
Network Working Group G. Fairhurst, Ed.
Internet-Draft University of Aberdeen
Intended status: Informational B. Trammell, Ed.
Expires: June 8, 2017 M. Kuehlewind, Ed.
 ETH Zurich
 December 05, 2016

Services provided by IETF transport protocols and congestion control
mechanisms

draft-ietf-taps-transports-13

Abstract

 This document describes, surveys, and classifies the protocol
 mechanisms provided by existing IETF protocols, as background for
 determining a common set of transport services. It examines the
 Transmission Control Protocol (TCP), Multipath TCP, the Stream
 Control Transmission Protocol (SCTP), the User Datagram Protocol
 (UDP), UDP-Lite, the Datagram Congestion Control Protocol (DCCP), the
 Internet Control Message Protocol (ICMP), the Realtime Transport
 Protocol (RTP), File Delivery over Unidirectional Transport/
 Asynchronous Layered Coding Reliable Multicast (FLUTE/ALC), and NACK-
 Oriented Reliable Multicast (NORM), Transport Layer Security (TLS),
 Datagram TLS (DTLS), and the Hypertext Transport Protocol (HTTP),
 when HTTP is used as a pseudotransport. This survey provides
 background for the definition of transport services within the TAPS
 working group.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 8, 2017.

Fairhurst, et al. Expires June 8, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TAPS Transports December 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Overview of Transport Features 4

2. Terminology . 5
3. Existing Transport Protocols 6
3.1. Transport Control Protocol (TCP) 6
3.1.1. Protocol Description 6
3.1.2. Interface description 8
3.1.3. Transport Features 8

3.2. Multipath TCP (MPTCP) 9
3.2.1. Protocol Description 9
3.2.2. Interface Description 10
3.2.3. Transport features 10

3.3. User Datagram Protocol (UDP) 11
3.3.1. Protocol Description 11
3.3.2. Interface Description 12
3.3.3. Transport Features 12

3.4. Lightweight User Datagram Protocol (UDP-Lite) 13
3.4.1. Protocol Description 13
3.4.2. Interface Description 13
3.4.3. Transport Features 14

3.5. Stream Control Transmission Protocol (SCTP) 14
3.5.1. Protocol Description 14
3.5.2. Interface Description 16
3.5.3. Transport Features 19

3.6. Datagram Congestion Control Protocol (DCCP) 20
3.6.1. Protocol Description 20
3.6.2. Interface Description 21
3.6.3. Transport Features 22

 3.7. Transport Layer Security (TLS) and Datagram TLS (DTLS) as
 a pseudotransport . 22

3.7.1. Protocol Description 23

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Fairhurst, et al. Expires June 8, 2017 [Page 2]

Internet-Draft TAPS Transports December 2016

3.7.2. Interface Description 24
3.7.3. Transport Features 24

3.8. Realtime Transport Protocol (RTP) 25
3.8.1. Protocol Description 25
3.8.2. Interface Description 26
3.8.3. Transport Features 27

 3.9. Hypertext Transport Protocol (HTTP) over TCP as a
 pseudotransport . 27

3.9.1. Protocol Description 28
3.9.2. Interface Description 29
3.9.3. Transport features 29

 3.10. File Delivery over Unidirectional Transport/Asynchronous
 Layered Coding Reliable Multicast (FLUTE/ALC) 30

3.10.1. Protocol Description 31
3.10.2. Interface Description 32
3.10.3. Transport Features 32

3.11. NACK-Oriented Reliable Multicast (NORM) 33
3.11.1. Protocol Description 33
3.11.2. Interface Description 35
3.11.3. Transport Features 35

3.12. Internet Control Message Protocol (ICMP) 35
3.12.1. Protocol Description 36
3.12.2. Interface Description 37
3.12.3. Transport Features 37

4. Congestion Control . 37
5. Transport Features . 38
6. IANA Considerations . 41
7. Security Considerations 41
8. Contributors . 41
9. Acknowledgments . 42
10. Informative References 42

 Authors' Addresses . 53

1. Introduction

 Internet applications make use of the Services provided by a
 Transport protocol, such as TCP (a reliable, in-order stream
 protocol) or UDP (an unreliable datagram protocol). We use the term
 "Transport Service" to mean the end-to-end service provided to an
 application by the transport layer. That service can only be
 provided correctly if information about the intended usage is
 supplied from the application. The application may determine this
 information at design time, compile time, or run time, and may
 include guidance on whether a feature is required, a preference by
 the application, or something in between. Examples of features of
 Transport Services are reliable delivery, ordered delivery, content
 privacy to in-path devices, and integrity protection.

Fairhurst, et al. Expires June 8, 2017 [Page 3]

Internet-Draft TAPS Transports December 2016

 The IETF has defined a wide variety of transport protocols beyond TCP
 and UDP, including SCTP, DCCP, MPTCP, and UDP-Lite. Transport
 services may be provided directly by these transport protocols, or
 layered on top of them using protocols such as WebSockets (which runs
 over TCP), RTP (over TCP or UDP) or WebRTC data channels (which run
 over SCTP over DTLS over UDP or TCP). Services built on top of UDP
 or UDP-Lite typically also need to specify additional mechanisms,
 including a congestion control mechanism (such as NewReno [RFC6582],
 TFRC [RFC5348] or LEDBAT [RFC6817]). This extends the set of
 available Transport Services beyond those provided to applications by
 TCP and UDP.

 The transport protocols described in this document provide a basis
 for the definition of transport services provided by common
 protocols, as background for the TAPS working group. The protocols
 listed here were chosen to help expose as many potential transport
 services as possible, and are not meant to be a comprehensive survey
 or classification of all transport protocols.

1.1. Overview of Transport Features

 Transport protocols can be differentiated by the features of the
 services they provide.

 Some of these provided features are closely related to basic control
 function that a protocol needs to work over a network path, such as
 addressing. The number of participants in a given association also
 determines its applicability: if a connection is between endpoints
 (unicast), to one of multiple endpoints (anycast), or simultaneously
 to multiple endpoints (multicast). Unicast protocols usually support
 bidirectional communication, while multicast is generally
 unidirectional. Another feature is whether a transport requires a
 control exchange across the network at setup (e.g., TCP), or whether
 it is connection-less (e.g., UDP).

 For packet delivery itself, reliability and integrity protection,
 ordering, and framing are basic features. However, these features
 are implemented with different levels of assurance in different
 protocols. As an example, a transport service may provide full
 reliability, providing detection of loss and retransmission (e.g.,
 TCP). SCTP offers a message-based service that can provide full or
 partial reliability, and allows the protocol to minimize the head of
 line blocking due to the support of ordered and unordered message
 delivery within multiple streams. UDP-Lite and DCCP can provide
 partial integrity protection to enable corruption tolerance.

 Usually a protocol has been designed to support one specific type of
 delivery/framing: data either needs to be divided into transmission

https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc6817

Fairhurst, et al. Expires June 8, 2017 [Page 4]

Internet-Draft TAPS Transports December 2016

 units based on network packets (datagram service), a data stream is
 segmented and re-combined across multiple packets (stream service),
 or whole objects such as files are handled accordingly. This
 decision strongly influences the interface that is provided to the
 upper layer.

 In addition, transport protocols offer a certain support for
 transmission control. For example, a transport service can provide
 flow control to allow a receiver to regulate the transmission rate of
 a sender. Further a transport service can provide congestion control
 (see Section 4). As an example TCP and SCTP provide congestion
 control for use in the Internet, whereas UDP leaves this function to
 the upper layer protocol that uses UDP.

 Security features are often provided independent of the transport
 protocol, via Transport Layer Security (TLS, see Section 3.7) or by
 the application layer protocol itself. The security properties TLS
 provides to the application (such as confidentiality, integrity, and
 authenticity) are also features of the transport layer, even though
 they are often presently implemented in a separate protocol.

2. Terminology

 The following terms are used throughout this document, and in
 subsequent documents produced by TAPS that describe the composition
 and decomposition of transport services.

 Transport Service Feature: a specific end-to-end feature that the
 transport layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides a
 complete service to an application.

 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.

 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g., a protocol stack (RTP
 over UDP).

 Application: an entity that uses the transport layer for end-to-end
 delivery data across the network (this may also be an upper layer
 protocol or tunnel encapsulation).

Fairhurst, et al. Expires June 8, 2017 [Page 5]

Internet-Draft TAPS Transports December 2016

3. Existing Transport Protocols

 This section provides a list of known IETF transport protocols and
 transport protocol frameworks. It does not make an assessment about
 whether specific implementations of protocols are fully compliant to
 current IETF specifications.

3.1. Transport Control Protocol (TCP)

 TCP is an IETF standards track transport protocol. [RFC0793]
 introduces TCP as follows: "The Transmission Control Protocol (TCP)
 is intended for use as a highly reliable host-to-host protocol
 between hosts in packet-switched computer communication networks, and
 in interconnected systems of such networks." Since its introduction,
 TCP has become the default connection- oriented, stream-based
 transport protocol in the Internet. It is widely implemented by
 endpoints and widely used by common applications.

3.1.1. Protocol Description

 TCP is a connection-oriented protocol, providing a three way
 handshake to allow a client and server to set up a connection and
 negotiate features, and mechanisms for orderly completion and
 immediate teardown of a connection. TCP is defined by a family of
 RFCs [RFC7414].

 TCP provides multiplexing to multiple sockets on each host using port
 numbers. A similar approach is adopted by other IETF-defined
 transports. An active TCP session is identified by its four-tuple of
 local and remote IP addresses and local port and remote port numbers.
 The destination port during connection setup is often used to
 indicate the requested service.

 TCP partitions a continuous stream of bytes into segments, sized to
 fit in IP packets based on a negotiated maximum segment size and
 further constrained by the effective Maximum Transmission Unit (MTU)
 from Path MTU Discovery (PMTUD). ICMP-based Path MTU discovery
 [RFC1191][RFC1981] as well as Packetization Layer Path MTU Discovery
 (PMTUD) [RFC4821] have been defined by the IETF.

 Each byte in the stream is identified by a sequence number. The
 sequence number is used to order segments on receipt, to identify
 segments in acknowledgments, and to detect unacknowledged segments
 for retransmission. This is the basis of the reliable, ordered
 delivery of data in a TCP stream. TCP Selective Acknowledgment
 (SACK) [RFC2018] extends this mechanism by making it possible to
 provide earlier identification of which segments are missing,

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc2018

Fairhurst, et al. Expires June 8, 2017 [Page 6]

Internet-Draft TAPS Transports December 2016

 allowing faster retransmission. SACK-based methods (e.g. Duplicate
 Selective ACK) can also result in less spurious retransmission.

 Receiver flow control is provided by a sliding window: limiting the
 amount of unacknowledged data that can be outstanding at a given
 time. The window scale option [RFC7323] allows a receiver to use
 windows greater than 64KB.

 All TCP senders provide congestion control, such as described in
 [RFC5681]. TCP uses a sequence number with a sliding receiver window
 for flow control. The TCP congestion control mechanism also utilises
 this TCP sequence number to manage a separate congestion window
 [RFC5681]. The sending window at a given point in time is the
 minimum of the receiver window and the congestion window. The
 congestion window is increased in the absence of congestion and,
 respectively, decreased if congestion is detected. Often loss is
 implicitly handled as a congestion indication which is detected in
 TCP (also as input for retransmission handling) based on two
 mechanisms: A retransmission timer with exponential back-off or the
 reception of three acknowledgment for the same segment, so called
 duplicated ACKs (Fast retransmit). In addition, Explicit Congestion
 Notification (ECN) [RFC3168] can be used in TCP, if supported by both
 endpoints, that allows a network node to signal congestion without
 inducing loss. Alternatively, a delay-based congestion control
 scheme can be used in TCP that reacts to changes in delay as an early
 indication of congestion as also further described in Section 4.
 Examples for different kind of congestion control schemes are given
 in Section 4.

 TCP protocol instances can be extended [RFC7414] and tuned. Some
 features are sender-side only, requiring no negotiation with the
 receiver; some are receiver-side only, some are explicitly negotiated
 during connection setup.

 TCP may buffer data, e.g., to optimize processing or capacity usage.
 TCP can therefore provides mechanisms to control this, including an
 optional "PUSH" function [RFC0793] that explicitly requests the
 transport service not to delay data. By default, TCP segment
 partitioning uses Nagle's algorithm [RFC0896] to buffer data at the
 sender into large segments, potentially incurring sender-side
 buffering delay; this algorithm can be disabled by the sender to
 transmit more immediately, e.g., to reduce latency for interactive
 sessions.

 TCP provides an "urgent data" function for limited out-of-order
 delivery of the data. This function is deprecated [RFC6093].

 A RESET control message may be used to close a TCP session [RFC0793].

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0896
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc0793

Fairhurst, et al. Expires June 8, 2017 [Page 7]

Internet-Draft TAPS Transports December 2016

 A mandatory checksum provides a basic integrity check against
 misdelivery and data corruption over the entire packet. Applications
 that require end to end integrity of data are recommended to include
 a stronger integrity check of their payload data. The TCP checksum
 [RFC1071] [RFC2460] does not support partial payload protection (as
 in DCCP/UDP-Lite).

 TCP supports only unicast connections.

3.1.2. Interface description

 A User/TCP Interface is defined in [RFC0793] providing six user
 commands: Open, Send, Receive, Close, Status. This interface does
 not describe configuration of TCP options or parameters beside use of
 the PUSH and URGENT flags.

 [RFC1122] describes extensions of the TCP/application layer interface
 for:

 o reporting soft errors such as reception of ICMP error messages,
 extensive retransmission or urgent pointer advance,

 o providing a possibility to specify the Differentiated Services
 Code Point (DSCP) [RFC3260] (formerly, the Type-of-Service, TOS)
 for segments,

 o providing a flush call to empty the TCP send queue, and

 o multihoming support.

 In API implementations derived from the BSD Sockets API, TCP sockets
 are created using the "SOCK_STREAM" socket type as described in the
 IEEE Portable Operating System Interface (POSIX) Base Specifications
 [POSIX]. The features used by a protocol instance may be set and
 tuned via this API. There are currently no documents in the RFC
 Series that describe this interface.

3.1.3. Transport Features

 The transport features provided by TCP are:

 o connection-oriented transport with feature negotiation and
 application-to-port mapping (implemented using SYN segments and
 the TCP option field to negotiate features),

 o unicast transport (though anycast TCP is implemented, at risk of
 instability due to rerouting),

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc3260

Fairhurst, et al. Expires June 8, 2017 [Page 8]

Internet-Draft TAPS Transports December 2016

 o port multiplexing,

 o uni- or bidirectional communication,

 o stream-oriented delivery in a single stream,

 o fully reliable delivery (implemented using ACKs sent from the
 receiver to confirm delivery),

 o error detection (implemented using a segment checksum to verify
 delivery to the correct endpoint and integrity of the data and
 options),

 o segmentation,

 o data bundling (optional; uses Nagle's algorithm to coalesce data
 sent within the same RTT into full-sized segments),

 o flow control (implemented using a window-based mechanism where the
 receiver advertises the window that it is willing to buffer),

 o congestion control (usually implemented using a window-based
 mechanism and four algorithms for different phases of the
 transmission: slow start, congestion avoidance, fast retransmit,
 and fast recovery [RFC5681]).

3.2. Multipath TCP (MPTCP)

 Multipath TCP [RFC6824] is an extension for TCP to support multi-
 homing for resilience, mobility and load-balancing. It is designed
 to be as indistinguishable to middleboxes from non-multipath TCP as
 possible. It does so by establishing regular TCP flows between a
 pair of source/destination endpoints, and multiplexing the
 application's stream over these flows. Sub- flows can be started
 over IPv4 or IPv6 for the same session.

3.2.1. Protocol Description

 MPTCP uses TCP options for its control plane. They are used to
 signal multipath capabilities, as well as to negotiate data sequence
 numbers, and advertise other available IP addresses and establish new
 sessions between pairs of endpoints.

 By multiplexing one byte stream over separate paths, MPTCP can
 achieve a higher throughput than TCP in certain situations. However,
 if coupled congestion control [RFC6356] is used, it might limit this
 benefit to maintain fairness to other flows at the bottleneck. When
 aggregating capacity over multiple paths, and depending on the way

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6356

Fairhurst, et al. Expires June 8, 2017 [Page 9]

Internet-Draft TAPS Transports December 2016

 packets are scheduled on each TCP subflow, additional delay and
 higher jitter might be observed observed before in-order delivery of
 data to the applications.

3.2.2. Interface Description

 By default, MPTCP exposes the same interface as TCP to the
 application. [RFC6897] however describes a richer API for MPTCP-
 aware applications.

 This Basic API describes how an application can:

 o enable or disable MPTCP.

 o bind a socket to one or more selected local endpoints.

 o query local and remote endpoint addresses.

 o get a unique connection identifier (similar to an address-port
 pair for TCP).

 The document also recommends the use of extensions defined for SCTP
 [RFC6458] (see next section) to support multihoming for resilience
 and mobility.

3.2.3. Transport features

 As an extension to TCP, MPTCP provides mostly the same features. By
 establishing multiple sessions between available endpoints, it can
 additionally provide soft failover solutions in the case that one of
 the paths become unusable.

 The transport features provided by MPTCP in addition to TCP therefore
 are:

 o multihoming for load-balancing, with endpoint multiplexing of a
 single byte stream, using either coupled congestion control or for
 throughput maximization,

 o address family multiplexing (using IPv4 and IPv6 for the same
 session),

 o resilience to network failure and/or handover.

https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc6458

Fairhurst, et al. Expires June 8, 2017 [Page 10]

Internet-Draft TAPS Transports December 2016

3.3. User Datagram Protocol (UDP)

 The User Datagram Protocol (UDP) [RFC0768] [RFC2460] is an IETF
 standards track transport protocol. It provides a unidirectional
 datagram protocol that preserves message boundaries. It provides no
 error correction, congestion control, or flow control. It can be
 used to send broadcast datagrams (IPv4) or multicast datagrams (IPv4
 and IPv6), in addition to unicast and anycast datagrams. IETF
 guidance on the use of UDP is provided in
 [I-D.ietf-tsvwg-rfc5405bis]. UDP is widely implemented and widely
 used by common applications, including DNS.

3.3.1. Protocol Description

 UDP is a connection-less protocol that maintains message boundaries,
 with no connection setup or feature negotiation. The protocol uses
 independent messages, ordinarily called datagrams. It provides
 detection of payload errors and misdelivery of packets to an
 unintended endpoint, either of which result in discard of received
 datagrams, with no indication to the user of the service.

 It is possible to create IPv4 UDP datagrams with no checksum, and
 while this is generally discouraged [RFC1122]
 [I-D.ietf-tsvwg-rfc5405bis], certain special cases permit this use.
 These datagrams rely on the IPv4 header checksum to protect from
 misdelivery to an unintended endpoint. IPv6 does not permit UDP
 datagrams with no checksum, although in certain cases [RFC6936] this
 rule may be relaxed [RFC6935].

 UDP does not provide reliability and does not provide retransmission.
 Messages may be re-ordered, lost, or duplicated in transit. Note
 that due to the relatively weak form of checksum used by UDP,
 applications that require end to end integrity of data are
 recommended to include a stronger integrity check of their payload
 data.

 Because UDP provides no flow control, a receiving application that is
 unable to run sufficiently fast, or frequently, may miss messages.
 The lack of congestion handling implies UDP traffic may experience
 loss when using an overloaded path, and may cause the loss of
 messages from other protocols (e.g., TCP) when sharing the same
 network path.

 On transmission, UDP encapsulates each datagram into a single IP
 packet or several IP packet fragments. This allows a datagram to be
 larger than the effective path MTU. Fragments are reassembled before
 delivery to the UDP receiver, making this transparent to the user of

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6935

Fairhurst, et al. Expires June 8, 2017 [Page 11]

Internet-Draft TAPS Transports December 2016

 the transport service. When the jumbograms are supported, larger
 messages may be sent without performing fragmentation.

 UDP on its own does not provide support for segmentation, receiver
 flow control, congestion control, PathMTU discovery/PLPMTUD, or ECN.
 Applications that require these features need to provide them on
 their own, or by using a protocol over UDP that provides them
 [I-D.ietf-tsvwg-rfc5405bis].

3.3.2. Interface Description

 [RFC0768] describes basic requirements for an API for UDP. Guidance
 on use of common APIs is provided in [I-D.ietf-tsvwg-rfc5405bis].

 A UDP endpoint consists of a tuple of (IP address, port number). De-
 multiplexing using multiple abstract endpoints (sockets) on the same
 IP address is supported. The same socket may be used by a single
 server to interact with multiple clients (note: this behavior differs
 from TCP, which uses a pair of tuples to identify a connection).
 Multiple server instances (processes) that bind to the same socket
 can cooperate to service multiple clients. The socket implementation
 arranges to not duplicate the same received unicast message to
 multiple server processes.

 Many operating systems also allow a UDP socket to be "connected",
 i.e., to bind a UDP socket to a specific (remote) UDP endpoint.
 Unlike TCP's connect primitive, for UDP, this is only a local
 operation that serves to simplify the local send/receive functions
 and to filter the traffic for the specified addresses and ports
 [I-D.ietf-tsvwg-rfc5405bis].

3.3.3. Transport Features

 The transport features provided by UDP are:

 o unicast, multicast, anycast, or IPv4 broadcast transport,

 o port multiplexing (where a receiving port can be configured to
 receive datagrams from multiple senders),

 o message-oriented delivery,

 o uni- or bidirectional communication where the transmissions in
 each direction are independent,

 o non-reliable delivery,

 o unordered delivery,

Fairhurst, et al. Expires June 8, 2017 [Page 12]

Internet-Draft TAPS Transports December 2016

 o error detection (implemented using a segment checksum to verify
 delivery to the correct endpoint and integrity of the data;
 optional for IPv4 and optional under specific conditions for IPv6
 where all or none of the payload data is protected),

3.4. Lightweight User Datagram Protocol (UDP-Lite)

 The Lightweight User Datagram Protocol (UDP-Lite) [RFC3828] is an
 IETF standards track transport protocol. It provides a
 unidirectional, datagram protocol that preserves message boundaries.
 IETF guidance on the use of UDP- Lite is provided in
 [I-D.ietf-tsvwg-rfc5405bis]. A UDP-Lite service may support IPv4
 broadcast, multicast, anycast and unicast, and IPv6 multicast,
 anycast and unicast.

 Examples of use include a class of applications that can derive
 benefit from having partially-damaged payloads delivered, rather than
 discarded. One use is to provider header integrity checks but allow
 delivery of corrupted payloads to error-tolerant applications, or
 when payload integrity is provided by some other mechanism (see
 [RFC6936]).

3.4.1. Protocol Description

 Like UDP, UDP-Lite is a connection-less datagram protocol, with no
 connection setup or feature negotiation. It changes the semantics of
 the UDP "payload length" field to that of a "checksum coverage
 length" field, and is identified by a different IP protocol/next-
 header value. The "checksum coverage length" field specifies the
 intended checksum coverage, with the remaining unprotected part of
 the payload called the "error-insensitive part". Applications using
 UDP-Lite therefore cannot make assumptions regarding the correctness
 of the data received in the insensitive part of the UDP-Lite payload.

 Otherwise, UDP-Lite is semantically identical to UDP. In the same
 way as for UDP, mechanisms for receiver flow control, congestion
 control, PMTU or PLPMTU discovery, support for ECN, etc. needs to be
 provided by upper layer protocols [I-D.ietf-tsvwg-rfc5405bis].

3.4.2. Interface Description

 There is no API currently specified in the RFC Series, but guidance
 on use of common APIs is provided in [I-D.ietf-tsvwg-rfc5405bis].

 The interface of UDP-Lite differs from that of UDP by the addition of
 a single (socket) option that communicates a checksum coverage length
 value. The checksum coverage may also be made visible to the
 application via the UDP-Lite MIB module [RFC5097].

https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc5097

Fairhurst, et al. Expires June 8, 2017 [Page 13]

Internet-Draft TAPS Transports December 2016

3.4.3. Transport Features

 The transport features provided by UDP-Lite are:

 o unicast, multicast, anycast, or IPv4 broadcast transport (as for
 UDP),

 o port multiplexing (as for UDP),

 o message-oriented delivery (as for UDP),

 o Uni- or bidirectional communication where the transmissions in
 each direction are independent (as for UDP),

 o non-reliable delivery (as for UDP),

 o non-ordered delivery (as for UDP),

 o partial or full payload error detection (where the checksum
 coverage field indicates the size of the payload data covered by
 the checksum).

3.5. Stream Control Transmission Protocol (SCTP)

 SCTP is a message-oriented IETF standards track transport protocol.
 The base protocol is specified in [RFC4960]. It supports multi-
 homing and path failover to provide resilience to path failures. An
 SCTP association has multiple streams in each direction, providing
 in-sequence delivery of user messages within each stream. This
 allows it to minimize head of line blocking. SCTP supports multiple
 stream scheduling schemes controlling stream multiplexing, including
 priority and fair weighting schemes.

 SCTP was originally developed for transporting telephony signaling
 messages and is deployed in telephony signaling networks, especially
 in mobile telephony networks. It can also be used for other
 services, for example, in the WebRTC framework for data channels.

3.5.1. Protocol Description

 SCTP is a connection-oriented protocol using a four way handshake to
 establish an SCTP association, and a three way message exchange to
 gracefully shut it down. It uses the same port number concept as
 DCCP, TCP, UDP, and UDP-Lite. SCTP only supports unicast.

 SCTP uses the 32-bit CRC32c for protecting SCTP packets against bit
 errors and misdelivery of packets to an unintended endpoint. This is
 stronger than the 16-bit checksums used by TCP or UDP. However,

https://datatracker.ietf.org/doc/html/rfc4960

Fairhurst, et al. Expires June 8, 2017 [Page 14]

Internet-Draft TAPS Transports December 2016

 partial payload checksum coverage as provided by DCCP or UDP-Lite is
 not supported.

 SCTP has been designed with extensibility in mind. A common header
 is followed by a sequence of chunks. [RFC4960] defines how a
 receiver processes chunks with an unknown chunk type. The support of
 extensions can be negotiated during the SCTP handshake. Currently
 defined extensions include mechanisms for dynamic re-configuration of
 streams [RFC6525] and IP addresses [RFC5061]. Furthermore, the
 extension specified in [RFC3758] introduces the concept of partial
 reliability for user messages.

 SCTP provides a message-oriented service. Multiple small user
 messages can be bundled into a single SCTP packet to improve
 efficiency. For example, this bundling may be done by delaying user
 messages at the sender, similar to Nagle's algorithm used by TCP.
 User messages which would result in IP packets larger than the MTU
 will be fragmented at the sender and reassembled at the receiver.
 There is no protocol limit on the user message size. For MTU
 discovery the same mechanism than for TCP can be used
 [RFC1981][RFC4821], as well as utilizing probe packets with padding
 chunks, as defined in [RFC4820].

 [RFC4960] specifies TCP-friendly congestion control to protect the
 network against overload. SCTP also uses sliding window flow control
 to protect receivers against overflow. Similar to TCP, SCTP also
 supports delaying acknowledgments. [RFC7053] provides a way for the
 sender of user messages to request the immediate sending of the
 corresponding acknowledgments.

 Each SCTP association has between 1 and 65536 uni-directional streams
 in each direction. The number of streams can be different in each
 direction. Every user message is sent on a particular stream. User
 messages can be sent un- ordered, or ordered upon request by the
 upper layer. Un-ordered messages can be delivered as soon as they
 are completely received. For user messages not requiring
 fragmentation, this minimizes head of line blocking. On the other
 hand, ordered messages sent on the same stream are delivered at the
 receiver in the same order as sent by the sender.

 The base protocol defined in [RFC4960] does not allow interleaving of
 user- messages. Large messages on one stream can therefore block the
 sending of user messages on other streams.
 [I-D.ietf-tsvwg-sctp-ndata] overcomes this limitation. This draft
 also specifies multiple algorithms for the sender side selection of
 which streams to send data from, supporting a variety of scheduling
 algorithms including priority based methods. The stream re-
 configuration extension defined in [RFC6525] allows streams to be

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4820
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6525

Fairhurst, et al. Expires June 8, 2017 [Page 15]

Internet-Draft TAPS Transports December 2016

 reset during the lifetime of an association and to increase the
 number of streams, if the number of streams negotiated in the SCTP
 handshake becomes insufficient.

 Each user message sent is either delivered to the receiver or, in
 case of excessive retransmissions, the association is terminated in a
 non-graceful way [RFC4960], similar to TCP behavior. In addition to
 this reliable transfer, the partial reliability extension [RFC3758]
 allows a sender to abandon user messages. The application can
 specify the policy for abandoning user messages.

 SCTP supports multi-homing. Each SCTP endpoint uses a list of IP-
 addresses and a single port number. These addresses can be any
 mixture of IPv4 and IPv6 addresses. These addresses are negotiated
 during the handshake and the address re-configuration extension
 specified in [RFC5061] in combination with [RFC4895] can be used to
 change these addresses in an authenticated way during the lifetime of
 an SCTP association. This allows for transport layer mobility.
 Multiple addresses are used for improved resilience. If a remote
 address becomes unreachable, the traffic is switched over to a
 reachable one, if one exists.

 For securing user messages, the use of TLS over SCTP has been
 specified in [RFC3436]. However, this solution does not support all
 services provided by SCTP, such as un-ordered delivery or partial
 reliability. Therefore, the use of DTLS over SCTP has been specified
 in [RFC6083] to overcome these limitations. When using DTLS over
 SCTP, the application can use almost all services provided by SCTP.

 [I-D.ietf-tsvwg-natsupp] defines methods for endpoints and
 middleboxes to provide NAT traversal for SCTP over IPv4. For legacy
 NAT traversal, [RFC6951] defines the UDP encapsulation of SCTP-
 packets. Alternatively, SCTP packets can be encapsulated in DTLS
 packets as specified in [I-D.ietf-tsvwg-sctp-dtls-encaps]. The
 latter encapsulation is used within the WebRTC
 [I-D.ietf-rtcweb-transports] context.

 SCTP has a well-defined API, described in the next subsection.

3.5.2. Interface Description

 [RFC4960] defines an abstract API for the base protocol. This API
 describes the following functions callable by the upper layer of
 SCTP: Initialize, Associate, Send, Receive, Receive Unsent Message,
 Receive Unacknowledged Message, Shutdown, Abort, SetPrimary, Status,
 Change Heartbeat, Request Heartbeat, Get SRTT Report, Set Failure
 Threshold, Set Protocol Parameters, and Destroy. The following
 notifications are provided by the SCTP stack to the upper layer:

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc3436
https://datatracker.ietf.org/doc/html/rfc6083
https://datatracker.ietf.org/doc/html/rfc6951

Fairhurst, et al. Expires June 8, 2017 [Page 16]

Internet-Draft TAPS Transports December 2016

 COMMUNICATION UP, DATA ARRIVE, SHUTDOWN COMPLETE, COMMUNICATION LOST,
 COMMUNICATION ERROR, RESTART, SEND FAILURE, NETWORK STATUS CHANGE.

 An extension to the BSD Sockets API is defined in [RFC6458] and
 covers:

 o the base protocol defined in [RFC4960]. The API allows control
 over local addresses and port numbers and the primary path.
 Furthermore the application has fine control about parameters like
 retransmission thresholds, the path supervision parameters, the
 delayed acknowledgment timeout, and the fragmentation point. The
 API provides a mechanism to allow the SCTP stack to notify the
 application about events if the application has requested them.
 These notifications provide information about status changes of
 the association and each of the peer addresses. In case of send
 failures, including drop of messages sent unreliably, the
 application can also be notified and user messages can be returned
 to the application. When sending user messages, the stream id, a
 payload protocol identifier, an indication whether ordered
 delivery is requested or not. These parameters can also be
 provided on message reception. Additionally a context can be
 provided when sending, which can be use in case of send failures.
 The sending of arbitrary large user messages is supported.

 o the SCTP Partial Reliability extension defined in [RFC3758] to
 specify for a user message the PR-SCTP policy and the policy
 specific parameter. Examples of these policies defined in
 [RFC3758] and [RFC7496] are:

 o Limiting the time a user message is dealt with by the sender.

 o Limiting the number of retransmissions for each fragment of a user
 message. If the number of retransmissions is limited to 0, one
 gets a service similar to UDP.

 o Abandoning messages of lower priority in case of a send buffer
 shortage.

 o the SCTP Authentication extension defined in [RFC4895] allowing to
 manage the shared keys, the HMAC to use, set the chunk types which
 are only accepted in an authenticated way, and get the list of
 chunks which are accepted by the local and remote end point in an
 authenticated way.

 o the SCTP Dynamic Address Reconfiguration extension defined in
 [RFC5061]. It allows to manually add and delete local addresses
 for SCTP associations and the enabling of automatic address

https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc7496
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5061

Fairhurst, et al. Expires June 8, 2017 [Page 17]

Internet-Draft TAPS Transports December 2016

 addition and deletion. Furthermore the peer can be given a hint
 for choosing its primary path.

 A BSD Sockets API extension has been defined in the documents that
 specify the following SCTP protocol extensions:

 o the SCTP Stream Reconfiguration extension defined in [RFC6525].
 The API allows to trigger the reset operation for incoming and
 outgoing streams and the whole association. It provides also a
 way to notify the association about the corresponding events.
 Furthermore the application can increase the number of streams.

 o the UDP Encapsulation of SCTP packets extension defined in
 [RFC6951]. The API allows the management of the remote UDP
 encapsulation port.

 o the SCTP SACK-IMMEDIATELY extension defined in [RFC7053]. The API
 allows the sender of a user message to request the receiver to
 send the corresponding acknowledgment immediately.

 o the additional PR-SCTP policies defined in [RFC7496]. The API
 allows to enable/disable the PR-SCTP extension, choose the PR-SCTP
 policies defined in the document and provide statistical
 information about abandoned messages.

 Future documents describing SCTP protocol extensions are expected to
 describe the corresponding BSD Sockets API extension in a "Socket API
 Considerations" section.

 The SCTP socket API supports two kinds of sockets:

 o one-to-one style sockets (by using the socket type "SOCK_STREAM").

 o one-to-many style socket (by using the socket type
 "SOCK_SEQPACKET").

 One-to-one style sockets are similar to TCP sockets, there is a 1:1
 relationship between the sockets and the SCTP associations (except
 for listening sockets). One-to-many style SCTP sockets are similar
 to unconnected UDP sockets, where there is a 1:n relationship between
 the sockets and the SCTP associations.

 The SCTP stack can provide information to the applications about
 state changes of the individual paths and the association whenever
 they occur. These events are delivered similar to user messages but
 are specifically marked as notifications.

https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc7496

Fairhurst, et al. Expires June 8, 2017 [Page 18]

Internet-Draft TAPS Transports December 2016

 New functions have been introduced to support the use of multiple
 local and remote addresses. Additional SCTP-specific send and
 receive calls have been defined to permit SCTP-specific information
 to be sent without using ancillary data in the form of additional
 cmsgs. These functions provide support for detecting partial
 delivery of user messages and notifications.

 The SCTP socket API allows a fine-grained control of the protocol
 behavior through an extensive set of socket options.

 The SCTP kernel implementations of FreeBSD, Linux and Solaris follow
 mostly the specified extension to the BSD Sockets API for the base
 protocol and the corresponding supported protocol extensions.

3.5.3. Transport Features

 The transport features provided by SCTP are:

 o connection-oriented transport with feature negotiation and
 application-to-port mapping,

 o unicast transport,

 o port multiplexing,

 o uni- or bidirectional communication,

 o message-oriented delivery with durable message framing supporting
 multiple concurrent streams,

 o fully reliable, partially reliable, or unreliable delivery (based
 on user specified policy to handle abandoned user messages) with
 drop notification,

 o ordered and unordered delivery within a stream,

 o support for stream scheduling prioritization,

 o segmentation,

 o user message bundling,

 o flow control using a window-based mechanism,

 o congestion control using methods similar to TCP,

 o strong error detection (CRC32c),

Fairhurst, et al. Expires June 8, 2017 [Page 19]

Internet-Draft TAPS Transports December 2016

 o transport layer multihoming for resilience and mobility.

3.6. Datagram Congestion Control Protocol (DCCP)

 Datagram Congestion Control Protocol (DCCP) [RFC4340] is an IETF
 standards track bidirectional transport protocol that provides
 unicast connections of congestion-controlled messages without
 providing reliability.

 The DCCP Problem Statement describes the goals that DCCP sought to
 address [RFC4336]: It is suitable for applications that transfer
 fairly large amounts of data and that can benefit from control over
 the trade off between timeliness and reliability [RFC4336].

 DCCP offers low overhead, and many characteristics common to UDP, but
 can avoid "re-inventing the wheel" each time a new multimedia
 application emerges. Specifically it includes core transport
 functions (feature negotiation, path state management, RTT
 calculation, PMTUD, etc.): DCCP applications select how they send
 packets and, where suitable, choose common algorithms to manage their
 functions. Examples of applications that can benefit from such
 transport services include interactive applications, streaming media,
 or on-line games [RFC4336].

3.6.1. Protocol Description

 DCCP is a connection-oriented datagram protocol, providing a three-
 way handshake to allow a client and server to set up a connection,
 and mechanisms for orderly completion and immediate teardown of a
 connection.

 A DCCP protocol instance can be extended [RFC4340] and tuned using
 additional features. Some features are sender-side only, requiring
 no negotiation with the receiver; some are receiver-side only; and
 some are explicitly negotiated during connection setup.

 DCCP uses a Connect packet to initiate a session, and permits each
 endpoint to choose the features it wishes to support. Simultaneous
 open [RFC5596], as in TCP, can enable interoperability in the
 presence of middleboxes. The Connect packet includes a Service Code
 [RFC5595] that identifies the application or protocol using DCCP,
 providing middleboxes with information about the intended use of a
 connection.

 The DCCP service is unicast-only.

 It provides multiplexing to multiple sockets at each endpoint using
 port numbers. An active DCCP session is identified by its four-tuple

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc5596
https://datatracker.ietf.org/doc/html/rfc5595

Fairhurst, et al. Expires June 8, 2017 [Page 20]

Internet-Draft TAPS Transports December 2016

 of local and remote IP addresses and local port and remote port
 numbers.

 The protocol segments data into messages, typically sized to fit in
 IP packets, but which may be fragmented providing they are smaller
 than the maximum packet size. A DCCP interface allows applications
 to request fragmentation for packets larger than PMTU, but not larger
 than the maximum packet size allowed by the current congestion
 control mechanism (CCMPS) [RFC4340].

 Each message is identified by a sequence number. The sequence number
 is used to identify segments in acknowledgments, to detect
 unacknowledged segments, to measure RTT, etc. The protocol may
 support unordered delivery of data, and does not itself provide
 retransmission. DCCP supports reduced checksum coverage, a partial
 payload protection mechanism similar to UDP-Lite. There is also a
 Data Checksum option, which when enabled, contains a strong CRC, to
 enable endpoints to detect application data corruption.

 Receiver flow control is supported, which limits the amount of
 unacknowledged data that can be outstanding at a given time.

 DCCP supports negotiation of the congestion control profile between
 endpoints, to provide plug-and-play congestion control mechanisms.
 Examples of specified profiles include "TCP-like" [RFC4341], "TCP-
 friendly" [RFC4342], and "TCP-friendly for small packets" [RFC5622].
 Additional mechanisms are recorded in an IANA registry.

 A lightweight UDP-based encapsulation (DCCP-UDP) has been defined
 [RFC6773] that permits DCCP to be used over paths where DCCP is not
 natively supported. Support for DCCP in NAPT/NATs is defined in
 [RFC4340] and [RFC5595]. Upper layer protocols specified on top of
 DCCP include DTLS [RFC5595], RTP [RFC5672], ICE/SDP [RFC6773].

3.6.2. Interface Description

 Functions expected for a DCCP API include: Open, Close and Management
 of the progress a DCCP connection. The Open function provides
 feature negotiation, selection of an appropriate CCID for congestion
 control and other parameters associated with the DCCP connection. A
 function allows an application to send DCCP datagrams, including
 setting the required checksum coverage, and any required options.
 (DCCP permits sending datagrams with a zero-length payload.) A
 function allows reception of data, including indicating if the data
 was used or dropped. Functions can also make the status of a
 connection visible to an application, including detection of the
 maximum packet size and the ability to perform flow control by
 detecting a slow receiver at the sender.

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4341
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc5622
https://datatracker.ietf.org/doc/html/rfc6773
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5595
https://datatracker.ietf.org/doc/html/rfc5672
https://datatracker.ietf.org/doc/html/rfc6773

Fairhurst, et al. Expires June 8, 2017 [Page 21]

Internet-Draft TAPS Transports December 2016

 There is no API currently specified in the RFC Series.

3.6.3. Transport Features

 The transport features provided by DCCP are:

 o unicast transport,

 o connection-oriented communication with feature negotiation and
 application-to-port mapping,

 o signaling of application class for middlebox support (implemented
 using Service Codes),

 o port multiplexing,

 o uni-or bidirectional communication,

 o message-oriented delivery,

 o unreliable delivery with drop notification,

 o unordered delivery,

 o flow control (implemented using the slow receiver function)

 o partial and full payload error detection (with optional strong
 integrity check).

3.7. Transport Layer Security (TLS) and Datagram TLS (DTLS) as a
 pseudotransport

 Transport Layer Security (TLS) [RFC5246] and Datagram TLS (DTLS)
 [RFC6347] are IETF protocols that provide several security-related
 features to applications. TLS is designed to run on top of a
 reliable streaming transport protocol (usually TCP), while DTLS is
 designed to run on top of a best-effort datagram protocol (UDP or
 DCCP [RFC5238]). At the time of writing, the current version of TLS
 is 1.2, defined in [RFC5246]; work on TLS version 1.3
 [I-D.ietf-tls-tls13] nearing completion. DTLS provides nearly
 identical functionality to applications; it is defined in [RFC6347]
 and its current version is also 1.2. The TLS protocol evolved from
 the Secure Sockets Layer (SSL) [RFC6101] protocols developed in the
 mid-1990s to support protection of HTTP traffic.

 While older versions of TLS and DTLS are still in use, they provide
 weaker security guarantees. [RFC7457] outlines important attacks on
 TLS and DTLS. [RFC7525] is a Best Current Practices (BCP) document

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5238
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6101
https://datatracker.ietf.org/doc/html/rfc7457
https://datatracker.ietf.org/doc/html/rfc7525

Fairhurst, et al. Expires June 8, 2017 [Page 22]

Internet-Draft TAPS Transports December 2016

 that describes secure configurations for TLS and DTLS to counter
 these attacks. The recommendations are applicable for the vast
 majority of use cases.

3.7.1. Protocol Description

 Both TLS and DTLS provide the same security features and can thus be
 discussed together. The features they provide are:

 o Confidentiality

 o Data integrity

 o Peer authentication (optional)

 o Perfect forward secrecy (optional)

 The authentication of the peer entity can be omitted; a common web
 use case is where the server is authenticated and the client is not.
 TLS also provides a completely anonymous operation mode in which
 neither peer's identity is authenticated. It is important to note
 that TLS itself does not specify how a peering entity's identity
 should be interpreted. For example, in the common use case of
 authentication by means of an X.509 certificate, it is the
 application's decision whether the certificate of the peering entity
 is acceptable for authorization decisions.

 Perfect forward secrecy, if enabled and supported by the selected
 algorithms, ensures that traffic encrypted and captured during a
 session at time t0 cannot be later decrypted at time t1 (t1 > t0),
 even if the long-term secrets of the communicating peers are later
 compromised.

 As DTLS is generally used over an unreliable datagram transport such
 as UDP, applications will need to tolerate lost, re-ordered, or
 duplicated datagrams. Like TLS, DTLS conveys application data in a
 sequence of independent records. However, because records are mapped
 to unreliable datagrams, there are several features unique to DTLS
 that are not applicable to TLS:

 o Record replay detection (optional).

 o Record size negotiation (estimates of PMTU and record size
 expansion factor).

 o Conveyance of IP don't fragment (DF) bit settings by application.

 o An anti-DoS stateless cookie mechanism (optional).

Fairhurst, et al. Expires June 8, 2017 [Page 23]

Internet-Draft TAPS Transports December 2016

 Generally, DTLS follows the TLS design as closely as possible. To
 operate over datagrams, DTLS includes a sequence number and limited
 forms of retransmission and fragmentation for its internal
 operations. The sequence number may be used for detecting replayed
 information, according to the windowing procedure described in

Section 4.1.2.6 of [RFC6347]. DTLS forbids the use of stream
 ciphers, which are essentially incompatible when operating on
 independent encrypted records.

3.7.2. Interface Description

 TLS is commonly invoked using an API provided by packages such as
 OpenSSL, wolfSSL, or GnuTLS. Using such APIs entails the
 manipulation of several important abstractions, which fall into the
 following categories: long-term keys and algorithms, session state,
 and communications/connections.

 Considerable care is required in the use of TLS APIs to ensure
 creation of a secure application. The programmer should have at
 least a basic understanding of encryption and digital signature
 algorithms and their strengths, public key infrastructure (including
 X.509 certificates and certificate revocation), and the sockets API.
 See [RFC7525] and [RFC7457], as mentioned above.

 As an example, in the case of OpenSSL, the primary abstractions are
 the library itself and method (protocol), session, context, cipher
 and connection. After initializing the library and setting the
 method, a cipher suite is chosen and used to configure a context
 object. Session objects may then be minted according to the
 parameters present in a context object and associated with individual
 connections. Depending on how precisely the programmer wishes to
 select different algorithmic or protocol options, various levels of
 details may be required.

3.7.3. Transport Features

 Both TLS and DTLS employ a layered architecture. The lower layer is
 commonly called the record protocol. It is responsible for:

 o message fragmentation,

 o authentication and integrity via message authentication codes
 (MAC),

 o data encryption,

 o scheduling transmission using the underlying transport protocol.

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/rfc7457

Fairhurst, et al. Expires June 8, 2017 [Page 24]

Internet-Draft TAPS Transports December 2016

 DTLS augments the TLS record protocol with:

 o ordering and replay protection, implemented using sequence
 numbers.

 Several protocols are layered on top of the record protocol. These
 include the handshake, alert, and change cipher spec protocols.
 There is also the data protocol, used to carry application traffic.
 The handshake protocol is used to establish cryptographic and
 compression parameters when a connection is first set up. In DTLS,
 this protocol also has a basic fragmentation and retransmission
 capability and a cookie-like mechanism to resist DoS attacks. (TLS
 compression is not recommended at present). The alert protocol is
 used to inform the peer of various conditions, most of which are
 terminal for the connection. The change cipher spec protocol is used
 to synchronize changes in cryptographic parameters for each peer.

 The data protocol, when used with an appropriate cipher, provides:

 o authentication of one end or both ends of a connection,

 o confidentiality,

 o cryptographic integrity protection.

 Both TLS and DTLS are unicast-only.

3.8. Realtime Transport Protocol (RTP)

 RTP provides an end-to-end network transport service, suitable for
 applications transmitting real-time data, such as audio, video or
 data, over multicast or unicast transport services, including TCP,
 UDP, UDP-Lite, DCCP, TLS and DTLS.

3.8.1. Protocol Description

 The RTP standard [RFC3550] defines a pair of protocols, RTP and the
 RTP control protocol, RTCP. The transport does not provide
 connection setup, instead relying on out-of-band techniques or
 associated control protocols to setup, negotiate parameters or tear
 down a session.

 An RTP sender encapsulates audio/video data into RTP packets to
 transport media streams. The RFC-series specifies RTP payload
 formats that allow packets to carry a wide range of media, and
 specifies a wide range of multiplexing, error control and other
 support mechanisms.

https://datatracker.ietf.org/doc/html/rfc3550

Fairhurst, et al. Expires June 8, 2017 [Page 25]

Internet-Draft TAPS Transports December 2016

 If a frame of media data is large, it will be fragmented into several
 RTP packets. Likewise, several small frames may be bundled into a
 single RTP packet.

 An RTP receiver collects RTP packets from the network, validates them
 for correctness, and sends them to the media decoder input-queue.
 Missing packet detection is performed by the channel decoder. The
 play-out buffer is ordered by time stamp and is used to reorder
 packets. Damaged frames may be repaired before the media payloads
 are decompressed to display or store the data. Some uses of RTP are
 able to exploit the partial payload protection features offered by
 DCCP and UDP-Lite.

 RTCP is a control protocol that works alongside an RTP flow. Both
 the RTP sender and receiver will send RTCP report packets. This is
 used to periodically send control information and report performance.
 Based on received RTCP feedback, an RTP sender can adjust the
 transmission, e.g., perform rate adaptation at the application layer
 in the case of congestion.

 An RTCP receiver report (RTCP RR) is returned to the sender
 periodically to report key parameters (e.g, the fraction of packets
 lost in the last reporting interval, the cumulative number of packets
 lost, the highest sequence number received, and the inter-arrival
 jitter). The RTCP RR packets also contain timing information that
 allows the sender to estimate the network round trip time (RTT) to
 the receivers.

 The interval between reports sent from each receiver tends to be on
 the order of a few seconds on average, although this varies with the
 session rate, and sub-second reporting intervals are possible for
 high rate sessions. The interval is randomized to avoid
 synchronization of reports from multiple receivers.

3.8.2. Interface Description

 There is no standard application programming interface defined for
 RTP or RTCP. Implementations are typically tightly integrated with a
 particular application, and closely follow the principles of
 application level framing and integrated layer processing [ClarkArch]
 in media processing [RFC2736], error recovery and concealment, rate
 adaptation, and security [RFC7202]. Accordingly, RTP implementations
 tend to be targeted at particular application domains (e.g., voice-
 over-IP, IPTV, or video conferencing), with a feature set optimized
 for that domain, rather than being general purpose implementations of
 the protocol.

https://datatracker.ietf.org/doc/html/rfc2736
https://datatracker.ietf.org/doc/html/rfc7202

Fairhurst, et al. Expires June 8, 2017 [Page 26]

Internet-Draft TAPS Transports December 2016

3.8.3. Transport Features

 The transport features provided by RTP are:

 o unicast, multicast or IPv4 broadcast (provided by lower layer
 protocol),

 o port multiplexing (provided by lower layer protocol),

 o uni- or bidirectional communication (provided by lower layer
 protocol),

 o message-oriented delivery with support for media types and other
 extensions,

 o reliable delivery when using erasure coding or unreliable delivery
 with drop notification (if supported by lower layer protocol),

 o connection setup with feature negotiation (using associated
 protocols) and application-to-port mapping (provided by lower
 layer protocol),

 o segmentation,

 o performance metric reporting (using associated protocols).

3.9. Hypertext Transport Protocol (HTTP) over TCP as a pseudotransport

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol widely used on the Internet. It provides object-oriented
 delivery of discrete data or files. Version 1.1 of the protocol is
 specified in [RFC7230] [RFC7231] [RFC7232] [RFC7233] [RFC7234]
 [RFC7235], and version 2 in [RFC7540]. HTTP is usually transported
 over TCP using port 80 and 443, although it can be used with other
 transports. When used over TCP it inherits TCP's properties.

 Application layer protocols may use HTTP as a substrate with an
 existing method and data formats, or specify new methods and data
 formats. There are various reasons for this practice listed in
 [RFC3205]; these include being a well-known and well-understood
 protocol, reusability of existing servers and client libraries, easy
 use of existing security mechanisms such as HTTP digest
 authentication [RFC2617] and TLS [RFC5246], the ability of HTTP to
 traverse firewalls makes it work over many types of infrastructure,
 and in cases where an application server often needs to support HTTP
 anyway.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc3205
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5246

Fairhurst, et al. Expires June 8, 2017 [Page 27]

Internet-Draft TAPS Transports December 2016

 Depending on application need, the use of HTTP as a substrate
 protocol may add complexity and overhead in comparison to a special-
 purpose protocol (e.g., HTTP headers, suitability of the HTTP
 security model, etc.). [RFC3205] addresses this issue and provides
 some guidelines and identifies concerns about the use of HTTP
 standard port 80 and 443, the use of HTTP URL scheme and interaction
 with existing firewalls, proxies and NATs.

 Representational State Transfer (REST) [REST] is another example of
 how applications can use HTTP as transport protocol. REST is an
 architecture style that may be used to build applications using HTTP
 as a communication protocol.

3.9.1. Protocol Description

 Hypertext Transfer Protocol (HTTP) is a request/response protocol. A
 client sends a request containing a request method, URI and protocol
 version followed message whose design is inspired by MIME (see
 [RFC7231] for the differences between an HTTP object and a MIME
 message), containing information about the client and request
 modifiers. The message can also contain a message body carrying
 application data. The server responds with a status or error code
 followed by a message containing information about the server and
 information about the data. This may include a message body. It is
 possible to specify a data format for the message body using MIME
 media types [RFC2045]. The protocol has additional features, some
 relevant to pseudo-transport are described below.

 Content negotiation, specified in [RFC7231], is a mechanism provided
 by HTTP to allow selection of a representation for a requested
 resource. The client and server negotiate acceptable data formats,
 character sets, data encoding (e.g., data can be transferred
 compressed using gzip). HTTP can accommodate exchange of messages as
 well as data streaming (using chunked transfer encoding [RFC7230]).
 It is also possible to request a part of a resource using an object
 range request [RFC7233]. The protocol provides powerful cache
 control signaling defined in [RFC7234].

 The persistent connections of HTTP 1.1 and HTTP 2.0 allow multiple
 request- response transactions (streams) during the life-time of a
 single HTTP connection. This reduces overhead during connection
 establishment and mitigates transport layer slow-start that would
 have otherwise been incurred for each transaction. HTTP 2.0
 connections can multiplex many request/response pairs in parallel on
 a single transport connection. Both are important to reduce latency
 for HTTP's primary use case.

https://datatracker.ietf.org/doc/html/rfc3205
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234

Fairhurst, et al. Expires June 8, 2017 [Page 28]

Internet-Draft TAPS Transports December 2016

 HTTP can be combined with security mechanisms, such as TLS (denoted
 by HTTPS). This adds protocol properties provided by such a
 mechanism (e.g., authentication, encryption). The TLS Application-
 Layer Protocol Negotiation (ALPN) extension [RFC7301] can be used to
 negotiate the HTTP version within the TLS handshake, eliminating the
 latency incurred by additional round-trip exchanges. Arbitrary
 cookie strings, included as part of the request headers, are often
 used as bearer tokens in HTTP.

3.9.2. Interface Description

 There are many HTTP libraries available exposing different APIs. The
 APIs provide a way to specify a request by providing a URI, a method,
 request modifiers and optionally a request body. For the response,
 callbacks can be registered that will be invoked when the response is
 received. If HTTPS is used, the API exposes a registration of
 callbacks for a server that requests client authentication and when
 certificate verification is needed.

 The World Wide Web Consortium (W3C) has standardized the
 XMLHttpRequest API [XHR]. This API can be used for sending HTTP/
 HTTPS requests and receiving server responses. Besides the XML data
 format, the request and response data format can also be JSON, HTML,
 and plain text. JavaScript and XMLHttpRequest are ubiquitous
 programming models for websites, and more general applications, where
 native code is less attractive.

3.9.3. Transport features

 The transport features provided by HTTP, when used as a pseudo-
 transport, are:

 o unicast transport (provided by the lower layer protocol, usually
 TCP),

 o uni- or bidirectional communication,

 o transfer of objects in multiple streams with object content type
 negotiation, supporting partial transmission of object ranges,

 o ordered delivery (provided by the lower layer protocol, usually
 TCP),

 o fully reliable delivery (provided by the lower layer protocol,
 usually TCP),

 o flow control (provided by the lower layer protocol, usually TCP).

https://datatracker.ietf.org/doc/html/rfc7301

Fairhurst, et al. Expires June 8, 2017 [Page 29]

Internet-Draft TAPS Transports December 2016

 o congestion control (provided by the lower layer protocol, usually
 TCP).

 HTTPS (HTTP over TLS) additionally provides the following features
 (as provided by TLS):

 o authentication (of one or both ends of a connection),

 o confidentiality,

 o integrity protection.

3.10. File Delivery over Unidirectional Transport/Asynchronous Layered
 Coding Reliable Multicast (FLUTE/ALC)

 FLUTE/ALC is an IETF standards track protocol specified in [RFC6726]
 and [RFC5775]. It provides object-oriented delivery of discrete data
 or files. Asynchronous Layer Coding (ALC) provides an underlying
 reliable transport service and FLUTE a file-oriented specialization
 of the ALC service (e.g., to carry associated metadata). The
 [RFC6726] and [RFC5775] protocols are non-backward-compatible updates
 of the [RFC3926] and [RFC3450] experimental protocols; these
 experimental protocols are currently largely deployed in the 3GPP
 Multimedia Broadcast and Multicast Services (MBMS) (see [MBMS],
 section 7) and similar contexts (e.g., the Japanese ISDB-Tmm
 standard).

 The FLUTE/ALC protocol has been designed to support massively
 scalable reliable bulk data dissemination to receiver groups of
 arbitrary size using IP Multicast over any type of delivery network,
 including unidirectional networks (e.g., broadcast wireless
 channels). However, the FLUTE/ALC protocol also supports point-to-
 point unicast transmissions.

 FLUTE/ALC bulk data dissemination has been designed for discrete file
 or memory-based "objects". Although FLUTE/ALC is not well adapted to
 byte- and message-streaming, there is an exception: FLUTE/ALC is used
 to carry 3GPP Dynamic Adaptive Streaming over HTTP (DASH) when
 scalability is a requirement (see [MBMS], section 5.6).

 FLUTE/ALC's reliability, delivery mode, congestion control, and flow/
 rate control mechanisms can be separately controlled to meet
 different application needs. Section 4.1 of
 [I-D.ietf-tsvwg-rfc5405bis] describes multicast congestion control
 requirements for UDP.

https://datatracker.ietf.org/doc/html/rfc6726
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc6726
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3450

Fairhurst, et al. Expires June 8, 2017 [Page 30]

Internet-Draft TAPS Transports December 2016

3.10.1. Protocol Description

 The FLUTE/ALC protocol works on top of UDP (though it could work on
 top of any datagram delivery transport protocol), without requiring
 any connectivity from receivers to the sender. Purely unidirectional
 networks are therefore supported by FLUTE/ALC. This guarantees
 scalability to an unlimited number of receivers in a session, since
 the sender behaves exactly the same regardless of the number of
 receivers.

 FLUTE/ALC supports the transfer of bulk objects such as file or in-
 memory content, using either a push or an on-demand mode. in push
 mode, content is sent once to the receivers, while in on-demand mode,
 content is sent continuously during periods of time that can greatly
 exceed the average time required to download the session objects (see

[RFC5651], section 4.2).

 This enables receivers to join a session asynchronously, at their own
 discretion, receive the content and leave the session. In this case,
 data content is typically sent continuously, in loops (also known as
 "carousels"). FLUTE/ALC also supports the transfer of an object
 stream, with loose real-time constraints. This is particularly
 useful to carry 3GPP DASH when scalability is a requirement and
 unicast transmissions over HTTP cannot be used ([MBMS], section 5.6).
 In this case, packets are sent in sequence using push mode. FLUTE/
 ALC is not well adapted to byte- and message-streaming and other
 solutions could be preferred (e.g., FECFRAME [RFC6363] with real-time
 flows).

 The FLUTE file delivery instantiation of ALC provides a metadata
 delivery service. Each object of the FLUTE/ALC session is described
 in a dedicated entry of a File Delivery Table (FDT), using an XML
 format (see [RFC6726], section 3.2). This metadata can include, but
 is not restricted to, a URI attribute (to identify and locate the
 object), a media type attribute, a size attribute, an encoding
 attribute, or a message digest attribute. Since the set of objects
 sent within a session can be dynamic, with new objects being added
 and old ones removed, several instances of the FDT can be sent and a
 mechanism is provided to identify a new FDT Instance.

 Error detection and verification of the protocol control information
 relies on the on the underlying transport (e.g., UDP checksum).

 To provide robustness against packet loss and improve the efficiency
 of the on-demand mode, FLUTE/ALC relies on packet erasure coding (AL-
 FEC). AL-FEC encoding is proactive (since there is no feedback and
 therefore no (N)ACK-based retransmission) and ALC packets containing
 repair data are sent along with ALC packets containing source data.

https://datatracker.ietf.org/doc/html/rfc5651#section-4.2
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6726#section-3.2

Fairhurst, et al. Expires June 8, 2017 [Page 31]

Internet-Draft TAPS Transports December 2016

 Several FEC Schemes have been standardized; FLUTE/ALC does not
 mandate the use of any particular one. Several strategies concerning
 the transmission order of ALC source and repair packets are possible,
 in particular in on-demand mode where it can deeply impact the
 service provided (e.g., to favor the recovery of objects in sequence,
 or at the other extreme, to favor the recovery of all objects in
 parallel), and FLUTE/ALC does not mandate nor recommend the use of
 any particular one.

 A FLUTE/ALC session is composed of one or more channels, associated
 to different destination unicast and/or multicast IP addresses. ALC
 packets are sent in those channels at a certain transmission rate,
 with a rate that often differs depending on the channel. FLUTE/ALC
 does not mandate nor recommend any strategy to select which ALC
 packet to send on which channel. FLUTE/ALC can use a multiple rate
 congestion control building block (e.g., WEBRC) to provide congestion
 control that is feedback free, where receivers adjust their reception
 rates individually by joining and leaving channels associated with
 the session. To that purpose, the ALC header provides a specific
 field to carry congestion control specific information. However
 FLUTE/ALC does not mandate the use of a particular congestion control
 mechanism although WEBRC is mandatory to support for the Internet
 ([RFC6726], section 1.1.4). FLUTE/ALC is often used over a network
 path with pre-provisioned capacity [I-D.ietf-tsvwg-rfc5405bis] where
 there are no flows competing for capacity. In this case, a sender-
 based rate control mechanism and a single channel is sufficient.

 [RFC6584] provides per-packet authentication, integrity, and anti-
 replay protection in the context of the ALC and NORM protocols.
 Several mechanisms are proposed that seamlessly integrate into these
 protocols using the ALC and NORM header extension mechanisms.

3.10.2. Interface Description

 The FLUTE/ALC specification does not describe a specific application
 programming interface (API) to control protocol operation. Although
 open source and commercial implementations have specified APIs, there
 is no IETF- specified API for FLUTE/ALC.

3.10.3. Transport Features

 The transport features provided by FLUTE/ALC are:

 o unicast, multicast, anycast or IPv4 broadcast transmission,

 o object-oriented delivery of discrete data or files and associated
 metadata,

https://datatracker.ietf.org/doc/html/rfc6726#section-1.1.4

Fairhurst, et al. Expires June 8, 2017 [Page 32]

Internet-Draft TAPS Transports December 2016

 o fully reliable or partially reliable delivery (of file or in-
 memory objects), using proactive packet erasure coding (AL-FEC) to
 recover from packet erasures,

 o ordered or unordered delivery (of file or in-memory objects),

 o error detection (based on the UDP checksum),

 o per-packet authentication,

 o per-packet integrity,

 o per-packet replay protection,

 o congestion control for layered flows (e.g., with WEBRC).

3.11. NACK-Oriented Reliable Multicast (NORM)

 NORM is an IETF standards track protocol specified in [RFC5740]. It
 provides object-oriented delivery of discrete data or files.

 The protocol was designed to support reliable bulk data dissemination
 to receiver groups using IP Multicast but also provides for point-to-
 point unicast operation. Support for bulk data dissemination
 includes discrete file or computer memory-based "objects" as well as
 byte- and message-streaming.

 NORM can incorporate packet erasure coding as a part of its selective
 ARQ in response to negative acknowledgments from the receiver. The
 packet erasure coding can also be proactively applied for forward
 protection from packet loss. NORM transmissions are governed by TCP-
 friendly multicast congestion control (TFMCC, [RFC4654]). The
 reliability, congestion control and flow control mechanisms can be
 separately controlled to meet different application needs.

3.11.1. Protocol Description

 The NORM protocol is encapsulated in UDP datagrams and thus provides
 multiplexing for multiple sockets on hosts using port numbers. For
 loosely coordinated IP Multicast, NORM is not strictly connection-
 oriented although per-sender state is maintained by receivers for
 protocol operation. [RFC5740] does not specify a handshake protocol
 for connection establishment. Separate session initiation can be
 used to coordinate port numbers. However, in-band "client-server"
 style connection establishment can be accomplished with the NORM
 congestion control signaling messages using port binding techniques
 like those for TCP client-server connections.

https://datatracker.ietf.org/doc/html/rfc5740
https://datatracker.ietf.org/doc/html/rfc4654
https://datatracker.ietf.org/doc/html/rfc5740

Fairhurst, et al. Expires June 8, 2017 [Page 33]

Internet-Draft TAPS Transports December 2016

 NORM supports bulk "objects" such as file or in-memory content but
 also can treat a stream of data as a logical bulk object for purposes
 of packet erasure coding. In the case of stream transport, NORM can
 support either byte streams or message streams where application-
 defined message boundary information is carried in the NORM protocol
 messages. This allows the receiver(s) to join/re-join and recover
 message boundaries mid-stream as needed. Application content is
 carried and identified by the NORM protocol with encoding symbol
 identifiers depending upon the Forward Error Correction (FEC) Scheme
 [RFC3452] configured. NORM uses NACK-based selective ARQ to reliably
 deliver the application content to the receiver(s). NORM proactively
 measures round-trip timing information to scale ARQ timers
 appropriately and to support congestion control. For multicast
 operation, timer-based feedback suppression is uses to achieve group
 size scaling with low feedback traffic levels. The feedback
 suppression is not applied for unicast operation.

 NORM uses rate-based congestion control based upon the TCP-Friendly
 Rate Control (TFRC) [RFC4324] principles that are also used in DCCP
 [RFC4340]. NORM uses control messages to measure RTT and collect
 congestion event information (e.g., reflecting a loss event or ECN
 event) from the receiver(s) to support dynamic adjustment or the
 rate. The TCP-Friendly Multicast Congestion Control (TFMCC)
 [RFC4654] provides extra features to support multicast, but is
 functionally equivalent to TFRC for unicast.

 Error detection and verification of the protocol control information
 relies on the on the underlying transport(e.g., UDP checksum).

 The reliability mechanism is decoupled from congestion control. This
 allows invocation of alternative arrangements of transport services.
 For example, to support, fixed-rate reliable delivery or unreliable
 delivery (that may optionally be "better than best effort" via packet
 erasure coding) using TFRC. Alternative congestion control
 techniques may be applied. For example, TFRC rate control with
 congestion event detection based on ECN.

 While NORM provides NACK-based reliability, it also supports a
 positive acknowledgment (ACK) mechanism that can be used for receiver
 flow control. This mechanism is decoupled from the reliability and
 congestion control, supporting applications with different needs.
 One example is use of NORM for quasi-reliable delivery, where timely
 delivery of newer content may be favored over completely reliable
 delivery of older content within buffering and RTT constraints.

https://datatracker.ietf.org/doc/html/rfc3452
https://datatracker.ietf.org/doc/html/rfc4324
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4654

Fairhurst, et al. Expires June 8, 2017 [Page 34]

Internet-Draft TAPS Transports December 2016

3.11.2. Interface Description

 The NORM specification does not describe a specific application
 programming interface (API) to control protocol operation. A freely-
 available, open source reference implementation of NORM is available
 at https://www.nrl.navy.mil/itd/ncs/products/norm, and a documented
 API is provided for this implementation. While a sockets-like API is
 not currently documented, the existing API supports the necessary
 functions for that to be implemented.

3.11.3. Transport Features

 The transport features provided by NORM are:

 o unicast or multicast transport,

 o unidirectional communication,

 o stream-oriented delivery in a single stream or object-oriented
 delivery of in-memory data or file bulk content objects,

 o fully reliable (NACK-based) or partially reliable (using erasure
 coding both proactively and as part of ARQ) delivery,

 o unordered delivery,

 o error detection (relies on UDP checksum),

 o segmentation,

 o data bundling (using Nagle's algorithm),

 o flow control (timer-based and/or ack-based),

 o congestion control (also supporting fixed rate reliable or
 unreliable delivery).

3.12. Internet Control Message Protocol (ICMP)

 The Internet Control Message Protocol (ICMP) [RFC0792] for IPv4 and
 ICMP for IPv6 [RFC4443] are IETF standards track protocols. It is a
 connection-less unidirectional protocol that delivers individual
 messages, without error correction, congestion control, or flow
 control. Messages may be sent as unicast, IPv4 broadcast or
 multicast datagrams (IPv4 and IPv6), in addition to anycast
 datagrams.

https://www.nrl.navy.mil/itd/ncs/products/norm
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443

Fairhurst, et al. Expires June 8, 2017 [Page 35]

Internet-Draft TAPS Transports December 2016

 While ICMP is not typically described as a transport protocol, it
 does position itself over the network layer, and the operation of
 other transport protocols can be closely linked to the functions
 provided by ICMP.

 Transport Protocols and upper layer protocols can use received ICMP
 messages to help them take appropriate decisions when network or
 endpoint errors are reported. For example, to implement, ICMP-based
 Path MTU discovery [RFC1191][RFC1981] or assist in Packetization
 Layer Path MTU Discovery (PMTUD) [RFC4821]. Such reactions to
 received messages need to protect from off-path data injection
 [I-D.ietf-tsvwg-rfc5405bis], to avoid an application receiving
 packets created by an unauthorized third party. An application
 therefore needs to ensure that all messages are appropriately
 validated, by checking the payload of the messages to ensure these
 are received in response to actually transmitted traffic (e.g., a
 reported error condition that corresponds to a UDP datagram or TCP
 segment was actually sent by the application). This requires context
 [RFC6056], such as local state about communication instances to each
 destination (e.g., in the TCP, DCCP, or SCTP protocols). This state
 is not always maintained by UDP-based applications
 [I-D.ietf-tsvwg-rfc5405bis].

3.12.1. Protocol Description

 ICMP is a connection-less unidirectional protocol, It delivers
 independent messages, called datagrams. Each message is required to
 carry a checksum as an integrity check and to protect from mis-
 delivery to an unintended endpoint.

 ICMP messages typically relay diagnostic information from an endpoint
 [RFC1122] or network device [RFC1812] addressed to the sender of a
 flow. This usually contains the network protocol header of a packet
 that encountered a reported issue. Some formats of messages can also
 carry other payload data. Each message carries an integrity check
 calculated in the same way as for UDP, this checksum is not optional.

 The RFC series defines additional IPv6 message formats to support a
 range of uses. In the case of IPv6 the protocol incorporates
 neighbor discovery [RFC2461] [RFC3971] (provided by ARP for IPv4) and
 the Multicast Listener Discovery (MLD) [RFC2710] group management
 functions (provided by IGMP for IPv4).

 Reliable transmission can not be assumed. A receiving application
 that is unable to run sufficiently fast, or frequently, may miss
 messages since there is no flow or congestion control. In addition
 some network devices rate-limit ICMP messages.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2461
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc2710

Fairhurst, et al. Expires June 8, 2017 [Page 36]

Internet-Draft TAPS Transports December 2016

3.12.2. Interface Description

 ICMP processing is integrated in many connection-oriented transports,
 but like other functions needs to be provided by an upper-layer
 protocol when using UDP and UDP-Lite.

 On some stacks, a bound socket also allows a UDP application to be
 notified when ICMP error messages are received for its transmissions
 [I-D.ietf-tsvwg-rfc5405bis].

 Any response to ICMP error messages ought to be robust to temporary
 routing failures (sometimes called "soft errors"), e.g., transient
 ICMP "unreachable" messages ought to not normally cause a
 communication abort [RFC5461] [I-D.ietf-tsvwg-rfc5405bis].

3.12.3. Transport Features

 ICMP does not provide any transport service directly to applications.
 Used together with other transport protocols, it provides
 transmission of control, error, and measurement data between
 endpoints, or from devices along the path to one endpoint.

4. Congestion Control

 Congestion control is critical to the stable operation of the
 Internet. A variety of mechanisms are used to provide the congestion
 control needed by many Internet transport protocols. Congestion is
 detected based on sensing of network conditions, whether through
 explicit or implicit feedback. The congestion control mechanisms
 that can be applied by different transport protocols are largely
 orthogonal to the choice of transport protocol. This section
 provides an overview of the congestion control mechanisms available
 to the protocols described in Section 3.

 Many protocols use a separate window to determine the maximum sending
 rate that is allowed by the congestion control. The used congestion
 control mechanism will increase the congestion window if feedback is
 received that indicates that the currently used network path is not
 congested, and will reduce the window otherwise. Window-based
 mechanisms often increase their window slowing over multiple RTTs,
 while decreasing strongly when the first indication of congestion is
 received. One example is an Additive Increase Multiplicative
 Decrease (AIMD) scheme, where the window is increased by a certain
 number of packets/bytes for each data segment that has been
 successfully transmitted, while the window decreases multiplicatively
 on the occurrence of a congestion event. This can lead to a rather
 unstable, oscillating sending rate, but will resolve a congestion
 situation quickly. TCP New Reno [RFC5681] which is one of the

https://datatracker.ietf.org/doc/html/rfc5461
https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires June 8, 2017 [Page 37]

Internet-Draft TAPS Transports December 2016

 initial proposed schemes for TCP as well as TCP Cubic
 [I-D.ietf-tcpm-cubic] which is the default mechanism for TCP in Linux
 are two examples for window-based AIMD schemes. This approach is
 also used by DCCP CCID-2 for datagram congestion control.

 Some classes of applications prefer to use a transport service that
 allows sending at a more stable rate, that is slowly varied in
 response to congestion. Rate-based methods offer this type of
 congestion control and have been defined based on the loss ratio and
 observed round trip time, such as TFRC [RFC5348] and TFRC-SP
 [RFC4828]. These methods utilize a throughput equation to determine
 the maximum acceptable rate. Such methods are used with DCCP CCID-3
 [RFC4342] and CCID-4 [RFC5622], WEBRC [RFC3738], and other
 applications.

 Another class of applications prefer a transport service that yields
 to other (higher-priority) traffic, such as interactive
 transmissions. While most traffic in the Internet uses loss-based
 congestion control and therefore tends to fill the network buffers
 (to a certain level if Active Queue Management (AQM) is used), low-
 priority congestion control methods often react to changes in delay
 as an earlier indication of congestion. This approach tends to
 induce less loss than a loss-based method but does generally not
 compete well with loss-based traffic across shared bottleneck links.
 Therefore, methods such as LEDBAT [RFC6824], are deployed in the
 Internet for scavenger traffic that aim to only utilize otherwise
 unused capacity.

5. Transport Features

 The transport protocol features described in this document can be
 used as a basis for defining common transport features, listed below
 with the protocols supporting them:

 o Control Functions

 * Addressing

 + unicast (TCP, MPTCP, UDP, UDP-Lite, SCTP, DCCP, TLS, RTP,
 HTTP, ICMP)

 + multicast (UDP, UDP-Lite, RTP, ICMP, FLUTE/ALC, NORM). Note
 that, as TLS and DTLS are unicast-only, there is no widely
 deployed mechanism for supporting the features in the
 Security section below when using multicast addressing.

 + IPv4 broadcast (UDP, UDP-Lite, ICMP)

https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc5622
https://datatracker.ietf.org/doc/html/rfc3738
https://datatracker.ietf.org/doc/html/rfc6824

Fairhurst, et al. Expires June 8, 2017 [Page 38]

Internet-Draft TAPS Transports December 2016

 + anycast (UDP, UDP-Lite). Connection-oriented protocols such
 as TCP and DCCP have also been deployed using anycast
 addressing, with the risk that routing changes may cause
 connection failure.

 * Association type

 + connection-oriented (TCP, MPTCP, DCCP, SCTP, TLS, RTP, HTTP,
 NORM)

 + connectionless (UDP, UDP-Lite, FLUTE/ALC)

 * Multihoming support

 + resilience and mobility (MPTCP, SCTP)

 + load-balancing (MPTCP)

 + address family multiplexing (MPTCP, SCTP)

 * Middlebox cooperation

 + application-class signaling to middleboxes (DCCP)

 + error condition signaling from middleboxes and routers to
 endpoints (ICMP)

 * Signaling

 + control information and error signaling (ICMP)

 + application performance reporting (RTP)

 o Delivery

 * Reliability

 + fully reliable delivery (TCP, MPTCP, SCTP, TLS, HTTP, FLUTE/
 ALC, NORM)

 + partially reliable delivery (SCTP, NORM)

 - using packet erasure coding (RTP, FLUTE/ALC, NORM)

 - with specified policy for dropped messages (SCTP)

 + unreliable delivery (SCTP, UDP, UDP-Lite, DCCP, RTP)

Fairhurst, et al. Expires June 8, 2017 [Page 39]

Internet-Draft TAPS Transports December 2016

 - with drop notification to sender (SCTP, DCCP, RTP)

 + error detection

 - checksum for error detection (TCP, MPTCP, UDP, UDP-Lite,
 SCTP, DCCP, TLS, DTLS, FLUTE/ALC, NORM, ICMP)

 - partial payload checksum protection (UDP-Lite, DCCP).
 Some uses of RTP can exploit partial payload checksum
 protection feature to provide a corruption tolerant
 transport service.

 - checksum optional (UDP). Possible with IPv4 and in
 certain cases with IPv6.

 * Ordering

 + ordered delivery (TCP, MPTCP, SCTP, TLS, RTP, HTTP, FLUTE)

 + unordered delivery permitted (UDP, UDP-Lite, SCTP, DCCP,
 RTP, NORM)

 * Type/framing

 + stream-oriented delivery (TCP, MPTCP, SCTP, TLS, HTTP)

 - with multiple streams per association (SCTP, HTTP2)

 + message-oriented delivery (UDP, UDP-Lite, SCTP, DCCP, DTLS,
 RTP)

 + object-oriented delivery of discrete data or files and
 associated metadata (HTTP, FLUTE/ALC, NORM)

 - with partial delivery of object ranges (HTTP)

 * Directionality

 + unidirectional (UDP, UDP-Lite, DCCP, RTP, FLUTE/ALC, NORM)

 + bidirectional (TCP, MPTCP, SCTP, TLS, HTTP)

 o Transmission control

 * flow control (TCP, MPTCP, SCTP, DCCP, TLS, RTP, HTTP)

Fairhurst, et al. Expires June 8, 2017 [Page 40]

Internet-Draft TAPS Transports December 2016

 * congestion control (TCP, MPTCP, SCTP, DCCP, RTP, FLUTE/ALC,
 NORM). Congestion control can also provided by the transport
 supporting an upper later transport (e.g., TLS, RTP, HTTP).

 * segmentation (TCP, MPTCP, SCTP, TLS, RTP, HTTP, FLUTE/ALC,
 NORM)

 * data/message bundling (TCP, MPTCP, SCTP, TLS, HTTP)

 * stream scheduling prioritization (SCTP, HTTP2)

 * endpoint multiplexing (MPTCP)

 o Security

 * authentication of one end of a connection (TLS, DTLS, FLUTE/
 ALC)

 * authentication of both ends of a connection (TLS, DTLS)

 * confidentiality (TLS, DTLS)

 * cryptographic integrity protection (TLS, DTLS)

 * replay protection (TLS, DTLS, FLUTE/ALC)

6. IANA Considerations

 This document has no considerations for IANA.

7. Security Considerations

 This document surveys existing transport protocols and protocols
 providing transport-like services. Confidentiality, integrity, and
 authenticity are among the features provided by those services. This
 document does not specify any new features or mechanisms for
 providing these features. Each RFC referenced by this document
 discusses the security considerations of the specification it
 contains.

8. Contributors

 In addition to the editors, this document is the work of Brian
 Adamson, Dragana Damjanovic, Kevin Fall, Simone Ferlin-Oliviera,
 Ralph Holz, Olivier Mehani, Karen Nielsen, Colin Perkins, Vincent
 Roca, and Michael Tuexen.

Fairhurst, et al. Expires June 8, 2017 [Page 41]

Internet-Draft TAPS Transports December 2016

 o Section 3.2 on MPTCP was contributed by Simone Ferlin-Oliviera
 (ferlin@simula.no) and Olivier Mehani
 (olivier.mehani@nicta.com.au)

 o Section 3.3 on UDP was contributed by Kevin Fall (kfall@kfall.com)

 o Section 3.5 on SCTP was contributed by Michael Tuexen (tuexen@fh-
 muenster.de) and Karen Nielsen (karen.nielsen@tieto.com)

 o Section 3.7 on TLS and DTLS was contributed by Ralph Holz
 (ralph.holz@nicta.com.au) and Olivier Mehani
 (olivier.mehani@nicta.com.au)

 o Section 3.8 on RTP contains contributions from Colin Perkins
 (csp@csperkins.org)

 o Section 3.9 on HTTP was contributed by Dragana Damjanovic
 (ddamjanovic@mozilla.com)

 o Section 3.10 on FLUTE/ALC was contributed by Vincent Roca
 (vincent.roca@inria.fr)

 o Section 3.11 on NORM was contributed by Brian Adamson
 (brian.adamson@nrl.navy.mil)

9. Acknowledgments

 Thanks to Joe Touch, Michael Welzl, Spencer Dawkins, and the TAPS
 Working Group for the comments, feedback, and discussion. This work
 is supported by the European Commission under grant agreement No.
 318627 mPlane and from the Horizon 2020 research and innovation
 program under grant agreements No. 644334 (NEAT) and No. 688421
 (MAMI). This support does not imply endorsement.

10. Informative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <http://www.rfc-editor.org/info/rfc792>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

https://datatracker.ietf.org/doc/html/rfc768
http://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc792
http://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793

Fairhurst, et al. Expires June 8, 2017 [Page 42]

Internet-Draft TAPS Transports December 2016

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, DOI 10.17487/RFC0896, January 1984,

 <http://www.rfc-editor.org/info/rfc896>.

 [RFC1071] Braden, R., Borman, D., and C. Partridge, "Computing the
 Internet checksum", RFC 1071, DOI 10.17487/RFC1071,
 September 1988, <http://www.rfc-editor.org/info/rfc1071>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <http://www.rfc-editor.org/info/rfc1981>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <http://www.rfc-editor.org/info/rfc2018>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461,
 DOI 10.17487/RFC2461, December 1998,
 <http://www.rfc-editor.org/info/rfc2461>.

https://datatracker.ietf.org/doc/html/rfc896
http://www.rfc-editor.org/info/rfc896
https://datatracker.ietf.org/doc/html/rfc1071
http://www.rfc-editor.org/info/rfc1071
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
http://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
http://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
http://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2018
http://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/rfc2460
http://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc2461
http://www.rfc-editor.org/info/rfc2461

Fairhurst, et al. Expires June 8, 2017 [Page 43]

Internet-Draft TAPS Transports December 2016

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <http://www.rfc-editor.org/info/rfc2617>.

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710,
 DOI 10.17487/RFC2710, October 1999,
 <http://www.rfc-editor.org/info/rfc2710>.

 [RFC2736] Handley, M. and C. Perkins, "Guidelines for Writers of RTP
 Payload Format Specifications", BCP 36, RFC 2736,
 DOI 10.17487/RFC2736, December 1999,
 <http://www.rfc-editor.org/info/rfc2736>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3205] Moore, K., "On the use of HTTP as a Substrate", BCP 56,
RFC 3205, DOI 10.17487/RFC3205, February 2002,

 <http://www.rfc-editor.org/info/rfc3205>.

 [RFC3260] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, DOI 10.17487/RFC3260, April 2002,
 <http://www.rfc-editor.org/info/rfc3260>.

 [RFC3436] Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
 Layer Security over Stream Control Transmission Protocol",

RFC 3436, DOI 10.17487/RFC3436, December 2002,
 <http://www.rfc-editor.org/info/rfc3436>.

 [RFC3450] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., and J.
 Crowcroft, "Asynchronous Layered Coding (ALC) Protocol
 Instantiation", RFC 3450, DOI 10.17487/RFC3450, December
 2002, <http://www.rfc-editor.org/info/rfc3450>.

 [RFC3452] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
 M., and J. Crowcroft, "Forward Error Correction (FEC)
 Building Block", RFC 3452, DOI 10.17487/RFC3452, December
 2002, <http://www.rfc-editor.org/info/rfc3452>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

https://datatracker.ietf.org/doc/html/rfc2617
http://www.rfc-editor.org/info/rfc2617
https://datatracker.ietf.org/doc/html/rfc2710
http://www.rfc-editor.org/info/rfc2710
https://datatracker.ietf.org/doc/html/bcp36
https://datatracker.ietf.org/doc/html/rfc2736
http://www.rfc-editor.org/info/rfc2736
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/bcp56
https://datatracker.ietf.org/doc/html/rfc3205
http://www.rfc-editor.org/info/rfc3205
https://datatracker.ietf.org/doc/html/rfc3260
http://www.rfc-editor.org/info/rfc3260
https://datatracker.ietf.org/doc/html/rfc3436
http://www.rfc-editor.org/info/rfc3436
https://datatracker.ietf.org/doc/html/rfc3450
http://www.rfc-editor.org/info/rfc3450
https://datatracker.ietf.org/doc/html/rfc3452
http://www.rfc-editor.org/info/rfc3452
https://datatracker.ietf.org/doc/html/rfc3550
http://www.rfc-editor.org/info/rfc3550

Fairhurst, et al. Expires June 8, 2017 [Page 44]

Internet-Draft TAPS Transports December 2016

 [RFC3738] Luby, M. and V. Goyal, "Wave and Equation Based Rate
 Control (WEBRC) Building Block", RFC 3738,
 DOI 10.17487/RFC3738, April 2004,
 <http://www.rfc-editor.org/info/rfc3738>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <http://www.rfc-editor.org/info/rfc3758>.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828, July
 2004, <http://www.rfc-editor.org/info/rfc3828>.

 [RFC3926] Paila, T., Luby, M., Lehtonen, R., Roca, V., and R. Walsh,
 "FLUTE - File Delivery over Unidirectional Transport",

RFC 3926, DOI 10.17487/RFC3926, October 2004,
 <http://www.rfc-editor.org/info/rfc3926>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <http://www.rfc-editor.org/info/rfc3971>.

 [RFC4324] Royer, D., Babics, G., and S. Mansour, "Calendar Access
 Protocol (CAP)", RFC 4324, DOI 10.17487/RFC4324, December
 2005, <http://www.rfc-editor.org/info/rfc4324>.

 [RFC4336] Floyd, S., Handley, M., and E. Kohler, "Problem Statement
 for the Datagram Congestion Control Protocol (DCCP)",

RFC 4336, DOI 10.17487/RFC4336, March 2006,
 <http://www.rfc-editor.org/info/rfc4336>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <http://www.rfc-editor.org/info/rfc4340>.

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
 Control Protocol (DCCP) Congestion Control ID 2: TCP-like
 Congestion Control", RFC 4341, DOI 10.17487/RFC4341, March
 2006, <http://www.rfc-editor.org/info/rfc4341>.

https://datatracker.ietf.org/doc/html/rfc3738
http://www.rfc-editor.org/info/rfc3738
https://datatracker.ietf.org/doc/html/rfc3758
http://www.rfc-editor.org/info/rfc3758
https://datatracker.ietf.org/doc/html/rfc3828
http://www.rfc-editor.org/info/rfc3828
https://datatracker.ietf.org/doc/html/rfc3926
http://www.rfc-editor.org/info/rfc3926
https://datatracker.ietf.org/doc/html/rfc3971
http://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc4324
http://www.rfc-editor.org/info/rfc4324
https://datatracker.ietf.org/doc/html/rfc4336
http://www.rfc-editor.org/info/rfc4336
https://datatracker.ietf.org/doc/html/rfc4340
http://www.rfc-editor.org/info/rfc4340
https://datatracker.ietf.org/doc/html/rfc4341
http://www.rfc-editor.org/info/rfc4341

Fairhurst, et al. Expires June 8, 2017 [Page 45]

Internet-Draft TAPS Transports December 2016

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
 Datagram Congestion Control Protocol (DCCP) Congestion
 Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC 4342,
 DOI 10.17487/RFC4342, March 2006,
 <http://www.rfc-editor.org/info/rfc4342>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 4443,
 DOI 10.17487/RFC4443, March 2006,
 <http://www.rfc-editor.org/info/rfc4443>.

 [RFC4654] Widmer, J. and M. Handley, "TCP-Friendly Multicast
 Congestion Control (TFMCC): Protocol Specification",

RFC 4654, DOI 10.17487/RFC4654, August 2006,
 <http://www.rfc-editor.org/info/rfc4654>.

 [RFC4820] Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and
 Parameter for the Stream Control Transmission Protocol
 (SCTP)", RFC 4820, DOI 10.17487/RFC4820, March 2007,
 <http://www.rfc-editor.org/info/rfc4820>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC4828] Floyd, S. and E. Kohler, "TCP Friendly Rate Control
 (TFRC): The Small-Packet (SP) Variant", RFC 4828,
 DOI 10.17487/RFC4828, April 2007,
 <http://www.rfc-editor.org/info/rfc4828>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <http://www.rfc-editor.org/info/rfc4895>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061,
 DOI 10.17487/RFC5061, September 2007,
 <http://www.rfc-editor.org/info/rfc5061>.

https://datatracker.ietf.org/doc/html/rfc4342
http://www.rfc-editor.org/info/rfc4342
https://datatracker.ietf.org/doc/html/rfc4443
http://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4654
http://www.rfc-editor.org/info/rfc4654
https://datatracker.ietf.org/doc/html/rfc4820
http://www.rfc-editor.org/info/rfc4820
https://datatracker.ietf.org/doc/html/rfc4821
http://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc4828
http://www.rfc-editor.org/info/rfc4828
https://datatracker.ietf.org/doc/html/rfc4895
http://www.rfc-editor.org/info/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5061
http://www.rfc-editor.org/info/rfc5061

Fairhurst, et al. Expires June 8, 2017 [Page 46]

Internet-Draft TAPS Transports December 2016

 [RFC5097] Renker, G. and G. Fairhurst, "MIB for the UDP-Lite
 protocol", RFC 5097, DOI 10.17487/RFC5097, January 2008,
 <http://www.rfc-editor.org/info/rfc5097>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5238] Phelan, T., "Datagram Transport Layer Security (DTLS) over
 the Datagram Congestion Control Protocol (DCCP)",

RFC 5238, DOI 10.17487/RFC5238, May 2008,
 <http://www.rfc-editor.org/info/rfc5238>.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, DOI 10.17487/RFC5348, September 2008,
 <http://www.rfc-editor.org/info/rfc5348>.

 [RFC5461] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461,
 DOI 10.17487/RFC5461, February 2009,
 <http://www.rfc-editor.org/info/rfc5461>.

 [RFC5595] Fairhurst, G., "The Datagram Congestion Control Protocol
 (DCCP) Service Codes", RFC 5595, DOI 10.17487/RFC5595,
 September 2009, <http://www.rfc-editor.org/info/rfc5595>.

 [RFC5596] Fairhurst, G., "Datagram Congestion Control Protocol
 (DCCP) Simultaneous-Open Technique to Facilitate NAT/
 Middlebox Traversal", RFC 5596, DOI 10.17487/RFC5596,
 September 2009, <http://www.rfc-editor.org/info/rfc5596>.

 [RFC5622] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
 Control Protocol (DCCP) Congestion ID 4: TCP-Friendly Rate
 Control for Small Packets (TFRC-SP)", RFC 5622,
 DOI 10.17487/RFC5622, August 2009,
 <http://www.rfc-editor.org/info/rfc5622>.

 [RFC5651] Luby, M., Watson, M., and L. Vicisano, "Layered Coding
 Transport (LCT) Building Block", RFC 5651,
 DOI 10.17487/RFC5651, October 2009,
 <http://www.rfc-editor.org/info/rfc5651>.

 [RFC5672] Crocker, D., Ed., "RFC 4871 DomainKeys Identified Mail
 (DKIM) Signatures -- Update", RFC 5672,
 DOI 10.17487/RFC5672, August 2009,
 <http://www.rfc-editor.org/info/rfc5672>.

https://datatracker.ietf.org/doc/html/rfc5097
http://www.rfc-editor.org/info/rfc5097
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5238
http://www.rfc-editor.org/info/rfc5238
https://datatracker.ietf.org/doc/html/rfc5348
http://www.rfc-editor.org/info/rfc5348
https://datatracker.ietf.org/doc/html/rfc5461
http://www.rfc-editor.org/info/rfc5461
https://datatracker.ietf.org/doc/html/rfc5595
http://www.rfc-editor.org/info/rfc5595
https://datatracker.ietf.org/doc/html/rfc5596
http://www.rfc-editor.org/info/rfc5596
https://datatracker.ietf.org/doc/html/rfc5622
http://www.rfc-editor.org/info/rfc5622
https://datatracker.ietf.org/doc/html/rfc5651
http://www.rfc-editor.org/info/rfc5651
https://datatracker.ietf.org/doc/html/rfc4871
https://datatracker.ietf.org/doc/html/rfc5672
http://www.rfc-editor.org/info/rfc5672

Fairhurst, et al. Expires June 8, 2017 [Page 47]

Internet-Draft TAPS Transports December 2016

 [RFC5740] Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, DOI 10.17487/RFC5740, November 2009,
 <http://www.rfc-editor.org/info/rfc5740>.

 [RFC5775] Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 DOI 10.17487/RFC5775, April 2010,
 <http://www.rfc-editor.org/info/rfc5775>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056,
 DOI 10.17487/RFC6056, January 2011,
 <http://www.rfc-editor.org/info/rfc6056>.

 [RFC6083] Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
 Transport Layer Security (DTLS) for Stream Control
 Transmission Protocol (SCTP)", RFC 6083,
 DOI 10.17487/RFC6083, January 2011,
 <http://www.rfc-editor.org/info/rfc6083>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <http://www.rfc-editor.org/info/rfc6093>.

 [RFC6101] Freier, A., Karlton, P., and P. Kocher, "The Secure
 Sockets Layer (SSL) Protocol Version 3.0", RFC 6101,
 DOI 10.17487/RFC6101, August 2011,
 <http://www.rfc-editor.org/info/rfc6101>.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration",

RFC 6525, DOI 10.17487/RFC6525, February 2012,
 <http://www.rfc-editor.org/info/rfc6525>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",

RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

https://datatracker.ietf.org/doc/html/rfc5740
http://www.rfc-editor.org/info/rfc5740
https://datatracker.ietf.org/doc/html/rfc5775
http://www.rfc-editor.org/info/rfc5775
https://datatracker.ietf.org/doc/html/rfc5681
http://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/bcp156
https://datatracker.ietf.org/doc/html/rfc6056
http://www.rfc-editor.org/info/rfc6056
https://datatracker.ietf.org/doc/html/rfc6083
http://www.rfc-editor.org/info/rfc6083
https://datatracker.ietf.org/doc/html/rfc6093
http://www.rfc-editor.org/info/rfc6093
https://datatracker.ietf.org/doc/html/rfc6101
http://www.rfc-editor.org/info/rfc6101
https://datatracker.ietf.org/doc/html/rfc6525
http://www.rfc-editor.org/info/rfc6525
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6356
http://www.rfc-editor.org/info/rfc6356

Fairhurst, et al. Expires June 8, 2017 [Page 48]

Internet-Draft TAPS Transports December 2016

 [RFC6363] Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363,
 DOI 10.17487/RFC6363, October 2011,
 <http://www.rfc-editor.org/info/rfc6363>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458,
 DOI 10.17487/RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm",

RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <http://www.rfc-editor.org/info/rfc6582>.

 [RFC6584] Roca, V., "Simple Authentication Schemes for the
 Asynchronous Layered Coding (ALC) and NACK-Oriented
 Reliable Multicast (NORM) Protocols", RFC 6584,
 DOI 10.17487/RFC6584, April 2012,
 <http://www.rfc-editor.org/info/rfc6584>.

 [RFC6726] Paila, T., Walsh, R., Luby, M., Roca, V., and R. Lehtonen,
 "FLUTE - File Delivery over Unidirectional Transport",

RFC 6726, DOI 10.17487/RFC6726, November 2012,
 <http://www.rfc-editor.org/info/rfc6726>.

 [RFC6773] Phelan, T., Fairhurst, G., and C. Perkins, "DCCP-UDP: A
 Datagram Congestion Control Protocol UDP Encapsulation for
 NAT Traversal", RFC 6773, DOI 10.17487/RFC6773, November
 2012, <http://www.rfc-editor.org/info/rfc6773>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <http://www.rfc-editor.org/info/rfc6817>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <http://www.rfc-editor.org/info/rfc6897>.

https://datatracker.ietf.org/doc/html/rfc6363
http://www.rfc-editor.org/info/rfc6363
https://datatracker.ietf.org/doc/html/rfc6458
http://www.rfc-editor.org/info/rfc6458
https://datatracker.ietf.org/doc/html/rfc6582
http://www.rfc-editor.org/info/rfc6582
https://datatracker.ietf.org/doc/html/rfc6584
http://www.rfc-editor.org/info/rfc6584
https://datatracker.ietf.org/doc/html/rfc6726
http://www.rfc-editor.org/info/rfc6726
https://datatracker.ietf.org/doc/html/rfc6773
http://www.rfc-editor.org/info/rfc6773
https://datatracker.ietf.org/doc/html/rfc6817
http://www.rfc-editor.org/info/rfc6817
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
http://www.rfc-editor.org/info/rfc6897

Fairhurst, et al. Expires June 8, 2017 [Page 49]

Internet-Draft TAPS Transports December 2016

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935,
 DOI 10.17487/RFC6935, April 2013,
 <http://www.rfc-editor.org/info/rfc6935>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <http://www.rfc-editor.org/info/rfc6936>.

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951,
 DOI 10.17487/RFC6951, May 2013,
 <http://www.rfc-editor.org/info/rfc6951>.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
 <http://www.rfc-editor.org/info/rfc7053>.

 [RFC7202] Perkins, C. and M. Westerlund, "Securing the RTP
 Framework: Why RTP Does Not Mandate a Single Media
 Security Solution", RFC 7202, DOI 10.17487/RFC7202, April
 2014, <http://www.rfc-editor.org/info/rfc7202>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <http://www.rfc-editor.org/info/rfc7233>.

https://datatracker.ietf.org/doc/html/rfc6935
http://www.rfc-editor.org/info/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
http://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/rfc6951
http://www.rfc-editor.org/info/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
http://www.rfc-editor.org/info/rfc7053
https://datatracker.ietf.org/doc/html/rfc7202
http://www.rfc-editor.org/info/rfc7202
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
http://www.rfc-editor.org/info/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
http://www.rfc-editor.org/info/rfc7233

Fairhurst, et al. Expires June 8, 2017 [Page 50]

Internet-Draft TAPS Transports December 2016

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <http://www.rfc-editor.org/info/rfc7323>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <http://www.rfc-editor.org/info/rfc7414>.

 [RFC7457] Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
 February 2015, <http://www.rfc-editor.org/info/rfc7457>.

 [RFC7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partially Reliable Stream
 Control Transmission Protocol Extension", RFC 7496,
 DOI 10.17487/RFC7496, April 2015,
 <http://www.rfc-editor.org/info/rfc7496>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

https://datatracker.ietf.org/doc/html/rfc7234
http://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7323
http://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc7414
http://www.rfc-editor.org/info/rfc7414
https://datatracker.ietf.org/doc/html/rfc7457
http://www.rfc-editor.org/info/rfc7457
https://datatracker.ietf.org/doc/html/rfc7496
http://www.rfc-editor.org/info/rfc7496
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540

Fairhurst, et al. Expires June 8, 2017 [Page 51]

Internet-Draft TAPS Transports December 2016

 [I-D.ietf-tsvwg-rfc5405bis]
 Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", draft-ietf-tsvwg-rfc5405bis-16 (work in
 progress), July 2016.

 [I-D.ietf-tsvwg-sctp-dtls-encaps]
 Tuexen, M., Stewart, R., Jesup, R., and S. Loreto, "DTLS
 Encapsulation of SCTP Packets", draft-ietf-tsvwg-sctp-

dtls-encaps-09 (work in progress), January 2015.

 [I-D.ietf-tsvwg-sctp-ndata]
 Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", draft-ietf-tsvwg-

sctp-ndata-07 (work in progress), July 2016.

 [I-D.ietf-tsvwg-natsupp]
 Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control
 Transmission Protocol (SCTP) Network Address Translation
 Support", draft-ietf-tsvwg-natsupp-09 (work in progress),
 May 2016.

 [I-D.ietf-tcpm-cubic]
 Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

draft-ietf-tcpm-cubic-02 (work in progress), August 2016.

 [I-D.ietf-rtcweb-transports]
 Alvestrand, H., "Transports for WebRTC", draft-ietf-

rtcweb-transports-15 (work in progress), August 2016.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-14 (work in progress),
 July 2016.

 [XHR] van Kesteren, A., Aubourg, J., Song, J., and H. Steen,
 "XMLHttpRequest working draft
 (http://www.w3.org/TR/XMLHttpRequest/)", 2000.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures, Ph. D. (UC Irvine),
 Chapter 5: Representational State Transfer", 2000.

 [POSIX] 1-2008, IEEE., "IEEE Standard for Information Technology
 -- Portable Operating System Interface (POSIX) Base
 Specifications, Issue 7", n.d..

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc5405bis-16
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-dtls-encaps-09
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-dtls-encaps-09
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-07
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-07
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-natsupp-09
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-02
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-transports-15
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-transports-15
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-14
http://www.w3.org/TR/XMLHttpRequest/

Fairhurst, et al. Expires June 8, 2017 [Page 52]

Internet-Draft TAPS Transports December 2016

 [MBMS] 3GPP TSG WS S4, ., "3GPP TS 26.346: Multimedia Broadcast/
 Multicast Service (MBMS); Protocols and codecs, release 13
 (http://www.3gpp.org/DynaReport/26346.htm).", 2015.

 [ClarkArch]
 Clark, D. and D. Tennenhouse, "Architectural
 Considerations for a New Generation of Protocols (Proc.
 ACM SIGCOMM)", 1990.

Authors' Addresses

 Godred Fairhurst (editor)
 University of Aberdeen
 School of Engineering, Fraser Noble Building
 Aberdeen AB24 3UE

 Email: gorry@erg.abdn.ac.uk

 Brian Trammell (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Mirja Kuehlewind (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

http://www.3gpp.org/DynaReport/26346.htm

Fairhurst, et al. Expires June 8, 2017 [Page 53]

