
TAPS M. Welzl
Internet-Draft University of Oslo
Intended status: Informational M. Tuexen
Expires: July 11, 2016 Muenster Univ. of Appl. Sciences
 N. Khademi
 University of Oslo
 January 8, 2016

On the Usage of Transport Service Features Provided by IETF Transport
Protocols

draft-ietf-taps-transports-usage-00

Abstract

 This document describes how transport protocols expose services to
 applications and how an application can configure and use the
 features of a transport service.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 11, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Welzl, et al. Expires July 11, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Transport Services January 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Terminology . 3
2. Introduction . 3
3. Pass 1 . 4
3.1. Primitives Provided by TCP 5
3.1.1. Excluded Primitives 7

3.2. Primitives Provided by SCTP 8
3.2.1. Excluded Primitives 11

4. Pass 2 . 11
4.1. CONNECTION Related Primitives 12
4.2. DATA Transfer Related Primitives 16

5. Pass 3 . 17
5.1. CONNECTION Related Transport Service Features 18
5.2. DATA Transfer Related Transport Service Features 20
5.2.1. Sending Data . 20
5.2.2. Receiving Data . 21
5.2.3. Errors . 22

6. Acknowledgements . 22
7. IANA Considerations . 22
8. Security Considerations 22
9. References . 22
9.1. Normative References 22
9.2. Informative References 23

Appendix A. Overview of RFCs used as input for pass 1 24
Appendix B. How to contribute 24
Appendix C. Revision information 26

 Authors' Addresses . 26

Welzl, et al. Expires July 11, 2016 [Page 2]

Internet-Draft Transport Services January 2016

1. Terminology

 Transport Service Feature: a specific end-to-end feature that a
 transport service provides to its clients. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.
 Transport Service: a set of transport service features, without an
 association to any given framing protocol, which provides a
 complete service to an application.
 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.
 Transport Protocol Component: an implementation of a transport
 service feature within a protocol.
 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g., a protocol stack (RTP
 over UDP).
 Application: an entity that uses the transport layer for end-to-end
 delivery of data across the network (this may also be an upper
 layer protocol or tunnel encapsulation).
 Endpoint: an entity that communicates with one or more other
 endpoints using a transport protocol.
 Connection: shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints.
 Primitive: a function call that is used to locally communicate
 between an application and a transport endpoint and is related to
 one or more Transport Service Features.
 Parameter: a value passed between an application and a transport
 protocol by a primitive.
 Socket: the combination of a destination IP address and a
 destination port number.

2. Introduction

 This document presents defined interactions between transport
 protocols and applications in the form of 'primitives' (function
 calls). Primitives can be invoked by an application or a transport
 protocol; the latter type is called an "event". The list of
 transport service features and primitives in this document is
 strictly based on the parts of protocol specifications that relate to
 what the protocol provides to an application using it and how the
 application interacts with it. It does not cover parts of a protocol
 that are explicitly stated as optional to implement.

 The document presents a three-pass process to arrive at a list of
 transport service features. In the first pass, the relevant RFC text

Welzl, et al. Expires July 11, 2016 [Page 3]

Internet-Draft Transport Services January 2016

 is discussed per protocol. In the second pass, this discussion is
 used to derive a list of primitives that are uniformly categorized
 across protocols. Here, an attempt is made to present or -- where
 text describing primitives does not yet exist -- construct primitives
 in a slightly generalized form to highlight similarities. This is,
 for example, achieved by renaming primitives of protocols or by
 avoiding a strict 1:1-mapping between the primitives in the protocol
 specification and primitives in the list. Finally, the third pass
 presents transport service features based on pass 2, identifying
 which protocols implement them.

 In the list resulting from the second pass, some transport service
 features are missing because they are implicit in some protocols, and
 they only become explicit when we consider the superset of all
 features offered by all protocols. For example, TCP's reliability
 includes integrity via a checksum, but we have to include a protocol
 like UDP-Lite as specified in [RFC3828] (which has a configurable
 checksum) in the list before we can consider an always-on checksum as
 a transport service feature. Similar arguments apply to other
 protocol functions (e.g. congestion control). The complete list of
 features across all protocols is therefore only available after pass
 3.

 This document discusses unicast transport protocols. [AUTHOR'S NOTE:
 we skip "congestion control mechanisms" for now. This simplifies the
 discussion; the congestion control mechanisms part is about LEDBAT,
 which should be easy to add later.] Transport protocols provide
 communication between processes that operate on network endpoints,
 which means that they allow for multiplexing of communication between
 the same IP addresses, and normally this multiplexing is achieved
 using port numbers. Port multiplexing is therefore assumed to be
 always provided and not discussed in this document.

 Some protocols are connection-oriented. Connection-oriented
 protocols often use an initial call to a specific transport primitive
 to open a connection before communication can progress, and require
 communication to be explicitly terminated by issuing another call to
 a transport primitive (usually called "close"). A "connection" is
 the common state that some transport primitives refer to, e.g., to
 adjust general configuration settings. Connection establishment,
 maintenance and termination are therefore used to categorize
 transport primitives of connection-oriented transport protocols in
 pass 2 and pass 3.

3. Pass 1

 This first iteration summarizes the relevant text parts of the RFCs

https://datatracker.ietf.org/doc/html/rfc3828

Welzl, et al. Expires July 11, 2016 [Page 4]

Internet-Draft Transport Services January 2016

 describing the protocols, focusing on what each transport protocol
 provides to the application and how it is used (abstract API
 descriptions, where they are available).

3.1. Primitives Provided by TCP

 [RFC0793] states: "The Transmission Control Protocol (TCP) is
 intended for use as a highly reliable host-to-host protocol between
 hosts in packet-switched computer communication networks, and in
 interconnected systems of such networks". Section 3.8 in [RFC0793]
 further specifies the interaction with the application by listing
 several transport primitives. It is also assumed that an Operating
 System provides a means for TCP to asynchronously signal the
 application; the primitives representing such signals are called
 'events' in this section. This section describes the relevant
 primitives.

 open: this is either active or passive, to initiate a connection or
 listen for incoming connections. All other primitives are
 associated with a specific connection, which is assumed to first
 have been opened. An active open call contains a socket. A
 passive open call with a socket waits for a particular connection;
 alternatively, a passive open call can leave the socket
 unspecified to accept any incoming connection. A fully specified
 passive call can later be made active by calling 'send'.
 Optionally, a timeout can be specified, after which TCP will abort
 the connection if data has not been successfully delivered to the
 destination (else a default timeout value is used). [RFC1122]
 describes a procedure for aborting the connection that must be
 used to avoid excessive retransmissions, and states that an
 application must be able to control the threshold used to
 determine the condition for aborting -- and that this threshold
 may be measured in time units or as a count of retransmission.
 This indicates that the timeout could also be specified as a count
 of retransmission.

 Also optional, for multihomed hosts, the local IP address can be
 provided [RFC1122]. If it is not provided, a default choice will
 be made in case of active open calls. A passive open call will
 await incoming connection requests to all local addresses and then
 maintain usage of the local IP address where the incoming
 connection request has arrived. Finally, the 'options' parameter
 is explained in [RFC1122] to allow the application to specify IP
 options such as source route, record route, or timestamp. It is
 not stated on which segments of a connection these options should
 be applied, but probably all segments, as this is also stated in a
 specification given for the usage of source route (section 4.2.3.8
 of [RFC1122]). Source route is the only non-optional IP option in

https://datatracker.ietf.org/doc/html/rfc0793#section-3.8
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.8
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.8

Welzl, et al. Expires July 11, 2016 [Page 5]

Internet-Draft Transport Services January 2016

 this parameter, allowing an application to specify a source route
 when it actively opens a TCP connection.

 send: this is the primitive that an application uses to give the
 local TCP transport endpoint a number of bytes that TCP should
 reliably send to the other side of the connection. The URGENT
 flag, if set, states that the data handed over by this send call
 is urgent and this urgency should be indicated to the receiving
 process in case the receiving application has not yet consumed all
 non-urgent data preceding it. An optional timeout parameter can
 be provided that updates the connection's timeout (see 'open').

 receive: This primitive allocates a receiving buffer for a provided
 number of bytes. It returns the number of received bytes provided
 in the buffer when these bytes have been received and written into
 the buffer by TCP. The application is informed of urgent data via
 an URGENT flag: if it is on, there is urgent data. If it is off,
 there is no urgent data or this call to 'receive' has returned all
 the urgent data.

 close: This primitive closes one side of a connection. It is
 semantically equivalent to "I have no more data to send" but does
 not mean "I will not receive any more", as the other side may
 still have data to send. This call reliably delivers any data
 that has already been given to TCP (and if that fails, 'close'
 becomes 'abort').

 abort: This primitive causes all pending 'send' and 'receive' calls
 to be aborted. A TCP RESET message is sent to the TCP endpoint on
 the other side of the connection [RFC0793].

 close event: TCP uses this primitive to inform an application that
 the application on the other side has called the 'close'
 primitive, so the local application can also issue a 'close' and
 terminate the connection gracefully. See [RFC0793], Section 3.5.

 abort event: When TCP aborts a connection upon receiving a "Reset"
 from the peer, it "advises the user and goes to the CLOSED state."
 See [RFC0793], Section 3.4.

 USER TIMEOUT event: This event, described in Section 3.9 of
 [RFC0793], is executed when the user timeout expires (see 'open').
 All queues are flushed and the application is informed that the
 connection had to be aborted due to user timeout.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793#section-3.5
https://datatracker.ietf.org/doc/html/rfc0793#section-3.4
https://datatracker.ietf.org/doc/html/rfc0793#section-3.9
https://datatracker.ietf.org/doc/html/rfc0793#section-3.9

Welzl, et al. Expires July 11, 2016 [Page 6]

Internet-Draft Transport Services January 2016

 ERROR_REPORT event: This event, described in Section 4.2.4.1 of
 [RFC1122], informs the application of "soft errors" that can be
 safely ignored [RFC5461], including the arrival of an ICMP error
 message or excessive retransmissions (reaching a threshold below
 the threshold where the connection is aborted).

 Type-of-Service: Section 4.2.4.2 of [RFC1122] states that the
 application layer MUST be able to specify the Type-of-Service
 (TOS) for segments that are sent on a connection. The application
 should be able to change the TOS during the connection lifetime,
 and the TOS value should be passed to the IP layer unchanged.
 Since then the TOS field has been redefined. A part of the field
 has been assigned to ECN [RFC3168] and the six most significant
 bits have been assigned to carry the DiffServ CodePoint, DSField
 [RFC3260]. Staying with the intention behind the application's
 ability to specify the "Type of Service", this should probably be
 interpreted to mean the value in the DSField, which is the
 Differentiated Services Codepoint (DSCP).

 Nagle: The Nagle algorithm, described in Section 4.2.3.4 of
 [RFC1122], delays sending data for some time to increase the
 likelihood of sending a full-sized segment. An application can
 disable the Nagle algorithm for an individual connection.

 User Timeout Option: The User Timeout Option (UTO) [RFC5482] allows
 one end of a TCP connection to advertise its current user timeout
 value so that the other end of the TCP connection can adapt its
 own user timeout accordingly. In addition to the configurable
 value of the User Timeout (see 'send'), [RFC5482] introduces three
 per-connection state variables that an application can adjust to
 control the operation of the User Timeout Option (UTO): ADV_UTO is
 the value of the UTO advertised to the remote TCP peer (default:
 system-wide default user timeout); ENABLED (default false) is a
 boolean-type flag that controls whether the UTO option is enabled
 for a connection. This applies to both sending and receiving.
 CHANGEABLE is a boolean-type flag (default true) that controls
 whether the user timeout may be changed based on a UTO option
 received from the other end of the connection. CHANGEABLE becomes
 false when an application explicitly sets the user timeout (see
 'send').

3.1.1. Excluded Primitives

 The 'open' primitive specified in [RFC0793] can be handed optional
 Precedence or security/compartment information according to
 [RFC0793], but this was not included here because it is mostly
 irrelevant today, as explained in [RFC7414].

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc5461
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.2
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3260
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7414

Welzl, et al. Expires July 11, 2016 [Page 7]

Internet-Draft Transport Services January 2016

 The 'status' primitive was not included because [RFC0793] describes
 this primitive as "implementation dependent" and states that it
 "could be excluded without adverse effect". Moreover, while a data
 block containing specific information is described, it is also stated
 that not all of this information may always be available. The 'send'
 primitive described in [RFC0793] includes an optional PUSH flag
 which, if set, requires data to be promptly transmitted to the
 receiver without delay; the 'receive' primitive described in
 [RFC0793] can (under some conditions) yield the status of the PUSH
 flag. Because PUSH functionality is made optional to implement for
 both the 'send' and 'receive' primitives in [RFC1122], this
 functionality is not included here. [RFC1122] also introduces keep-
 alives to TCP, but these are optional to implement and hence not
 considered here. [RFC1122] describes that "some TCP implementations
 have included a FLUSH call", indicating that this call is also
 optional to implement. It is therefore not considered here.

3.2. Primitives Provided by SCTP

Section 1.1 of [RFC4960] lists limitations of TCP that SCTP removes.
 Three of the four mentioned limitations directly translate into a
 transport service features that are visible to an application using
 SCTP: 1) it allows for preservation of message delineations; 2) these
 messages, while reliably transferred, do not require to be in order
 unless the application wants it; 3) multi-homing is supported. In
 SCTP, connections are called "association" and they can be between
 not only two (as in TCP) but multiple addresses at each endpoint.

Section 10 of [RFC4960] further specifies the interaction with the
 application (which RFC [RFC4960] calls the "Upper Layer Protocol"
 (ULP)). It is assumed that the Operating System provides a means for
 SCTP to asynchronously signal the application; the primitives
 representing such signals are called 'events' in this section. Here,
 we describe the relevant primitives.

 Initialize: Initialize creates a local SCTP instance that it binds
 to a set of local addresses (and, if provided, port number).
 Initialize needs to be called only once per set of local
 addresses.

 Associate: This creates an association (the SCTP equivalent of a
 connection) between the local SCTP instance and a remote SCTP
 instance. Most primitives are associated with a specific
 association, which is assumed to first have been created.
 Associate can return a list of destination transport addresses so
 that multiple paths can later be used. One of the returned
 sockets will be selected by the local endpoint as default primary
 path for sending SCTP packets to this peer, but this choice can be

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc4960#section-1.1
https://datatracker.ietf.org/doc/html/rfc4960#section-10
https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires July 11, 2016 [Page 8]

Internet-Draft Transport Services January 2016

 changed by the application using the list of destination
 addresses. Associate is also given the number of outgoing streams
 to request and optionally returns the number of outgoing streams
 negotiated.

 Send: This sends a message of a certain length in bytes over an
 association. A number can be provided to later refer to the
 correct message when reporting an error, and a stream id is
 provided to specify the stream to be used inside an association
 (we consider this as a mandatory parameter here for simplicity: if
 not provided, the stream id defaults to 0). An optional maximum
 life time can specify the time after which the message should be
 discarded rather than sent. A choice (advisory, i.e. not
 guaranteed) of the preferred path can be made by providing a
 socket, and the message can be delivered out-of-order if the
 unordered flag is set. Another advisory flag indicates whether
 the application prefers to avoid bundling user data with other
 outbound DATA chunks (i.e., in the same packet). A payload
 protocol-id can be provided to pass a value that indicates the
 type of payload protocol data to the peer.

 Receive: Messages are received from an association, and optionally a
 stream within the association, with their size returned. The
 application is notified of the availability of data via a DATA
 ARRIVE notification. If the sender has included a payload
 protocol-id, this value is also returned. If the received message
 is only a partial delivery of a whole message, a partial flag will
 indicate so, in which case the stream id and a stream sequence
 number are provided to the application.

 Shutdown: This primitive gracefully closes an association, reliably
 delivering any data that has already been handed over to SCTP. A
 return code informs about success or failure of this procedure.

 Abort: This ungracefully closes an association, by discarding any
 locally queued data and informing the peer that the association
 was aborted. Optionally, an abort reason to be passed to the peer
 may be provided by the application. A return code informs about
 success or failure of this procedure.

 Change Heartbeat / Request Heartbeat: This allows the application to
 enable/disable heartbeats and optionally specify a heartbeat
 frequency as well as requesting a single heartbeat to be carried
 out upon a function call, with a notification about success or
 failure of transmitting the HEARTBEAT chunk to the destination.

Welzl, et al. Expires July 11, 2016 [Page 9]

Internet-Draft Transport Services January 2016

 Set Protocol Parameters: This allows to set values for protocol
 parameters per association; for some parameters, a setting can be
 made per socket. The set listed in [RFC4960] is: RTO.Initial;
 RTO.Min; RTO.Max; Max.Burst; RTO.Alpha; RTO.Beta;
 Valid.Cookie.Life; Association.Max.Retrans; Path.Max.Retrans;
 Max.Init.Retransmits; HB.interval; HB.Max.Burst.

 Set Primary: This allows to set a new primary default path for an
 association by providing a socket. Optionally, a default source
 address to be used in IP datagrams can be provided.

 Status: The 'Status' primitive returns a data block with information
 about a specified association, containing: association connection
 state; socket list; destination transport address reachability
 states; current receiver window size; current congestion window
 sizes; number of unacknowledged DATA chunks; number of DATA chunks
 pending receipt; primary path; most recent SRTT on primary path;
 RTO on primary path; SRTT and RTO on other destination addresses.

 COMMUNICATION UP notification: When a lost communication to an
 endpoint is restored or when SCTP becomes ready to send or receive
 user messages, this notification informs the application process
 about the affected association, the type of event that has
 occurred, the complete set of sockets of the peer, the maximum
 number of allowed streams and the inbound stream count (the number
 of streams the peer endpoint has requested).

 DATA ARRIVE notification: When a message is ready to be retrieved
 via the Receive primitive, the application is informed by this
 notification.

 SEND FAILURE notification / Receive Unsent Message / Receive
 Unacknowledged Message: When a message cannot be delivered via an
 association, the sender can be informed about it and learn whether
 the message has just not been acknowledged or (e.g. in case of
 lifetime expiry) if it has not even been sent.

 NETWORK STATUS CHANGE notification: The NETWORK STATUS CHANGE
 notification informs the application about a socket becoming
 active/inactive.

 COMMUNICATION LOST notification: When SCTP loses communication to an
 endpoint (e.g. via Heartbeats or excessive retransmission) or
 detects an abort, this notification informs the application
 process of the affected association and the type of event (failure
 OR termination in response to a shutdown or abort request).

https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires July 11, 2016 [Page 10]

Internet-Draft Transport Services January 2016

 SHUTDOWN COMPLETE notification: When SCTP completes the shutdown
 procedures, this notification is passed to the upper layer,
 informing it about the affected assocation.

3.2.1. Excluded Primitives

 The 'Receive' primitive can return certain additional information,
 but this is optional to implement and therefore not considered. With
 a COMMUNICATION LOST notification, some more information may
 optionally be passed to the application (e.g., identification to
 retrieve unsent and unacknowledged data). SCTP "can invoke" a
 COMMUNICATION ERROR notification and "may send" a RESTART
 notification, making these two notifications optional to implement.
 The list provided under 'Status' includes "etc", indicating that more
 information could be provided. The primitive 'Get SRTT Report'
 returns information that is included in the information that 'Status'
 provides and is therefore not discussed. Similarly, 'Set Failure
 Threshold' sets only one out of various possible parameters included
 in 'Set Protocol Parameters'. The 'Destroy SCTP Instance' API
 function was excluded: it erases the SCTP instance that was created
 by 'Initialize', but is not a Primitive as defined in this document
 because it does not relate to a Transport Service Feature.

4. Pass 2

 This pass categorizes the primitives from pass 1 based on whether
 they relate to a connection or to data transmission. Primitives are
 presented following the nomenclature:
 "CATEGORY.[SUBCATEGORY].PRIMITIVENAME.PROTOCOL". A connection is a
 general protocol-independent concept and refers to, e.g., TCP
 connections (identifiable by a unique pair of IP addresses and TCP
 port numbers) as well as SCTP associations (identifiable by multiple
 IP address and port number pairs).

 Some minor details are omitted for the sake of generalization --
 e.g., SCTP's 'close' [RFC4960] returns success or failure, whereas
 this is not described in the same way for TCP in [RFC0793], but this
 detail plays no significant role for the primitives provided by
 either TCP or SCTP.

 The TCP 'send' and 'receive' primitives include usage of an "URGENT"
 mechanism. This mechanism is required to implement the "synch
 signal" used by telnet [RFC0854], but SHOULD NOT be used by new
 applications [RFC6093]. Because pass 2 is meant as a basis for the
 creation of TAPS systems, the "URGENT" mechanism is excluded. This
 also concerns the notification "Urgent pointer advance" in the

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0854
https://datatracker.ietf.org/doc/html/rfc6093

Welzl, et al. Expires July 11, 2016 [Page 11]

Internet-Draft Transport Services January 2016

 ERROR_REPORT described in Section 4.2.4.1 of [RFC1122].

4.1. CONNECTION Related Primitives

 ESTABLISHMENT:
 Active creation of a connection from one transport endpoint to one or
 more transport endpoints.

 o CONNECT.TCP:
 Pass 1 primitive / event: 'open' (active) or 'open' (passive) with
 socket, followed by 'send'
 Parameters: 1 local IP address (optional); 1 destination transport
 address (for active open; else the socket and the local IP address
 of the succeeding incoming connection request will be maintained);
 timeout (optional); options (optional)
 Comments: If the local IP address is not provided, a default
 choice will automatically be made. The timeout can also be a
 retransmission count. The options are IP options to be used on
 all segments of the connection. At least the Source Route option
 is mandatory for TCP to provide.

 o CONNECT.SCTP:
 Pass 1 primitive / event: 'initialize', followed by 'associate'
 Parameters: list of local SCTP port number / IP address pairs
 (initialize); 1 socket; outbound stream count
 Returns: socket list
 Comments: 'initialize' needs to be called only once per list of
 local SCTP port number / IP address pairs. One socket will
 automatically be chosen; it can later be changed in MAINTENANCE.

 AVAILABILITY:
 Preparing to receive incoming connection requests.

 o LISTEN.TCP:
 Pass 1 primitive / event: 'open' (passive)
 Parameters: 1 local IP address (optional); 1 socket (optional);
 timeout (optional)
 Comments: if the socket and/or local IP address is provided, this
 waits for incoming connections from only and/or to only the
 provided address. Else this waits for incoming connections
 without this / these constraint(s). ESTABLISHMENT can later be
 performed with 'send'.

 o LISTEN.SCTP:
 Pass 1 primitive / event: 'initialize', followed by 'COMMUNICATION
 UP' notification
 Parameters: list of local SCTP port number / IP address pairs

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1

Welzl, et al. Expires July 11, 2016 [Page 12]

Internet-Draft Transport Services January 2016

 (initialize)
 Returns: socket list; outbound stream count; inbound stream count
 Comments: initialize needs to be called only once per list of
 local SCTP port number / IP address pairs. COMMUNICATION UP can
 also follow a COMMUNICATION LOST notification, indicating that the
 lost communication is restored.

 MAINTENANCE:
 Adjustments made to an open connection, or notifications about it.
 These are out-of-band messages to the protocol that can be issued at
 any time, at least after a connection has been established and before
 it has been terminated (with one exception: CHANGE-TIMEOUT.TCP can
 only be issued when DATA.SEND.TCP is called).

 o CHANGE-TIMEOUT.TCP:
 Pass 1 primitive / event: 'send' combined with unspecified control
 of per-connection state variables
 Parameters: timeout value (optional); ADV_UTO (optional); boolean
 UTO_ENABLED (optional, default false); boolean CHANGEABLE
 (optional, default true)
 Comments: when sending data, an application can adjust the
 connection's timeout value (time after which the connection will
 be aborted if data could not be delivered). If UTO_ENABLED is
 true, the user timeout value (or, if provided, the value ADV_UTO)
 will be advertised for the TCP on the other side of the connection
 to adapt its own user timeout accordingly. UTO_ENABLED controls
 whether the UTO option is enabled for a connection. This applies
 to both sending and receiving. CHANGEABLE controls whether the
 user timeout may be changed based on a UTO option received from
 the other end of the connection; it becomes false when 'timeout
 value' is used.

 o CHANGE-TIMEOUT.SCTP:
 Pass 1 primitive / event: 'Change HeartBeat' combined with 'Set
 Protocol Parameters'
 Parameters: 'Change HeartBeat': heartbeat frequency; 'Set Protocol
 Parameters': Association.Max.Retrans (whole association) or
 Path.Max.Retrans (per socket)
 Comments: Change Heartbeat can enable / disable heartbeats in SCTP
 as well as change their frequency. The parameter
 Association.Max.Retrans defines after how many unsuccessful
 heartbeats the connection will be terminated; thus these two
 primitives / parameters together can yield a similar behavior to
 CHANGE-TIMEOUT.TCP.

Welzl, et al. Expires July 11, 2016 [Page 13]

Internet-Draft Transport Services January 2016

 o DISABLE-NAGLE.TCP:
 Pass 1 primitive / event: not specified
 Parameters: one boolean value
 Comments: the Nagle algorithm delays data transmission to increase
 the chance to send a full-sized segment. An application must be
 able to disable this algorithm for a connection. This is related
 to the no-bundle flag in DATA.SEND.SCTP.

 o REQUESTHEARTBEAT.SCTP:
 Pass 1 primitive / event: 'Request HeartBeat'
 Parameters: socket
 Returns: success or failure
 Comments: requests an immediate heartbeat on a path, returning
 success or failure.

 o SETPROTOCOLPARAMETERS.SCTP:
 Pass 1 primitive / event: 'Set Protocol Parameters'
 Parameters: RTO.Initial; RTO.Min; RTO.Max; Max.Burst; RTO.Alpha;
 RTO.Beta; Valid.Cookie.Life; Association.Max.Retrans;
 Path.Max.Retrans; Max.Init.Retransmits; HB.interval; HB.Max.Burst

 o SETPRIMARY.SCTP:
 Pass 1 primitive / event: 'Set Primary'
 Parameters: socket
 Returns: result of attempting this operation
 Comments: update the current primary address to be used, based on
 the set of available sockets of the association.

 o ERROR.TCP:
 Pass 1 primitive / event: 'ERROR_REPORT'
 Returns: reason (encoding not specified); subreason (encoding not
 specified)
 Comments: soft errors that can be ignored without harm by many
 applications; an application should be able to disable these
 notifications. The reported conditions include at least: ICMP
 error message arrived; Excessive Retransmissions.

 o STATUS.SCTP:
 Pass 1 primitive / event: 'Status' and 'NETWORK STATUS CHANGE'
 notification
 Returns: data block with information about a specified
 association, containing: association connection state; socket
 list; destination transport address reachability states; current
 receiver window size; current congestion window sizes; number of
 unacknowledged DATA chunks; number of DATA chunks pending receipt;
 primary path; most recent SRTT on primary path; RTO on primary
 path; SRTT and RTO on other destination addresses. The NETWORK
 STATUS CHANGE notification informs the application about a socket

Welzl, et al. Expires July 11, 2016 [Page 14]

Internet-Draft Transport Services January 2016

 becoming active/inactive.

 o CHANGE-DSCP.TCP:
 Pass 1 primitive / event: not specified
 Parameters: DSCP value
 Comments: This allows an application to change the DSCP value.
 For TCP this was originally specified for the TOS field [RFC1122],
 which is here interpreted to refer to the DSField [RFC3260].

 TERMINATION:
 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o CLOSE.TCP:
 Pass 1 primitive / event: 'close'
 Comments: this terminates the sending side of a connection after
 reliably delivering all remaining data.

 o CLOSE.SCTP:
 Pass 1 primitive / event: 'Shutdown'
 Comments: this terminates a connection after reliably delivering
 all remaining data.

 o ABORT.TCP:
 Pass 1 primitive / event: 'abort'
 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o ABORT.SCTP:
 Pass 1 primitive / event: 'abort'
 Parameters: abort reason to be given to the peer (optional)
 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o TIMEOUT.TCP:
 Pass 1 primitive / event: 'USER TIMEOUT' event
 Comments: the application is informed that the connection is
 aborted. This event is executed on expiration of the timeout set
 in CONNECTION.ESTABLISHMENT.CONNECT.TCP (possibly adjusted in
 CONNECTION.MAINTENANCE.CHANGE-TIMEOUT.TCP).

 o TIMEOUT.SCTP:
 Pass 1 primitive / event: 'COMMUNICATION LOST' event
 Comments: the application is informed that the connection is
 aborted. this event is executed on expiration of the timeout that
 should be enabled by default (see beginning of section 8.3 in
 [RFC4960]) and was possibly adjusted in

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3260
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3

Welzl, et al. Expires July 11, 2016 [Page 15]

Internet-Draft Transport Services January 2016

 CONNECTION.MAINTENANCE.CHANGE-TIMEOOUT.SCTP.

 o ABORT-EVENT.TCP:
 Pass 1 primitive / event: not specified.

 o ABORT-EVENT.SCTP:
 Pass 1 primitive / event: 'COMMUNICATION LOST' event
 Returns: abort reason from the peer (if available)
 Comments: the application is informed that the other side has
 aborted the connection using CONNECTION.TERMINATION.ABORT.SCTP.

 o CLOSE-EVENT.TCP:
 Pass 1 primitive / event: not specified.

 o CLOSE-EVENT.SCTP:
 Pass 1 primitive / event: 'SHUTDOWN COMPLETE' event
 Comments: the application is informed that
 CONNECTION.TERMINATION.CLOSE.SCTP was successfully completed.

4.2. DATA Transfer Related Primitives

 All primitives in this section refer to an existing connection, i.e.
 a connection that was either established or made available for
 receiving data. In addition to the listed parameters, all sending
 primitives contain a reference to a data block and all receiving
 primitives contain a reference to available buffer space for the
 data.

 o SEND.TCP:
 Pass 1 primitive / event: 'send'
 Parameters: timeout (optional)
 Comments: this gives TCP a data block for reliable transmission to
 the TCP on the other side of the connection. The timeout can be
 configured with this call whenever data are sent (see also
 CONNECTION.MAINTENANCE.CHANGE-TIMEOUT.TCP).

 o SEND.SCTP:
 Pass 1 primitive / event: 'Send'
 Parameters: stream number; context (optional); life time
 (optional); socket (optional); unordered flag (optional); no-
 bundle flag (optional); payload protocol-id (optional)
 Comments: this gives SCTP a data block for reliable transmission
 to the SCTP on the other side of the connection (SCTP
 association). The 'stream number' denotes the stream to be used.
 The 'context' number can later be used to refer to the correct
 message when an error is reported. The 'life time' specifies a
 time after which this data block will not be sent. The 'socket'

Welzl, et al. Expires July 11, 2016 [Page 16]

Internet-Draft Transport Services January 2016

 can be used to state which path should be preferred, if there are
 multiple paths available (see also
 CONNECTION.MAINTENANCE.SETPRIMARY.SCTP). The data block can be
 delivered out-of-order if the 'unordered flag' is set. The 'no-
 bundle flag' can be set to indicate a preference to avoid
 bundling. The 'payload protocol-id' is a number that will, if
 provided, be handed over to the receiving application.

 o RECEIVE.TCP:
 Pass 1 primitive / event: 'receive'.

 o RECEIVE.SCTP:
 Pass 1 primitive / event: 'DATA ARRIVE' notification, followed by
 'Receive'
 Parameters: stream number (optional)
 Returns: stream sequence number (optional), partial flag
 (optional)
 Comments: if the 'stream number' is provided, the call to receive
 only receives data on one particular stream. If a partial message
 arrives, this is indicated by the 'partial flag', and then the
 'stream sequence number' must be provided such that an application
 can restore the correct order of data blocks that comprise an
 entire message.

 o SENDFAILURE-EVENT.SCTP:
 Pass 1 primitive / event: 'SEND FAILURE' notification, optionally
 followed by 'Receive Unsent Message' or 'Receive Unacknowledged
 Message'
 Returns: cause code; context; unsent or unacknowledged message
 (optional)
 Comments: 'cause code' indicates the reason of the failure, and
 'context' is the context number if such a number has been provided
 in DATA.SEND.SCTP, for later use with 'Receive Unsent Message' or
 'Receive Unacknowledged Message', respectively. These primitives
 can be used to retrieve the complete unsent or unacknowledged
 message if desired.

5. Pass 3

 This section presents the superset of all transport service features
 in all protocols that were discussed in the preceding sections, based
 on the list of primitives in pass 2 but also on text in pass 1 to
 include features that can be configured in one protocol and are
 static properties in another. Again, some minor details are omitted
 for the sake of generalization -- e.g., TCP may provide various
 different IP options, but only source route is mandatory to

Welzl, et al. Expires July 11, 2016 [Page 17]

Internet-Draft Transport Services January 2016

 implement, and this detail is not visible in the Pass 3 feature
 "Specify IP Options".

 [AUTHOR'S NOTE: the list here looks pretty similar to the list in
 pass 2 for now. This will change as more protocols are added. For
 example, when we add UDP, we will find that UDP does not do
 congestion control, which is relevant to the application using it.
 This will have to be reflected in pass 1 and pass 2, only for UDP.
 In pass 3, we can then derive "no congestion control" as a transport
 service feature of UDP; however, since it would be strange to call
 the lack of congestion control a feature, the natural outcome is then
 to list "congestion control" as a feature of TCP and SCTP.]

5.1. CONNECTION Related Transport Service Features

 ESTABLISHMENT:
 Active creation of a connection from one transport endpoint to one or
 more transport endpoints.

 o Specify IP Options
 Protocols: TCP

 o Request multiple streams
 Protocols: SCTP

 o Obtain multiple sockets
 Protocols: SCTP

 AVAILABILITY:
 Preparing to receive incoming connection requests.

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP

 o Listen, N specified local interfaces
 Protocols: SCTP

 o Listen, all local interfaces (unspecified)
 Protocols: TCP, SCTP

 o Obtain requested number of streams
 Protocols: SCTP

 MAINTENANCE:
 Adjustments made to an open connection, or notifications about it.
 NOTE: all features except "set primary path" in this category apply

Welzl, et al. Expires July 11, 2016 [Page 18]

Internet-Draft Transport Services January 2016

 to one out of multiple possible paths (identified via sockets) in
 SCTP, whereas TCP uses only one path (one socket).

 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP, SCTP

 o Control advertising timeout for aborting connection to remote
 endpoint
 Protocols: TCP

 o Disable Nagle algorithm
 Protocols: TCP, SCTP
 Comments: This is not specified in [RFC4960] but in [RFC6458].

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP

 o Set protocol parameters
 Protocols: SCTP
 SCTP parameters: RTO.Initial; RTO.Min; RTO.Max; Max.Burst;
 RTO.Alpha; RTO.Beta; Valid.Cookie.Life; Association.Max.Retrans;
 Path.Max.Retrans; Max.Init.Retransmits; HB.interval; HB.Max.Burst
 Comments: in future versions of this document, it might make sense
 to split out some of these parameters -- e.g., if a different
 protocol provides means to adjust the RTO calculation there could
 be a common feature for them called "adjust RTO calculation".

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 Protocols: TCP

 o Notification of ICMP error message arrival
 Protocols: TCP

 o Status (query or notification)
 Protocols: SCTP
 SCTP parameters: association connection state; socket list; socket
 reachability states; current receiver window size; current
 congestion window sizes; number of unacknowledged DATA chunks;
 number of DATA chunks pending receipt; primary path; most recent
 SRTT on primary path; RTO on primary path; SRTT and RTO on other
 destination addresses; socket becoming active / inactive

 o Set primary path
 Protocols: SCTP

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires July 11, 2016 [Page 19]

Internet-Draft Transport Services January 2016

 o Change DSCP
 Protocols: TCP
 Comments: This is described to be changeable for SCTP too in
 [RFC6458].

 TERMINATION:
 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP, SCTP
 Comments: A TCP endpoint locally only closes the connection for
 sending; it may still receive data afterwards.

 o Abort without delivering remaining data, causing an event
 informing the application on the other side
 Protocols: TCP, SCTP
 Comments: In SCTP a reason can optionally be given by the
 application on the aborting side, which can then be received by
 the application on the other side.

 o Timeout event when data could not be delivered for too long
 Protocols: TCP, SCTP
 Comments: the timeout is configured with CONNECTION.MAINTENANCE
 "Change timeout for aborting connection (using retransmit limit or
 time value)".

5.2. DATA Transfer Related Transport Service Features

 All features in this section refer to an existing connection, i.e. a
 connection that was either established or made available for
 receiving data. Reliable data transfer entails delay -- e.g. for the
 sender to wait until it can transmit data, or due to retransmission
 in case of packet loss.

5.2.1. Sending Data

 All features in this section are provided by DATA.SEND from pass 2.
 DATA.SEND is given a data block from the application, which we here
 call a "message".

 o Reliably transfer data
 Protocols: TCP, SCTP

https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires July 11, 2016 [Page 20]

Internet-Draft Transport Services January 2016

 o Notifying the receiver to promptly hand over data to application
 Protocols: TCP
 Comments: This seems unnecessary in SCTP, where data arrival
 causes an event for the application.

 o Message identification
 Protocols: SCTP

 o Choice of stream
 Protocols: SCTP

 o Choice of path (destination address)
 Protocols: SCTP

 o Message lifetime
 Protocols: SCTP

 o Choice between unordered (potentially faster) or ordered delivery
 Protocols: SCTP

 o Request not to bundle messages
 Protocols: SCTP

 o Specifying a "payload protocol-id" (handed over as such by the
 receiver)
 Protocols: SCTP

5.2.2. Receiving Data

 All features in this section are provided by DATA.RECEIVE from pass
 2. DATA.RECEIVE fills a buffer provided to the application, with
 what we here call a "message".

 o Receive data
 Protocols: TCP, SCTP

 o Choice of stream to receive from
 Protocols: SCTP

 o Message identification
 Protocols: SCTP
 Comments: In SCTP, this is optionally achieved with a "stream
 sequence number". The stream sequence number is always provided
 in case of partial message arrival.

Welzl, et al. Expires July 11, 2016 [Page 21]

Internet-Draft Transport Services January 2016

 o Information about partial message arrival
 Protocols: SCTP
 Comments: In SCTP, partial messages are combined with a stream
 sequence number so that the application can restore the correct
 order of data blocks an entire message consists of.

5.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to DATA.SEND from pass 2.

 o Notification of unsent messages
 Protocols: SCTP

 o Notification of unacknowledged messages
 Protocols: SCTP

6. Acknowledgements

 The authors would like to thank (in alphabetical order) Bob Briscoe,
 David Hayes, Gorry Fairhurst, Karen Nielsen and Joe Touch for
 providing valuable feedback on this document. This work has received
 funding from the European Union's Horizon 2020 research and
 innovation programme under grant agreement No. 644334 (NEAT). The
 views expressed are solely those of the author(s).

7. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

8. Security Considerations

 Security will be considered in future versions of this document.

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

https://datatracker.ietf.org/doc/html/rfc793

Welzl, et al. Expires July 11, 2016 [Page 22]

Internet-Draft Transport Services January 2016

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
RFC 5482, DOI 10.17487/RFC5482, March 2009,

 <http://www.rfc-editor.org/info/rfc5482>.

9.2. Informative References

 [FA15] Fairhurst, Ed., G., Trammell, Ed., B., and M. Kuehlewind,
 Ed., "Services provided by IETF transport protocols and
 congestion control mechanisms",

draft-fairhurst-taps-transports-08.txt (work in progress),
 December 2015.

 [RFC0854] Postel, J. and J. Reynolds, "Telnet Protocol
 Specification", STD 8, RFC 854, DOI 10.17487/RFC0854,
 May 1983, <http://www.rfc-editor.org/info/rfc854>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3260] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, DOI 10.17487/RFC3260, April 2002,
 <http://www.rfc-editor.org/info/rfc3260>.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828,
 July 2004, <http://www.rfc-editor.org/info/rfc3828>.

 [RFC5461] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461,
 DOI 10.17487/RFC5461, February 2009,

http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5482
http://www.rfc-editor.org/info/rfc5482
https://datatracker.ietf.org/doc/html/draft-fairhurst-taps-transports-08.txt
https://datatracker.ietf.org/doc/html/rfc854
http://www.rfc-editor.org/info/rfc854
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3260
http://www.rfc-editor.org/info/rfc3260
https://datatracker.ietf.org/doc/html/rfc3828
http://www.rfc-editor.org/info/rfc3828
https://datatracker.ietf.org/doc/html/rfc5461

Welzl, et al. Expires July 11, 2016 [Page 23]

Internet-Draft Transport Services January 2016

 <http://www.rfc-editor.org/info/rfc5461>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <http://www.rfc-editor.org/info/rfc6093>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414, DOI 10.17487/

RFC7414, February 2015,
 <http://www.rfc-editor.org/info/rfc7414>.

Appendix A. Overview of RFCs used as input for pass 1

 TCP: [RFC0793], [RFC1122], [RFC5482]
 SCTP: [RFC4960], planned: [RFC6458]

Appendix B. How to contribute

 This document is only concerned with transport service features that
 are explicitly exposed to applications via primitives. It also
 strictly follows RFC text: if a feature is truly relevant for an
 application, the RFCs better say so and in some way describe how to
 use and configure it. Thus, the approach to follow for contributing
 to this document is to identify the right RFCs, then analyze and
 process their text.

 Experimental RFCs are excluded, and so are primitives that MAY be
 implemented (by the transport protocol). To be included, the minimum
 requirement level for a primitive to be implemented by a protocol is
 SHOULD. If [RFC2119]-style requirements levels are not used,
 primitives should be excluded when they are described in conjunction
 with statements like, e.g.: "some implementations also provide" or
 "an implementation may also". Briefly describe excluded primitives
 in a subsection called "excluded primitives".

 Pass 1: Identify text that talks about primitives. An API
 specification, abstract or not, obviously describes primitives -- but
 note that we are not *only* interested in API specifications. The
 text describing the 'send' primitive in the API specified in

http://www.rfc-editor.org/info/rfc5461
https://datatracker.ietf.org/doc/html/rfc6093
http://www.rfc-editor.org/info/rfc6093
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
http://www.rfc-editor.org/info/rfc6458
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc7414
http://www.rfc-editor.org/info/rfc7414
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc2119

Welzl, et al. Expires July 11, 2016 [Page 24]

Internet-Draft Transport Services January 2016

 [RFC0793], for instance, does not say that data transfer is reliable.
 TCP's reliability is clear, however, from this text in Section 1 of
 [RFC0793]: "The Transmission Control Protocol (TCP) is intended for
 use as a highly reliable host-to-host protocol between hosts in
 packet-switched computer communication networks, and in
 interconnected systems of such networks."

 For the new pass 1 subsection about the protocol you're describing,
 it is recommendable to begin by copy+pasting all the relevant text
 parts from the relevant RFCs, then adjust terminology to match the
 terminology in Section 1 and adjust (shorten!) phrasing to match the
 general style of the document. Try to formulate everything as a
 primitive description to make the primitive description as complete
 as possible (e.g., the "SEND.TCP" primitive in pass 2 is explicitly
 described as reliably transferring data); if there is text that is
 relevant for the primitives presented in this pass but still does not
 fit directly under any primitive, use it as an introduction for your
 subsection. However, do note that document length is a concern and
 all the protocols and their services / features are already described
 in [FA15].

 Pass 2: The main goal of this pass is unification of primitives. As
 input, use your own text from Pass 1, no exterior sources. If you
 find that something is missing there, fix the text in Pass 1. The
 list in pass 2 is not done by protocol ("first protocol X, here are
 all the primitives; then protocol Y, here are all the primitives,
 ..") but by primitive ("primitive A, implemented this way in protocol
 X, this way in protocol Y, ..."). We want as many similar pass 2
 primitives as possible. This can be achieved, for instance, by not
 always maintaining a 1:1 mapping between pass 1 and pass 2
 primitives, renaming primitives etc. Please consider the primitives
 that are already there and try to make the ones of the protocol you
 are describing as much in line with the already existing ones as
 possible. In other words, we would rather have a primitive with new
 parameters than a new primitive that allows to send in a particular
 way.

 Please make primitives fit within the already existing categories and
 subcategories. For each primitive, please follow the style:

 o PRIMITIVENAME.PROTOCOL:
 Pass 1 primitive / event:
 Parameters:
 Returns:
 Comments:

 The entries "Parameters", "Returns" and "Comments" may be skipped if
 a primitive has no parameters, no described return value or no

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793#section-1
https://datatracker.ietf.org/doc/html/rfc0793#section-1

Welzl, et al. Expires July 11, 2016 [Page 25]

Internet-Draft Transport Services January 2016

 comments seem necessary, respectively. Optional parameters must be
 followed by "(optional)". If a default value is known, provide it
 too.

 Pass 3: the main point of this pass is to identify features that are
 the result of static properties of protocols, for which all protocols
 have to be listed together; this is then the final list of all
 available features. For this, we need a list of features per
 category (similar categories as in pass 2) along with the protocol
 supporting it. This should be primarily based on text from pass 2 as
 input, but text from pass 1 can also be used. Do not use external
 sources.

Appendix C. Revision information

 XXX RFC-Ed please remove this section prior to publication.

 -00 (from draft-welzl-taps-transports): this now covers TCP based on
 all TCP RFCs (this means: if you know of something in any TCP RFC
 that you think should be addressed, please speak up!) as well as
 SCTP, exclusively based on [RFC4960]. We decided to also incorporate
 [RFC6458] for SCTP, but this hasn't happened yet. Terminology made
 in line with [FA15]. Addressed comments by Karen Nielsen and Gorry
 Fairhurst; various other fixes. Appendices (TCP overview and how-to-
 contribute) added.

Authors' Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 Steinfurt 48565
 Germany

 Email: tuexen@fh-muenster.de

https://datatracker.ietf.org/doc/html/draft-welzl-taps-transports
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires July 11, 2016 [Page 26]

Internet-Draft Transport Services January 2016

 Naeem Khademi
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Email: naeemk@ifi.uio.no

Welzl, et al. Expires July 11, 2016 [Page 27]

