
Network Working Group G. Fairhurst, Ed.
Internet-Draft University of Aberdeen
Intended status: Informational B. Trammell, Ed.
Expires: November 28, 2015 M. Kuehlewind, Ed.
 ETH Zurich
 May 27, 2015

Services provided by IETF transport protocols and congestion control
mechanisms

draft-ietf-taps-transports-04

Abstract

 This document describes services provided by existing IETF protocols
 and congestion control mechanisms. It is designed to help
 application and network stack programmers and to inform the work of
 the IETF TAPS Working Group.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 28, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Fairhurst, et al. Expires November 28, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TAPS Transports May 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Existing Transport Protocols 4
3.1. Transport Control Protocol (TCP) 4
3.1.1. Protocol Description 5
3.1.2. Interface description 6
3.1.3. Transport Protocol Components 6

3.2. Multipath TCP (MP-TCP) 7
3.3. Stream Control Transmission Protocol (SCTP) 7
3.3.1. Protocol Description 8
3.3.2. Interface Description 10
3.3.3. Transport Protocol Components 11

3.4. User Datagram Protocol (UDP) 12
3.4.1. Protocol Description 12
3.4.2. Interface Description 13
3.4.3. Transport Protocol Components 13

3.5. Lightweight User Datagram Protocol (UDP-Lite) 14
3.5.1. Protocol Description 14
3.5.2. Interface Description 15
3.5.3. Transport Protocol Components 15

3.6. Datagram Congestion Control Protocol (DCCP) 15
3.6.1. Protocol Description 16
3.6.2. Interface Description 17
3.6.3. Transport Protocol Components 17

3.7. Realtime Transport Protocol (RTP) 18
3.8. NACK-Oriented Reliable Multicast (NORM) 18
3.8.1. Protocol Description 18
3.8.2. Interface Description 19
3.8.3. Transport Protocol Components 20

 3.9. Transport Layer Security (TLS) and Datagram TLS (DTLS) as
 a pseudotransport . 20

3.9.1. Protocol Description 21
3.9.2. Interface Description 21
3.9.3. Transport Protocol Components 21

 3.10. Hypertext Transport Protocol (HTTP) over TCP as a
 pseudotransport . 21

3.10.1. Protocol Description 21
3.10.2. Interface Description 22
3.10.3. Transport Protocol Components 23

3.11. WebSockets . 23
3.11.1. Protocol Description 23
3.11.2. Interface Description 24
3.11.3. Transport Protocol Components 24

Fairhurst, et al. Expires November 28, 2015 [Page 2]

Internet-Draft TAPS Transports May 2015

4. Transport Service Features 24
4.1. Complete Protocol Feature Matrix 26

5. IANA Considerations . 28
6. Security Considerations 28
7. Contributors . 28
8. Acknowledgments . 28
9. References . 28
9.1. Normative References 28
9.2. Informative References 29

 Authors' Addresses . 34

1. Introduction

 Most Internet applications make use of the Transport Services
 provided by TCP (a reliable, in-order stream protocol) or UDP (an
 unreliable datagram protocol). We use the term "Transport Service"
 to mean the end-to-end service provided to an application by the
 transport layer. That service can only be provided correctly if
 information about the intended usage is supplied from the
 application. The application may determine this information at
 design time, compile time, or run time, and may include guidance on
 whether a feature is required, a preference by the application, or
 something in between. Examples of features of Transport Services are
 reliable delivery, ordered delivery, content privacy to in-path
 devices, integrity protection, and minimal latency.

 The IETF has defined a wide variety of transport protocols beyond TCP
 and UDP, including SCTP, DCCP, MP-TCP, and UDP-Lite. Transport
 services may be provided directly by these transport protocols, or
 layered on top of them using protocols such as WebSockets (which runs
 over TCP), RTP (over TCP or UDP) or WebRTC data channels (which run
 over SCTP over DTLS over UDP or TCP). Services built on top of UDP
 or UDP-Lite typically also need to specify additional mechanisms,
 including a congestion control mechanism (such as a windowed
 congestion control, TFRC or LEDBAT congestion control mechanism).
 This extends the set of available Transport Services beyond those
 provided to applications by TCP and UDP.

 Transport protocols can also be differentiated by the features of the
 services they provide: for instance, SCTP offers a message-based
 service providing full or partial reliability and allowing to
 minimize the head of line blocking due to the support of unordered
 and unordered message delivery within multiple streams, UDP-Lite
 provides partial integrity protection, and LEDBAT can provide low-
 priority "scavenger" communication.

Fairhurst, et al. Expires November 28, 2015 [Page 3]

Internet-Draft TAPS Transports May 2015

2. Terminology

 The following terms are defined throughout this document, and in
 subsequent documents produced by TAPS describing the composition and
 decomposition of transport services.

 Transport Service Feature: a specific end-to-end feature that a
 transport service provides to its clients. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 Transport Service: a set of transport service features, without an
 association to any given framing protocol, which provides a
 complete service to an application.

 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.

 Transport Protocol Component: an implementation of a transport
 service feature within a protocol.

 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g. a protocol stack (RTP
 over UDP).

 Application: an entity that uses the transport layer for end-to-end
 delivery data across the network (this may also be an upper layer
 protocol or tunnel encapsulation).

3. Existing Transport Protocols

 This section provides a list of known IETF transport protocol and
 transport protocol frameworks.

 [EDITOR'S NOTE: Contributions to the subsections below are welcome]

3.1. Transport Control Protocol (TCP)

 TCP is an IETF standards track transport protocol. [RFC0793]
 introduces TCP as follows: "The Transmission Control Protocol (TCP)
 is intended for use as a highly reliable host-to-host protocol
 between hosts in packet-switched computer communication networks, and
 in interconnected systems of such networks." Since its introduction,
 TCP has become the default connection-oriented, stream-based
 transport protocol in the Internet. It is widely implemented by
 endpoints and widely used by common applications.

https://datatracker.ietf.org/doc/html/rfc0793

Fairhurst, et al. Expires November 28, 2015 [Page 4]

Internet-Draft TAPS Transports May 2015

3.1.1. Protocol Description

 TCP is a connection-oriented protocol, providing a three way
 handshake to allow a client and server to set up a connection, and
 mechanisms for orderly completion and immediate teardown of a
 connection. TCP is defined by a family of RFCs [RFC4614].

 TCP provides multiplexing to multiple sockets on each host using port
 numbers. An active TCP session is identified by its four-tuple of
 local and remote IP addresses and local port and remote port numbers.
 The destination port during connection setup has a different role as
 it is often used to indicate the requested service.

 TCP partitions a continuous stream of bytes into segments, sized to
 fit in IP packets. ICMP-based PathMTU discovery [RFC1191][RFC1981]
 as well as Packetization Layer Path MTU Discovery (PMTUD) [RFC4821]
 are supported.

 Each byte in the stream is identified by a sequence number. The
 sequence number is used to order segments on receipt, to identify
 segments in acknowledgments, and to detect unacknowledged segments
 for retransmission. This is the basis of TCP's reliable, ordered
 delivery of data in a stream. TCP Selective Acknowledgment [RFC2018]
 extends this mechanism by making it possible to identify missing
 segments more precisely, reducing spurious retransmission.

 Receiver flow control is provided by a sliding window: limiting the
 amount of unacknowledged data that can be outstanding at a given
 time. The window scale option [RFC7323] allows a receiver to use
 windows greater than 64KB.

 All TCP senders provide Congestion Control: This uses a separate
 window, where each time congestion is detected, this congestion
 window is reduced. A receiver detects congestion using one of three
 mechanisms: A retransmission timer, detection of loss (interpreted as
 a congestion signal), or Explicit Congestion Notification (ECN)
 [RFC3168] to provide early signaling (see
 [I-D.ietf-aqm-ecn-benefits])

 A TCP protocol instance can be extended [RFC4614] and tuned. Some
 features are sender-side only, requiring no negotiation with the
 receiver; some are receiver-side only, some are explicitly negotiated
 during connection setup.

 By default, TCP segment partitioning uses Nagle's algorithm [RFC0896]
 to buffer data at the sender into large segments, potentially
 incurring sender-side buffering delay; this algorithm can be disabled

https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc0896

Fairhurst, et al. Expires November 28, 2015 [Page 5]

Internet-Draft TAPS Transports May 2015

 by the sender to transmit more immediately, e.g. to enable smoother
 interactive sessions.

 [EDITOR'S NOTE: add URGENT and PUSH flag (note [RFC6093] says SHOULD
 NOT use due to the range of TCP implementations that process TCP
 urgent indications differently.)]

 A checksum provides an Integrity Check and is mandatory across the
 entire packet. The TCP checksum does not support partial corruption
 protection as in DCCP/UDP-Lite). This check protects from
 misdelivery of data corrupted data, but is relatively weak, and
 applications that require end to end integrity of data are
 recommended to include a stronger integrity check of their payload
 data.

 A TCP service is unicast.

3.1.2. Interface description

 A User/TCP Interface is defined in [RFC0793] providing six user
 commands: Open, Send, Receive, Close, Status. This interface does
 not describe configuration of TCP options or parameters beside use of
 the PUSH and URGENT flags.

 In API implementations derived from the BSD Sockets API, TCP sockets
 are created using the "SOCK_STREAM" socket type.

 The features used by a protocol instance may be set and tuned via
 this API.

 (more on the API goes here)

3.1.3. Transport Protocol Components

 The transport protocol components provided by TCP are:

 o unicast

 o connection setup with feature negotiation and application-to-port
 mapping

 o port multiplexing

 o reliable delivery

 o ordered delivery for each byte stream

 o error detection (checksum)

https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc0793

Fairhurst, et al. Expires November 28, 2015 [Page 6]

Internet-Draft TAPS Transports May 2015

 o segmentation

 o stream-oriented delivery in a single stream

 o data bundling (Nagle's algorithm)

 o flow control

 o congestion control

 [EDITOR'S NOTE: discussion of how to map this to features and TAPS:
 what does the higher layer need to decide? what can the transport
 layer decide based on global settings? what must the transport layer
 decide based on network characteristics?]

3.2. Multipath TCP (MP-TCP)

 [EDITOR'S NOTE: a few sentences describing Multipath TCP [RFC6824] go
 here. Note that this adds transport-layer multihoming to the
 components TCP provides. Simone Ferlin-Oliveira will contribute text
 for this section.]

3.3. Stream Control Transmission Protocol (SCTP)

 SCTP is a message oriented standards track transport protocol and the
 base protocol is specified in [RFC4960]. It supports multi-homing to
 handle path failures. An SCTP association has multiple
 unidirectional streams in each direction and provides in-sequence
 delivery of user messages only within each stream. This allows to
 minimize head of line blocking. SCTP is extensible and the currently
 defined extensions include mechanisms for dynamic re-configurations
 of streams [RFC6525] and IP-addresses [RFC5061]. Furthermore, the
 extension specified in [RFC3758] introduces the concept of partial
 reliability for user messages.

 SCTP was originally developed for transporting telephony signalling
 messages and is deployed in telephony signalling networks, especially
 in mobile telephony networks. Additionally, it is used in the WebRTC
 framework for data channels and is therefore deployed in all WEB-
 browsers supporting WebRTC.

 [EDITOR'S NOTE: Michael Tuexen and Karen Nielsen signed up as
 contributors for these sections.]

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc3758

Fairhurst, et al. Expires November 28, 2015 [Page 7]

Internet-Draft TAPS Transports May 2015

3.3.1. Protocol Description

 SCTP is a connection oriented protocol using a four way handshake to
 establish an SCTP association and a three way message exchange to
 gracefully shut it down. It uses the same port number concept as
 DCCP, TCP, UDP, and UDP-Lite do and only supports unicast.

 SCTP uses the 32-bit CRC32c for protecting SCTP packets against bit
 errors. This is stronger than the 16-bit checksums used by TCP or
 UDP. However, a partial checksum coverage as provided by DCCP or
 UDP-Lite is not supported.

 SCTP has been designed with extensibility in mind. Each SCTP packet
 starts with a single common header containing the port numbers, a
 verification tag and the CRC32c checksum. This common header is
 followed by a sequence of chunks. Each chunk consists of a type
 field, flags, a length field and a value. [RFC4960] defines how a
 receiver processes chunks with an unknown chunk type. The support of
 extensions can be negotiated during the SCTP handshake.

 SCTP provides a message-oriented service. Multiple small user
 messages can be bundled into a single SCTP packet to improve the
 efficiency. For example, this bundling may be done by delaying user
 messages at the sender side similar to the Nagle algorithm used by
 TCP. User messages which would result in IP packets larger than the
 MTU will be fragmented at the sender side and reassembled at the
 receiver side. There is no protocol limit on the user message size.
 ICMP-based path MTU discovery as specified for IPv4 in [RFC1191] and
 for IPv6 in [RFC1981] as well as packetization layer path MTU
 discovery as specified in [RFC4821] with probe packets using the
 padding chunks defined the [RFC4820] are supported.

 [RFC4960] specifies a TCP friendly congestion control to protect the
 network against overload. SCTP also uses a sliding window flow
 control to protect receivers against overflow.

 Each SCTP association has between 1 and 65536 uni-directional streams
 in each direction. The number of streams can be different in each
 direction. Every user-message is sent on a particular stream. User
 messages can be sent un-ordered or ordered upon request by the upper
 layer. Un-ordered messages can be delivered as soon as they are
 completely received. Only all ordered messages sent on the same
 stream are delivered at the receiver in the same order as sent by the
 sender. For user messages not requiring fragmentation, this
 minimises head of line blocking. The base protocol defined in
 [RFC4960] doesn't allow interleaving of user-messages, which results
 in sending a large message on one stream can block the sending of
 user messages on other streams. [I-D.ietf-tsvwg-sctp-ndata]

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4820
https://datatracker.ietf.org/doc/html/rfc4960

Fairhurst, et al. Expires November 28, 2015 [Page 8]

Internet-Draft TAPS Transports May 2015

 overcomes this limitation. Furthermore, [I-D.ietf-tsvwg-sctp-ndata]
 specifies multiple algorithms for the sender side selection of which
 streams to send data from supporting a variety of scheduling
 algorithms including priority based ones. The stream re-
 configuration extension defined in [RFC6525] allows to reset streams
 during the lifetime of an association and to increase the number of
 streams, if the number of streams negotiated in the SCTP handshake is
 not sufficient.

 According to [RFC4960], each user message sent is either delivered to
 the receiver or, in case of excessive retransmissions, the
 association is terminated in a non-graceful way, similar to the TCP
 behaviour. In addition to this reliable transfer, the partial
 reliability extension defined in [RFC3758] allows the sender to
 abandon user messages. The application can specify the policy for
 abandoning user messages. Examples for these policies include:

 o Limiting the time a user message is dealt with by the sender.

 o Limiting the number of retransmissions for each fragment of a user
 message. If the number of retransmissions is limited to 0, one
 gets a service similar to UDP.

 o Abandoning messages of lower priority in case of a send buffer
 shortage.

 SCTP supports multi-homing. Each SCTP end-point uses a list of IP-
 addresses and a single port number. These addresses can be any
 mixture of IPv4 and IPv6 addresses. These addresses are negotiated
 during the handshake and the address re-configuration extension
 specified in [RFC5061] in combination with [RFC4895] can be used to
 change these addresses in an authenticated way during the livetime of
 an SCTP association. This allows for transport layer mobility.
 Multiple addresses are used for improved resilience. If a remote
 address becomes unreachable, the traffic is switched over to a
 reachable one, if one exists. Each SCTP end-point supervises
 continuously the reachability of all peer addresses using a heartbeat
 mechanism.

 For securing user messages, the use of TLS over SCTP has been
 specified in [RFC3436]. However, this solution does not support all
 services provided by SCTP (for example un-ordered delivery or partial
 reliability), and therefore the use of DTLS over SCTP has been
 specified in [RFC6083] to overcome these limitations. When using
 DTLS over SCTP, the application can use almost all services provided
 by SCTP.

https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc3436
https://datatracker.ietf.org/doc/html/rfc6083

Fairhurst, et al. Expires November 28, 2015 [Page 9]

Internet-Draft TAPS Transports May 2015

 [I-D.ietf-tsvwg-natsupp] defines a methods for end-hosts and
 middleboxes to provide for NAT support for SCTP over IPv4. For
 legacy NAT traversal, [RFC6951] defines the UDP encapsulation of
 SCTP-packets. Alternatively, SCTP packets can be encapsulated in
 DTLS packets as specified in [I-D.ietf-tsvwg-sctp-dtls-encaps]. The
 latter encapsulation is used with in the WebRTC context.

 Having a well defined API is also a feature provided by SCTP as
 described in the next subsection.

3.3.2. Interface Description

 [RFC4960] defines an abstract API for the base protocol. An
 extension to the BSD Sockets API is defined in [RFC6458] and covers:

 o the base protocol defined in [RFC4960].

 o the SCTP Partial Reliability extension defined in [RFC3758].

 o the SCTP Authentication extension defined in [RFC4895].

 o the SCTP Dynamic Address Reconfiguration extension defined in
 [RFC5061].

 For the following SCTP protocol extensions the BSD Sockets API
 extension is defined in the document specifying the protocol
 extensions:

 o the SCTP SACK-IMMEDIATELY extension defined in [RFC7053].

 o the SCTP Stream Reconfiguration extension defined in [RFC6525].

 o the UDP Encapsulation of SCTP packets extension defined in
 [RFC6951].

 o the additional PR-SCTP policies defined in
 [I-D.ietf-tsvwg-sctp-prpolicies].

 Future documents describing SCTP protocol extensions are expected to
 describe the corresponding BSD Sockets API extension in a "Socket API
 Considerations" section.

 The SCTP socket API supports two kinds of sockets:

 o one-to-one style sockets (by using the socket type "SOCK_STREAM").

 o one-to-many style socket (by using the socket type
 "SOCK_SEQPACKET").

https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6951

Fairhurst, et al. Expires November 28, 2015 [Page 10]

Internet-Draft TAPS Transports May 2015

 One-to-one style sockets are similar to TCP sockets, there is a 1:1
 relationship between the sockets and the SCTP associations (except
 for listening sockets). One-to-many style SCTP sockets are similar
 to unconnected UDP sockets as there is a 1:n relationship between the
 sockets and the SCTP associations.

 The SCTP stack can provide information to the applications about
 state changes of the individual paths and the association whenever
 they occur. These events are delivered similar to user messages but
 are specifically marked as notifications.

 A couple of new functions have been introduced to support the use of
 multiple local and remote addresses. Additional SCTP-specific send
 and receive calls have been defined to allow dealing with the SCTP
 specific information without using ancillary data in the form of
 additional cmsgs, which are also defined. These functions provide
 support for detecting partial delivery of user messages and
 notifications.

 The SCTP socket API allows a fine-grained control of the protocol
 behaviour through an extensive set of socket options.

 The SCTP kernel implementations of FreeBSD, Linux and Solaris follow
 mostly the specified extension to the BSD Sockets API for the base
 protocol and the corresponding supported protocol extensions.

3.3.3. Transport Protocol Components

 The transport protocol components provided by SCTP are:

 o unicast

 o connection setup with feature negotiation and application-to-port
 mapping

 o port multiplexing

 o reliable or partially reliable delivery

 o ordered and unordered delivery within a stream

 o support for multiple concurrent streams

 o support for stream scheduling prioritization

 o flow control

 o message-oriented delivery

Fairhurst, et al. Expires November 28, 2015 [Page 11]

Internet-Draft TAPS Transports May 2015

 o congestion control

 o user message bundling

 o user message fragmentation and reassembly

 o strong error detection (CRC32C)

 o transport layer multihoming for resilience

 o transport layer mobility

 [EDITOR'S NOTE: update this list.]

3.4. User Datagram Protocol (UDP)

 The User Datagram Protocol (UDP) [RFC0768] [RFC2460] is an IETF
 standards track transport protocol. It provides a uni-directional,
 datagram protocol which preserves message boundaries. It provides
 none of the following transport features: error correction,
 congestion control, or flow control. It can be used to send
 broadcast datagrams (IPv4) or multicast datagrams (IPv4 and IPv6), in
 addition to unicast (and anycast) datagrams. IETF guidance on the
 use of UDP is provided in[RFC5405]. UDP is widely implemented and
 widely used by common applications, especially DNS.

3.4.1. Protocol Description

 UDP is a connection-less protocol which maintains message boundaries,
 with no connection setup or feature negotiation. The protocol uses
 independent messages, ordinarily called datagrams. The lack of error
 control and flow control implies messages may be damaged, re-ordered,
 lost, or duplicated in transit. A receiving application unable to
 run sufficiently fast or frequently may miss messages. The lack of
 congestion handling implies UDP traffic may cause the loss of
 messages from other protocols (e.g., TCP) when sharing the same
 network paths. UDP traffic can also cause the loss of other UDP
 traffic in the same or other flows for the same reasons.

 Messages with bit errors are ordinarily detected by an invalid end-
 to-end checksum and are discarded before being delivered to an
 application. There are some exceptions to this general rule,
 however. UDP-Lite (see [RFC3828], and below) provides the ability
 for portions of the message contents to be exempt from checksum
 coverage. It is also possible to create UDP datagrams with no
 checksum, and while this is generally discouraged [RFC1122]
 [RFC5405], certain special cases permit its use [RFC6935]. The
 checksum support considerations for omitting the checksum are defined

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc6935

Fairhurst, et al. Expires November 28, 2015 [Page 12]

Internet-Draft TAPS Transports May 2015

 in [RFC6936]. Note that due to the relatively weak form of checksum
 used by UDP, applications that require end to end integrity of data
 are recommended to include a stronger integrity check of their
 payload data.

 On transmission, UDP encapsulates each datagram into an IP packet,
 which may in turn be fragmented by IP. Applications concerned with
 fragmentation or that have other requirements such as receiver flow
 control, congestion control, PathMTU discovery/PLPMTUD, support for
 ECN, etc need to be provided by protocols other than UDP [RFC5405].

3.4.2. Interface Description

 [RFC0768] describes basic requirements for an API for UDP. Guidance
 on use of common APIs is provided in [RFC5405].

 A UDP endpoint consists of a tuple of (IP address, port number).
 Demultiplexing using multiple abstract endpoints (sockets) on the
 same IP address are supported. The same socket may be used by a
 single server to interact with multiple clients (note: this behavior
 differs from TCP, which uses a pair of tuples to identify a
 connection). Multiple server instances (processes) binding the same
 socket can cooperate to service multiple clients- the socket
 implementation arranges to not duplicate the same received unicast
 message to multiple server processes.

 Many operating systems also allow a UDP socket to be "connected",
 i.e., to bind a UDP socket to a specific (remote) UDP endpoint.
 Unlike TCP's connect primitive, for UDP, this is only a local
 operation that serves to simplify the local send/receive functions
 and to filter the traffic for the specified addresses and ports
 [RFC5405].

3.4.3. Transport Protocol Components

 The transport protocol components provided by UDP are:

 o unidirectional

 o port multiplexing

 o 2-tuple endpoints

 o IPv4 broadcast, multicast and anycast

 o IPv6 multicast and anycast

 o IPv6 jumbograms

https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405

Fairhurst, et al. Expires November 28, 2015 [Page 13]

Internet-Draft TAPS Transports May 2015

 o message-oriented delivery

 o error detection (checksum)

 o checksum optional

3.5. Lightweight User Datagram Protocol (UDP-Lite)

 The Lightweight User Datagram Protocol (UDP-Lite) [RFC3828] is an
 IETF standards track transport protocol. UDP-Lite provides a
 bidirectional set of logical unicast or multicast message streams
 over a datagram protocol. IETF guidance on the use of UDP-Lite is
 provided in [RFC5405].

3.5.1. Protocol Description

 UDP-Lite is a connection-less datagram protocol, with no connection
 setup or feature negotiation. The protocol use messages, rather than
 a byte-stream. Each stream of messages is independently managed,
 therefore retransmission does not hold back data sent using other
 logical streams.

 It provides multiplexing to multiple sockets on each host using port
 numbers. An active UDP-Lite session is identified by its four-tuple
 of local and remote IP addresses and local port and remote port
 numbers.

 UDP-Lite fragments packets into IP packets, constrained by the
 maximum size of IP packet.

 UDP-Lite changes the semantics of the UDP "payload length" field to
 that of a "checksum coverage length" field. Otherwise, UDP-Lite is
 semantically identical to UDP. Applications using UDP-Lite therefore
 can not make assumptions regarding the correctness of the data
 received in the insensitive part of the UDP-Lite payload.

 As for UDP, mechanisms for receiver flow control, congestion control,
 PMTU or PLPMTU discovery, support for ECN, etc need to be provided by
 upper layer protocols [RFC5405].

 Examples of use include a class of applications that can derive
 benefit from having partially-damaged payloads delivered, rather than
 discarded. One use is to support error tolerate payload corruption
 when used over paths that include error-prone links, another
 application is when header integrity checks are required, but payload
 integrity is provided by some other mechanism (e.g. [RFC6936].

https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc6936

Fairhurst, et al. Expires November 28, 2015 [Page 14]

Internet-Draft TAPS Transports May 2015

 A UDP-Lite service may support IPv4 broadcast, multicast, anycast and
 unicast.

3.5.2. Interface Description

 There is no current API specified in the RFC Series, but guidance on
 use of common APIs is provided in [RFC5405].

 The interface of UDP-Lite differs from that of UDP by the addition of
 a single (socket) option that communicates a checksum coverage length
 value: at the sender, this specifies the intended checksum coverage,
 with the remaining unprotected part of the payload called the "error-
 insensitive part". The checksum coverage may also be made visible to
 the application via the UDP-Lite MIB module [RFC5097].

3.5.3. Transport Protocol Components

 The transport protocol components provided by UDP-Lite are:

 o unicast

 o IPv4 broadcast, multicast and anycast

 o port multiplexing

 o non-reliable, non-ordered delivery

 o message-oriented delivery

 o partial integrity protection

3.6. Datagram Congestion Control Protocol (DCCP)

 Datagram Congestion Control Protocol (DCCP) [RFC4340] is an IETF
 standards track bidirectional transport protocol that provides
 unicast connections of congestion-controlled unreliable messages.

 [EDITOR'S NOTE: Gorry Fairhurst signed up as a contributor for this
 section.]

 The DCCP Problem Statement describes the goals that DCCP sought to
 address [RFC4336]. It is suitable for applications that transfer
 fairly large amounts of data and that can benefit from control over
 the trade off between timeliness and reliability [RFC4336].

 It offers low overhead, and many characteristics common to UDP, but
 can avoid "Re-inventing the wheel" each time a new multimedia
 application emerges. Specifically it includes core functions

https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5097
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336

Fairhurst, et al. Expires November 28, 2015 [Page 15]

Internet-Draft TAPS Transports May 2015

 (feature negotiation, path state management, RTT calculation, PMTUD,
 etc): This allows applications to use a compatible method defining
 how they send packets and where suitable to choose common algorithms
 to manage their functions. Examples of suitable applications include
 interactive applications, streaming media or on-line games [RFC4336].

3.6.1. Protocol Description

 DCCP is a connection-oriented datagram protocol, providing a three
 way handshake to allow a client and server to set up a connection,
 and mechanisms for orderly completion and immediate teardown of a
 connection. The protocol is defined by a family of RFCs.

 It provides multiplexing to multiple sockets on each host using port
 numbers. An active DCCP session is identified by its four-tuple of
 local and remote IP addresses and local port and remote port numbers.
 At connection setup, DCCP also exchanges the the service code
 [RFC5595] mechanism to allow transport instantiations to indicate the
 service treatment that is expected from the network.

 The protocol segments data into messages, typically sized to fit in
 IP packets, but which may be fragmented providing they are less than
 the A DCCP interface MAY allow applications to request fragmentation
 for packets larger than PMTU, but not larger than the maximum packet
 size allowed by the current congestion control mechanism (CCMPS)
 [RFC4340].

 Each message is identified by a sequence number. The sequence number
 is used to identify segments in acknowledgments, to detect
 unacknowledged segments, to measure RTT, etc. The protocol may
 support ordered or unordered delivery of data, and does not itself
 provide retransmission. There is a Data Checksum option, which
 contains a strong CRC, lets endpoints detect application data
 corruption. It also supports reduced checksum coverage, a partial
 integrity mechanisms similar to UDP-lIte.

 Receiver flow control is supported: limiting the amount of
 unacknowledged data that can be outstanding at a given time.

 A DCCP protocol instance can be extended [RFC4340] and tuned. Some
 features are sender-side only, requiring no negotiation with the
 receiver; some are receiver-side only, some are explicitly negotiated
 during connection setup.

 DCCP supports negotiation of the congestion control profile, to
 provide Plug and Play congestion control mechanisms. examples of
 specified profiles include [RFC4341] [RFC4342] [RFC5662]. All IETF-
 defined methods provide Congestion Control.

https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4341
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc5662

Fairhurst, et al. Expires November 28, 2015 [Page 16]

Internet-Draft TAPS Transports May 2015

 DCCP use a Connect packet to start a session, and permits half-
 connections that allow each client to choose features it wishes to
 support. Simultaneous open [RFC5596], as in TCP, can enable
 interoperability in the presence of middleboxes. The Connect packet
 includes a Service Code field [RFC5595] designed to allow middle
 boxes and endpoints to identify the characteristics required by a
 session. A lightweight UDP-based encapsulation (DCCP-UDP) has been
 defined [RFC6773] that permits DCCP to be used over paths where it is
 not natively supported. Support in NAPT/NATs is defined in [RFC4340]
 and [RFC5595].

 Upper layer protocols specified on top of DCCP include: DTLS
 [RFC5595], RTP [RFC5672], ICE/SDP [RFC6773].

 A DCCP service is unicast.

 A common packet format has allowed tools to evolve that can read and
 interpret DCCP packets (e.g. Wireshark).

3.6.2. Interface Description

 API characteristics include: - Datagram transmission. - Notification
 of the current maximum packet size. - Send and reception of zero-
 length payloads. - Set the Slow Receiver flow control at a receiver.
 - Detect a Slow receiver at the sender.

 There is no current API specified in the RFC Series.

3.6.3. Transport Protocol Components

 The transport protocol components provided by DCCP are:

 o unicast

 o connection setup with feature negotiation and application-to-port
 mapping

 o Service Codes

 o port multiplexing

 o non-reliable, ordered delivery

 o flow control (slow receiver function)

 o drop notification

 o timestamps

https://datatracker.ietf.org/doc/html/rfc5596
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc6773
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5672
https://datatracker.ietf.org/doc/html/rfc6773

Fairhurst, et al. Expires November 28, 2015 [Page 17]

Internet-Draft TAPS Transports May 2015

 o message-oriented delivery

 o partial integrity protection

3.7. Realtime Transport Protocol (RTP)

 RTP provides an end-to-end network transport service, suitable for
 applications transmitting real-time data, such as audio, video or
 data, over multicast or unicast network services, including TCP, UDP,
 UDP-Lite, DCCP.

 [EDITOR'S NOTE: Varun Singh signed up as contributor for this
 section.]

3.8. NACK-Oriented Reliable Multicast (NORM)

 NORM is an IETF standards track protocol specified in [RFC5740]. The
 protocol was designed to support reliable bulk data dissemination to
 receiver groups using IP Multicast but also provides for point-to-
 point unicast operation. Its support for bulk data dissemination
 includes discrete file or computer memory-based "objects" as well as
 byte- and message-streaming. NORM is designed to incorporate packet
 erasure coding as an inherent part of its selective ARQ in response
 to receiver negative acknowledgements. The packet erasure coding can
 also be proactively applied for forward protection from packet loss.
 NORM transmissions are governed by TCP-friendly congestion control.
 NORM's reliability, congestion control, and flow control mechanism
 are distinct components and can be separately controlled to meet
 different application needs.

3.8.1. Protocol Description

 [EDITOR'S NOTE: needs to be more clear about the application of FEC
 and packet erasure coding; expand ARQ.]

 The NORM protocol is encapsulated in UDP datagrams and thus provides
 multiplexing for multiple sockets on hosts using port numbers. For
 purposes of loosely coordinated IP Multicast, NORM is not strictly
 connection-oriented although per-sender state is maintained by
 receivers for protocol operation. [RFC5740] does not specify a
 handshake protocol for connection establishment and separate session
 initiation can be used to coordinate port numbers. However, in-band
 "client-server" style connection establishment can be accomplished
 with the NORM congestion control signaling messages using port
 binding techniques like those for TCP client-server connections.

 NORM supports bulk "objects" such as file or in-memory content but
 also can treat a stream of data as a logical bulk object for purposes

https://datatracker.ietf.org/doc/html/rfc5740
https://datatracker.ietf.org/doc/html/rfc5740

Fairhurst, et al. Expires November 28, 2015 [Page 18]

Internet-Draft TAPS Transports May 2015

 of packet erasure coding. In the case of stream transport, NORM can
 support either byte streams or message streams where application-
 defined message boundary information is carried in the NORM protocol
 messages. This allows the receiver(s) to join/re-join and recover
 message boundaries mid-stream as needed. Application content is
 carried and identified by the NORM protocol with encoding symbol
 identifiers depending upon the Forward Error Correction (FEC) Scheme
 [RFC3452] configured. NORM uses NACK-based selective ARQ to reliably
 deliver the application content to the receiver(s). NORM proactively
 measures round-trip timing information to scale ARQ timers
 appropriately and to support congestion control. For multicast
 operation, timer-based feedback suppression is uses to achieve group
 size scaling with low feedback traffic levels. The feedback
 suppression is not applied for unicast operation.

 NORM uses rate-based congestion control based upon the TCP-Friendly
 Rate Control (TFRC) [RFC4324] principles that are also used in DCCP
 [RFC4340]. NORM uses control messages to measure RTT and collect
 congestion event (e..g, loss event, ECN event, etc) information from
 the receiver(s) to support dynamic rate control adjustment. The TCP-
 Friendly Multicast Congestion Control (TFMCC) [RFC4654] used provides
 some extra features to support multicast but is functionally
 equivalent to TFRC in the unicast case.

 NORM's reliability mechanism is decoupled from congestion control.
 This allows alternative arrangements of transport services to be
 invoked. For example, fixed-rate reliable delivery can be supported
 or unreliable (but optionally "better than best effort" via packet
 erasure coding) delivery with rate-control per TFRC can be achieved.
 Additionally, alternative congestion control techniques may be
 applied. For example, TFRC rate control with congestion event
 detection based on ECN for links with high packet loss (e.g.,
 wireless) has been implemented and demonstrated with NORM.

 While NORM is NACK-based for reliability transfer, it also supports a
 positive acknowledgment (ACK) mechanism that can be used for receiver
 flow control. Again, since this mechanism is decoupled from the
 reliability and congestion control, applications that have different
 needs in this aspect can use the protocol differently. One example
 is the use of NORM for quasi-reliable delivery where timely delivery
 of newer content may be favored over completely reliable delivery of
 older content within buffering and RTT constraints.

3.8.2. Interface Description

 The NORM specification does not describe a specific application
 programming interface (API) to control protocol operation. A freely-
 available, open source reference implementation of NORM is available

https://datatracker.ietf.org/doc/html/rfc3452
https://datatracker.ietf.org/doc/html/rfc4324
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4654

Fairhurst, et al. Expires November 28, 2015 [Page 19]

Internet-Draft TAPS Transports May 2015

 at https://www.nrl.navy.mil/itd/ncs/products/norm, and a documented
 API is provided for this implementation. While a sockets-like API is
 not currently documented, the existing API supports the necessary
 functions for that to be implemented.

3.8.3. Transport Protocol Components

 The transport protocol components provided by NORM are:

 o unicast

 o multicast

 o port multiplexing (UDP ports)

 o reliable delivery

 o ordered delivery for each byte or message stream

 o unordered delivery of in-memory data or file bulk content objects

 o error detection (UDP checksum)

 o segmentation

 o stream-oriented delivery in a single stream

 o object-oriented delivery of discrete data or file items

 o data bundling (Nagle's algorithm)

 o flow control (timer-based and/or ack-based)

 o congestion control

 o packet erasure coding (both proactively and as part of ARQ)

3.9. Transport Layer Security (TLS) and Datagram TLS (DTLS) as a
 pseudotransport

 [NOTE: A few words on TLS [RFC5246] and DTLS [RFC6347] here, and how
 they get used by other protocols to meet security goals as an add-on
 interlayer above transport. Kevin Fall will contribute text to this
 section.]

https://www.nrl.navy.mil/itd/ncs/products/norm
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347

Fairhurst, et al. Expires November 28, 2015 [Page 20]

Internet-Draft TAPS Transports May 2015

3.9.1. Protocol Description

3.9.2. Interface Description

3.9.3. Transport Protocol Components

3.10. Hypertext Transport Protocol (HTTP) over TCP as a pseudotransport

 Hypertext Transfer Protocol (HTTP) is an application-level protocol
 widely used on the Internet. Version 1.1 of the protocol is
 specified in [RFC7230] [RFC7231] [RFC7232] [RFC7233] [RFC7234]
 [RFC7235], and version 2 in [RFC7540]. Furthermore, HTTP is used as
 a substrate for other application-layer protocols. There are various
 reasons for this practice listed in [RFC3205]; these include being a
 well-known and well-understood protocol, reusability of existing
 servers and client libraries, easy use of existing security
 mechanisms such as HTTP digest authentication [RFC2617] and TLS
 [RFC5246], the ability of HTTP to traverse firewalls which makes it
 work with a lot of infrastructure, and cases where a application
 server often needs to support HTTP anyway.

 Depending on application's needs, the use of HTTP as a substrate
 protocol may add complexity and overhead in comparison to a special-
 purpose protocol (e.g. HTTP headers, suitability of the HTTP
 security model etc.). [RFC3205] address this issues and provides
 some guidelines and concerns about the use of HTTP standard port 80
 and 443, the use of HTTP URL scheme and interaction with existing
 firewalls, proxies and NATs. Also, though not strictly bound to TCP,
 HTTP is almost exclusively run over TCP, and therefore inherits its
 properties when used in this way. This can have disadvantages, when
 the application does not naturally require single-streamed, reliable
 transport.

3.10.1. Protocol Description

 Hypertext Transfer Protocol (HTTP) is a request/response protocol. A
 client sends a request containing a request method, URI and protocol
 version followed by a MIME-like message (see [RFC7231] for the
 differences between an HTTP object and a MIME message), containing
 information about the client and request modifiers. The message can
 contain a message body carrying application data as well. The server
 responds with a status or error code followed by a MIME-like message
 containing information about the server and information about carried
 data and it can include a message body. It is possible to specify a
 data format for the message body using MIME media types [RFC2045].
 Furthermore, the protocol has numerous additional features; features
 relevant to pseudotransport are described below.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc3205
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3205
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc2045

Fairhurst, et al. Expires November 28, 2015 [Page 21]

Internet-Draft TAPS Transports May 2015

 Content negotiation, specified in [RFC7231], is a mechanism provided
 by HTTP for selecting a representation on a requested resource. The
 client and server negotiate acceptable data formats, charsets, data
 encoding (e.g. data can be transferred compressed, gzip), etc. HTTP
 can accommodate exchange of messages as well as data streaming (using
 chunked transfer encoding [RFC7230]). It is also possible to request
 a part of a resource using range requests specified in [RFC7233].
 The protocol provides powerful cache control signalling defined in
 [RFC7234].

 HTTP 1.1's and HTTP 2.0's persistent connections can be use to
 perform multiple request-response transactions during the life-time
 of a single HTTP connection. Moreover, HTTP 2.0 connections can
 multiplex many request/response pairs in parallel on a single
 connection. This reduces connection establishment overhead and the
 effect of TCP slow-start on each transaction, important for HTTP's
 primary use case.

 It is possible to combine HTTP with security mechanisms, like TLS
 (denoted by HTTPS), which adds protocol properties provided by such a
 mechanism (e.g. authentication, encryption, etc.). TLS's
 Application-Layer Protocol Negotiation (ALPN) extension [RFC7301] can
 be used for HTTP version negotiation within TLS handshake which
 eliminates addition round-trip. Arbitrary cookie strings, included
 as part of the MIME headers, are often used as bearer tokens in HTTP.

 Application layer protocols using HTTP as substrate may use existing
 method and data formats, or specify new methods and data formats.
 Furthermore some protocols may not fit a request/response paradigm
 and instead rely on HTTP to send messages (e.g. [RFC6546]). Because
 HTTP is working in many restricted infrastructures, it is also used
 to tunnel other application-layer protocols.

3.10.2. Interface Description

 There are many HTTP libraries available exposing different APIs. The
 APIs provide a way to specify a request by providing a URI, a method,
 request modifiers and optionally a request body. For the response,
 callbacks can be registered that will be invoked when the response is
 received. If TLS is used, API expose a registration of callbacks in
 case a server requests client authentication and when certificate
 verification is needed.

 World Wide Web Consortium (W3C) standardized the XMLHttpRequest API
 [XHR], an API that can be use for sending HTTP/HTTPS requests and
 receiving server responses. Besides XML data format, request and
 response data format can also be JSON, HTML and plain text.
 Specifically JavaScript and XMLHttpRequest are a ubiquitous

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc6546

Fairhurst, et al. Expires November 28, 2015 [Page 22]

Internet-Draft TAPS Transports May 2015

 programming model for websites, and more general applications, where
 native code is less attractive.

 Representational State Transfer (REST) [REST] is another example how
 applications can use HTTP as transport protocol. REST is an
 architecture style for building application on the Internet. It uses
 HTTP as a communication protocol.

3.10.3. Transport Protocol Components

 The transport protocol components provided by HTTP, when used as a
 pseudotransport over TCP, are:

 o unicast

 o reliable delivery

 o ordered delivery

 o message and stream-oriented

 o object range request

 o message content type negotiation

 o congestion control

 HTTPS (HTTP over TLS) additionally provides the following components:

 o authentication (of one or both ends of a connection)

 o confidentiality

 o integrity protection

3.11. WebSockets

 [RFC6455]

 [EDITOR'S NOTE: Salvatore Loreto will contribute text for this
 section.]

3.11.1. Protocol Description

Fairhurst, et al. Expires November 28, 2015 [Page 23]

Internet-Draft TAPS Transports May 2015

3.11.2. Interface Description

3.11.3. Transport Protocol Components

4. Transport Service Features

 The transport protocol components analyzed in this document which can
 be used as a basis for defining common transport service features,
 normalized and separated into categories, are as follows:

 o Destination selection

 * unicast

 * broadcast (IPv4 only)

 * multicast

 * anycast

 * transport layer multihoming for resilience

 * transport layer mobility

 * port multiplexing

 * service codes

 o Connection setup

 * connection setup with feature negotiation and application-to-
 port mapping

 o Delivery

 * reliable delivery

 * partially reliable delivery

 * unreliable delivery

 * packet erasure coding

 * ordered delivery

 * unordered delivery

 * stream-oriented delivery

Fairhurst, et al. Expires November 28, 2015 [Page 24]

Internet-Draft TAPS Transports May 2015

 * message-oriented delivery

 * message fragmentation

 * object-oriented delivery of discrete data or file items

 * unordered delivery of in-memory data or file bulk content
 objects

 * object range request

 * object content type negotiation

 * single streaming

 * multiple streaming

 * stream scheduling prioritization

 * segmentation

 * data bundling (Nagle's algorithm)

 * message bundling

 o Transmission control

 * timer-based rate control

 * ack-based flow control

 * drop notification

 * packet erasure coding

 * congestion control

 o Integrity protection

 * checksum for error detection

 * partial checksum protection

 * checksum optional

 * cryptographic integrity protection

 o Security

Fairhurst, et al. Expires November 28, 2015 [Page 25]

Internet-Draft TAPS Transports May 2015

 * authentication of one end of a connection

 * authentication of both ends of a connection

 * confidentiality

 The next revision of this document will define transport service
 features based upon this list.

 [EDITOR'S NOTE: this section will drawn from the candidate features
 provided by protocol components in the previous section - please
 discuss on taps@ietf.org list]

4.1. Complete Protocol Feature Matrix

 [EDITOR'S NOTE: Dave Thaler has signed up as a contributor for this
 section. Michael Welzl also has a beginning of a matrix which could
 be useful here.]

 [EDITOR'S NOTE: The below is a strawman proposal below by Gorry
 Fairhurst for initial discussion]

 The table below summarises protocol mechanisms that have been
 standardised. It does not make an assessment on whether specific
 implementations are fully compliant to these specifications.

Fairhurst, et al. Expires November 28, 2015 [Page 26]

Internet-Draft TAPS Transports May 2015

 +-----------------+---------+---------+---------+---------+---------+
 | Mechanism | UDP | UDP-L | DCCP | SCTP | TCP |
 +-----------------+---------+---------+---------+---------+---------+
Unicast	Yes	Yes	Yes	Yes	Yes
Mcast/IPv4Bcast	Yes(2)	Yes	No	No	No
Port Mux	Yes	Yes	Yes	Yes	Yes
Mode	Dgram	Dgram	Dgram	Dgram	Stream
Connected	No	No	Yes	Yes	Yes
Data bundling	No	No	No	Yes	Yes
Feature Nego	No	No	Yes	Yes	Yes
Options	No	No	Support	Support	Support
Data priority	*	*	*	Yes	No
Data bundling	No	No	No	Yes	Yes
Reliability	None	None	None	Select	Full
Ordered deliv	No	No	No	Stream	Yes
Corruption Tol.	No	Support	Support	No	No
Flow Control	No	No	Support	Yes	Yes
PMTU/PLPMTU	(1)	(1)	Yes	Yes	Yes
Cong Control	(1)	(1)	Yes	Yes	Yes
ECN Support	(1)	(1)	Yes	TBD	Yes
NAT support	Limited	Limited	Support	TBD	Support
Security	DTLS	DTLS	DTLS	DTLS	TLS, AO
UDP encaps	N/A	None	Yes	Yes	None
RTP support	Support	Support	Support	?	Support
 +-----------------+---------+---------+---------+---------+---------+

 Note (1): this feature requires support in an upper layer protocol.

Fairhurst, et al. Expires November 28, 2015 [Page 27]

Internet-Draft TAPS Transports May 2015

 Note (2): this feature requires support in an upper layer protocol
 when used with IPv6.

5. IANA Considerations

 This document has no considerations for IANA.

6. Security Considerations

 This document surveys existing transport protocols and protocols
 providing transport-like services. Confidentiality, integrity, and
 authenticity are among the features provided by those services. This
 document does not specify any new components or mechanisms for
 providing these features. Each RFC listed in this document discusses
 the security considerations of the specification it contains.

7. Contributors

 [Editor's Note: turn this into a real contributors section with
 addresses once we figure out how to trick the toolchain into doing
 so]

 o Section 3.4 on UDP was contributed by Kevin Fall (kfall@kfall.com)

 o Section 3.3 on SCTP was contributed by Michael Tuexen (tuexen@fh-
 muenster.de)

 o Section 3.8 on NORM was contributed by Brian Adamson
 (brian.adamson@nrl.navy.mil)

 o Section 3.10 on HTTP was contributed by Dragana Damjanovic
 (ddamjanovic@mozilla.com)

8. Acknowledgments

 This work is partially supported by the European Commission under
 grant agreement FP7-ICT-318627 mPlane; support does not imply
 endorsement.

9. References

9.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

https://datatracker.ietf.org/doc/html/rfc791

Fairhurst, et al. Expires November 28, 2015 [Page 28]

Internet-Draft TAPS Transports May 2015

9.2. Informative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
RFC 896, January 1984.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

 [RFC3205] Moore, K., "On the use of HTTP as a Substrate", BCP 56,
RFC 3205, February 2002.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [RFC3436] Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
 Layer Security over Stream Control Transmission Protocol",

RFC 3436, December 2002.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/bcp56
https://datatracker.ietf.org/doc/html/rfc3205
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3436

Fairhurst, et al. Expires November 28, 2015 [Page 29]

Internet-Draft TAPS Transports May 2015

 [RFC3452] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
 M., and J. Crowcroft, "Forward Error Correction (FEC)
 Building Block", RFC 3452, December 2002.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758, May 2004.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4324] Royer, D., Babics, G., and S. Mansour, "Calendar Access
 Protocol (CAP)", RFC 4324, December 2005.

 [RFC4336] Floyd, S., Handley, M., and E. Kohler, "Problem Statement
 for the Datagram Congestion Control Protocol (DCCP)", RFC

4336, March 2006.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
 Control Protocol (DCCP) Congestion Control ID 2: TCP-like
 Congestion Control", RFC 4341, March 2006.

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
 Datagram Congestion Control Protocol (DCCP) Congestion
 Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC 4342,
 March 2006.

 [RFC4614] Duke, M., Braden, R., Eddy, W., and E. Blanton, "A Roadmap
 for Transmission Control Protocol (TCP) Specification
 Documents", RFC 4614, September 2006.

 [RFC4654] Widmer, J. and M. Handley, "TCP-Friendly Multicast
 Congestion Control (TFMCC): Protocol Specification", RFC

4654, August 2006.

 [RFC4820] Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and
 Parameter for the Stream Control Transmission Protocol
 (SCTP)", RFC 4820, March 2007.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

https://datatracker.ietf.org/doc/html/rfc3452
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc4324
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4341
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc4654
https://datatracker.ietf.org/doc/html/rfc4654
https://datatracker.ietf.org/doc/html/rfc4820
https://datatracker.ietf.org/doc/html/rfc4821

Fairhurst, et al. Expires November 28, 2015 [Page 30]

Internet-Draft TAPS Transports May 2015

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, August 2007.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
4960, September 2007.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061, September
 2007.

 [RFC5097] Renker, G. and G. Fairhurst, "MIB for the UDP-Lite
 protocol", RFC 5097, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification", RFC

5348, September 2008.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405, November
 2008.

 [RFC5595] Fairhurst, G., "The Datagram Congestion Control Protocol
 (DCCP) Service Codes", RFC 5595, September 2009.

 [RFC5596] Fairhurst, G., "Datagram Congestion Control Protocol
 (DCCP) Simultaneous-Open Technique to Facilitate NAT/
 Middlebox Traversal", RFC 5596, September 2009.

 [RFC5662] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 External Data
 Representation Standard (XDR) Description", RFC 5662,
 January 2010.

 [RFC5672] Crocker, D., "RFC 4871 DomainKeys Identified Mail (DKIM)
 Signatures -- Update", RFC 5672, August 2009.

 [RFC5740] Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, November 2009.

 [RFC6773] Phelan, T., Fairhurst, G., and C. Perkins, "DCCP-UDP: A
 Datagram Congestion Control Protocol UDP Encapsulation for
 NAT Traversal", RFC 6773, November 2012.

https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc5097
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5596
https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc4871
https://datatracker.ietf.org/doc/html/rfc5672
https://datatracker.ietf.org/doc/html/rfc5740
https://datatracker.ietf.org/doc/html/rfc6773

Fairhurst, et al. Expires November 28, 2015 [Page 31]

Internet-Draft TAPS Transports May 2015

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6083] Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
 Transport Layer Security (DTLS) for Stream Control
 Transmission Protocol (SCTP)", RFC 6083, January 2011.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, January 2011.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration", RFC

6525, February 2012.

 [RFC6546] Trammell, B., "Transport of Real-time Inter-network
 Defense (RID) Messages over HTTP/TLS", RFC 6546, April
 2012.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298, June
 2011.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, April 2013.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, April 2013.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
6455, December 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, December 2011.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, July 2012.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6083
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6546
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc6824

Fairhurst, et al. Expires November 28, 2015 [Page 32]

Internet-Draft TAPS Transports May 2015

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951, May 2013.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, November 2013.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7232] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests", RFC 7232, June 2014.

 [RFC7233] Fielding, R., Lafon, Y., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Range Requests", RFC 7233,
 June 2014.

 [RFC7234] Fielding, R., Nottingham, M., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Caching", RFC 7234, June
 2014.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, July 2014.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance", RFC

7323, September 2014.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", RFC 7540, May 2015.

 [I-D.ietf-aqm-ecn-benefits]
 Welzl, M. and G. Fairhurst, "The Benefits and Pitfalls of
 using Explicit Congestion Notification (ECN)", draft-ietf-

aqm-ecn-benefits-00 (work in progress), October 2014.

https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-ecn-benefits-00
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-ecn-benefits-00

Fairhurst, et al. Expires November 28, 2015 [Page 33]

Internet-Draft TAPS Transports May 2015

 [I-D.ietf-tsvwg-sctp-dtls-encaps]
 Tuexen, M., Stewart, R., Jesup, R., and S. Loreto, "DTLS
 Encapsulation of SCTP Packets", draft-ietf-tsvwg-sctp-

dtls-encaps-09 (work in progress), January 2015.

 [I-D.ietf-tsvwg-sctp-prpolicies]
 Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partial Reliability Extension
 of the Stream Control Transmission Protocol", draft-ietf-

tsvwg-sctp-prpolicies-07 (work in progress), February
 2015.

 [I-D.ietf-tsvwg-sctp-ndata]
 Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", draft-ietf-tsvwg-

sctp-ndata-03 (work in progress), March 2015.

 [I-D.ietf-tsvwg-natsupp]
 Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control
 Transmission Protocol (SCTP) Network Address Translation
 Support", draft-ietf-tsvwg-natsupp-07 (work in progress),
 February 2015.

 [XHR] van Kesteren, A., Aubourg, J., Song, J., and H. Steen,
 "XMLHttpRequest working draft
 (http://www.w3.org/TR/XMLHttpRequest/)", 2000.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures, Ph. D. (UC Irvune),
 Chapter 5: Representational State Transfer", 2000.

Authors' Addresses

 Godred Fairhurst (editor)
 University of Aberdeen
 School of Engineering, Fraser Noble Building
 Aberdeen AB24 3UE

 Email: gorry@erg.abdn.ac.uk

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-dtls-encaps-09
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-dtls-encaps-09
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-prpolicies-07
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-prpolicies-07
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-03
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-03
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-natsupp-07
http://www.w3.org/TR/XMLHttpRequest/

Fairhurst, et al. Expires November 28, 2015 [Page 34]

Internet-Draft TAPS Transports May 2015

 Brian Trammell (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Mirja Kuehlewind (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

Fairhurst, et al. Expires November 28, 2015 [Page 35]

