
Network Working Group G. Fairhurst, Ed.
Internet-Draft University of Aberdeen
Intended status: Informational B. Trammell, Ed.
Expires: April 9, 2016 M. Kuehlewind, Ed.
 ETH Zurich
 October 07, 2015

Services provided by IETF transport protocols and congestion control
mechanisms

draft-ietf-taps-transports-07

Abstract

 This document describes services provided by existing IETF protocols
 and congestion control mechanisms. It is designed to help
 application and network stack programmers and to inform the work of
 the IETF TAPS Working Group.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 9, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Fairhurst, et al. Expires April 9, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TAPS Transports October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Existing Transport Protocols 5
3.1. Transport Control Protocol (TCP) 5
3.1.1. Protocol Description 5
3.1.2. Interface description 6
3.1.3. Transport Features 7

3.2. Multipath TCP (MPTCP) 8
3.2.1. Protocol Description 8
3.2.2. Interface Description 8
3.2.3. Transport features 8

3.3. Stream Control Transmission Protocol (SCTP) 9
3.3.1. Protocol Description 9
3.3.2. Interface Description 12
3.3.3. Transport Features 14

3.4. User Datagram Protocol (UDP) 15
3.4.1. Protocol Description 15
3.4.2. Interface Description 16
3.4.3. Transport Features 16

3.5. Lightweight User Datagram Protocol (UDP-Lite) 17
3.5.1. Protocol Description 17
3.5.2. Interface Description 18
3.5.3. Transport Features 18

3.6. Datagram Congestion Control Protocol (DCCP) 19
3.6.1. Protocol Description 19
3.6.2. Interface Description 20
3.6.3. Transport Features 21

3.7. Lightweight User Datagram Protocol (UDP-Lite) 21
3.7.1. Protocol Description 21
3.7.2. Interface Description 22
3.7.3. Transport Features 22

3.8. Internet Control Message Protocol (ICMP) 23
3.8.1. Protocol Description 23
3.8.2. Interface Description 24
3.8.3. Transport Features 24

3.9. Realtime Transport Protocol (RTP) 25
3.9.1. Protocol Description 25
3.9.2. Interface Description 26
3.9.3. Transport Features 26

 3.10. File Delivery over Unidirectional Transport/Asynchronous
 Layered Coding Reliable Multicast (FLUTE/ALC) 26

3.10.1. Protocol Description 27
3.10.2. Interface Description 29

Fairhurst, et al. Expires April 9, 2016 [Page 2]

Internet-Draft TAPS Transports October 2015

3.10.3. Transport Features 29
3.11. NACK-Oriented Reliable Multicast (NORM) 30
3.11.1. Protocol Description 30
3.11.2. Interface Description 31
3.11.3. Transport Features 32

 3.12. Transport Layer Security (TLS) and Datagram TLS (DTLS) as
 a pseudotransport . 32

3.12.1. Protocol Description 33
3.12.2. Interface Description 34
3.12.3. Transport Features 34

 3.13. Hypertext Transport Protocol (HTTP) over TCP as a
 pseudotransport . 35

3.13.1. Protocol Description 36
3.13.2. Interface Description 37
3.13.3. Transport features 37

4. Transport Service Features 38
4.1. Complete Protocol Feature Matrix 40

5. IANA Considerations . 42
6. Security Considerations 42
7. Contributors . 42
8. Acknowledgments . 43
9. Informative References 43

 Authors' Addresses . 52

1. Introduction

 Most Internet applications make use of the Transport Services
 provided by TCP (a reliable, in-order stream protocol) or UDP (an
 unreliable datagram protocol). We use the term "Transport Service"
 to mean the end-to-end service provided to an application by the
 transport layer. That service can only be provided correctly if
 information about the intended usage is supplied from the
 application. The application may determine this information at
 design time, compile time, or run time, and may include guidance on
 whether a feature is required, a preference by the application, or
 something in between. Examples of features of Transport Services are
 reliable delivery, ordered delivery, content privacy to in-path
 devices, and integrity protection.

 The IETF has defined a wide variety of transport protocols beyond TCP
 and UDP, including SCTP, DCCP, MP-TCP, and UDP-Lite. Transport
 services may be provided directly by these transport protocols, or
 layered on top of them using protocols such as WebSockets (which runs
 over TCP), RTP (over TCP or UDP) or WebRTC data channels (which run
 over SCTP over DTLS over UDP or TCP). Services built on top of UDP
 or UDP-Lite typically also need to specify additional mechanisms,
 including a congestion control mechanism (such as NewReno, TFRC or

Fairhurst, et al. Expires April 9, 2016 [Page 3]

Internet-Draft TAPS Transports October 2015

 LEDBAT). This extends the set of available Transport Services beyond
 those provided to applications by TCP and UDP.

 [GF: Ledbat is a mechanism, not protocol - hence use the work
 "support" in para below.]

 Transport protocols can also be differentiated by the features of the
 services they provide: for instance, SCTP offers a message-based
 service providing full or partial reliability and allowing to
 minimize the head of line blocking due to the support of unordered
 and unordered message delivery within multiple streams, UDP-Lite and
 DCCP provide partial integrity protection, and LEDBAT can support
 low-priority "scavenger" communication.

2. Terminology

 The following terms are defined throughout this document, and in
 subsequent documents produced by TAPS describing the composition and
 decomposition of transport services.

 [EDITOR'S NOTE: we may want to add definitions for the different
 kinds of interfaces that are important here.]

 [GF: Interfaces may be covered by Micahel Welzl's companion
 document?]

 Transport Service Feature: a specific end-to-end feature that a
 transport service provides to its clients. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 Transport Service: a set of transport service features, without an
 association to any given framing protocol, which provides a
 complete service to an application.

 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.

 Transport Protocol Component: an implementation of a transport
 service feature within a protocol.

 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g. a protocol stack (RTP
 over UDP).

Fairhurst, et al. Expires April 9, 2016 [Page 4]

Internet-Draft TAPS Transports October 2015

 Application: an entity that uses the transport layer for end-to-end
 delivery data across the network (this may also be an upper layer
 protocol or tunnel encapsulation).

3. Existing Transport Protocols

 This section provides a list of known IETF transport protocol and
 transport protocol frameworks.

3.1. Transport Control Protocol (TCP)

 TCP is an IETF standards track transport protocol. [RFC0793]
 introduces TCP as follows: "The Transmission Control Protocol (TCP)
 is intended for use as a highly reliable host-to-host protocol
 between hosts in packet-switched computer communication networks, and
 in interconnected systems of such networks." Since its introduction,
 TCP has become the default connection-oriented, stream-based
 transport protocol in the Internet. It is widely implemented by
 endpoints and widely used by common applications.

3.1.1. Protocol Description

 TCP is a connection-oriented protocol, providing a three way
 handshake to allow a client and server to set up a connection and
 negotiate features, and mechanisms for orderly completion and
 immediate teardown of a connection. TCP is defined by a family of
 RFCs [RFC4614].

 TCP provides multiplexing to multiple sockets on each host using port
 numbers.] A similar approach is adopted by other IETF-defined
 transports. An active TCP session is identified by its four-tuple of
 local and remote IP addresses and local port and remote port numbers.
 The destination port during connection setup is often used to
 indicate the requested service.

 TCP partitions a continuous stream of bytes into segments, sized to
 fit in IP packets. ICMP-based PathMTU discovery [RFC1191][RFC1981]
 as well as Packetization Layer Path MTU Discovery (PMTUD) [RFC4821]
 are supported.

 Each byte in the stream is identified by a sequence number. The
 sequence number is used to order segments on receipt, to identify
 segments in acknowledgments, and to detect unacknowledged segments
 for retransmission. This is the basis of the reliable, ordered
 delivery of data in a TCP stream. TCP Selective Acknowledgment
 [RFC2018] extends this mechanism by making it possible to identify
 missing segments more precisely, reducing spurious retransmission.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc2018

Fairhurst, et al. Expires April 9, 2016 [Page 5]

Internet-Draft TAPS Transports October 2015

 Receiver flow control is provided by a sliding window: limiting the
 amount of unacknowledged data that can be outstanding at a given
 time. The window scale option [RFC7323] allows a receiver to use
 windows greater than 64KB.

 All TCP senders provide Congestion Control [RFC5681]: This uses a
 separate window, where each time congestion is detected, this
 congestion window is reduced. Most of the used congestion control
 mechanisms use one of three mechanisms to detect congestion: A
 retransmission timer (with exponential back-up), detection of loss
 (interpreted as a congestion signal), or Explicit Congestion
 Notification (ECN) [RFC3168] to provide early signaling (see
 [I-D.ietf-aqm-ecn-benefits]). In addition, a congestion control
 mechanism may react to changes in delay as an early indication for
 congestion.

 A TCP protocol instance can be extended [RFC4614] and tuned. Some
 features are sender-side only, requiring no negotiation with the
 receiver; some are receiver-side only, some are explicitly negotiated
 during connection setup.

 By default, TCP segment partitioning uses Nagle's algorithm [RFC0896]
 to buffer data at the sender into large segments, potentially
 incurring sender-side buffering delay; this algorithm can be disabled
 by the sender to transmit more immediately, e.g., to reduce latency
 for interactive sessions.

 TCP provides a push and a urgent function to enable data to be
 directly accessed by the receiver wihout having to wait for in-order
 delivery of the data. However, [RFC6093] does not recommend the use
 of the urgent flag due to the range of TCP implementations that
 process TCP urgent indications differently.

 A checksum provides an Integrity Check and is mandatory across the
 entire packet. This check protects from delivery of corrupted data
 and miselivery of packets to the wrong endpoint. This check is
 relatively weak, applications that require end to end integrity of
 data are recommended to include a stronger integrity check of their
 payload data. The TCP checksum does not support partial corruption
 protection (as in DCCP/UDP-Lite).

 TCP only supports unicast connections.

3.1.2. Interface description

 A User/TCP Interface is defined in [RFC0793] providing six user
 commands: Open, Send, Receive, Close, Status. This interface does

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4614
https://datatracker.ietf.org/doc/html/rfc0896
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc0793

Fairhurst, et al. Expires April 9, 2016 [Page 6]

Internet-Draft TAPS Transports October 2015

 not describe configuration of TCP options or parameters beside use of
 the PUSH and URGENT flags.

 [RFC1122] describes extensions of the TCP/application layer interface
 for 1) reporting soft errors such as reception fo ICMP error
 messages, extensive retransmission or urgent pointer advance, 2)
 providing a possibility to specify the Type-of-Service (TOS) for
 segments, 3) providing a fush call to empty the TCP send queue, and
 4) multihoming support.

 In API implementations derived from the BSD Sockets API, TCP sockets
 are created using the "SOCK_STREAM" socket type as described in the
 IEEE Portable Operating System Interface (POSIX) Base Specifications
 [POSIX]. The features used by a protocol instance may be set and
 tuned via this API. However, there is no RFC that documents this
 interface.

3.1.3. Transport Features

 The transport features provided by TCP are:

 [EDITOR'S NOTE: expand each of these slightly]

 o unicast transport

 o connection setup with feature negotiation and application-to-port
 mapping, implemented using SYN segments and the TCP option field
 to negotiate features.

 o port multiplexing: each TCP session is uniquely identified by a
 combination of the ports and IP address fields.

 o Uni-or bidirectional communication

 o stream-oriented delivery in a single stream

 o fully reliable delivery, implemented using ACKs sent from the
 receiver to confirm delivery.

 o error detection: a segment checksum verifies delivery to the
 correct endpoint and integrity of the data and options.

 o segmentation: packets are fragmented to a negotiated maximum
 segment size, further constrained by the effective MTU from PMTUD.

 o data bundling, an optional mechanism that uses Nagle's algorithm
 to coalesce data sent within the same RTT into full-sized
 segments.

Fairhurst, et al. Expires April 9, 2016 [Page 7]

Internet-Draft TAPS Transports October 2015

 o flow control using a window-based mechanism, where the receiver
 advertises the window that it is willing to buffer.

 o congestion control: a window-based method that uses AIMD to
 control the sending rate and to conservatively choose a rate after
 congestion is detected.

3.2. Multipath TCP (MPTCP)

 Multipath TCP [RFC6824] is an extension for TCP to support multi-
 homing. It is designed to be as transparent as possible to middle-
 boxes. It does so by establishing regular TCP flows between a pair
 of source/destination endpoints, and multiplexing the application's
 stream over these flows.

3.2.1. Protocol Description

 MPTCP uses TCP options for its control plane. They are used to
 signal multipath capabilities, as well as to negotiate data sequence
 numbers, and advertise other available IP addresses and establish new
 sessions between pairs of endpoints.

3.2.2. Interface Description

 By default, MPTCP exposes the same interface as TCP to the
 application. [RFC6897] however describes a richer API for MPTCP-
 aware applications.

 This Basic API describes how an application can

 o enable or disable MPTCP;

 o bind a socket to one or more selected local endpoints;

 o query local and remote endpoint addresses;

 o get a unique connection identifier (similar to an address-port
 pair for TCP).

 The document also recommends the use of extensions defined for SCTP
 [RFC6458] (see next section) to support multihoming.

3.2.3. Transport features

 As an extension to TCP, MPTCP provides mostly the same features. By
 establishing multiple sessions between available endpoints, it can
 additionally provide soft failover solutions should one of the paths
 become unusable. In addition, by multiplexing one byte stream over

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc6458

Fairhurst, et al. Expires April 9, 2016 [Page 8]

Internet-Draft TAPS Transports October 2015

 separate paths, it can achieve a higher throughput than TCP in
 certain situations (note however that coupled congestion control
 [RFC6356] might limit this benefit to maintain fairness to other
 flows at the bottleneck). When aggregating capacity over multiple
 paths, and depending on the way packets are scheduled on each TCP
 subflow, an additional delay and higher jitter might be observed
 observed before in-order delivery of data to the applications.

 The transport features provided by MPTCP in addition to TCP therefore
 are:

 o congestion control with load balancing over mutiple connections.

 o endpoint multiplexing of a single byte stream (higher throughput).

 o address family multiplexing: sub-flows can be started over IPv4 or
 IPv6 for the same session.

 o resilience to network failure and/or handover.

 [AUTHOR'S NOTE: it is unclear whether MPTCP has to provide data
 bundling.]

3.3. Stream Control Transmission Protocol (SCTP)

 SCTP is a message-oriented standards track transport protocol. The
 base protocol is specified in [RFC4960]. It supports multi-homing to
 handle path failures. It also optionally supports path failover to
 provide resilliance to path failures. An SCTP association has
 multiple unidirectional streams in each direction and provides in-
 sequence delivery of user messages only within each stream. This
 allows it to minimize head of line blocking. SCTP is extensible and
 the currently defined extensions include mechanisms for dynamic re-
 configurations of streams [RFC6525] and IP-addresses [RFC5061].
 Furthermore, the extension specified in [RFC3758] introduces the
 concept of partial reliability for user messages.

 SCTP was originally developed for transporting telephony signalling
 messages and is deployed in telephony signalling networks, especially
 in mobile telephony networks. It can also be used for other
 services, for example in the WebRTC framework for data channels and
 is therefore deployed in all WEB-browsers supporting WebRTC.

3.3.1. Protocol Description

 SCTP is a connection-oriented protocol using a four way handshake to
 establish an SCTP association and a three way message exchange to

https://datatracker.ietf.org/doc/html/rfc6356
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc3758

Fairhurst, et al. Expires April 9, 2016 [Page 9]

Internet-Draft TAPS Transports October 2015

 gracefully shut it down. It uses the same port number concept as
 DCCP, TCP, UDP, and UDP-Lite, and only supports unicast.

 SCTP uses the 32-bit CRC32c for protecting SCTP packets against bit
 errors and miselivery of packets to the wrong endpoint. This is
 stronger than the 16-bit checksums used by TCP or UDP. However, a
 partial checksum coverage, as provided by DCCP or UDP-Lite is not
 supported.

 SCTP has been designed with extensibility in mind. Each SCTP packet
 starts with a single common header containing the port numbers, a
 verification tag and the CRC32c checksum. This common header is
 followed by a sequence of chunks. Each chunk consists of a type
 field, flags, a length field and a value. [RFC4960] defines how a
 receiver processes chunks with an unknown chunk type. The support of
 extensions can be negotiated during the SCTP handshake.

 SCTP provides a message-oriented service. Multiple small user
 messages can be bundled into a single SCTP packet to improve the
 efficiency. For example, this bundling may be done by delaying user
 messages at the sender similar to the Nagle algorithm used by TCP.
 User messages which would result in IP packets larger than the MTU
 will be fragmented at the sender and reassembled at the receiver.
 There is no protocol limit on the user message size. ICMP-based path
 MTU discovery as specified for IPv4 in [RFC1191] and for IPv6 in
 [RFC1981] as well as packetization layer path MTU discovery as
 specified in [RFC4821] with probe packets using the padding chunks
 defined the [RFC4820] are supported.

 [RFC4960] specifies a TCP friendly congestion control to protect the
 network against overload. SCTP also uses a sliding window flow
 control to protect receivers against overflow. Similar to TCP, SCTP
 also supports delaying acknowledgements. [RFC7053] provides a way
 for the sender of user messages to request the immediate sending of
 the corresponding acknowledgements.

 Each SCTP association has between 1 and 65536 uni-directional streams
 in each direction. The number of streams can be different in each
 direction. Every user-message is sent on a particular stream. User
 messages can be sent un-ordered or ordered upon request by the upper
 layer. Un-ordered messages can be delivered as soon as they are
 completely received. Ordered messages sent on the same stream are
 delivered at the receiver in the same order as sent by the sender.
 For user messages not requiring fragmentation, this minimises head of
 line blocking.

 The base protocol defined in [RFC4960] does not allow interleaving of
 user-messages, which results in sending a large message on one stream

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4820
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc4960

Fairhurst, et al. Expires April 9, 2016 [Page 10]

Internet-Draft TAPS Transports October 2015

 can block the sending of user messages on other streams.
 [I-D.ietf-tsvwg-sctp-ndata] overcomes this limitation. Furthermore,
 [I-D.ietf-tsvwg-sctp-ndata] specifies multiple algorithms for the
 sender side selection of which streams to send data from supporting a
 variety of scheduling algorithms including priority based methods.
 The stream re-configuration extension defined in [RFC6525] allows
 streams to be reset during the lifetime of an association and to
 increase the number of streams, if the number of streams negotiated
 in the SCTP handshake becomes insufficient.

 Each user message sent is either delivered to the receiver or, in
 case of excessive retransmissions, the association is terminated in a
 non-graceful way [RFC4960], similar to TCP behaviour. In addition to
 this reliable transfer, the partial reliability extension [RFC3758]
 allows a sender to abandon user messages. The application can
 specify the policy for abandoning user messages. Examples for these
 policies defined in [RFC3758] and [RFC7496] are:

 o Limiting the time a user message is dealt with by the sender.

 o Limiting the number of retransmissions for each fragment of a user
 message. If the number of retransmissions is limited to 0, one
 gets a service similar to UDP.

 o Abandoning messages of lower priority in case of a send buffer
 shortage.

 SCTP supports multi-homing. Each SCTP endpoint uses a list of IP-
 addresses and a single port number. These addresses can be any
 mixture of IPv4 and IPv6 addresses. These addresses are negotiated
 during the handshake and the address re-configuration extension
 specified in [RFC5061] in combination with [RFC4895] can be used to
 change these addresses in an authenticated way during the livetime of
 an SCTP association. This allows for transport layer mobility.
 Multiple addresses are used for improved resilience. If a remote
 address becomes unreachable, the traffic is switched over to a
 reachable one, if one exists. Each SCTP end-point supervises
 continuously the reachability of all peer addresses using a heartbeat
 mechanism.

 For securing user messages, the use of TLS over SCTP has been
 specified in [RFC3436]. However, this solution does not support all
 services provided by SCTP (for example un-ordered delivery or partial
 reliability), and therefore the use of DTLS over SCTP has been
 specified in [RFC6083] to overcome these limitations. When using
 DTLS over SCTP, the application can use almost all services provided
 by SCTP.

https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc7496
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc3436
https://datatracker.ietf.org/doc/html/rfc6083

Fairhurst, et al. Expires April 9, 2016 [Page 11]

Internet-Draft TAPS Transports October 2015

 [I-D.ietf-tsvwg-natsupp] defines methods for endpoints and
 middleboxes to provide support NAT for SCTP over IPv4. For legacy
 NAT traversal, [RFC6951] defines the UDP encapsulation of SCTP-
 packets. Alternatively, SCTP packets can be encapsulated in DTLS
 packets as specified in [I-D.ietf-tsvwg-sctp-dtls-encaps]. The
 latter encapsulation is used within the WebRTC context.

 SCTP has a well-defined API, described in the next subsection.

3.3.2. Interface Description

 [RFC4960] defines an abstract API for the base protocol. This API
 describes the following functions callable by the upper layer of
 SCTP: Initialize, Associate, Send, Receive, Receive Unsent Message,
 Receive Unacknowledged Message, Shutdown, Abort, SetPrimary, Status,
 Change Heartbeat, Request Heartbeat, Get SRTT Report, Set Failure
 Threshold, Set Protocol Parameters, and Destroy. The following
 notifications are provided by the SCTP stack to the upper layer:
 COMMUNICATION UP, DATA ARRIVE, SHUTDOWN COMPLETE, COMMUNICATION LOST,
 COMMUNICATION ERROR, RESTART, SEND FAILURE, NETWORK STATUS CHANGE.

 An extension to the BSD Sockets API is defined in [RFC6458] and
 covers:

 o the base protocol defined in [RFC4960]. The API allows to control
 the local addresses and port numbers and the primary path.
 Furthermore the application has fine control about parameters like
 retransmission thresholds, the path supervision parameters, the
 delayed acknowledgement timeout, and the fragmentation point. The
 API provides a mechanism to allow the SCTP stack to notify the
 application about event if the application has requested them.
 These notifications provide Information about status changes of
 the association and each of the peer addresses. In case of send
 failures that application can also be notified and user messages
 can be returned to the application. When sending user messages,
 the stream id, a payload protocol identifier, an indication
 whether ordered delivery is requested or not. These parameters
 can also be provided on message reception. Additionally a context
 can be provided when sending, which can be use in case of send
 failures. The sending of arbitrary large user messages is
 supported.

 o the SCTP Partial Reliability extension defined in [RFC3758] to
 specify for a user message the PR-SCTP policy and the policy
 specific parameter.

 o the SCTP Authentication extension defined in [RFC4895] allowing to
 manage the shared keys, the HMAC to use, set the chunk types which

https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895

Fairhurst, et al. Expires April 9, 2016 [Page 12]

Internet-Draft TAPS Transports October 2015

 are only accepted in an authenticated way, and get the list of
 chunks which are accepted by the local and remote end point in an
 authenticated way.

 o the SCTP Dynamic Address Reconfiguration extension defined in
 [RFC5061]. It allows to manually add and delete local addresses
 for SCTP associations and the enabling of automatic address
 addition and deletion. Furthermore the peer can be given a hint
 for choosing its primary path.

 For the following SCTP protocol extensions the BSD Sockets API
 extension is defined in the document specifying the protocol
 extensions:

 o the SCTP Stream Reconfiguration extension defined in [RFC6525].
 The API allows to trigger the reset operation for incoming and
 outgoing streams and the whole association. It provides also a
 way to notify the association about the corresponding events.
 Furthermore the application can increase the number of streams.

 o the UDP Encapsulation of SCTP packets extension defined in
 [RFC6951]. The API allows the management of the remote UDP
 encapsulation port.

 o the SCTP SACK-IMMEDIATELY extension defined in [RFC7053]. The API
 allows the sender of a user message to request the receiver to
 send the corresponding acknowledgement immediately.

 o the additional PR-SCTP policies defined in [RFC7496]. The API
 allows to enable/disable the PR-SCTP extension, choose the PR-SCTP
 policies defined in the document and provide statistical
 information about abandoned messages.

 Future documents describing SCTP protocol extensions are expected to
 describe the corresponding BSD Sockets API extension in a "Socket API
 Considerations" section.

 The SCTP socket API supports two kinds of sockets:

 o one-to-one style sockets (by using the socket type "SOCK_STREAM").

 o one-to-many style socket (by using the socket type
 "SOCK_SEQPACKET").

 One-to-one style sockets are similar to TCP sockets, there is a 1:1
 relationship between the sockets and the SCTP associations (except
 for listening sockets). One-to-many style SCTP sockets are similar

https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc7496

Fairhurst, et al. Expires April 9, 2016 [Page 13]

Internet-Draft TAPS Transports October 2015

 to unconnected UDP sockets, where there is a 1:n relationship between
 the sockets and the SCTP associations.

 The SCTP stack can provide information to the applications about
 state changes of the individual paths and the association whenever
 they occur. These events are delivered similar to user messages but
 are specifically marked as notifications.

 New functions have been introduced to support the use of multiple
 local and remote addresses. Additional SCTP-specific send and
 receive calls have been defined to permit SCTP-specific information
 to be snet without using ancillary data in the form of additional
 cmsgs. These functions provide support for detecting partial
 delivery of user messages and notifications.

 The SCTP socket API allows a fine-grained control of the protocol
 behaviour through an extensive set of socket options.

 The SCTP kernel implementations of FreeBSD, Linux and Solaris follow
 mostly the specified extension to the BSD Sockets API for the base
 protocol and the corresponding supported protocol extensions.

3.3.3. Transport Features

 The transport features provided by SCTP are:

 [GF: This needs to be harmonised with the components for TCP]

 o unicast.

 o connection setup with feature negotiation and application-to-port
 mapping.

 o port multiplexing.

 o message-oriented delivery.

 o fully reliable or partially reliable delivery.

 o ordered and unordered delivery within a stream.

 o support for multiple concurrent streams.

 o support for stream scheduling prioritization.

 o flow control.

 o congestion control.

Fairhurst, et al. Expires April 9, 2016 [Page 14]

Internet-Draft TAPS Transports October 2015

 o user message bundling.

 o user message fragmentation and reassembly.

 o strong error/misdelivery detection (CRC32c).

 o transport layer multihoming for resilience.

 o transport layer mobility.

3.4. User Datagram Protocol (UDP)

 The User Datagram Protocol (UDP) [RFC0768] [RFC2460] is an IETF
 standards track transport protocol. It provides a unidirectional,
 datagram protocol that preserves message boundaries. It provides
 none of the following transport features: error correction,
 congestion control, or flow control. It can be used to send
 broadcast datagrams (IPv4) or multicast datagrams (IPv4 and IPv6), in
 addition to unicast (and anycast) datagrams. IETF guidance on the
 use of UDP is provided in[I-D.ietf-tsvwg-rfc5405bis]. UDP is widely
 implemented and widely used by common applications, including DNS.

3.4.1. Protocol Description

 UDP is a connection-less protocol that maintains message boundaries,
 with no connection setup or feature negotiation. The protocol uses
 independent messages, ordinarily called datagrams. Each stream of
 messages is independently managed, therefore retransmission does not
 hold back data sent using other logical streams. It provides
 detection of payload errors and misdelivery of packets to the wrong
 endpoint, either of which result in discard of received datagrams.

 It is possible to create IPv4 UDP datagrams with no checksum, and
 while this is generally discouraged [RFC1122]
 [I-D.ietf-tsvwg-rfc5405bis], certain special cases permit its use.
 These datagrams relie on the IPv4 header checksum to protect from
 misdelivery to the wrong endpoint. IPv6 does not by permit UDP
 datagrams with no checksum, although in certain cases this rule may
 be relaxed [RFC6935]. The checksum support considerations for
 omitting the checksum are defined in [RFC6936]. Note that due to the
 relatively weak form of checksum used by UDP, applications that
 require end to end integrity of data are recommended to include a
 stronger integrity check of their payload data.

 It does not provide reliability and does not provide retransmission.
 This implies messages may be re-ordered, lost, or duplicated in
 transit.

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936

Fairhurst, et al. Expires April 9, 2016 [Page 15]

Internet-Draft TAPS Transports October 2015

 A receiving application that is unable to run sufficiently fast, or
 frequently, may miss messages since there is no flow control. The
 lack of congestion handling implies UDP traffic may experience loss
 when using an overlaoded path and may cause the loss of messages from
 other protocols (e.g., TCP) when sharing the same network path.

 [GF: This para isn't needed": Messages with payload errors are
 ordinarily detected by an invalid end- to-end checksum and are
 discarded before being delivered to an application. UDP-Lite (see
 [RFC3828], and below) provides the ability for portions of the
 message contents to be exempt from checksum coverage.]

 On transmission, UDP encapsulates each datagram into an IP packet,
 which may in turn be fragmented by IP and are reassembled before
 delivery to the UDP receiver.

 Applications that need to provide fragmentation or that have other
 requirements such as receiver flow control, congestion control,
 PathMTU discovery/PLPMTUD, support for ECN, etc need these to be
 provided by protocols operating over UDP [I-D.ietf-tsvwg-rfc5405bis].

3.4.2. Interface Description

 [RFC0768] describes basic requirements for an API for UDP. Guidance
 on use of common APIs is provided in [I-D.ietf-tsvwg-rfc5405bis].

 A UDP endpoint consists of a tuple of (IP address, port number).
 Demultiplexing using multiple abstract endpoints (sockets) on the
 same IP address are supported. The same socket may be used by a
 single server to interact with multiple clients (note: this behavior
 differs from TCP, which uses a pair of tuples to identify a
 connection). Multiple server instances (processes) that bind the
 same socket can cooperate to service multiple clients- the socket
 implementation arranges to not duplicate the same received unicast
 message to multiple server processes.

 Many operating systems also allow a UDP socket to be "connected",
 i.e., to bind a UDP socket to a specific (remote) UDP endpoint.
 Unlike TCP's connect primitive, for UDP, this is only a local
 operation that serves to simplify the local send/receive functions
 and to filter the traffic for the specified addresses and ports
 [I-D.ietf-tsvwg-rfc5405bis].

3.4.3. Transport Features

 The transport features provided by UDP are:

 o unicast.

https://datatracker.ietf.org/doc/html/rfc3828

Fairhurst, et al. Expires April 9, 2016 [Page 16]

Internet-Draft TAPS Transports October 2015

 o multicast, anycast, or IPv4 broadcast.

 o port multiplexing. A receiving port can be configured to receive
 datagrams from multiple senders.

 o message-oriented delivery.

 o unidirectional or bidirectional. Transmission in each direction
 is independent.

 o non-reliable delivery.

 o non-ordered delivery.

 o IPv6 jumbograms.

 o error and misdelivery detection (checksum).

 o optional checksum. All or none of the payload data is protected.

3.5. Lightweight User Datagram Protocol (UDP-Lite)

 The Lightweight User Datagram Protocol (UDP-Lite) [RFC3828] is an
 IETF standards track transport protocol. It provides a
 unidirectional, datagram protocol that preserves message boundaries.
 IETF guidance on the use of UDP-Lite is provided in
 [I-D.ietf-tsvwg-rfc5405bis].

3.5.1. Protocol Description

 UDP-Lite is a connection-less datagram protocol, with no connection
 setup or feature negotiation. The protocol use messages, rather than
 a byte-stream. Each stream of messages is independently managed,
 therefore retransmission does not hold back data sent using other
 logical streams.

 It provides multiplexing to multiple sockets on each host using port
 numbers, and its operation follows that for UDP. An active UDP-Lite
 session is identified by its four-tuple of local and remote IP
 addresses and local port and remote port numbers.

 UDP-Lite changes the semantics of the UDP "payload length" field to
 that of a "checksum coverage length" field, and is identified by a
 different IP protocol/next-header value. Otherwise, UDP-Lite is
 semantically identical to UDP. Applications using UDP-Lite therefore
 can not make assumptions regarding the correctness of the data
 received in the insensitive part of the UDP-Lite payload.

https://datatracker.ietf.org/doc/html/rfc3828

Fairhurst, et al. Expires April 9, 2016 [Page 17]

Internet-Draft TAPS Transports October 2015

 As for UDP, mechanisms for receiver flow control, congestion control,
 PMTU or PLPMTU discovery, support for ECN, etc need to be provided by
 upper layer protocols [I-D.ietf-tsvwg-rfc5405bis].

 Examples of use include a class of applications that can derive
 benefit from having partially-damaged payloads delivered, rather than
 discarded. One use is to support error tolerate payload corruption
 when used over paths that include error-prone links, another
 application is when header integrity checks are required, but payload
 integrity is provided by some other mechanism (e.g., [RFC6936].

 A UDP-Lite service may support IPv4 broadcast, multicast, anycast and
 unicast, and IPv6 multicast, anycast and unicast.

3.5.2. Interface Description

 There is no current API specified in the RFC Series, but guidance on
 use of common APIs is provided in [I-D.ietf-tsvwg-rfc5405bis].

 The interface of UDP-Lite differs from that of UDP by the addition of
 a single (socket) option that communicates a checksum coverage length
 value: at the sender, this specifies the intended checksum coverage,
 with the remaining unprotected part of the payload called the "error-
 insensitive part". The checksum coverage may also be made visible to
 the application via the UDP-Lite MIB module [RFC5097].

3.5.3. Transport Features

 The transport features provided by UDP-Lite are:

 o unicast.

 o multicast, anycast, or IPv4 broadcast.

 o port multiplexing (as for UDP).

 o message-oriented delivery (as for UDP).

 o non-reliable delivery (as for UDP).

 o non-ordered delivery (as for UDP).

 o error and misdelivery detection (checksum).

 o partialor full integrity protection. The checksum coverage field
 indicates the size of the payload data covered by the checksum.

https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc5097

Fairhurst, et al. Expires April 9, 2016 [Page 18]

Internet-Draft TAPS Transports October 2015

3.6. Datagram Congestion Control Protocol (DCCP)

 Datagram Congestion Control Protocol (DCCP) [RFC4340] is an IETF
 standards track bidirectional transport protocol that provides
 unicast connections of congestion-controlled messages without
 providing reliability.

 The DCCP Problem Statement describes the goals that DCCP sought to
 address [RFC4336]. It is suitable for applications that transfer
 fairly large amounts of data and that can benefit from control over
 the trade off between timeliness and reliability [RFC4336].

 It offers low overhead, and many characteristics common to UDP, but
 can avoid "Re-inventing the wheel" each time a new multimedia
 application emerges. Specifically it includes core functions
 (feature negotiation, path state management, RTT calculation, PMTUD,
 etc): This allows applications to use a compatible method defining
 how they send packets and where suitable to choose common algorithms
 to manage their functions. Examples of suitable applications include
 interactive applications, streaming media or on-line games [RFC4336].

3.6.1. Protocol Description

 DCCP is a connection-oriented datagram protocol, providing a three
 way handshake to allow a client and server to set up a connection,
 and mechanisms for orderly completion and immediate teardown of a
 connection. The protocol is defined by a family of RFCs.

 It provides multiplexing to multiple sockets at each endpoint using
 port numbers. An active DCCP session is identified by its four-tuple
 of local and remote IP addresses and local port and remote port
 numbers. At connection setup, DCCP also exchanges the service code
 [RFC5595], a mechanism that allows transport instantiations to
 indicate the service treatment that is expected from the network.

 The protocol segments data into messages, typically sized to fit in
 IP packets, but which may be fragmented providing they are less than
 the maximum packet size. A DCCP interface allows applications to
 request fragmentation for packets larger than PMTU, but not larger
 than the maximum packet size allowed by the current congestion
 control mechanism (CCMPS) [RFC4340].

 Each message is identified by a sequence number. The sequence number
 is used to identify segments in acknowledgments, to detect
 unacknowledged segments, to measure RTT, etc. The protocol may
 support ordered or unordered delivery of data, and does not itself
 provide retransmission. DCCP supports reduced checksum coverage, a
 partial integrity mechanisms similar to UDP-lIte. There is also a

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc4340

Fairhurst, et al. Expires April 9, 2016 [Page 19]

Internet-Draft TAPS Transports October 2015

 Data Checksum option that when enabled, contains a strong CRC, to
 enable endpoints to detect application data corruption.

 Receiver flow control is supported: limiting the amount of
 unacknowledged data that can be outstanding at a given time.

 A DCCP protocol instance can be extended [RFC4340] and tuned using
 features. Some features are sender-side only, requiring no
 negotiation with the receiver; some are receiver-side only, some are
 explicitly negotiated during connection setup.

 A DCCP service is unicast.

 DCCP supports negotiation of the congestion control profile, to
 provide Plug and Play congestion control mechanisms. Examples of
 specified profiles include [RFC4341] [RFC4342] [RFC5662]. All IETF-
 defined methods provide Congestion Control.

 DCCP use a Connect packet to initiate a session, and permits half-
 connections that allow each client to choose the features it wishes
 to support. Simultaneous open [RFC5596], as in TCP, can enable
 interoperability in the presence of middleboxes. The Connect packet
 includes a Service Code field [RFC5595] designed to allow middle
 boxes and endpoints to identify the characteristics required by a
 session.

 A lightweight UDP-based encapsulation (DCCP-UDP) has been defined
 [RFC6773] that permits DCCP to be used over paths where it is not
 natively supported. Support in NAPT/NATs is defined in [RFC4340] and
 [RFC5595].

 Upper layer protocols specified on top of DCCP include: DTLS
 [RFC5595], RTP [RFC5672], ICE/SDP [RFC6773].

 A common packet format has allowed tools to evolve that can read and
 interpret DCCP packets (e.g. Wireshark).

3.6.2. Interface Description

 API characteristics include: - Datagram transmission. - Notification
 of the current maximum packet size. - Send and reception of zero-
 length payloads. - Slow Receiver flow control at a receiver. -
 Detect a Slow receiver at the sender.

 There is no current API curremntly specified in the RFC Series.

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4341
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc5596
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc6773
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5672
https://datatracker.ietf.org/doc/html/rfc6773

Fairhurst, et al. Expires April 9, 2016 [Page 20]

Internet-Draft TAPS Transports October 2015

3.6.3. Transport Features

 The transport features provided by DCCP are:

 o unicast.

 o connection setup with feature negotiation and application-to-port
 mapping.

 o Service Codes. Identifies the upper layer service to the endpoint
 and network.

 o port multiplexing.

 o message-oriented delivery.

 o non-reliable delivery.

 o ordered delivery.

 o flow control. The slow receiver function allows a receiver to
 control the rate of the sender.

 o drop notification. Allows a receiver to notify which datagrams
 were not delivered to the peer upper layer protocol.

 o timestamps.

 o partial and full integrity protection (with optional strong
 integrity check).

3.7. Lightweight User Datagram Protocol (UDP-Lite)

 The Lightweight User Datagram Protocol (UDP-Lite) [RFC3828] is an
 IETF standards track transport protocol. It provides a
 unidirectional, datagram protocol that preserves message boundaries.
 IETF guidance on the use of UDP-Lite is provided in
 [I-D.ietf-tsvwg-rfc5405bis].

3.7.1. Protocol Description

 UDP-Lite is a connection-less datagram protocol, with no connection
 setup or feature negotiation. The protocol use messages, rather than
 a byte-stream. Each stream of messages is independently managed,
 therefore retransmission does not hold back data sent using other
 logical streams.

https://datatracker.ietf.org/doc/html/rfc3828

Fairhurst, et al. Expires April 9, 2016 [Page 21]

Internet-Draft TAPS Transports October 2015

 It provides multiplexing to multiple sockets on each host using port
 numbers, and its operation follows that for UDP. An active UDP-Lite
 session is identified by its four-tuple of local and remote IP
 addresses and local port and remote port numbers.

 UDP-Lite changes the semantics of the UDP "payload length" field to
 that of a "checksum coverage length" field, and is identified by a
 different IP protocol/next-header value. Otherwise, UDP-Lite is
 semantically identical to UDP. Applications using UDP-Lite therefore
 can not make assumptions regarding the correctness of the data
 received in the insensitive part of the UDP-Lite payload.

 As for UDP, mechanisms for receiver flow control, congestion control,
 PMTU or PLPMTU discovery, support for ECN, etc need to be provided by
 upper layer protocols [I-D.ietf-tsvwg-rfc5405bis].

 Examples of use include a class of applications that can derive
 benefit from having partially-damaged payloads delivered, rather than
 discarded. One use is to support error tolerate payload corruption
 when used over paths that include error-prone links, another
 application is when header integrity checks are required, but payload
 integrity is provided by some other mechanism (e.g., [RFC6936].

 A UDP-Lite service may support IPv4 broadcast, multicast, anycast and
 unicast, and IPv6 multicast, anycast and unicast.

3.7.2. Interface Description

 There is no current API specified in the RFC Series, but guidance on
 use of common APIs is provided in [I-D.ietf-tsvwg-rfc5405bis].

 The interface of UDP-Lite differs from that of UDP by the addition of
 a single (socket) option that communicates a checksum coverage length
 value: at the sender, this specifies the intended checksum coverage,
 with the remaining unprotected part of the payload called the "error-
 insensitive part". The checksum coverage may also be made visible to
 the application via the UDP-Lite MIB module [RFC5097].

3.7.3. Transport Features

 The transport features provided by UDP-Lite are:

 o unicast

 o multicast, anycast, or IPv4 broadcast.

 o port multiplexing (as for UDP).

https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc5097

Fairhurst, et al. Expires April 9, 2016 [Page 22]

Internet-Draft TAPS Transports October 2015

 o message-oriented delivery (as for UDP).

 o non-reliable delivery(as for UDP).

 o non-ordered delivery (as for UDP).

 o partial or full integrity protection.

3.8. Internet Control Message Protocol (ICMP)

 The Internet Control Message Protocol (ICMP) [RFC0792] for IPv4 and
 [RFC4433] for IPv6 are IETF standards track protocols.

 It provides a conection-less unidirectional protocol that delivers
 individual messages. It provides none of the following transport
 features: error correction, congestion control, or flow control.
 Some messages may be sent as broadcast datagrams (IPv4) or multicast
 datagrams (IPv4 and IPv6), in addition to unicast (and anycast)
 datagrams.

3.8.1. Protocol Description

 ICMP is a conection-less unidirectional protocol that delivers
 individual messages. The protocol uses independent messages,
 ordinarily called datagrams. Each message is required to carry a
 checksum as an integrity check and to protect from misdelivery to the
 wrong endpoint.

 ICMP messages typically relay diagnostic information from an endpoint
 [RFC1122] or network device [RFC1716] addressed to the sender of a
 flow. This usually contains the network protocol header of a packet
 that encountered the reported issue. Some formats of messages may
 also carry other payload data. Each message carries an integrity
 check calculated in the same way as UDP.

 The RFC series defines additional IPv6 message formats to support a
 range of uses. In the case of IPv6 the protocol incorporates
 neighbour discovery [RFC2461] [RFC3971]} (provided by ARP for IPv4)
 and the Multicast Listener Discovery (MLD) [RFC2710] group management
 functions (provided by IGMP for IPv4).

 Reliable transmission can not be assumed. A receiving application
 that is unable to run sufficiently fast, or frequently, may miss
 messages since there is no flow or congestion control. In addition
 some network devices rate-limit ICMP messages.

 Transport Protocols and upper layer protocols can use ICMP messages
 to help them take appropriate decisions when network or endpoint

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4433
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1716
https://datatracker.ietf.org/doc/html/rfc2461
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc2710

Fairhurst, et al. Expires April 9, 2016 [Page 23]

Internet-Draft TAPS Transports October 2015

 errors are reported. For example to implement, ICMP-based PathMTU
 discovery [RFC1191][RFC1981] or assist in Packetization Layer Path
 MTU Discovery (PMTUD) [RFC4821]. Such reactions to received messages
 needs to protects from off-path data injection
 [I-D.ietf-tsvwg-rfc5405bis], avoiding an application receiving
 packets that were created by an unauthorized third party. An
 application therefore needs to ensure that aLL messaged are
 appropriately validated, by checking the payload of the messages to
 ensure these are received in response to actually transmitted traffic
 (e.g., a reported error condition that corresponds to a UDP datagram
 or TCP segment was actually sent by the application). This requires
 context [RFC6056], such as local state about communication instances
 to each destination (e.g., in the TCP, DCCP, or SCTP protocols).
 This state is not always maintained by UDP-based applications
 [I-D.ietf-tsvwg-rfc5405bis].

 Any response to ICMP error messages ought to be robust to temporary
 routing failures (sometimes called "soft errors"), e.g., transient
 ICMP "unreachable" messages ought to not normally cause a
 communication abort [RFC5461] [I-D.ietf-tsvwg-rfc5405bis].

3.8.2. Interface Description

 ICMP processing is integrated into many connection-oriented
 transports, but like other functions needs to be provided by an
 upper-layer protocol when using UDP and UDP-Lite. On some stacks, a
 bound socket also allows a UDP application to be notified when ICMP
 error messages are received for its transmissions
 [I-D.ietf-tsvwg-rfc5405bis].

3.8.3. Transport Features

 The transport features provided by ICMP are:

 o unidirectional.

 o multicast, anycast and IP4 broadcast.

 o message-oriented delivery.

 o non-reliable delivery.

 o non-ordered delivery.

 o error and misdelivery detection (checksum).

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc5461

Fairhurst, et al. Expires April 9, 2016 [Page 24]

Internet-Draft TAPS Transports October 2015

3.9. Realtime Transport Protocol (RTP)

 RTP provides an end-to-end network transport service, suitable for
 applications transmitting real-time data, such as audio, video or
 data, over multicast or unicast network services, including TCP, UDP,
 UDP-Lite, or DCCP.

 [EDITOR'S NOTE: Varun Singh signed up as contributor for this
 section. Given the complexity of RTP, suggest to have an abbreviated
 section here contrasting RTP with other transports, and focusing on
 those features that are RTP-unique. Gorry Fairhurst contributed this
 stub section]

3.9.1. Protocol Description

 The RTP standard [RFC3550] defines a pair of protocols, RTP and the
 Real Time Control Protocol, RTCP. The transport does not provide
 connection setup, but relies on out-of-band techniques or associated
 control protocols to setup, negotiate parameters or tear-down a
 session.

 An RTP sender encapsulates audio/video data into RTP packets to
 transport media streams. The RFC-series specifies RTP media formats
 allow packets to carry a wide range of media, and specifies a wide
 range of mulriplexing, error control and other support mechanisms.

 If a frame of media data is large, it will be fragment this into
 several RTP packets. If small, several frames may be bundled into a
 single RTP packet. RTP may runs over a congestion-controlled or non-
 congestion-controlled transport protocol.

 An RTP receiver collects RTP packets from network, validates them for
 correctness, and sends them to the media decoder input-queue.
 Missing packet detection is performed by the channel decoder. The
 play-out buffer is ordered by time stamp and is used to reorder
 packets. Damaged frames may be repaired before the media payloads
 are decompressed to display or store the data.

 RTCP is an associated control protocol that works with RTP. Both the
 RTP sender and receiver can send RTCP report packets. This is used
 to periodically send control information and report performance.
 Based on received RTCP feedback, an RTP sender can adjust the
 transmission, e.g., perform rate adaptation at the application layer
 in the case of congestion.

 An RTCP receiver report (RTCP RR) is returned to the sender
 periodically to report key parameters (e.g, the fraction of packets
 lost in the last reporting interval, the cumulative number of packets

https://datatracker.ietf.org/doc/html/rfc3550

Fairhurst, et al. Expires April 9, 2016 [Page 25]

Internet-Draft TAPS Transports October 2015

 lost, the highest sequence number received, and the inter-arrival
 jitter). The RTCP RR packets also contain timing information that
 allows the sender to estimate the network round trip time (RTT) to
 the receivers.

 The interval between reports sent from each receiver tends to be on
 the order of a few seconds on average, although this varies with the
 session rate, and sub-second reporting intervals are possible for
 high rate sessions. The interval is randomised to avoid
 synchronization of reports from multiple receivers.

3.9.2. Interface Description

 [EDITOR'S NOTE: to do]

3.9.3. Transport Features

 The transport features provided by RTP are:

 o unicast.

 o multicast, anycast or IPv4 broadcast.

 o port multiplexing.

 o message-oriented delivery.

 o associated protocols for connection setup with feature negotiation
 and application-to-port mapping.

 o support for media types and other extensions.

 o segmentation and aggregation.

 o performance reporting.

 o drop notification.

 o timestamps.

3.10. File Delivery over Unidirectional Transport/Asynchronous Layered
 Coding Reliable Multicast (FLUTE/ALC)

 FLUTE/ALC is an IETF standards track protocol specified in [RFC6726]
 and [RFC5775],. ALC provides an underlying reliable transport service
 and FLUTE a file-oriented specialization of the ALC service (e.g., to
 carry associated metadata). The [RFC6726] and [RFC5775] protocols
 are non-backward-compatible updates of the [RFC3926] and [RFC3450]

https://datatracker.ietf.org/doc/html/rfc6726
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc6726
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3450

Fairhurst, et al. Expires April 9, 2016 [Page 26]

Internet-Draft TAPS Transports October 2015

 experimental protocols; these experimental protocols are currently
 largely deployed in the 3GPP Multimedia Broadcast and Multicast
 Services (MBMS) (see [MBMS], section 7) and similar contexts (e.g.,
 the Japanese ISDB-Tmm standard).

 The FLUTE/ALC protocol has been designed to support massively
 scalable reliable bulk data dissemination to receiver groups of
 arbitrary size using IP Multicast over any type of delivery network,
 including unidirectional networks (e.g., broadcast wireless
 channels). However, the FLUTE/ALC protocol also supports point-to-
 point unicast transmissions.

 FLUTE/ALC bulk data dissemination has been designed for discrete file
 or memory-based "objects". Transmissions happen either in push mode,
 where content is sent once, or in on-demand mode, where content is
 continuously sent during periods of time that can largely exceed the
 average time required to download the session objects (see [RFC5651],
 section 4.2).

 Altough FLUTE/ALC is not well adapted to byte- and message-streaming,
 there is an exception: FLUTE/ALC is used to carry 3GPP Dynamic
 Adaptive Streaming over HTTP (DASH) when scalability is a requirement
 (see [MBMS], section 5.6). In that case, each Audio/Video segment is
 transmitted as a distinct FLUTE/ALC object in push mode. FLUTE/ALC
 uses packet erasure coding (also known as Application-Level Forward
 Erasure Correction, or AL-FEC) in a proactive way. The goal of using
 AL-FEC is both to increase the robustness in front of packet erasures
 and to improve the efficiency of the on-demand service. FLUTE/ALC
 transmissions can be governed by a congestion control mechanism such
 as the "Wave and Equation Based Rate Control" (WEBRC) [RFC3738] when
 FLUTE/ALC is used in a layered transmission manner, with several
 session channels over which ALC packets are sent. However many
 FLUTE/ALC deployments involve only Constant Bit Rate (CBR) channels
 with no competing flows, for which a sender-based rate control
 mechanism is sufficient. In any case, FLUTE/ALC's reliability,
 delivery mode, congestion control, and flow/rate control mechanisms
 are distinct components that can be separately controlled to meet
 different application needs.

3.10.1. Protocol Description

 The FLUTE/ALC protocol works on top of UDP (though it could work on
 top of any datagram delivery transport protocol), without requiring
 any connectivity from receivers to the sender. Purely unidirectional
 networks are therefore supported by FLUTE/ALC. This guarantees
 scalability to an unlimited number of receivers in a session, since
 the sender behaves exactly the same regardness of the number of
 receivers.

https://datatracker.ietf.org/doc/html/rfc5651#section-4.2
https://datatracker.ietf.org/doc/html/rfc5651#section-4.2
https://datatracker.ietf.org/doc/html/rfc3738

Fairhurst, et al. Expires April 9, 2016 [Page 27]

Internet-Draft TAPS Transports October 2015

 FLUTE/ALC supports the transfer of bulk objects such as file or in-
 memory content, using either a push or an on-demand mode. in push
 mode, content is sent once to the receivers, while in on-demand mode,
 content is sent continuously during periods of time that can greatly
 exceed the average time required to download the session objects.

 This enables receivers to join a session asynchronously, at their own
 discretion, receive the content and leave the session. In this case,
 data content is typically sent continuously, in loops (also known as
 "carousels"). FLUTE/ALC also supports the transfer of an object
 stream, with loose real-time constraints. This is particularly
 useful to carry 3GPP DASH when scalability is a requirement and
 unicast transmissions over HTTP cannot be used ([MBMS], section 5.6).
 In this case, packets are sent in sequence using push mode. FLUTE/
 ALC is not well adapted to byte- and message-streaming and other
 solutions could be preferred (e.g., FECFRAME [RFC6363] with real-time
 flows).

 The FLUTE file delivery instantiation of ALC provides a metadata
 delivery service. Each object of the FLUTE/ALC session is described
 in a dedicated entry of a File Delivery Table (FDT), using an XML
 format (see [RFC6726], section 3.2). This metadata can include, but
 is not restricted to, a URI attribute (to identify and locate the
 object), a media type attribute, a size attribute, an encoding
 attribute, or a message digest attribute. Since the set of objects
 sent within a session can be dynamic, with new objects being added
 and old ones removed, several instances of the FDT can be sent and a
 mechanism is provided to identify a new FDT Instance.

 To provide robustness against packet loss and improve the efficiency
 of the on-demand mode, FLUTE/ALC relies on packet erasure coding (AL-
 FEC). AL-FEC encoding is proactive (since there is no feedback and
 therefore no (N)ACK-based retransmission) and ALC packets containing
 repair data are sent along with ALC packets containing source data.
 Several FEC Schemes have been standardized; FLUTE/ALC does not
 mandate the use of any particular one. Several strategies concerning
 the transmission order of ALC source and repair packets are possible,
 in particular in on-demand mode where it can deeply impact the
 service provided (e.g., to favor the recovery of objects in sequence,
 or at the other extreme, to favor the recovery of all objects in
 parallel), and FLUTE/ALC does not mandate nor recommend the use of
 any particular one.

 A FLUTE/ALC session is composed of one or more channels, associated
 to different destination unicast and/or multicast IP addresses. ALC
 packets are sent in those channels at a certain transmission rate,
 with a rate that often differs depending on the channel. FLUTE/ALC
 does not mandate nor recommend any strategy to select which ALC

https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6726#section-3.2

Fairhurst, et al. Expires April 9, 2016 [Page 28]

Internet-Draft TAPS Transports October 2015

 packet to send on which channel. FLUTE/ALC can use a multiple rate
 congestion control building block (e.g., WEBRC) to provide congestion
 control that is feedback free, where receivers adjust their reception
 rates individually by joining and leaving channels associated with
 the session. To that purpose, the ALC header provides a specific
 field to carry congestion control specific information. However
 FLUTE/ALC does not mandate the use of a particular congestion control
 mechanism although WEBRC is mandatory to support in case of Internet
 ([RFC6726], section 1.1.4). FLUTE/ALC is often used over a network
 path with pre-provisoned capacity [RFC5404] whete theres are no flows
 competing for capacity. In this case, a sender-based rate control
 mechanism and a single channel is sufficient.

 [RFC6584] provides per-packet authentication, integrity, and anti-
 replay protection in the context of the ALC and NORM protocols.
 Several mechanisms are proposed that seamlessly integrate into these
 protocols using the ALC and NORM header extension mechanisms.

3.10.2. Interface Description

 The FLUTE/ALC specification does not describe a specific application
 programming interface (API) to control protocol operation.
 Open source reference implementations of FLUTE/ALC are available at

http://planete-bcast.inrialpes.fr/ (no longer maintained) and
http://mad.cs.tut.fi/ (no longer maintained), and these

 implementations specify and document their own APIs. Commercial
 versions are also available, some derived from the above
 implementations, with their own API.

3.10.3. Transport Features

 The transport features provided by FLUTE/ALC are:

 o unicast

 o multicast, anycast or IPv4 broadcast.

 o per-object dynamic meta-data delivery.

 o push delivery or on-demand delivery service.

 o fully reliable or partially reliable delivery (of file or in-
 memory objects).

 o ordered or unordered delivery (of file or in-memory objects).

 o per-packet authentication, integrity, and anti-replay services.

https://datatracker.ietf.org/doc/html/rfc6726#section-1.1.4
https://datatracker.ietf.org/doc/html/rfc5404
http://planete-bcast.inrialpes.fr/
http://mad.cs.tut.fi/

Fairhurst, et al. Expires April 9, 2016 [Page 29]

Internet-Draft TAPS Transports October 2015

 o proactive packet erasure coding (AL-FEC) to recover from packet
 erasures and improve the on-demand delivery service,

 o error detection (through UDP and lower level checksums).

 o congestion control for layered flows (e.g., with WEBRC).

 o rate control transmission in a given channel.

3.11. NACK-Oriented Reliable Multicast (NORM)

 NORM is an IETF standards track protocol specified in [RFC5740]. The
 protocol was designed to support reliable bulk data dissemination to
 receiver groups using IP Multicast but also provides for point-to-
 point unicast operation. Its support for bulk data dissemination
 includes discrete file or computer memory-based "objects" as well as
 byte- and message-streaming. NORM is designed to incorporate packet
 erasure coding as an inherent part of its selective ARQ in response
 to receiver negative acknowledgements. The packet erasure coding can
 also be proactively applied for forward protection from packet loss.
 NORM transmissions are governed by the TCP-friendly congestion
 control. NORM's reliability, congestion control, and flow control
 mechanism are distinct components and can be separately controlled to
 meet different application needs.

3.11.1. Protocol Description

 [EDITOR'S NOTE: needs to be more clear about the application of FEC
 and packet erasure coding; expand ARQ.]

 The NORM protocol is encapsulated in UDP datagrams and thus provides
 multiplexing for multiple sockets on hosts using port numbers. For
 purposes of loosely coordinated IP Multicast, NORM is not strictly
 connection-oriented although per-sender state is maintained by
 receivers for protocol operation. [RFC5740] does not specify a
 handshake protocol for connection establishment and separate session
 initiation can be used to coordinate port numbers. However, in-band
 "client-server" style connection establishment can be accomplished
 with the NORM congestion control signaling messages using port
 binding techniques like those for TCP client-server connections.

 NORM supports bulk "objects" such as file or in-memory content but
 also can treat a stream of data as a logical bulk object for purposes
 of packet erasure coding. In the case of stream transport, NORM can
 support either byte streams or message streams where application-
 defined message boundary information is carried in the NORM protocol
 messages. This allows the receiver(s) to join/re-join and recover
 message boundaries mid-stream as needed. Application content is

https://datatracker.ietf.org/doc/html/rfc5740
https://datatracker.ietf.org/doc/html/rfc5740

Fairhurst, et al. Expires April 9, 2016 [Page 30]

Internet-Draft TAPS Transports October 2015

 carried and identified by the NORM protocol with encoding symbol
 identifiers depending upon the Forward Error Correction (FEC) Scheme
 [RFC3452] configured. NORM uses NACK-based selective ARQ to reliably
 deliver the application content to the receiver(s). NORM proactively
 measures round-trip timing information to scale ARQ timers
 appropriately and to support congestion control. For multicast
 operation, timer-based feedback suppression is uses to achieve group
 size scaling with low feedback traffic levels. The feedback
 suppression is not applied for unicast operation.

 NORM uses rate-based congestion control based upon the TCP-Friendly
 Rate Control (TFRC) [RFC4324] principles that are also used in DCCP
 [RFC4340]. NORM uses control messages to measure RTT and collect
 congestion event (e..g, loss event, ECN event, etc) information from
 the receiver(s) to support dynamic rate control adjustment. The TCP-
 Friendly Multicast Congestion Control (TFMCC) [RFC4654] used provides
 some extra features to support multicast but is functionally
 equivalent to TFRC in the unicast case.

 NORM's reliability mechanism is decoupled from congestion control.
 This allows alternative arrangements of transport services to be
 invoked. For example, fixed-rate reliable delivery can be supported
 or unreliable (but optionally "better than best effort" via packet
 erasure coding) delivery with rate-control per TFRC can be achieved.
 Additionally, alternative congestion control techniques may be
 applied. For example, TFRC rate control with congestion event
 detection based on ECN for links with high packet loss (e.g.,
 wireless) has been implemented and demonstrated with NORM.

 While NORM is NACK-based for reliability transfer, it also supports a
 positive acknowledgment (ACK) mechanism that can be used for receiver
 flow control. Again, since this mechanism is decoupled from the
 reliability and congestion control, applications that have different
 needs in this aspect can use the protocol differently. One example
 is the use of NORM for quasi-reliable delivery where timely delivery
 of newer content may be favored over completely reliable delivery of
 older content within buffering and RTT constraints.

3.11.2. Interface Description

 The NORM specification does not describe a specific application
 programming interface (API) to control protocol operation. A freely-
 available, open source reference implementation of NORM is available
 at https://www.nrl.navy.mil/itd/ncs/products/norm, and a documented
 API is provided for this implementation. While a sockets-like API is
 not currently documented, the existing API supports the necessary
 functions for that to be implemented.

https://datatracker.ietf.org/doc/html/rfc3452
https://datatracker.ietf.org/doc/html/rfc4324
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4654
https://www.nrl.navy.mil/itd/ncs/products/norm

Fairhurst, et al. Expires April 9, 2016 [Page 31]

Internet-Draft TAPS Transports October 2015

3.11.3. Transport Features

 The transport features provided by NORM are:

 o unicast or multicast.

 o stream-oriented delivery in a single stream.

 o object-oriented delivery of discrete data or file items.

 o reliable delivery.

 o unordered unidirectional delivery (of in-memory data or file bulk
 content objects).

 o error detection (UDP checksum).

 o segmentation.

 o data bundling (Nagle's algorithm).

 o flow control (timer-based and/or ack-based).

 o congestion control.

 o packet erasure coding (both proactively and as part of ARQ).

3.12. Transport Layer Security (TLS) and Datagram TLS (DTLS) as a
 pseudotransport

 Transport Layer Security (TLS) and Datagram TLS (DTLS) are IETF
 protocols that provide several security-related features to
 applications. TLS is designed to run on top of a reliable streaming
 transport protocol (usually TCP), while DTLS is designed to run on
 top of a best-effort datagram protocol (UDP or DCCP [RFC5238]). At
 the time of writing, the current version of TLS is 1.2; it is defined
 in [RFC5246]. DTLS provides nearly identical functionality to
 applications; it is defined in [RFC6347] and its current version is
 also 1.2. The TLS protocol evolved from the Secure Sockets Layer
 (SSL) protocols developed in the mid 90s to support protection of
 HTTP traffic.

 While older versions of TLS and DTLS are still in use, they provide
 weaker security guarantees. [RFC7457] outlines important attacks on
 TLS and DTLS. [RFC7525] is a Best Current Practices (BCP) document
 that describes secure configurations for TLS and DTLS to counter
 these attacks. The recommendations are applicable for the vast
 majority of use cases.

https://datatracker.ietf.org/doc/html/rfc5238
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7457
https://datatracker.ietf.org/doc/html/rfc7525

Fairhurst, et al. Expires April 9, 2016 [Page 32]

Internet-Draft TAPS Transports October 2015

 [NOTE: The Logjam authors (weakdh.org) give (inconclusive) evidence
 that one of the recommendations of [RFC7525], namely the use of
 DHE-1024 as a fallback, may not be sufficient in all cases to counter
 an attacker with the resources of a nation-state. It is unclear at
 this time if the RFC is going to be updated as a result, or whether
 there will be an RFC7525bis.]

3.12.1. Protocol Description

 Both TLS and DTLS provide the same security features and can thus be
 discussed together. The features they provide are:

 o Confidentiality

 o Data integrity

 o Peer authentication (optional)

 o Perfect forward secrecy (optional)

 The authentication of the peer entity can be omitted; a common web
 use case is where the server is authenticated and the client is not.
 TLS also provides a completely anonymous operation mode in which
 neither peer's identity is authenticated. It is important to note
 that TLS itself does not specify how a peering entity's identity
 should be interpreted. For example, in the common use case of
 authentication by means of an X.509 certificate, it is the
 application's decision whether the certificate of the peering entity
 is acceptable for authorization decisions. Perfect forward secrecy,
 if enabled and supported by the selected algorithms, ensures that
 traffic encrypted and captured during a session at time t0 cannot be
 later decrypted at time t1 (t1 > t0), even if the long-term secrets
 of the communicating peers are later compromised.

 As DTLS is generally used over an unreliable datagram transport such
 as UDP, applications will need to tolerate loss, re-ordered, or
 duplicated datagrams. Like TLS, DTLS conveys application data in a
 sequence of independent records. However, because records are mapped
 to unreliable datagrams, there are several features unique to DTLS
 that are not applicable to TLS:

 o Record replay detection (optional).

 o Record size negotiation (estimates of PMTU and record size
 expansion factor).

 o Coveyance of IP don't fragment (DF) bit settings by application.

https://datatracker.ietf.org/doc/html/rfc7525

Fairhurst, et al. Expires April 9, 2016 [Page 33]

Internet-Draft TAPS Transports October 2015

 o An anti-DoS stateless cookie mechanism (optional).

 Generally, DTLS follows the TLS design as closely as possible. To
 operate over datagrams, DTLS includes a sequence number and limited
 forms of retransmission and fragmentation for its internal
 operations. The sequence number may be used for detecting replayed
 information, according to the windowing procedure described in

Section 4.1.2.6 of [RFC6347]. Note also that DTLS forbids the use of
 stream ciphers, which are essentially incompatible when operating on
 independent encrypted records.

3.12.2. Interface Description

 TLS is commonly invoked using an API provided by packages such as
 OpenSSL, wolfSSL, or GnuTLS. Using such APIs entails the
 manipulation of several important abstractions, which fall into the
 following categories: long-term keys and algorithms, session state,
 and communications/connections. There may also be special APIs
 required to deal with time and/or random numbers, both of which are
 needed by a variety of encryption algorithms and protocols.

 Considerable care is required in the use of TLS APIs in order to
 create a secure application. The programmer should have at least a
 basic understanding of encryption and digital signature algorithms
 and their strengths, public key infrastructure (including X.509
 certificates and certificate revocation), and the sockets API. See
 [RFC7525] and [RFC7457], as mentioned above.

 As an example, in the case of OpenSSL, the primary abstractions are
 the library itself and method (protocol), session, context, cipher
 and connection. After initializing the library and setting the
 method, a cipher suite is chosen and used to configure a context
 object. Session objects may then be minted according to the
 parameters present in a context object and associated with individual
 connections. Depending on how precisely the programmer wishes to
 select different algorithmic or protocol options, various levels of
 details may be required.

3.12.3. Transport Features

 Both TLS and DTLS employ a layered architecture. The lower layer is
 commonly called the record protocol. It is responsible for:

 o message fragmentation

 o authentication and integrity via message authentication codes
 (MAC)

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/rfc7457

Fairhurst, et al. Expires April 9, 2016 [Page 34]

Internet-Draft TAPS Transports October 2015

 o data encryption

 o scheduling transmission using the underlying transport protocol

 DTLS augments the TLS record protocol with:

 o ordering and replay protection, implemented using sequence
 numbers.

 Several protocols are layered on top of the record protocol. These
 include the handshake, alert, and change cipher spec protocols.
 There is also the data protocol, used to carry application traffic.
 The handshake protocol is used to establish cryptographic and
 compression parameters when a connection is first set up. In DTLS,
 this protocol also has a basic fragmentation and retransmission
 capability and a cookie-like mechanism to resist DoS attacks. (TLS
 compression is not recommended at present). The alert protocol is
 used to inform the peer of various conditions, most of which are
 terminal for the connection. The change cipher spec protocol is used
 to synchronize changes in cryptographic parameters for each peer.

3.13. Hypertext Transport Protocol (HTTP) over TCP as a pseudotransport

 Hypertext Transfer Protocol (HTTP) is an application-level protocol
 widely used on the Internet. Version 1.1 of the protocol is
 specified in [RFC7230] [RFC7231] [RFC7232] [RFC7233] [RFC7234]
 [RFC7235], and version 2 in [RFC7540]. Furthermore, HTTP is used as
 a substrate for other application-layer protocols. There are various
 reasons for this practice listed in [RFC3205]; these include being a
 well-known and well-understood protocol, reusability of existing
 servers and client libraries, easy use of existing security
 mechanisms such as HTTP digest authentication [RFC2617] and TLS
 [RFC5246], the ability of HTTP to traverse firewalls which makes it
 work with a lot of infrastructure, and cases where a application
 server often needs to support HTTP anyway.

 Depending on application's needs, the use of HTTP as a substrate
 protocol may add complexity and overhead in comparison to a special-
 purpose protocol (e.g. HTTP headers, suitability of the HTTP
 security model etc.). [RFC3205] address this issues and provides
 some guidelines and concerns about the use of HTTP standard port 80
 and 443, the use of HTTP URL scheme and interaction with existing
 firewalls, proxies and NATs.

 Though not strictly bound to TCP, HTTP is almost exclusively run over
 TCP, and therefore inherits its properties when used in this way.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc3205
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3205

Fairhurst, et al. Expires April 9, 2016 [Page 35]

Internet-Draft TAPS Transports October 2015

3.13.1. Protocol Description

 Hypertext Transfer Protocol (HTTP) is a request/response protocol. A
 client sends a request containing a request method, URI and protocol
 version followed by a MIME-like message (see [RFC7231] for the
 differences between an HTTP object and a MIME message), containing
 information about the client and request modifiers. The message can
 contain a message body carrying application data as well. The server
 responds with a status or error code followed by a MIME-like message
 containing information about the server and information about carried
 data and it can include a message body. It is possible to specify a
 data format for the message body using MIME media types [RFC2045].
 Furthermore, the protocol has numerous additional features; features
 relevant to pseudotransport are described below.

 Content negotiation, specified in [RFC7231], is a mechanism provided
 by HTTP for selecting a representation on a requested resource. The
 client and server negotiate acceptable data formats, charsets, data
 encoding (e.g. data can be transferred compressed, gzip), etc. HTTP
 can accommodate exchange of messages as well as data streaming (using
 chunked transfer encoding [RFC7230]). It is also possible to request
 a part of a resource using range requests specified in [RFC7233].
 The protocol provides powerful cache control signalling defined in
 [RFC7234].

 HTTP 1.1's and HTTP 2.0's persistent connections can be use to
 perform multiple request-response transactions during the life-time
 of a single HTTP connection. Moreover, HTTP 2.0 connections can
 multiplex many request/response pairs in parallel on a single
 connection. This reduces connection establishment overhead and the
 effect of TCP slow-start on each transaction, important for HTTP's
 primary use case.

 It is possible to combine HTTP with security mechanisms, like TLS
 (denoted by HTTPS), which adds protocol properties provided by such a
 mechanism (e.g. authentication, encryption, etc.). TLS's
 Application-Layer Protocol Negotiation (ALPN) extension [RFC7301] can
 be used for HTTP version negotiation within TLS handshake which
 eliminates addition round-trip. Arbitrary cookie strings, included
 as part of the MIME headers, are often used as bearer tokens in HTTP.

 Application layer protocols using HTTP as substrate may use existing
 method and data formats, or specify new methods and data formats.
 Furthermore some protocols may not fit a request/response paradigm
 and instead rely on HTTP to send messages (e.g. [RFC6546]). Because
 HTTP is working in many restricted infrastructures, it is also used
 to tunnel other application-layer protocols.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc6546

Fairhurst, et al. Expires April 9, 2016 [Page 36]

Internet-Draft TAPS Transports October 2015

3.13.2. Interface Description

 There are many HTTP libraries available exposing different APIs. The
 APIs provide a way to specify a request by providing a URI, a method,
 request modifiers and optionally a request body. For the response,
 callbacks can be registered that will be invoked when the response is
 received. If TLS is used, API expose a registration of callbacks in
 case a server requests client authentication and when certificate
 verification is needed.

 World Wide Web Consortium (W3C) standardized the XMLHttpRequest API
 [XHR], an API that can be use for sending HTTP/HTTPS requests and
 receiving server responses. Besides XML data format, request and
 response data format can also be JSON, HTML and plain text.
 Specifically JavaScript and XMLHttpRequest are a ubiquitous
 programming model for websites, and more general applications, where
 native code is less attractive.

 Representational State Transfer (REST) [REST] is another example how
 applications can use HTTP as transport protocol. REST is an
 architecture style for building application on the Internet. It uses
 HTTP as a communication protocol.

3.13.3. Transport features

 The transport features provided by HTTP, when used as a
 pseudotransport, are:

 o unicast.

 o message and stream-oriented transfer.

 o bi- or unidirectional transmission.

 o ordered delivery.

 o fully reliable delivery.

 o object range request.

 o message content type negotiation.

 o flow control.

 HTTPS (HTTP over TLS) additionally provides the following components:

 o authentication (of one or both ends of a connection).

Fairhurst, et al. Expires April 9, 2016 [Page 37]

Internet-Draft TAPS Transports October 2015

 o confidentiality.

 o integrity protection.

4. Transport Service Features

 [EDITOR'S NOTE: This section is still work-in-progress. This list is
 probably not complete and/or too detailed.]

 The transport protocol components analyzed in this document which can
 be used as a basis for defining common transport service features,
 normalized and separated into categories, are as follows:

 o Control Functions

 * Addressing

 + unicast

 + multicast, anycast and IPv4 broadcast

 + use of NAPT-compatible port numbers

 * Multihoming support

 + multihoming for resilience

 + multihoming for mobility

 - specify handover latency?

 + multihoming for load-balancing

 - specify interleaving delay?

 * Multiplexing

 + application to port mapping

 + single vs. multiple streaming

 o Delivery

 * reliability

 + fully reliable delivery

 + partially reliable delivery

Fairhurst, et al. Expires April 9, 2016 [Page 38]

Internet-Draft TAPS Transports October 2015

 - packet erasure coding

 + unreliable delivery

 - drop notification

 - Integrity protection

 o checksum for error detection

 o partial payload checksum protection

 o checksum optional

 * ordering

 + ordered delivery

 + unordered delivery

 - unordered delivery of in-memory data

 * type/framing

 + stream-oriented delivery

 + message-oriented delivery

 + object-oriented delivery of discrete data or file items

 - object content type negotiation

 + range-based partical object transmission

 + file bulk content objects

 o Transmission control

 * rate control

 + timer-based

 + ACK-based

 * congestion control

 * flow control

Fairhurst, et al. Expires April 9, 2016 [Page 39]

Internet-Draft TAPS Transports October 2015

 * segmentation

 * data/message bundling (Nagle's algorithm)

 * stream scheduling prioritization

 o Security

 * authentication of one end of a connection

 * authentication of both ends of a connection

 * confidentiality

 * cryptographic integrity protection

 A future revision of this document will define transport service
 features based upon this list.

 [EDITOR'S NOTE: this section will drawn from the candidate features
 provided by protocol components in the previous section - please
 discuss on taps@ietf.org list]

4.1. Complete Protocol Feature Matrix

 [EDITOR'S NOTE: Dave Thaler has signed up as a contributor for this
 section. Michael Welzl also has a beginning of a matrix which could
 be useful here.]

 [EDITOR'S NOTE: The below is a strawman proposal below by Gorry
 Fairhurst for initial discussion]

 The table below summarises protocol mechanisms that have been
 standardised. It does not make an assessment on whether specific
 implementations are fully compliant to these specifications.

Fairhurst, et al. Expires April 9, 2016 [Page 40]

Internet-Draft TAPS Transports October 2015

 +-----------------+---------+---------+---------+---------+---------+
 | Mechanism | UDP | UDP-L | DCCP | SCTP | TCP |
 +-----------------+---------+---------+---------+---------+---------+
Unicast	Yes	Yes	Yes	Yes	Yes
Mcast/IPv4Bcast	Yes(2)	Yes	No	No	No
Port Mux	Yes	Yes	Yes	Yes	Yes
Mode	Dgram	Dgram	Dgram	Dgram	Stream
Connected	No	No	Yes	Yes	Yes
Data bundling	No	No	No	Yes	Yes
Feature Nego	No	No	Yes	Yes	Yes
Options	No	No	Support	Support	Support
Data priority	*	*	*	Yes	No
Data bundling	No	No	No	Yes	Yes
Reliability	None	None	None	Select	Full
Ordered deliv	No	No	No	Stream	Yes
Corruption Tol.	No	Support	Support	No	No
Flow Control	No	No	Support	Yes	Yes
PMTU/PLPMTU	(1)	(1)	Yes	Yes	Yes
Cong Control	(1)	(1)	Yes	Yes	Yes
ECN Support	(1)	(1)	Yes	TBD	Yes
NAT support	Limited	Limited	Support	TBD	Support
Security	DTLS	DTLS	DTLS	DTLS	TLS, AO
UDP encaps	N/A	None	Yes	Yes	None
RTP support	Support	Support	Support	?	Support
 +-----------------+---------+---------+---------+---------+---------+

 Note (1): this feature requires support in an upper layer protocol.

Fairhurst, et al. Expires April 9, 2016 [Page 41]

Internet-Draft TAPS Transports October 2015

 Note (2): this feature requires support in an upper layer protocol
 when used with IPv6.

5. IANA Considerations

 This document has no considerations for IANA.

6. Security Considerations

 This document surveys existing transport protocols and protocols
 providing transport-like services. Confidentiality, integrity, and
 authenticity are among the features provided by those services. This
 document does not specify any new components or mechanisms for
 providing these features. Each RFC listed in this document discusses
 the security considerations of the specification it contains.

7. Contributors

 [Editor's Note: turn this into a real contributors section with
 addresses once we figure out how to trick the toolchain into doing
 so]

 o Section 3.2 on MPTCP was contributed by Simone Ferlin-Oliviera
 (ferlin@simula.no) and Olivier Mehani
 (olivier.mehani@nicta.com.au)

 o Section 3.4 on UDP was contributed by Kevin Fall (kfall@kfall.com)

 o Section 3.3 on SCTP was contributed by Michael Tuexen (tuexen@fh-
 muenster.de)

 o Section 3.10 on FLUTE/ALC was contributed by Vincent Roca
 (vincent.roca@inria.fr)

 o Section 3.11 on NORM was contributed by Brian Adamson
 (brian.adamson@nrl.navy.mil)

 o Section 3.12 on TLS and DTLS was contributed by Ralph Holz
 (ralph.holz@nicta.com.au) and Olivier Mehani
 (olivier.mehani@nicta.com.au)

 o Section 3.13 on HTTP was contributed by Dragana Damjanovic
 (ddamjanovic@mozilla.com)

Fairhurst, et al. Expires April 9, 2016 [Page 42]

Internet-Draft TAPS Transports October 2015

8. Acknowledgments

 Thanks to Karen Nielsen, Joe Touch, and Michael Welzl for the
 comments, feedback, and discussion. This work is partially supported
 by the European Commission under grant agreements FP7-ICT-318627
 mPlane and from the Horizon 2020 research and innovation program
 under grant agreement No. 644334 (NEAT); support does not imply
 endorsement.

9. Informative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI
 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <http://www.rfc-editor.org/info/rfc792>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, DOI 10.17487/RFC0896, January 1984,

 <http://www.rfc-editor.org/info/rfc896>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

 [RFC1716] Almquist, P. and F. Kastenholz, "Towards Requirements for
 IP Routers", RFC 1716, DOI 10.17487/RFC1716, November
 1994, <http://www.rfc-editor.org/info/rfc1716>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <http://www.rfc-editor.org/info/rfc1981>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, DOI 10.17487/

RFC2018, October 1996,
 <http://www.rfc-editor.org/info/rfc2018>.

https://datatracker.ietf.org/doc/html/rfc768
http://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc792
http://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc896
http://www.rfc-editor.org/info/rfc896
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
http://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1716
http://www.rfc-editor.org/info/rfc1716
https://datatracker.ietf.org/doc/html/rfc1981
http://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
http://www.rfc-editor.org/info/rfc2018

Fairhurst, et al. Expires April 9, 2016 [Page 43]

Internet-Draft TAPS Transports October 2015

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461, DOI
 10.17487/RFC2461, December 1998,
 <http://www.rfc-editor.org/info/rfc2461>.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <http://www.rfc-editor.org/info/rfc2617>.

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710, DOI
 10.17487/RFC2710, October 1999,
 <http://www.rfc-editor.org/info/rfc2710>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3205] Moore, K., "On the use of HTTP as a Substrate", BCP 56,
RFC 3205, DOI 10.17487/RFC3205, February 2002,

 <http://www.rfc-editor.org/info/rfc3205>.

 [RFC3436] Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
 Layer Security over Stream Control Transmission Protocol",

RFC 3436, DOI 10.17487/RFC3436, December 2002,
 <http://www.rfc-editor.org/info/rfc3436>.

 [RFC3450] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., and J.
 Crowcroft, "Asynchronous Layered Coding (ALC) Protocol
 Instantiation", RFC 3450, DOI 10.17487/RFC3450, December
 2002, <http://www.rfc-editor.org/info/rfc3450>.

 [RFC3452] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
 M., and J. Crowcroft, "Forward Error Correction (FEC)
 Building Block", RFC 3452, DOI 10.17487/RFC3452, December
 2002, <http://www.rfc-editor.org/info/rfc3452>.

https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/rfc2460
http://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc2461
http://www.rfc-editor.org/info/rfc2461
https://datatracker.ietf.org/doc/html/rfc2617
http://www.rfc-editor.org/info/rfc2617
https://datatracker.ietf.org/doc/html/rfc2710
http://www.rfc-editor.org/info/rfc2710
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/bcp56
https://datatracker.ietf.org/doc/html/rfc3205
http://www.rfc-editor.org/info/rfc3205
https://datatracker.ietf.org/doc/html/rfc3436
http://www.rfc-editor.org/info/rfc3436
https://datatracker.ietf.org/doc/html/rfc3450
http://www.rfc-editor.org/info/rfc3450
https://datatracker.ietf.org/doc/html/rfc3452
http://www.rfc-editor.org/info/rfc3452

Fairhurst, et al. Expires April 9, 2016 [Page 44]

Internet-Draft TAPS Transports October 2015

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

 [RFC3738] Luby, M. and V. Goyal, "Wave and Equation Based Rate
 Control (WEBRC) Building Block", RFC 3738, DOI 10.17487/

RFC3738, April 2004,
 <http://www.rfc-editor.org/info/rfc3738>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758, DOI 10.17487/

RFC3758, May 2004,
 <http://www.rfc-editor.org/info/rfc3758>.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828, July
 2004, <http://www.rfc-editor.org/info/rfc3828>.

 [RFC3926] Paila, T., Luby, M., Lehtonen, R., Roca, V., and R. Walsh,
 "FLUTE - File Delivery over Unidirectional Transport", RFC

3926, DOI 10.17487/RFC3926, October 2004,
 <http://www.rfc-editor.org/info/rfc3926>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971, DOI
 10.17487/RFC3971, March 2005,
 <http://www.rfc-editor.org/info/rfc3971>.

 [RFC4324] Royer, D., Babics, G., and S. Mansour, "Calendar Access
 Protocol (CAP)", RFC 4324, DOI 10.17487/RFC4324, December
 2005, <http://www.rfc-editor.org/info/rfc4324>.

 [RFC4336] Floyd, S., Handley, M., and E. Kohler, "Problem Statement
 for the Datagram Congestion Control Protocol (DCCP)", RFC

4336, DOI 10.17487/RFC4336, March 2006,
 <http://www.rfc-editor.org/info/rfc4336>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, DOI
 10.17487/RFC4340, March 2006,
 <http://www.rfc-editor.org/info/rfc4340>.

https://datatracker.ietf.org/doc/html/rfc3550
http://www.rfc-editor.org/info/rfc3550
https://datatracker.ietf.org/doc/html/rfc3738
https://datatracker.ietf.org/doc/html/rfc3738
http://www.rfc-editor.org/info/rfc3738
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc3758
http://www.rfc-editor.org/info/rfc3758
https://datatracker.ietf.org/doc/html/rfc3828
http://www.rfc-editor.org/info/rfc3828
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3926
http://www.rfc-editor.org/info/rfc3926
https://datatracker.ietf.org/doc/html/rfc3971
http://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc4324
http://www.rfc-editor.org/info/rfc4324
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336
http://www.rfc-editor.org/info/rfc4336
https://datatracker.ietf.org/doc/html/rfc4340
http://www.rfc-editor.org/info/rfc4340

Fairhurst, et al. Expires April 9, 2016 [Page 45]

Internet-Draft TAPS Transports October 2015

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
 Control Protocol (DCCP) Congestion Control ID 2: TCP-like
 Congestion Control", RFC 4341, DOI 10.17487/RFC4341, March
 2006, <http://www.rfc-editor.org/info/rfc4341>.

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
 Datagram Congestion Control Protocol (DCCP) Congestion
 Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC 4342,
 DOI 10.17487/RFC4342, March 2006,
 <http://www.rfc-editor.org/info/rfc4342>.

 [RFC4433] Kulkarni, M., Patel, A., and K. Leung, "Mobile IPv4
 Dynamic Home Agent (HA) Assignment", RFC 4433, DOI
 10.17487/RFC4433, March 2006,
 <http://www.rfc-editor.org/info/rfc4433>.

 [RFC4614] Duke, M., Braden, R., Eddy, W., and E. Blanton, "A Roadmap
 for Transmission Control Protocol (TCP) Specification
 Documents", RFC 4614, DOI 10.17487/RFC4614, September
 2006, <http://www.rfc-editor.org/info/rfc4614>.

 [RFC4654] Widmer, J. and M. Handley, "TCP-Friendly Multicast
 Congestion Control (TFMCC): Protocol Specification", RFC

4654, DOI 10.17487/RFC4654, August 2006,
 <http://www.rfc-editor.org/info/rfc4654>.

 [RFC4820] Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and
 Parameter for the Stream Control Transmission Protocol
 (SCTP)", RFC 4820, DOI 10.17487/RFC4820, March 2007,
 <http://www.rfc-editor.org/info/rfc4820>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <http://www.rfc-editor.org/info/rfc4895>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

https://datatracker.ietf.org/doc/html/rfc4341
http://www.rfc-editor.org/info/rfc4341
https://datatracker.ietf.org/doc/html/rfc4342
http://www.rfc-editor.org/info/rfc4342
https://datatracker.ietf.org/doc/html/rfc4433
http://www.rfc-editor.org/info/rfc4433
https://datatracker.ietf.org/doc/html/rfc4614
http://www.rfc-editor.org/info/rfc4614
https://datatracker.ietf.org/doc/html/rfc4654
https://datatracker.ietf.org/doc/html/rfc4654
http://www.rfc-editor.org/info/rfc4654
https://datatracker.ietf.org/doc/html/rfc4820
http://www.rfc-editor.org/info/rfc4820
https://datatracker.ietf.org/doc/html/rfc4821
http://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc4895
http://www.rfc-editor.org/info/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960

Fairhurst, et al. Expires April 9, 2016 [Page 46]

Internet-Draft TAPS Transports October 2015

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061, DOI 10.17487/

RFC5061, September 2007,
 <http://www.rfc-editor.org/info/rfc5061>.

 [RFC5097] Renker, G. and G. Fairhurst, "MIB for the UDP-Lite
 protocol", RFC 5097, DOI 10.17487/RFC5097, January 2008,
 <http://www.rfc-editor.org/info/rfc5097>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5238] Phelan, T., "Datagram Transport Layer Security (DTLS) over
 the Datagram Congestion Control Protocol (DCCP)", RFC

5238, DOI 10.17487/RFC5238, May 2008,
 <http://www.rfc-editor.org/info/rfc5238>.

 [RFC5404] Westerlund, M. and I. Johansson, "RTP Payload Format for
 G.719", RFC 5404, DOI 10.17487/RFC5404, January 2009,
 <http://www.rfc-editor.org/info/rfc5404>.

 [RFC5461] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461, DOI
 10.17487/RFC5461, February 2009,
 <http://www.rfc-editor.org/info/rfc5461>.

 [RFC5595] Fairhurst, G., "The Datagram Congestion Control Protocol
 (DCCP) Service Codes", RFC 5595, DOI 10.17487/RFC5595,
 September 2009, <http://www.rfc-editor.org/info/rfc5595>.

 [RFC5596] Fairhurst, G., "Datagram Congestion Control Protocol
 (DCCP) Simultaneous-Open Technique to Facilitate NAT/
 Middlebox Traversal", RFC 5596, DOI 10.17487/RFC5596,
 September 2009, <http://www.rfc-editor.org/info/rfc5596>.

 [RFC5651] Luby, M., Watson, M., and L. Vicisano, "Layered Coding
 Transport (LCT) Building Block", RFC 5651, DOI 10.17487/

RFC5651, October 2009,
 <http://www.rfc-editor.org/info/rfc5651>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",

RFC 5662, DOI 10.17487/RFC5662, January 2010,
 <http://www.rfc-editor.org/info/rfc5662>.

https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc5061
http://www.rfc-editor.org/info/rfc5061
https://datatracker.ietf.org/doc/html/rfc5097
http://www.rfc-editor.org/info/rfc5097
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5238
https://datatracker.ietf.org/doc/html/rfc5238
http://www.rfc-editor.org/info/rfc5238
https://datatracker.ietf.org/doc/html/rfc5404
http://www.rfc-editor.org/info/rfc5404
https://datatracker.ietf.org/doc/html/rfc5461
http://www.rfc-editor.org/info/rfc5461
https://datatracker.ietf.org/doc/html/rfc5595
http://www.rfc-editor.org/info/rfc5595
https://datatracker.ietf.org/doc/html/rfc5596
http://www.rfc-editor.org/info/rfc5596
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5651
http://www.rfc-editor.org/info/rfc5651
https://datatracker.ietf.org/doc/html/rfc5662
http://www.rfc-editor.org/info/rfc5662

Fairhurst, et al. Expires April 9, 2016 [Page 47]

Internet-Draft TAPS Transports October 2015

 [RFC5672] Crocker, D., Ed., "RFC 4871 DomainKeys Identified Mail
 (DKIM) Signatures -- Update", RFC 5672, DOI 10.17487/

RFC5672, August 2009,
 <http://www.rfc-editor.org/info/rfc5672>.

 [RFC5740] Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, DOI 10.17487/RFC5740, November 2009,
 <http://www.rfc-editor.org/info/rfc5740>.

 [RFC5775] Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 DOI 10.17487/RFC5775, April 2010,
 <http://www.rfc-editor.org/info/rfc5775>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056, DOI
 10.17487/RFC6056, January 2011,
 <http://www.rfc-editor.org/info/rfc6056>.

 [RFC6083] Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
 Transport Layer Security (DTLS) for Stream Control
 Transmission Protocol (SCTP)", RFC 6083, DOI 10.17487/

RFC6083, January 2011,
 <http://www.rfc-editor.org/info/rfc6083>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <http://www.rfc-editor.org/info/rfc6093>.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration", RFC

6525, DOI 10.17487/RFC6525, February 2012,
 <http://www.rfc-editor.org/info/rfc6525>.

 [RFC6546] Trammell, B., "Transport of Real-time Inter-network
 Defense (RID) Messages over HTTP/TLS", RFC 6546, DOI
 10.17487/RFC6546, April 2012,
 <http://www.rfc-editor.org/info/rfc6546>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

https://datatracker.ietf.org/doc/html/rfc4871
https://datatracker.ietf.org/doc/html/rfc5672
https://datatracker.ietf.org/doc/html/rfc5672
http://www.rfc-editor.org/info/rfc5672
https://datatracker.ietf.org/doc/html/rfc5740
http://www.rfc-editor.org/info/rfc5740
https://datatracker.ietf.org/doc/html/rfc5775
http://www.rfc-editor.org/info/rfc5775
https://datatracker.ietf.org/doc/html/rfc5681
http://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/bcp156
https://datatracker.ietf.org/doc/html/rfc6056
http://www.rfc-editor.org/info/rfc6056
https://datatracker.ietf.org/doc/html/rfc6083
https://datatracker.ietf.org/doc/html/rfc6083
http://www.rfc-editor.org/info/rfc6083
https://datatracker.ietf.org/doc/html/rfc6093
http://www.rfc-editor.org/info/rfc6093
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6525
http://www.rfc-editor.org/info/rfc6525
https://datatracker.ietf.org/doc/html/rfc6546
http://www.rfc-editor.org/info/rfc6546
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347

Fairhurst, et al. Expires April 9, 2016 [Page 48]

Internet-Draft TAPS Transports October 2015

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols", RFC

6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

 [RFC6363] Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, DOI 10.17487/

RFC6363, October 2011,
 <http://www.rfc-editor.org/info/rfc6363>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
6455, DOI 10.17487/RFC6455, December 2011,

 <http://www.rfc-editor.org/info/rfc6455>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RFC6584] Roca, V., "Simple Authentication Schemes for the
 Asynchronous Layered Coding (ALC) and NACK-Oriented
 Reliable Multicast (NORM) Protocols", RFC 6584, DOI
 10.17487/RFC6584, April 2012,
 <http://www.rfc-editor.org/info/rfc6584>.

 [RFC6726] Paila, T., Walsh, R., Luby, M., Roca, V., and R. Lehtonen,
 "FLUTE - File Delivery over Unidirectional Transport", RFC

6726, DOI 10.17487/RFC6726, November 2012,
 <http://www.rfc-editor.org/info/rfc6726>.

 [RFC6773] Phelan, T., Fairhurst, G., and C. Perkins, "DCCP-UDP: A
 Datagram Congestion Control Protocol UDP Encapsulation for
 NAT Traversal", RFC 6773, DOI 10.17487/RFC6773, November
 2012, <http://www.rfc-editor.org/info/rfc6773>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <http://www.rfc-editor.org/info/rfc6897>.

https://datatracker.ietf.org/doc/html/rfc6356
https://datatracker.ietf.org/doc/html/rfc6356
http://www.rfc-editor.org/info/rfc6356
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
http://www.rfc-editor.org/info/rfc6363
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
http://www.rfc-editor.org/info/rfc6455
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
http://www.rfc-editor.org/info/rfc6458
https://datatracker.ietf.org/doc/html/rfc6584
http://www.rfc-editor.org/info/rfc6584
https://datatracker.ietf.org/doc/html/rfc6726
https://datatracker.ietf.org/doc/html/rfc6726
http://www.rfc-editor.org/info/rfc6726
https://datatracker.ietf.org/doc/html/rfc6773
http://www.rfc-editor.org/info/rfc6773
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
http://www.rfc-editor.org/info/rfc6897

Fairhurst, et al. Expires April 9, 2016 [Page 49]

Internet-Draft TAPS Transports October 2015

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, DOI
 10.17487/RFC6935, April 2013,
 <http://www.rfc-editor.org/info/rfc6935>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <http://www.rfc-editor.org/info/rfc6936>.

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951, DOI 10.17487/

RFC6951, May 2013,
 <http://www.rfc-editor.org/info/rfc6951>.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
 <http://www.rfc-editor.org/info/rfc7053>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232, DOI
 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <http://www.rfc-editor.org/info/rfc7233>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

https://datatracker.ietf.org/doc/html/rfc6935
http://www.rfc-editor.org/info/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
http://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc6951
http://www.rfc-editor.org/info/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
http://www.rfc-editor.org/info/rfc7053
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
http://www.rfc-editor.org/info/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
http://www.rfc-editor.org/info/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
http://www.rfc-editor.org/info/rfc7234

Fairhurst, et al. Expires April 9, 2016 [Page 50]

Internet-Draft TAPS Transports October 2015

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235, DOI
 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <http://www.rfc-editor.org/info/rfc7323>.

 [RFC7457] Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
 February 2015, <http://www.rfc-editor.org/info/rfc7457>.

 [RFC7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partially Reliable Stream
 Control Transmission Protocol Extension", RFC 7496, DOI
 10.17487/RFC7496, April 2015,
 <http://www.rfc-editor.org/info/rfc7496>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [I-D.ietf-tsvwg-rfc5405bis]
 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", draft-ietf-tsvwg-rfc5405bis-05 (work in
 progress), August 2015.

 [I-D.ietf-aqm-ecn-benefits]
 Fairhurst, G. and M. Welzl, "The Benefits of using
 Explicit Congestion Notification (ECN)", draft-ietf-aqm-

ecn-benefits-06 (work in progress), July 2015.

https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7323
http://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc7457
http://www.rfc-editor.org/info/rfc7457
https://datatracker.ietf.org/doc/html/rfc7496
http://www.rfc-editor.org/info/rfc7496
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc5405bis-05
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-ecn-benefits-06
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-ecn-benefits-06

Fairhurst, et al. Expires April 9, 2016 [Page 51]

Internet-Draft TAPS Transports October 2015

 [I-D.ietf-tsvwg-sctp-dtls-encaps]
 Tuexen, M., Stewart, R., Jesup, R., and S. Loreto, "DTLS
 Encapsulation of SCTP Packets", draft-ietf-tsvwg-sctp-

dtls-encaps-09 (work in progress), January 2015.

 [I-D.ietf-tsvwg-sctp-ndata]
 Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", draft-ietf-tsvwg-

sctp-ndata-04 (work in progress), July 2015.

 [I-D.ietf-tsvwg-natsupp]
 Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control
 Transmission Protocol (SCTP) Network Address Translation
 Support", draft-ietf-tsvwg-natsupp-08 (work in progress),
 July 2015.

 [XHR] van Kesteren, A., Aubourg, J., Song, J., and H. Steen,
 "XMLHttpRequest working draft
 (http://www.w3.org/TR/XMLHttpRequest/)", 2000.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures, Ph. D. (UC Irvine),
 Chapter 5: Representational State Transfer", 2000.

 [POSIX] 1-2008, IEEE., "IEEE Standard for Information Technology
 -- Portable Operating System Interface (POSIX) Base
 Specifications, Issue 7", n.d..

 [MBMS] 3GPP TSG WS S4, ., "3GPP TS 26.346: Multimedia Broadcast/
 Multicast Service (MBMS); Protocols and codecs, release 13
 (http://www.3gpp.org/DynaReport/26346.htm).", 2015.

Authors' Addresses

 Godred Fairhurst (editor)
 University of Aberdeen
 School of Engineering, Fraser Noble Building
 Aberdeen AB24 3UE

 Email: gorry@erg.abdn.ac.uk

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-dtls-encaps-09
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-dtls-encaps-09
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-natsupp-08
http://www.w3.org/TR/XMLHttpRequest/
http://www.3gpp.org/DynaReport/26346.htm

Fairhurst, et al. Expires April 9, 2016 [Page 52]

Internet-Draft TAPS Transports October 2015

 Brian Trammell (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Mirja Kuehlewind (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

Fairhurst, et al. Expires April 9, 2016 [Page 53]

