For some transport
 features, however, it was identified that direct usage of neither TCP
 nor UDP is possible: in these cases, even not doing anything would
 incur semantically incorrect behavior. Whenever an application would
 make use of one of these transport features, this would eliminate the
 possibility to use TCP or UDP. Thus, we only keep the functional and
 optimizing transport features for which an implementation over either
 TCP or UDP is possible in our reduced set.

 In the following list, we precede a transport feature with "T:" if an
 implementation over TCP is possible, "U:" if an implementation over
 UDP is possible, and "TU:" if an implementation over either TCP or
 UDP is possible.

A.2.1. CONNECTION Related Transport Features

 ESTABLISHMENT:

 o T,U: Connect
 o T,U: Specify number of attempts and/or timeout for the first
 establishment message
 o T: Configure authentication
 o T: Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment
 o T: Hand over a message to reliably transfer during connection
 establishment

 AVAILABILITY:

 o T,U: Listen
 o T: Configure authentication

 MAINTENANCE:

 o T: Change timeout for aborting connection (using retransmit limit
 or time value)
 o T: Suggest timeout to the peer
 o T,U: Disable Nagle algorithm

Welzl & Gjessing Expires September 1, 2018 [Page 38]

Internet-Draft Minimal TAPS Transport Services February 2018

 o T,U: Notification of Excessive Retransmissions (early warning
 below abortion threshold)
 o T,U: Specify DSCP field
 o T,U: Notification of ICMP error message arrival
 o T: Change authentication parameters
 o T: Obtain authentication information
 o T,U: Set Cookie life value
 o T,U: Choose a scheduler to operate between streams of an
 association
 o T,U: Configure priority or weight for a scheduler
 o T,U: Disable checksum when sending
 o T,U: Disable checksum requirement when receiving
 o T,U: Specify checksum coverage used by the sender
 o T,U: Specify minimum checksum coverage required by receiver
 o T,U: Specify DF field
 o T,U: Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 o T,U: Get max. transport-message size that may be received from the
 configured interface
 o T,U: Obtain ECN field
 o T,U: Enable and configure a "Low Extra Delay Background Transfer"

 TERMINATION:

 o T: Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 o T: Abort without delivering remaining data, causing an event
 informing the application on the other side
 o T,U: Abort without delivering remaining data, not causing an event
 informing the application on the other side
 o T,U: Timeout event when data could not be delivered for too long

A.2.2. DATA Transfer Related Transport Features

A.2.2.1. Sending Data

 o T: Reliably transfer data, with congestion control
 o T: Reliably transfer a message, with congestion control
 o T,U: Unreliably transfer a message
 o T: Configurable Message Reliability
 o T: Ordered message delivery (potentially slower than unordered)
 o T,U: Unordered message delivery (potentially faster than ordered)
 o T,U: Request not to bundle messages
 o T: Specifying a key id to be used to authenticate a message
 o T,U: Request not to delay the acknowledgement (SACK) of a message

Welzl & Gjessing Expires September 1, 2018 [Page 39]

Internet-Draft Minimal TAPS Transport Services February 2018

A.2.2.2. Receiving Data

 o T,U: Receive data (with no message delimiting)
 o U: Receive a message
 o T,U: Information about partial message arrival

A.2.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Appendix A.1.2.1).

 o T,U: Notification of send failures
 o T,U: Notification that the stack has no more user data to send
 o T,U: Notification to a receiver that a partial message delivery
 has been aborted

A.3. Step 3: Discussion

 The reduced set in the previous section exhibits a number of
 peculiarities, which we will discuss in the following. This section
 focuses on TCP because, with the exception of one particular
 transport feature ("Receive a message" -- we will discuss this in

Appendix A.3.1), the list shows that UDP is strictly a subset of TCP.
 We can first try to understand how to build a transport system that
 can run over TCP, and then narrow down the result further to allow
 that the system can always run over either TCP or UDP (which
 effectively means removing everything related to reliability,
 ordering, authentication and closing/aborting with a notification to
 the peer).

 Note that, because the functional transport features of UDP are --
 with the exception of "Receive a message" -- a subset of TCP, TCP can
 be used as a replacement for UDP whenever an application does not
 need message delimiting (e.g., because the application-layer protocol
 already does it). This has been recognized by many applications that
 already do this in practice, by trying to communicate with UDP at
 first, and falling back to TCP in case of a connection failure.

A.3.1. Sending Messages, Receiving Bytes

 For implementing a transport system over TCP, there are several
 transport features related to sending, but only a single transport
 feature related to receiving: "Receive data (with no message
 delimiting)" (and, strangely, "information about partial message
 arrival"). Notably, the transport feature "Receive a message" is
 also the only non-automatable transport feature of UDP(-Lite) for
 which no implementation over TCP is possible.

Welzl & Gjessing Expires September 1, 2018 [Page 40]

Internet-Draft Minimal TAPS Transport Services February 2018

 To support these TCP receiver semantics, we define an "Application-
 Framed Bytestream" (AFra-Bytestream). AFra-Bytestreams allow senders
 to operate on messages while minimizing changes to the TCP socket
 API. In particular, nothing changes on the receiver side - data can
 be accepted via a normal TCP socket.

 In an AFra-Bytestream, the sending application can optionally inform
 the transport about message boundaries and required properties per
 message (configurable order and reliability, or embedding a request
 not to delay the acknowledgement of a message). Whenever the sending
 application specifies per-message properties that relax the notion of
 reliable in-order delivery of bytes, it must assume that the
 receiving application is 1) able to determine message boundaries,
 provided that messages are always kept intact, and 2) able to accept
 these relaxed per-message properties. Any signaling of such
 information to the peer is up to an application-layer protocol and
 considered out of scope of this document.

 For example, if an application requests to transfer fixed-size
 messages of 100 bytes with partial reliability, this needs the
 receiving application to be prepared to accept data in chunks of 100
 bytes. If, then, some of these 100-byte messages are missing (e.g.,
 if SCTP with Configurable Reliability is used), this is the expected
 application behavior. With TCP, no messages would be missing, but
 this is also correct for the application, and the possible
 retransmission delay is acceptable within the best effort service
 model [RFC7305]. Still, the receiving application would separate the
 byte stream into 100-byte chunks.

 Note that this usage of messages does not require all messages to be
 equal in size. Many application protocols use some form of Type-
 Length-Value (TLV) encoding, e.g. by defining a header including
 length fields; another alternative is the use of byte stuffing
 methods such as COBS [COBS]. If an application needs message
 numbers, e.g. to restore the correct sequence of messages, these must
 also be encoded by the application itself, as the sequence number
 related transport features of SCTP are not provided by the "minimum
 set" (in the interest of enabling usage of TCP).

A.3.2. Stream Schedulers Without Streams

 We have already stated that multi-streaming does not require
 application-specific knowledge. Potential benefits or disadvantages
 of, e.g., using two streams of an SCTP association versus using two
 separate SCTP associations or TCP connections are related to
 knowledge about the network and the particular transport protocol in
 use, not the application. However, the transport features "Choose a
 scheduler to operate between streams of an association" and

https://datatracker.ietf.org/doc/html/rfc7305

Welzl & Gjessing Expires September 1, 2018 [Page 41]

Internet-Draft Minimal TAPS Transport Services February 2018

 "Configure priority or weight for a scheduler" operate on streams.
 Here, streams identify communication channels between which a
 scheduler operates, and they can be assigned a priority. Moreover,
 the transport features in the MAINTENANCE category all operate on
 assocations in case of SCTP, i.e. they apply to all streams in that
 assocation.

 With only these semantics necessary to represent, the interface to a
 transport system becomes easier if we assume that connections may be
 a transport protocol's connection or association, but could also be a
 stream of an existing SCTP association, for example. We only need to
 allow for a way to define a possible grouping of connections. Then,
 all MAINTENANCE transport features can be said to operate on
 connection groups, not connections, and a scheduler operates on the
 connections within a group.

 To be compatible with multiple transport protocols and uniformly
 allow access to both transport connections and streams of a multi-
 streaming protocol, the semantics of opening and closing need to be
 the most restrictive subset of all of the underlying options. For
 example, TCP's support of half-closed connections can be seen as a
 feature on top of the more restrictive "ABORT"; this feature cannot
 be supported because not all protocols used by a transport system
 (including streams of an association) support half-closed
 connections.

A.3.3. Early Data Transmission

 There are two transport features related to transferring a message
 early: "Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment", which relates to TCP Fast
 Open [RFC7413], and "Hand over a message to reliably transfer during
 connection establishment", which relates to SCTP's ability to
 transfer data together with the COOKIE-Echo chunk. Also without TCP
 Fast Open, TCP can transfer data during the handshake, together with
 the SYN packet -- however, the receiver of this data may not hand it
 over to the application until the handshake has completed. Also,
 different from TCP Fast Open, this data is not delimited as a message
 by TCP (thus, not visible as a ``message''). This functionality is
 commonly available in TCP and supported in several implementations,
 even though the TCP specification does not explain how to provide it
 to applications.

 A transport system could differentiate between the cases of
 transmitting data "before" (possibly multiple times) or "during" the
 handshake. Alternatively, it could also assume that data that are
 handed over early will be transmitted as early as possible, and
 "before" the handshake would only be used for messages that are

https://datatracker.ietf.org/doc/html/rfc7413

Welzl & Gjessing Expires September 1, 2018 [Page 42]

Internet-Draft Minimal TAPS Transport Services February 2018

 explicitly marked as "idempotent" (i.e., it would be acceptable to
 transfer them multiple times).

 The amount of data that can successfully be transmitted before or
 during the handshake depends on various factors: the transport
 protocol, the use of header options, the choice of IPv4 and IPv6 and
 the Path MTU. A transport system should therefore allow a sending
 application to query the maximum amount of data it can possibly
 transmit before (or, if exposed, during) connection establishment.

A.3.4. Sender Running Dry

 The transport feature "Notification that the stack has no more user
 data to send" relates to SCTP's "SENDER DRY" notification. Such
 notifications can, in principle, be used to avoid having an
 unnecessarily large send buffer, yet ensure that the transport sender
 always has data available when it has an opportunity to transmit it.
 This has been found to be very beneficial for some applications
 [WWDC2015]. However, "SENDER DRY" truly means that the entire send
 buffer (including both unsent and unacknowledged data) has emptied --
 i.e., when it notifies the sender, it is already too late, the
 transport protocol already missed an opportunity to send data. Some
 modern TCP implementations now include the unspecified
 "TCP_NOTSENT_LOWAT" socket option that was proposed in [WWDC2015],
 which limits the amount of unsent data that TCP can keep in the
 socket buffer; this allows to specify at which buffer filling level
 the socket becomes writable, rather than waiting for the buffer to
 run empty.

 SCTP allows to configure the sender-side buffer too: the automatable
 Transport Feature "Configure send buffer size" provides this
 functionality, but only for the complete buffer, which includes both
 unsent and unacknowledged data. SCTP does not allow to control these
 two sizes separately. It therefore makes sense for a transport
 system to allow for uniform access to "TCP_NOTSENT_LOWAT" as well as
 the "SENDER DRY" notification.

A.3.5. Capacity Profile

 The transport features:

 o Disable Nagle algorithm
 o Enable and configure a "Low Extra Delay Background Transfer"
 o Specify DSCP field

 all relate to a QoS-like application need such as "low latency" or
 "scavenger". In the interest of flexibility of a transport system,
 they could therefore be offered in a uniform, more abstract way,

Welzl & Gjessing Expires September 1, 2018 [Page 43]

Internet-Draft Minimal TAPS Transport Services February 2018

 where a transport system could e.g. decide by itself how to use
 combinations of LEDBAT-like congestion control and certain DSCP
 values, and an application would only specify a general "capacity
 profile" (a description of how it wants to use the available
 capacity). A need for "lowest possible latency at the expense of
 overhead" could then translate into automatically disabling the Nagle
 algorithm.

 In some cases, the Nagle algorithm is best controlled directly by the
 application because it is not only related to a general profile but
 also to knowledge about the size of future messages. For fine-grain
 control over Nagle-like functionality, the "Request not to bundle
 messages" is available.

A.3.6. Security

 Both TCP and SCTP offer authentication. TCP authenticates complete
 segments. SCTP allows to configure which of SCTP's chunk types must
 always be authenticated -- if this is exposed as such, it creates an
 undesirable dependency on the transport protocol. For compatibility
 with TCP, a transport system should only allow to configure complete
 transport layer packets, including headers, IP pseudo-header (if any)
 and payload.

 Security is discussed in a separate TAPS document
 [I-D.pauly-taps-transport-security]. The minimal set presented in
 the present document therefore excludes all security related
 transport features: "Configure authentication", "Change
 authentication parameters", "Obtain authentication information" and
 and "Set Cookie life value" as well as "Specifying a key id to be
 used to authenticate a message".

A.3.7. Packet Size

 UDP(-Lite) has a transport feature called "Specify DF field". This
 yields an error message in case of sending a message that exceeds the
 Path MTU, which is necessary for a UDP-based application to be able
 to implement Path MTU Discovery (a function that UDP-based
 applications must do by themselves). The "Get max. transport-message
 size that may be sent using a non-fragmented IP packet from the
 configured interface" transport feature yields an upper limit for the
 Path MTU (minus headers) and can therefore help to implement Path MTU
 Discovery more efficiently.

Welzl & Gjessing Expires September 1, 2018 [Page 44]

Internet-Draft Minimal TAPS Transport Services February 2018

Appendix B. Revision information

 XXX RFC-Ed please remove this section prior to publication.

 -02: implementation suggestions added, discussion section added,
 terminology extended, DELETED category removed, various other fixes;
 list of Transport Features adjusted to -01 version of [RFC8303]
 except that MPTCP is not included.

 -03: updated to be consistent with -02 version of [RFC8303].

 -04: updated to be consistent with -03 version of [RFC8303].
 Reorganized document, rewrote intro and conclusion, and made a first
 stab at creating a real "minimal set".

 -05: updated to be consistent with -05 version of [RFC8303] (minor
 changes). Fixed a mistake regarding Cookie Life value. Exclusion of
 security related transport features (to be covered in a separate
 document). Reorganized the document (now begins with the minset,
 derivation is in the appendix). First stab at an abstract API for
 the minset.

draft-ietf-taps-minset-00: updated to be consistent with -08 version
 of [RFC8303] ("obtain message delivery number" was removed, as this
 has also been removed in [RFC8303] because it was a mistake in

RFC4960. This led to the removal of two more transport features that
 were only designated as functional because they affected "obtain
 message delivery number"). Fall-back to UDP incorporated (this was
 requested at IETF-99); this also affected the transport feature
 "Choice between unordered (potentially faster) or ordered delivery of
 messages" because this is a boolean which is always true for one
 fall-back protocol, and always false for the other one. This was
 therefore now divided into two features, one for ordered, one for
 unordered delivery. The word "reliably" was added to the transport
 features "Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment" and "Hand over a message to
 reliably transfer during connection establishment" to make it clearer
 why this is not supported by UDP. Clarified that the "minset
 abstract interface" is not proposing a specific API for all TAPS
 systems to implement, but it is just a way to describe the minimum
 set. Author order changed.

 WG -01: "fall-back to" (TCP or UDP) replaced (mostly with
 "implementation over"). References to post-sockets removed (these
 were statments that assumed that post-sockets requires two-sided
 implementation). Replaced "flow" with "TAPS Connection" and "frame"
 with "message" to avoid introducing new terminology. Made sections 3
 and 4 in line with the categorization that is already used in the

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/draft-ietf-taps-minset-00
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/rfc4960

Welzl & Gjessing Expires September 1, 2018 [Page 45]

Internet-Draft Minimal TAPS Transport Services February 2018

 appendix and [RFC8303], and changed style of section 4 to be even
 shorter and less interface-like. Updated reference draft-ietf-tsvwg-

sctp-ndata to RFC8260.

 WG -02: rephrased "the TAPS system" and "TAPS connection" etc. to
 more generally talk about transport after the intro (mostly replacing
 "TAPS system" with "transport system" and "TAPS connection" with
 "connection". Merged sections 3 and 4 to form a new section 3.

Authors' Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: steing@ifi.uio.no

https://datatracker.ietf.org/doc/html/rfc8303
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata
https://datatracker.ietf.org/doc/html/rfc8260

Welzl & Gjessing Expires September 1, 2018 [Page 46]

