
TAPS M. Welzl
Internet-Draft University of Oslo
Intended status: Informational M. Tuexen
Expires: November 25, 2017 Muenster Univ. of Appl. Sciences
 N. Khademi
 University of Oslo
 May 24, 2017

On the Usage of Transport Features Provided by IETF Transport Protocols
draft-ietf-taps-transports-usage-05

Abstract

 This document describes how the transport protocols Transmission
 Control Protocol (TCP), MultiPath TCP (MPTCP), Stream Control
 Transmission Protocol (SCTP), User Datagram Protocol (UDP) and
 Lightweight User Datagram Protocol (UDP-Lite) expose services to
 applications and how an application can configure and use the
 features that make up these services. It also discusses the service
 provided by the Low Extra Delay Background Transport (LEDBAT)
 congestion control mechanism.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 25, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Welzl, et al. Expires November 25, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-usage-05
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Transport Services May 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Terminology . 2
2. Introduction . 3
3. Pass 1 . 5
3.1. Primitives Provided by TCP 5
3.1.1. Excluded Primitives or Parameters 9

3.2. Primitives Provided by MPTCP 9
3.3. Primitives Provided by SCTP 10
3.3.1. Excluded Primitives or Parameters 18

3.4. Primitives Provided by UDP and UDP-Lite 18
3.5. The service of LEDBAT 19

4. Pass 2 . 20
4.1. CONNECTION Related Primitives 21
4.2. DATA Transfer Related Primitives 36

5. Pass 3 . 39
5.1. CONNECTION Related Transport Features 39
5.2. DATA Transfer Related Transport Features 47
5.2.1. Sending Data . 48
5.2.2. Receiving Data 49
5.2.3. Errors . 50

6. Acknowledgements . 50
7. IANA Considerations . 51
8. Security Considerations 51
9. References . 51
9.1. Normative References 51
9.2. Informative References 54

Appendix A. Overview of RFCs used as input for pass 1 55
Appendix B. How this document was developed 55
Appendix C. Revision information 57

 Authors' Addresses . 58

1. Terminology

 Transport Feature: a specific end-to-end feature that the transport
 layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.
 Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides a
 complete service to an application.

Welzl, et al. Expires November 25, 2017 [Page 2]

Internet-Draft Transport Services May 2017

 Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire.
 Transport Protocol Component: an implementation of a Transport
 Feature within a protocol.
 Transport Service Instance: an arrangement of transport protocols
 with a selected set of features and configuration parameters that
 implements a single transport service, e.g., a protocol stack (RTP
 over UDP).
 Application: an entity that uses the transport layer for end-to-end
 delivery of data across the network (this may also be an upper
 layer protocol or tunnel encapsulation).
 Endpoint: an entity that communicates with one or more other
 endpoints using a transport protocol.
 Connection: shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints.
 Primitive: a function call that is used to locally communicate
 between an application and a transport endpoint. A primitive is
 related to one or more Transport Features.
 Event: a primitive that is invoked by a transport endpoint.
 Parameter: a value passed between an application and a transport
 protocol by a primitive.
 Socket: the combination of a destination IP address and a
 destination port number.
 Transport Address: the combination of an IP address, transport
 protocol and the port number used by the transport protocol.

2. Introduction

 This document presents, in the form of primitives, events and
 transport features, defined interactions between applications and the
 following unicast transport protocols: Transmission Control Protocol
 (TCP), MultiPath TCP (MPTCP), Stream Control Transmission Protocol
 (SCTP), User Datagram Protocol (UDP), Lightweight User Datagram
 Protocol (UDP-Lite). It also defines a primitive to enable/disable
 and configure the Low Extra Delay Background Transport (LEDBAT)
 unicast congestion control mechanism. Transport protocols provide
 communication between processes that operate on network endpoints,
 which means that they allow for multiplexing of communication between
 the same IP addresses, and normally this multiplexing is achieved
 using port numbers. Port multiplexing is therefore assumed to be
 always provided and not discussed in this document.

 The list of primitives, events and transport features in this
 document is strictly based on the parts of protocol specifications
 that describe what the protocol provides to an application using it
 and how the application interacts with it. Together with an overview
 of the services provided by IETF transport protocols and congestion

Welzl, et al. Expires November 25, 2017 [Page 3]

Internet-Draft Transport Services May 2017

 control mechanisms [RFC8095] and an analysis of UDP and UDP-Lite
 [FJ16], it provides the basis for the minimal set of transport
 services that end systems should support
 [I-D.draft-gjessing-taps-minset].

 Parts of a protocol that are explicitly stated as optional to
 implement are not covered. Interactions between the application and
 a transport protocol that are not directly related to the operation
 of the protocol are also not covered. For example, there are various
 ways for an application to use socket options to indicate its
 interest in receiving certain notifications [RFC6458]. However, for
 the purpose of identifying primitives, events and transport features,
 the ability to enable or disable the reception of notifications is
 irrelevant. Similarly, "one-to-many style sockets" [RFC6458] just
 affect the application programming style, not how the underlying
 protocol operates, and they are therefore not discussed here. The
 same is true for the ability to obtain the unchanged value of a
 parameter that an application has previously set (e.g.,via "get" in
 get/set operations [RFC6458]).

 The document presents a three-pass process to arrive at a list of
 transport features. In the first pass, the relevant RFC text is
 discussed per protocol. In the second pass, this discussion is used
 to derive a list of primitives and events that are uniformly
 categorized across protocols. Here, an attempt is made to present or
 -- where text describing primitives or events does not yet exist --
 construct primitives or events in a slightly generalized form to
 highlight similarities. This is, for example, achieved by renaming
 primitives or events of protocols or by avoiding a strict 1:1-mapping
 between the primitives or events in the protocol specification and
 primitives or events in the list. Finally, the third pass presents
 transport features based on pass 2, identifying which protocols
 implement them.

 In the list resulting from the second pass, some transport features
 are missing because they are implicit in some protocols, and they
 only become explicit when we consider the superset of all transport
 features offered by all protocols. For example, TCP always carries
 out congestion control; we have to consider it together with a
 protocol like UDP (which does not have congestion control) before we
 can consider congestion control as a transport feature. The complete
 list of transport features across all protocols is therefore only
 available after pass 3.

 Some protocols are connection-oriented. Connection-oriented
 protocols often use an initial call to a specific primitive to open a
 connection before communication can progress, and require
 communication to be explicitly terminated by issuing another call to

https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/draft-gjessing-taps-minset
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires November 25, 2017 [Page 4]

Internet-Draft Transport Services May 2017

 a primitive (usually called "close"). A "connection" is the common
 state that some transport primitives refer to, e.g., to adjust
 general configuration settings. Connection establishment,
 maintenance and termination are therefore used to categorize
 transport primitives of connection-oriented transport protocols in
 pass 2 and pass 3. For this purpose, UDP is assumed to be used with
 "connected" sockets, i.e. sockets that are bound to a specific pair
 of addresses and ports [FJ16].

3. Pass 1

 This first iteration summarizes the relevant text parts of the RFCs
 describing the protocols, focusing on what each transport protocol
 provides to the application and how it is used (abstract API
 descriptions, where they are available).

3.1. Primitives Provided by TCP

 The initial TCP specification [RFC0793] states: "The Transmission
 Control Protocol (TCP) is intended for use as a highly reliable host-
 to-host protocol between hosts in packet-switched computer
 communication networks, and in interconnected systems of such
 networks". Section 3.8 in this specification [RFC0793] further
 specifies the interaction with the application by listing several
 transport primitives. It is also assumed that an Operating System
 provides a means for TCP to asynchronously signal the application;
 the primitives representing such signals are called 'events' in this
 section. This section describes the relevant primitives.

 open: this is either active or passive, to initiate a connection or
 listen for incoming connections. All other primitives are
 associated with a specific connection, which is assumed to first
 have been opened. An active open call contains a socket. A
 passive open call with a socket waits for a particular connection;
 alternatively, a passive open call can leave the socket
 unspecified to accept any incoming connection. A fully specified
 passive call can later be made active by calling 'send'.
 Optionally, a timeout can be specified, after which TCP will abort
 the connection if data has not been successfully delivered to the
 destination (else a default timeout value is used). A procedure
 for aborting the connection is used to avoid excessive
 retransmissions, and an application is able to control the
 threshold used to determine the condition for aborting; this
 threshold may be measured in time units or as a count of
 retransmission [RFC1122]. This indicates that the timeout could
 also be specified as a count of retransmission.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122

Welzl, et al. Expires November 25, 2017 [Page 5]

Internet-Draft Transport Services May 2017

 Also optional, for multihomed hosts, the local IP address can be
 provided [RFC1122]. If it is not provided, a default choice will
 be made in case of active open calls. A passive open call will
 await incoming connection requests to all local addresses and then
 maintain usage of the local IP address where the incoming
 connection request has arrived. Finally, the 'options' parameter
 allows the application to specify IP options such as source route,
 record route, or timestamp [RFC1122]. It is not stated on which
 segments of a connection these options should be applied, but
 probably all segments, as this is also stated in a specification
 given for the usage of source route (section 4.2.3.8 of
 [RFC1122]). Source route is the only non-optional IP option in
 this parameter, allowing an application to specify a source route
 when it actively opens a TCP connection.

 Master Key Tuples (MKTs) for authentication can optionally be
 configured when calling open (section 7.1 of [RFC5925]). When
 authentication is in use, complete TCP segments are authenticated,
 including the TCP IPv4 pseudoheader, TCP header, and TCP data.

 TCP Fast Open (TFO) [RFC7413] allows to immediately hand over a
 message from the active open to the passive open side of a TCP
 connection together with the first message establishment packet
 (the SYN). This can be useful for applications that are sensitive
 to TCP's connection setup delay. TCP implementations MUST NOT use
 TFO by default, but only use TFO if requested explicitly by the
 application on a per-service-port basis. more than TCP's maximum
 segment size (minus options used in the SYN). For the active open
 side, it is recommended to change or replace the connect() call in
 order to support a user data buffer argument [RFC7413]. For the
 passive open side, the application needs to enable the reception
 of Fast Open requests, e.g. via a new TCP_FASTOPEN setsockopt()
 socket option before listen(). The receiving application must be
 prepared to accept duplicates of the TFO message, as the first
 data written to a socket can be delivered more than once to the
 application on the remote host.

 send: this is the primitive that an application uses to give the
 local TCP transport endpoint a number of bytes that TCP should
 reliably send to the other side of the connection. The URGENT
 flag, if set, states that the data handed over by this send call
 is urgent and this urgency should be indicated to the receiving
 process in case the receiving application has not yet consumed all
 non-urgent data preceding it. An optional timeout parameter can
 be provided that updates the connection's timeout (see 'open').
 Additionally, optional parameters allow to indicate the preferred

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.8
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.8
https://datatracker.ietf.org/doc/html/rfc5925#section-7.1
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413

Welzl, et al. Expires November 25, 2017 [Page 6]

Internet-Draft Transport Services May 2017

 outgoing MKT (current_key) and/or the preferred incoming MKT
 (rnext_key) of a connection (section 7.1 of [RFC5925]).

 receive: This primitive allocates a receiving buffer for a provided
 number of bytes. It returns the number of received bytes provided
 in the buffer when these bytes have been received and written into
 the buffer by TCP. The application is informed of urgent data via
 an URGENT flag: if it is on, there is urgent data. If it is off,
 there is no urgent data or this call to 'receive' has returned all
 the urgent data. The application is also informed about the
 current_key and rnext_key information carried in a recently
 received segment via an optional parameter (section 7.1 of
 [RFC5925]).

 close: This primitive closes one side of a connection. It is
 semantically equivalent to "I have no more data to send" but does
 not mean "I will not receive any more", as the other side may
 still have data to send. This call reliably delivers any data
 that has already been given to TCP (and if that fails, 'close'
 becomes 'abort').

 abort: This primitive causes all pending 'send' and 'receive' calls
 to be aborted. A TCP RESET message is sent to the TCP endpoint on
 the other side of the connection [RFC0793].

 close event: TCP uses this primitive to inform an application that
 the application on the other side has called the 'close'
 primitive, so the local application can also issue a 'close' and
 terminate the connection gracefully. See [RFC0793], Section 3.5.

 abort event: When TCP aborts a connection upon receiving a "Reset"
 from the peer, it "advises the user and goes to the CLOSED state."
 See [RFC0793], Section 3.4.

 USER TIMEOUT event: This event is executed when the user timeout
 expires (see 'open') (section 3.9 of [RFC0793]). All queues are
 flushed and the application is informed that the connection had to
 be aborted due to user timeout.

 ERROR_REPORT event: This event informs the application of "soft
 errors" that can be safely ignored [RFC5461], including the

https://datatracker.ietf.org/doc/html/rfc5925#section-7.1
https://datatracker.ietf.org/doc/html/rfc5925#section-7.1
https://datatracker.ietf.org/doc/html/rfc5925#section-7.1
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793#section-3.5
https://datatracker.ietf.org/doc/html/rfc0793#section-3.4
https://datatracker.ietf.org/doc/html/rfc0793#section-3.9
https://datatracker.ietf.org/doc/html/rfc5461

Welzl, et al. Expires November 25, 2017 [Page 7]

Internet-Draft Transport Services May 2017

 arrival of an ICMP error message or excessive retransmissions
 (reaching a threshold below the threshold where the connection is
 aborted). See section 4.2.4.1 of [RFC1122].

 Type-of-Service: Section 4.2.4.2 of the requirements for Internet
 hosts [RFC1122] states that the application layer MUST be able to
 specify the Type-of-Service (TOS) for segments that are sent on a
 connection. The application should be able to change the TOS
 during the connection lifetime, and the TOS value should be passed
 to the IP layer unchanged. Since then the TOS field has been
 redefined. The Differentiated Services (diffuser) model [RFC2475]
 [RFC3260] replaces this field in the IP Header, assigning the six
 most significant bits to carry the Differentiated Services Code
 Point (DSCP) field [RFC2474].

 Nagle: The Nagle algorithm delays sending data for some time to
 increase the likelihood of sending a full-sized segment (section

4.2.3.4 of [RFC1122]). An application can disable the Nagle
 algorithm for an individual connection.

 User Timeout Option: The User Timeout Option (UTO) [RFC5482] allows
 one end of a TCP connection to advertise its current user timeout
 value so that the other end of the TCP connection can adapt its
 own user timeout accordingly. In addition to the configurable
 value of the User Timeout (see 'send'), there are three per-
 connection state variables that an application can adjust to
 control the operation of the User Timeout Option (UTO): ADV_UTO is
 the value of the UTO advertised to the remote TCP peer (default:
 system-wide default user timeout); ENABLED (default false) is a
 boolean-type flag that controls whether the UTO option is enabled
 for a connection. This applies to both sending and receiving.
 CHANGEABLE is a boolean-type flag (default true) that controls
 whether the user timeout may be changed based on a UTO option
 received from the other end of the connection. CHANGEABLE becomes
 false when an application explicitly sets the user timeout (see
 'send').

 Set / Get Authentication Parameters: The preferred outgoing MKT
 (current_key) and/or the preferred incoming MKT (rnext_key) of a
 connection can be configured. Information about current_key and
 rnext_key carried in a recently received segment can be retrieved
 (section 7.1 of [RFC5925]).

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc3260
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.4
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc5925#section-7.1

Welzl, et al. Expires November 25, 2017 [Page 8]

Internet-Draft Transport Services May 2017

3.1.1. Excluded Primitives or Parameters

 The 'open' primitive can be handed optional Precedence or security/
 compartment information [RFC0793], but this was not included here
 because it is mostly irrelevant today [RFC7414].

 The 'status' primitive was not included because the initial TCP
 specification describes this primitive as "implementation dependent"
 and states that it "could be excluded without adverse effect"
 [RFC0793]. Moreover, while a data block containing specific
 information is described, it is also stated that not all of this
 information may always be available. While 'status' SHOULD be
 augmented to allow the MKTs of a current or pending connection to be
 read (for confirmation), the same information is also available via
 'receive', which MUST be augmented with that functionality [RFC5925].
 The 'send' primitive includes an optional PUSH flag which, if set,
 requires data to be promptly transmitted to the receiver without
 delay [RFC0793]; the 'receive' primitive described in can (under some
 conditions) yield the status of the PUSH flag. Because PUSH
 functionality is optional to implement for both the 'send' and
 'receive' primitives [RFC1122], this functionality is not included
 here. The requirements for Internet hosts [RFC1122] also introduce
 keep-alives to TCP, but these are optional to implement and hence not
 considered here. The same document also describes that "some TCP
 implementations have included a FLUSH call", indicating that this
 call is also optional to implement. It is therefore not considered
 here.

3.2. Primitives Provided by MPTCP

 Multipath TCP (MPTCP) is an extension to TCP that allows the use of
 multiple paths for a single data-stream. It achieves this by
 creating different so-called TCP subflows for each of the interfaces
 and scheduling the traffic across these TCP subflows. The service
 provided by MPTCP is described as follows [RFC6182]: "Multipath TCP
 MUST follow the same service model as TCP [RFC0793]: in- order,
 reliable, and byte-oriented delivery. Furthermore, a Multipath TCP
 connection SHOULD provide the application with no worse throughput or
 resilience than it would expect from running a single TCP connection
 over any one of its available paths."

 Further, there are some constraints on the API exposed by MPTCP
 [RFC6182]: "A multipath-capable equivalent of TCP MUST retain some
 level of backward compatibility with existing TCP APIs, so that
 existing applications can use the newer merely by upgrading the
 operating systems of the end hosts." As such, the primitives
 provided by MPTCP are equivalent to the ones provided by TCP.
 Nevertheless, the MPTCP RFCs [RFC6824] and [RFC6897] clarify some

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897

Welzl, et al. Expires November 25, 2017 [Page 9]

Internet-Draft Transport Services May 2017

 parts of TCP's primitives with respect to MPTCP and add some
 extensions for better control on MPTCP's subflows. Hereafter is a
 list of the clarifications and extensions the above cited RFCs
 provide to TCP's primitives.

 open: "An application should be able to request to turn on or turn
 off the usage of MPTCP" [RFC6897]. This functionality can be
 provided through a socket-option called TCP_MULTIPATH_ENABLE.
 Further, MPTCP must be disabled in case the application is binding
 to a specific address [RFC6897].

 send/receive: The sending and receiving of data does not require any
 changes to the application when MPTCP is being used [RFC6824].
 The MPTCP-layer will "take one input data stream from an
 application, and split it into one or more subflows, with
 sufficient control information to allow it to be reassembled and
 delivered reliably and in order to the recipient application."
 The use of the Urgent-Pointer is special in MPTCP [RFC6824]: "a
 TCP subflow MUST NOT use the Urgent Pointer to interrupt an
 existing mapping."

 address and subflow management: MPTCP uses different addresses and
 allows a host to announce these addresses as part of the protocol.
 The MPTCP API Considerations RFC [RFC6897] says "An application
 should be able to restrict MPTCP to binding to a given set of
 addresses" and thus allows applications to limit the set of
 addresses that are being used by MPTCP. Further, "An application
 should be able to obtain information on the pairs of addresses
 used by the MPTCP subflows".

3.3. Primitives Provided by SCTP

 TCP has a number of limitations that SCPT removes (section 1.1 of
 [RFC4960]). The following three removed limitations directly
 translate into transport features that are visible to an application
 using SCTP: 1) it allows for preservation of message delineations; 2)
 these messages, while reliably transferred, do not require to be in
 order unless the application wants it; 3) multi-homing is supported.
 In SCTP, connections are called "associations" and they can be
 between not only two (as in TCP) but multiple addresses at each
 endpoint.

Section 10 of the SCTP base protocol specification [RFC4960]
 specifies the interaction with the application (which this RFC calls

https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc4960#section-1.1
https://datatracker.ietf.org/doc/html/rfc4960#section-1.1
https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires November 25, 2017 [Page 10]

Internet-Draft Transport Services May 2017

 the "Upper Layer Protocol" (ULP)). It is assumed that the Operating
 System provides a means for SCTP to asynchronously signal the
 application; the primitives representing such signals are called
 'events' in this section. Here, we describe the relevant primitives.
 In addition to the abstract API described in the section 10 of the
 SCTP base protocol specification [RFC4960], an extension to the
 socket API is described in [RFC6458]. This covers the functionality
 of the base protocol [RFC4960] and some of its extensions [RFC3758],
 [RFC4895], [RFC5061]. For other protocol extensions [RFC6525],
 [RFC6951], [RFC7053], [RFC7496], [RFC7829],
 [I-D.ietf-tsvwg-sctp-ndata], the corresponding extensions of the
 socket API are specified in these protocol specifications. The
 functionality exposed to the ULP through the all these APIs is
 considered here.

 The abstract API contains a "SETPROTOCOLPARAMETERS" primitive that
 allows to adjust elements of a parameter list [RFC4960]; it is stated
 that SCTP implementations "may allow ULP to customize some of these
 protocol parameters", indicating that none of the elements of this
 parameter list are mandatory to make ULP-configurable. Thus, we only
 consider the parameters in the abstract API that are also covered in
 one of the other RFCs listed above, which leads us to exclude the
 parameters RTO.Alpha, RTO.Beta and HB.Max.Burst. For clarity, we
 also replace "SETPROTOCOLPARAMETERS" itself with primitives that
 adjust parameters or groups of parameters which fit together.

 Initialize: Initialize creates a local SCTP instance that it binds
 to a set of local addresses (and, if provided, a local port
 number) [RFC4960]. Initialize needs to be called only once per
 set of local addresses. A number of per-association
 initialization parameters can be used when an association is
 created, but before it is connected (via the primitive 'Associate'
 below): the maximum number of inbound streams the application is
 prepared to support, the maximum number of attempts to be made
 when sending the INIT (the first message of association
 establishment), and the maximum retransmission timeout (RTO) value
 to use when attempting an INIT [RFC6458]. At this point, before
 connecting, an application can also enable UDP encapsulation by
 configuring the remote UDP encapsulation port number [RFC6951].

 Associate: This creates an association (the SCTP equivalent of a
 connection) that connects the local SCTP instance and a remote
 SCTP instance. To identify the remote endpoint, it can be given
 one or multiple (using "connectx") sockets (section 9.9 of
 [RFC6458]). Most primitives are associated with a specific
 association, which is assumed to first have been created.
 Associate can return a list of destination transport addresses so

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc7496
https://datatracker.ietf.org/doc/html/rfc7829
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc6458#section-9.9
https://datatracker.ietf.org/doc/html/rfc6458#section-9.9

Welzl, et al. Expires November 25, 2017 [Page 11]

Internet-Draft Transport Services May 2017

 that multiple paths can later be used. One of the returned
 sockets will be selected by the local endpoint as default primary
 path for sending SCTP packets to this peer, but this choice can be
 changed by the application using the list of destination
 addresses. Associate is also given the number of outgoing streams
 to request and optionally returns the number of negotiated
 outgoing streams. An optional parameter of 32 bits, the
 adaptation layer indication, can be provided [RFC5061]. If
 authenticated chunks are used, the chunk types required to be sent
 authenticated by the peer can be provided [RFC4895]. A
 'SCTP_CANT_STR_ASSOC' notification is used to inform the
 application of a failure to create an association [RFC6458]. An
 application could use sendto() or sendmsg() to implicitly setup an
 association, thereby handing over a message that SCTP might send
 during the association setup phase [RFC6458]. Note that this
 mechanism is different from TCP's TFO mechanism: the message would
 arrive only once, after at least one RTT, as it is sent together
 with the third message exchanged during association setup, the
 COOKIE-ECHO chunk).

 Send: This sends a message of a certain length in bytes over an
 association. A number can be provided to later refer to the
 correct message when reporting an error, and a stream id is
 provided to specify the stream to be used inside an association
 (we consider this as a mandatory parameter here for simplicity: if
 not provided, the stream id defaults to 0). A condition to
 abandon the message can be specified (for example limiting the
 number of retransmissions or the lifetime of the user message).
 This allows to control the partial reliability extension
 [RFC3758], [RFC7496]. An optional maximum life time can specify
 the time after which the message should be discarded rather than
 sent. A choice (advisory, i.e. not guaranteed) of the preferred
 path can be made by providing a socket, and the message can be
 delivered out-of-order if the unordered flag is set. An advisory
 flag indicates that the peer should not delay the acknowledgement
 of the user message provided [RFC7053]. Another advisory flag
 indicates whether the application prefers to avoid bundling user
 data with other outbound DATA chunks (i.e., in the same packet).
 A payload protocol-id can be provided to pass a value that
 indicates the type of payload protocol data to the peer. If
 authenticated chunks are used, the key identifier for
 authenticating DATA chunks can be provided [RFC4895].

 Receive: Messages are received from an association, and optionally a
 stream within the association, with their size returned. The
 application is notified of the availability of data via a DATA

https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc7496
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc4895

Welzl, et al. Expires November 25, 2017 [Page 12]

Internet-Draft Transport Services May 2017

 ARRIVE notification. If the sender has included a payload
 protocol-id, this value is also returned. If the received message
 is only a partial delivery of a whole message, a partial flag will
 indicate so, in which case the stream id and a stream sequence
 number are provided to the application. A delivery number lets
 the application detect reordering.

 Shutdown: This primitive gracefully closes an association, reliably
 delivering any data that has already been handed over to SCTP. A
 parameter lets the application control whether further receive or
 send operations or both are disabled when the call is issued. A
 return code informs about success or failure of this procedure.

 Abort: This ungracefully closes an association, by discarding any
 locally queued data and informing the peer that the association
 was aborted. Optionally, an abort reason to be passed to the peer
 may be provided by the application. A return code informs about
 success or failure of this procedure.

 Change Heartbeat / Request Heartbeat: This allows the application to
 enable/disable heartbeats and optionally specify a heartbeat
 frequency as well as requesting a single heartbeat to be carried
 out upon a function call, with a notification about success or
 failure of transmitting the HEARTBEAT chunk to the destination.

 Configure Max. Retransmissions of an Association: The parameter Asso
 ciation.Max.Retrans [RFC4960] (called "sasoc_maxrxt" in the SCTP
 socket API extensions [RFC6458]), allows to configure the number
 of unsuccessful retransmissions after which an entire association
 is considered as failed; this should invoke a COMMUNICATION LOST
 notification.

 Set Primary: This allows to set a new primary default path for an
 association by providing a socket. Optionally, a default source
 address to be used in IP datagrams can be provided.

 Change Local Address / Set Peer Primary: This allows an endpoint to
 add/remove local addresses to/from an association. In addition,
 the peer can be given a hint which address to use as the primary
 address [RFC5061].

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc5061

Welzl, et al. Expires November 25, 2017 [Page 13]

Internet-Draft Transport Services May 2017

 Configure Path Switchover: The abstract API contains a primitive
 called SET FAILURE THRESHOLD [RFC4960]. This configures the
 parameter "Path.Max.Retrans", which determines after how many
 retransmissions a particular transport address is considered as
 unreachable. If there are more transport addresses available in
 an association, reaching this limit will invoke a path switchover.
 An extension called "SCTP-PF" adds a concept of "Potentially
 Failed" (PF) paths to this method [RFC7829]. When a path is in PF
 state, SCTP will not entirely give up sending on that path, but it
 will preferably send data on other active paths if such paths are
 available. Entering the PF state is done upon exceeding a
 configured maximum number of retransmissions. Thus, for all paths
 where this mechanism is used, there are two configurable error
 thresholds: one to decide that a path is in PF state, and one to
 decide that the transport address is unreachable.

 Set / Get Authentication Parameters: This allows an endpoint to add/
 remove key material to/from an association. In addition, the
 chunk types being authenticated can be queried [RFC4895].

 Add / Reset Streams, Reset Association: This allows an endpoint to
 add streams to an existing association or or to reset them
 individually. Additionally, the association can be reset
 [RFC6525].

 Status: The 'Status' primitive returns a data block with information
 about a specified association, containing: association connection
 state; destination transport address list; destination transport
 address reachability states; current local and peer receiver
 window sizes; current local congestion window sizes; number of
 unacknowledged DATA chunks; number of DATA chunks pending receipt;
 primary path; most recent SRTT on primary path; RTO on primary
 path; SRTT and RTO on other destination addresses [RFC4960] and
 MTU per path [RFC6458].

 Enable / Disable Interleaving: This allows to enable or disable the
 negotiation of user message interleaving support for future
 associations. For existing associations it is possible to query
 whether user message interleaving support was negotiated or not on
 a particular association [I-D.ietf-tsvwg-sctp-ndata].

 Set Stream Scheduler: This allows to select a stream scheduler per
 association, with a choice of: First Come First Serve, Round

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc7829
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires November 25, 2017 [Page 14]

Internet-Draft Transport Services May 2017

 Robin, Round Robin per Packet, Priority Based, Fair Bandwidth,
 Weighted Fair Queuing [I-D.ietf-tsvwg-sctp-ndata].

 Configure Stream Scheduler: This allows to change a parameter per
 stream for the schedulers: a priority value for the Priority Based
 scheduler and a weight for the Weighted Fair Queuing scheduler.

 Enable/disable NODELAY: This turns on/off any Nagle-like algorithm
 for an association [RFC6458].

 Configure send buffer size: This controls the amount of data SCTP
 may have waiting in internal buffers to be sent or retransmitted
 [RFC6458].

 Configure receive buffer size: This sets the receive buffer size in
 octets, thereby controlling the receiver window for an association
 [RFC6458].

 Configure message fragmentation: If a user message causes an SCTP
 packet to exceed the maximum fragmentation size (which can be
 provided by the application, and is otherwise the PMTU size), then
 the message will be fragmented by SCTP. Disabling message
 fragmentation will produce an error instead of fragmenting the
 message [RFC6458].

 Configure Path MTU Discovery: Path MTU Discovery can be enabled or
 disabled per peer address of an association (section 8.1.12 of
 [RFC6458]). When it is enabled, the current Path MTU value can be
 obtained. When it is disabled, the Path MTU to be used can be
 controlled by the application.

 Configure delayed SACK timer: The time before sending a SACK can be
 adjusted; delaying SACKs can be disabled; the number of packets
 that must be received before a SACK is sent without waiting for
 the delay timer to expire can be configured [RFC6458].

 Set Cookie life value: The Cookie life value can be adjusted
 (section 8.1.2 of [RFC6458]). "Valid.Cookie.Life" is also one of
 the parameters that is potentially adjustable with
 SETPROTOCOLPARAMETERS [RFC4960].

https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.12
https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.12
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.2
https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires November 25, 2017 [Page 15]

Internet-Draft Transport Services May 2017

 Set maximum burst: The maximum burst of packets that can be emitted
 by a particular association (default 4, and values above 4 are
 optional to implement) can be adjusted (section 8.1.2 of
 [RFC6458]). "Max.Burst" is also one of the parameters that is
 potentially adjustable with SETPROTOCOLPARAMETERS [RFC4960].

 Configure RTO calculation: The abstract API contains the following
 adjustable parameters: RTO.Initial; RTO.Min; RTO.Max; RTO.Alpha;
 RTO.Beta. Only the initial, minimum and maximum RTO are also
 described as configurable in the SCTP sockets API extensions
 [RFC6458].

 Set DSCP value: The DSCP value can be set per peer address of an
 association (section 8.1.12 of [RFC6458]).

 Set IPv6 flow label: The flow label field can be set per peer
 address of an association (section 8.1.12 of [RFC6458]).

 Set Partial Delivery Point: This allows to specify the size of a
 message where partial delivery will be invoked. Setting this to a
 lower value will cause partial deliveries to happen more often
 [RFC6458].

 COMMUNICATION UP notification: When a lost communication to an
 endpoint is restored or when SCTP becomes ready to send or receive
 user messages, this notification informs the application process
 about the affected association, the type of event that has
 occurred, the complete set of sockets of the peer, the maximum
 number of allowed streams and the inbound stream count (the number
 of streams the peer endpoint has requested). If interleaving is
 supported by both endpoints, this information is also included in
 this notification.

 RESTART notification: When SCTP has detected that the peer has
 restarted, this notification is passed to the upper layer
 [RFC6458].

 DATA ARRIVE notification: When a message is ready to be retrieved
 via the Receive primitive, the application is informed by this
 notification.

https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.2
https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.2
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.12
https://datatracker.ietf.org/doc/html/rfc6458#section-8.1.12
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires November 25, 2017 [Page 16]

Internet-Draft Transport Services May 2017

 SEND FAILURE notification / Receive Unsent Message / Receive
 Unacknowledged Message:
 When a message cannot be delivered via an association, the sender
 can be informed about it and learn whether the message has just
 not been acknowledged or (e.g. in case of lifetime expiry) if it
 has not even been sent. This can also inform the sender that a
 part of the message has been successfully delivered.

 NETWORK STATUS CHANGE notification: The NETWORK STATUS CHANGE
 notification informs the application about a socket becoming
 active/inactive [RFC4960] or "Potentially Failed" [RFC7829].

 COMMUNICATION LOST notification: When SCTP loses communication to an
 endpoint (e.g. via Heartbeats or excessive retransmission) or
 detects an abort, this notification informs the application
 process of the affected association and the type of event (failure
 OR termination in response to a shutdown or abort request).

 SHUTDOWN COMPLETE notification: When SCTP completes the shutdown
 procedures, this notification is passed to the upper layer,
 informing it about the affected assocation.

 AUTHENTICATION notification: When SCTP wants to notify the upper
 layer regarding the key management related to authenticated chunks
 [RFC4895], this notification is passed to the upper layer.

 ADAPTATION LAYER INDICATION notification: When SCTP completes the
 association setup and the peer provided an adaptation layer
 indication, this is passed to the upper layer [RFC5061],
 [RFC6458].

 STREAM RESET notification: When SCTP completes the procedure for
 resetting streams [RFC6525], this notification is passed to the
 upper layer, informing it about the result.

 ASSOCIATION RESET notification: When SCTP completes the association
 reset procedure [RFC6525], this notification is passed to the
 upper layer, informing it about the result.

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc7829
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6525

Welzl, et al. Expires November 25, 2017 [Page 17]

Internet-Draft Transport Services May 2017

 STREAM CHANGE notification: When SCTP completes the procedure used
 to increase the number of streams [RFC6525], this notification is
 passed to the upper layer, informing it about the result.

 SENDER DRY notification: When SCTP has no more user data to send or
 retransmit on a particular association, this notification is
 passed to the upper layer [RFC6458].

 PARTIAL DELIVERY ABORTED notification: When a receiver has begun to
 receive parts of a user message but the delivery of this message
 is then aborted, this notification is passed to the upper layer
 (section 6.1.7 of [RFC6458]).

3.3.1. Excluded Primitives or Parameters

 The 'Receive' primitive can return certain additional information,
 but this is optional to implement and therefore not considered. With
 a COMMUNICATION LOST notification, some more information may
 optionally be passed to the application (e.g., identification to
 retrieve unsent and unacknowledged data). SCTP "can invoke" a
 COMMUNICATION ERROR notification and "may send" a RESTART
 notification, making these two notifications optional to implement.
 The list provided under 'Status' includes "etc", indicating that more
 information could be provided. The primitive 'Get SRTT Report'
 returns information that is included in the information that 'Status'
 provides and is therefore not discussed. The 'Destroy SCTP Instance'
 API function was excluded: it erases the SCTP instance that was
 created by 'Initialize', but is not a Primitive as defined in this
 document because it does not relate to a transport feature. The
 SHUTDOWN EVENT informs an application that the peer has sent a
 SHUTDOWN, and hence no further data should be sent on this socket
 (section 6.1 of [RFC6458]). However, if an application would try to
 send data on the socket, it would get an error message anyway; thus,
 this event is classified as "just affecting the application
 programming style, not how the underlying protocol operates" and not
 included here.

3.4. Primitives Provided by UDP and UDP-Lite

 The initial UDP specification [RFC0768] states: "This User Datagram
 Protocol (UDP) is defined to make available a datagram mode of
 packet-switched computer communication in the environment of an
 interconnected set of computer networks." It "provides a procedure

https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458#section-6.1.7
https://datatracker.ietf.org/doc/html/rfc6458#section-6.1
https://datatracker.ietf.org/doc/html/rfc0768

Welzl, et al. Expires November 25, 2017 [Page 18]

Internet-Draft Transport Services May 2017

 for application programs to send messages to other programs with a
 minimum of protocol mechanism (..)".

 The User Interface section of RFC768 states that the user interface
 to an application should be able to create receive, source and
 destination ports and addresses, and provide operations to receive
 data based on ports with an indication of source port and address.
 Operations should be provided that allow datagrams be sent specifying
 the source and destination ports and addresses to be sent.

 UDP offers only a basic transport interface. UDP datagrams may be
 directly sent and received, without exchanging messages between the
 endpoints to setup a connection (i.e., no handshake is performed by
 the transport protocol prior to communication). Neither UDP nor UDP-
 Lite provide congestion control, retransmission, nor do they have
 support to optimise fragmentation and other transport functions.
 This means that applications using UDP need to provide additional
 functions on top of the UDP transport API [RFC8085]. Guidance on the
 use of the services provided by UDP is provided in the UDP Guidelines
 [RFC8085].

 The set of pass 1 primitives for UDP and UDP-Lite is documented in
 [FJ16].

3.5. The service of LEDBAT

 The service of the Low Extra Delay Background Transport (LEDBAT)
 congestion control mechanism is described as follows: "LEDBAT is
 designed for use by background bulk-transfer applications to be no
 more aggressive than standard TCP congestion control (as specified in

RFC 5681) and to yield in the presence of competing flows, thus
 limiting interference with the network performance of competing
 flows" [RFC6817].

 LEDBAT does not have any primitives, as LEDBAT is not a transport
 protocol. According to its specification [RFC6817], "LEDBAT can be
 used as part of a transport protocol or as part of an application, as
 long as the data transmission mechanisms are capable of carrying
 timestamps and acknowledging data frequently. LEDBAT can be used
 with TCP, Stream Control Transmission Protocol (SCTP), and Datagram
 Congestion Control Protocol (DCCP), with appropriate extensions where
 necessary; and it can be used with proprietary application protocols,
 such as those built on top of UDP for peer-to- peer (P2P)
 applications." At the time of writing, the appropriate extensions
 for TCP, SCTP or DCCP do not exist.

 A numer of configurable parameters exist in the LEDBAT specification:
 TARGET, which is the queuing delay target at which LEDBAT tries to

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc6817

Welzl, et al. Expires November 25, 2017 [Page 19]

Internet-Draft Transport Services May 2017

 operate, must be set to 100ms or less. ALLOWED_INCREASE (should be
 1, must be greater than 0) limits the speed at which LEDBAT increases
 its rate. GAIN, which MUST be set to 1 or less to avoid a faster
 ramp-up than TCP Reno, determines how quickly the sender responds to
 changes in queueing delay. Implementations may divide GAIN into two
 parameters, one for increase and a possibly larger one for decrease.
 We call these parameters GAIN_INC and GAIN_DEC here. BASE_HISTORY is
 the size of the list of measured base delays, and SHOULD be 10. This
 list can be filtered using a FILTER() function which is not
 prescribed [RFC6817], yielding a list of size CURRENT_FILTER. The
 initial and minimum congestion windows, INIT_CWND and MIN_CWND,
 should both be 2.

 Regarding which of these parameters should be under control of an
 application, the possible range goes from exposing nothing on the one
 hand, to considering everything that is not prescribed with a MUST in
 the specification as a parameter on the other hand. Function
 implementations are not provided as a parameter to any of the
 transport protocols discussed here, and hence we do not regard the
 FILTER() function as a parameter. However, to avoid unnecessarily
 limiting future implementations, we consider all other parameters
 above as tunable parameters that should be exposed.

4. Pass 2

 This pass categorizes the primitives from pass 1 based on whether
 they relate to a connection or to data transmission. Primitives are
 presented following the nomenclature
 "CATEGORY.[SUBCATEGORY].PRIMITIVENAME.PROTOCOL". The CATEGORY can be
 CONNECTION or DATA. Within the CONNECTION category, ESTABLISHMENT,
 AVAILABILITY, MAINTENANCE and TERMINATION subcategories can be
 considered. The DATA category does not have any SUBCATEGORY. The
 PROTOCOL name "UDP(-Lite)" is used when primitives are equivalent for
 UDP and UDP-Lite; the PROTOCOL name "TCP" refers to both TCP and
 MPTCP. We present "connection" as a general protocol-independent
 concept and use it to refer to, e.g., TCP connections (identifiable
 by a unique pair of IP addresses and TCP port numbers), SCTP
 associations (identifiable by multiple IP address and port number
 pairs), as well UDP and UDP-Lite connections (identifiable by a
 unique socket pair).

 Some minor details are omitted for the sake of generalization --
 e.g., SCTP's 'close' [RFC4960] returns success or failure, and lets
 the application control whether further receive or send operations or
 both are disabled [RFC6458]. This is not described in the same way
 for TCP [RFC0793], but these details play no significant role for the
 primitives provided by either TCP or SCTP (for the sake of being

https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc0793

Welzl, et al. Expires November 25, 2017 [Page 20]

Internet-Draft Transport Services May 2017

 generic, it could be assumed that both receive and send operations
 are disabled in both cases).

 The TCP 'send' and 'receive' primitives include usage of an "URGENT"
 mechanism. This mechanism is required to implement the "synch
 signal" used by telnet [RFC0854], but SHOULD NOT be used by new
 applications [RFC6093]. Because pass 2 is meant as a basis for the
 creation of future systems, the "URGENT" mechanism is excluded. This
 also concerns the notification "Urgent pointer advance" in the
 ERROR_REPORT (section 4.2.4.1 of [RFC1122]).

 Since LEDBAT is a congestion control mechanism and not a protocol, it
 is not currently defined when to enable / disable or configure the
 mechanism. For instance, it could be a one-time choice upon
 connection establishment or when listening for incoming connections,
 in which case it should be categorized under CONNECTION.ESTABLISHMENT
 or CONNECTION.AVAILABILITY, respectively. To avoid unnecessarily
 limiting future implementations, it was decided to place it under
 CONNECTION.MAINTENANCE, with all parameters that are described in the
 specification [RFC6817] made configurable.

4.1. CONNECTION Related Primitives

 ESTABLISHMENT:
 Active creation of a connection from one transport endpoint to one or
 more transport endpoints.
 Interfaces to UDP and UDP-Lite allow both connection-oriented and
 connection-less usage of the API [RFC8085].

 o CONNECT.TCP:
 Pass 1 primitive / event: 'open' (active) or 'open' (passive) with
 socket, followed by 'send'
 Parameters: 1 local IP address (optional); 1 destination transport
 address (for active open; else the socket and the local IP address
 of the succeeding incoming connection request will be maintained);
 timeout (optional); options (optional); MKT configuration
 (optional); user message (optional)
 Comments: If the local IP address is not provided, a default
 choice will automatically be made. The timeout can also be a
 retransmission count. The options are IP options to be used on
 all segments of the connection. At least the Source Route option
 is mandatory for TCP to provide. 'MKT configuration' refers to
 the ability to configure Master Key Tuples (MKTs) for
 authentication. The user message may be transmitted to the peer
 application immediately upon reception of the TCP SYN packet. To
 benefit from the lower latency this provides as part of the
 experimental TFO mechanism, its length must be at most the TCP's

https://datatracker.ietf.org/doc/html/rfc0854
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc8085

Welzl, et al. Expires November 25, 2017 [Page 21]

Internet-Draft Transport Services May 2017

 maximum segment size (minus TCP options used in the SYN). The
 message may also be delivered more than once to the application on
 the remote host.

 o CONNECT.SCTP:
 Pass 1 primitive / event: 'initialize', followed by 'enable /
 disable interleaving' (optional), followed by 'associate'
 Parameters: list of local SCTP port number / IP address pairs
 (initialize); one or several sockets (identifying the peer);
 outbound stream count; maximum allowed inbound stream count;
 adaptation layer indication (optional); chunk types required to be
 authenticated (optional); request interleaving on/off; maximum
 number of INIT attemps (optional); maximum init. RTO for INIT
 (optional); user message (optional); remote UDP port number
 (optional)
 Returns: socket list or failure
 Comments: 'initialize' needs to be called only once per list of
 local SCTP port number / IP address pairs. One socket will
 automatically be chosen; it can later be changed in MAINTENANCE.
 The user message may be transmitted to the peer application
 immediately upon reception of the packet containing the COOKIE-
 ECHO chunk. To benefit from the lower latency this provides, its
 length must be limited such that it fits into the packet
 containing the COOKIE-ECHO chunk. If a remote UDP port number is
 provided, SCTP packets will be encapsulated in UDP.

 o CONNECT.MPTCP:
 This is similar to CONNECT.TCP except for one additional boolean
 parameter that allows to enable or disable MPTCP for a particular
 connection or socket (default: enabled).

 o CONNECT.UDP(-Lite):
 Pass 1 primitive / event: 'connect' followed by 'send'.
 Parameters: 1 local IP address (default (ANY), or specified); 1
 destination transport address; 1 local port (default (OS chooses),
 or specified); 1 destination port (default (OS chooses), or
 specified).
 Comments: Associates a transport address creating a UDP(-Lite)
 socket connection. This can be called again with a new transport
 address to create a new connection. The CONNECT function allows
 an application to receive errors from messages sent to a transport
 address.

Welzl, et al. Expires November 25, 2017 [Page 22]

Internet-Draft Transport Services May 2017

 AVAILABILITY:
 Preparing to receive incoming connection requests.

 o LISTEN.TCP:
 Pass 1 primitive / event: 'open' (passive)
 Parameters: 1 local IP address (optional); 1 socket (optional);
 timeout (optional); buffer to receive a user message (optional);
 MKT configuration (optional)
 Comments: if the socket and/or local IP address is provided, this
 waits for incoming connections from only and/or to only the
 provided address. Else this waits for incoming connections
 without this / these constraint(s). ESTABLISHMENT can later be
 performed with 'send'. If a buffer is provided to receive a user
 message, a user message can be received from a TFO-enabled sender
 before TCP's connection handshake is completed. This message may
 arrive multiple times. 'MKT configuration' refers to the ability
 to configure Master Key Tuples (MKTs) for authentication.

 o LISTEN.SCTP:
 Pass 1 primitive / event: 'initialize', followed by 'COMMUNICATION
 UP' or 'RESTART' notification and possibly 'ADAPTATION LAYER'
 notification
 Parameters: list of local SCTP port number / IP address pairs
 (initialize)
 Returns: socket list; outbound stream count; inbound stream count;
 adaptation layer indication; chunks required to be authenticated;
 interleaving supported on both sides yes/no
 Comments: initialize needs to be called only once per list of
 local SCTP port number / IP address pairs. COMMUNICATION UP can
 also follow a COMMUNICATION LOST notification, indicating that the
 lost communication is restored. If the peer has provided an
 adaptation layer indication, an 'ADAPTATION LAYER' notification is
 issued.

 o LISTEN.MPTCP:
 This is similar to LISTEN.TCP except for one additional boolean
 parameter that allows to enable or disable MPTCP for a particular
 connection or socket (default: enabled).

 o LISTEN.UDP(-Lite):
 Pass 1 primitive / event: 'receive'.

Welzl, et al. Expires November 25, 2017 [Page 23]

Internet-Draft Transport Services May 2017

 Parameters: 1 local IP address (default (ANY), or specified); 1
 destination transport address; local port (default (OS chooses),
 or specified); destination port (default (OS chooses), or
 specified).
 Comments: The receive function registers the application to listen
 for incoming UDP(-Lite) datagrams at an endpoint.

 MAINTENANCE:
 Adjustments made to an open connection, or notifications about it.
 These are out-of-band messages to the protocol that can be issued at
 any time, at least after a connection has been established and before
 it has been terminated (with one exception: CHANGE_TIMEOUT.TCP can
 only be issued for an open connection when DATA.SEND.TCP is called).
 In some cases, these primitives can also be immediately issued during
 ESTABLISHMENT or AVAILABILITY, without waiting for the connection to
 be opened (e.g. CHANGE_TIMEOUT.TCP can be done using TCP's 'open'
 primitive). For UDP and UDP-Lite, these functions may establish a
 setting per connection, but may also be changed per datagram message.

 o CHANGE_TIMEOUT.TCP:
 Pass 1 primitive / event: 'open' or 'send' combined with
 unspecified control of per-connection state variables
 Parameters: timeout value (optional); ADV_UTO (optional); boolean
 UTO_ENABLED (optional, default false); boolean CHANGEABLE
 (optional, default true)
 Comments: when sending data, an application can adjust the
 connection's timeout value (time after which the connection will
 be aborted if data could not be delivered). If UTO_ENABLED is
 true, the user timeout value (or, if provided, the value ADV_UTO)
 will be advertised for the TCP on the other side of the connection
 to adapt its own user timeout accordingly. UTO_ENABLED controls
 whether the UTO option is enabled for a connection. This applies
 to both sending and receiving. CHANGEABLE controls whether the
 user timeout may be changed based on a UTO option received from
 the other end of the connection; it becomes false when 'timeout
 value' is used.

 o CHANGE_TIMEOUT.SCTP:
 Pass 1 primitive / event: 'Change HeartBeat' combined with
 'Configure Max. Retransmissions of an Association'
 Parameters: 'Change HeartBeat': heartbeat frequency; 'Configure
 Max. Retransmissions of an Association': Association.Max.Retrans

Welzl, et al. Expires November 25, 2017 [Page 24]

Internet-Draft Transport Services May 2017

 Comments: Change Heartbeat can enable / disable heartbeats in SCTP
 as well as change their frequency. The parameter
 Association.Max.Retrans defines after how many unsuccessful
 transmissions of any packets (including heartbeats) the
 association will be terminated; thus these two primitives /
 parameters together can yield a similar behavior for SCTP
 associations as CHANGE_TIMEOUT.TCP does for TCP connections.

 o DISABLE_NAGLE.TCP:
 Pass 1 primitive / event: not specified
 Parameters: one boolean value
 Comments: the Nagle algorithm delays data transmission to increase
 the chance to send a full-sized segment. An application must be
 able to disable this algorithm for a connection.

 o DISABLE_NAGLE.SCTP:
 Pass 1 primitive / event: 'Enable/disable NODELAY'
 Parameters: one boolean value
 Comments: Nagle-like algorithms delay data transmission to
 increase the chance to send a full-sized packet.

 o REQUEST_HEARTBEAT.SCTP:
 Pass 1 primitive / event: 'Request HeartBeat'
 Parameters: socket
 Returns: success or failure
 Comments: requests an immediate heartbeat on a path, returning
 success or failure.

 o ADD_PATH.MPTCP:
 Pass 1 primitive / event: not specified
 Parameters: local IP address and optionally the local port number
 Comments: the application specifies the local IP address and port
 number that must be used for a new subflow.

 o ADD_PATH.SCTP:
 Pass 1 primitive / event: Change Local Address / Set Peer Primary
 Parameters: local IP address

Welzl, et al. Expires November 25, 2017 [Page 25]

Internet-Draft Transport Services May 2017

 o REM_PATH.MPTCP:
 Pass 1 primitive / event: not specified
 Parameters: local IP address, local port number, remote IP
 address, remote port number
 Comments: the application removes the subflow specified by the IP/
 port-pair. The MPTCP implementation must trigger a removal of the
 subflow that belongs to this IP/port-pair.

 o REM_PATH.SCTP:
 Pass 1 primitive / event: 'Change Local Address / Set Peer
 Primary'
 Parameters: local IP address

 o SET_PRIMARY.SCTP:
 Pass 1 primitive / event: 'Set Primary'
 Parameters: socket
 Returns: result of attempting this operation
 Comments: update the current primary address to be used, based on
 the set of available sockets of the association.

 o SET_PEER_PRIMARY.SCTP:
 Pass 1 primitive / event: 'Change Local Address / Set Peer
 Primary'
 Parameters: local IP address
 Comments: this is only advisory for the peer.

 o CONFIG_SWITCHOVER.SCTP:
 Pass 1 primitive / event: 'Configure Path Switchover'
 Parameters: primary max retrans (no. of retransmissions after
 which a path is considered inactive), PF max retrans (no. of
 retransmissions after which a path is considered to be
 "Potentially Failed", and others will be preferably used)
 (optional)

 o STATUS.SCTP:
 Pass 1 primitive / event: 'Status', 'Enable / Disable
 Interleaving' and 'NETWORK STATUS CHANGE notification'.

Welzl, et al. Expires November 25, 2017 [Page 26]

Internet-Draft Transport Services May 2017

 Returns: data block with information about a specified
 association, containing: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window sizes; current
 local congestion window sizes; number of unacknowledged DATA
 chunks; number of DATA chunks pending receipt; primary path; most
 recent SRTT on primary path; RTO on primary path; SRTT and RTO on
 other destination addresses; MTU per path; interleaving supported
 yes/no.
 Comments: The NETWORK STATUS CHANGE notification informs the
 application about a socket becoming active/inactive; this only
 affects the programming style, as the same information is also
 available via 'Status'.

 o STATUS.MPTCP:
 Pass 1 primitive / event: not specified
 Returns: list of pairs of tuples of IP address and TCP port number
 of each subflow. The first of the pair is the local IP and port
 number, while the second is the remote IP and port number.

 o SET_DSCP.TCP:
 Pass 1 primitive / event: not specified
 Parameters: DSCP value
 Comments: this allows an application to change the DSCP value for
 outgoing segments.

 o SET_DSCP.SCTP:
 Pass 1 primitive / event: 'Set DSCP value'
 Parameters: DSCP value
 Comments: this allows an application to change the DSCP value for
 outgoing packets on a path.

 o SET_DSCP.UDP(-Lite):
 Pass 1 primitive / event: 'SET_DSCP'
 Parameter: DSCP value
 Comments: This allows an application to change the DSCP value for
 outgoing UDP(-Lite) datagrams. [RFC7657] and [RFC8085] provide
 current guidance on using this value with UDP.

https://datatracker.ietf.org/doc/html/rfc7657
https://datatracker.ietf.org/doc/html/rfc8085

Welzl, et al. Expires November 25, 2017 [Page 27]

Internet-Draft Transport Services May 2017

 o ERROR.TCP:
 Pass 1 primitive / event: 'ERROR_REPORT'
 Returns: reason (encoding not specified); subreason (encoding not
 specified)
 Comments: soft errors that can be ignored without harm by many
 applications; an application should be able to disable these
 notifications. The reported conditions include at least: ICMP
 error message arrived; Excessive Retransmissions.

 o ERROR.UDP(-Lite):
 Pass 1 primitive / event: 'ERROR_REPORT'
 Returns: Error report
 Comments: This returns soft errors that may be ignored without
 harm by many applications; An application must connect to be able
 receive these notifications.

 o SET_AUTH.TCP:
 Pass 1 primitive / event: not specified
 Parameters: current_key, rnext_key
 Comments: current_key and rnext_key are the preferred outgoing MKT
 and the preferred incoming MKT, respectively, for a segment that
 is sent on the connection.

 o SET_AUTH.SCTP:
 Pass 1 primitive / event: 'Set / Get Authentication Parameters'
 Parameters: key_id, key, hmac_id

 o GET_AUTH.TCP:
 Pass 1 primitive / event: not specified
 Parameters: current_key, rnext_key
 Comments: current_key and rnext_key are the preferred outgoing MKT
 and the preferred incoming MKT, respectively, that were carried on
 a recently received segment.

 o GET_AUTH.SCTP:
 Pass 1 primitive / event: 'Set / Get Authentication Parameters'
 Parameters: key_id, chunk_list

Welzl, et al. Expires November 25, 2017 [Page 28]

Internet-Draft Transport Services May 2017

 o RESET_STREAM.SCTP:
 Pass 1 primitive / event: 'Add / Reset Streams, Reset Association'
 Parameters: sid, direction

 o RESET_STREAM-EVENT.SCTP:
 Pass 1 primitive / event: 'STREAM RESET notification'
 Parameters: information about the result of RESET_STREAM.SCTP.
 Comments: This is issued when the procedure for resetting streams
 has completed.

 o RESET_ASSOC.SCTP:
 Pass 1 primitive / event: 'Add / Reset Streams, Reset Association'
 Parameters: information related to the extension, defined in
 [RFC3260].

 o RESET_ASSOC-EVENT.SCTP:
 Pass 1 primitive / event: 'ASSOCIATION RESET notification'
 Parameters: information about the result of RESET_ASSOC.SCTP.
 Comments: This is issued when the procedure for resetting an
 association has completed.

 o ADD_STREAM.SCTP:
 Pass 1 primitive / event: 'Add / Reset Streams, Reset Association'
 Parameters: number if outgoing and incoming streams to be added

 o ADD_STREAM-EVENT.SCTP:
 Pass 1 primitive / event: 'STREAM CHANGE notification'
 Parameters: information about the result of ADD_STREAM.SCTP.
 Comments: This is issued when the procedure for adding a stream
 has completed.

 o SET_STREAM_SCHEDULER.SCTP:
 Pass 1 primitive / event: 'Set Stream Scheduler'
 Parameters: scheduler identifier

https://datatracker.ietf.org/doc/html/rfc3260

Welzl, et al. Expires November 25, 2017 [Page 29]

Internet-Draft Transport Services May 2017

 Comments: choice of First Come First Serve, Round Robin, Round
 Robin per Packet, Priority Based, Fair Bandwidth, Weighted Fair
 Queuing.

 o CONFIGURE_STREAM_SCHEDULER.SCTP:
 Pass 1 primitive / event: 'Configure Stream Scheduler'
 Parameters: priority
 Comments: the priority value only applies when Priority Based or
 Weighted Fair Queuing scheduling is chosen with
 SET_STREAM_SCHEDULER.SCTP. The meaning of the parameter differs
 between these two schedulers but in both cases it realizes some
 form of prioritization regarding how bandwidth is divided among
 streams.

 o SET_FLOWLABEL.SCTP:
 Pass 1 primitive / event: 'Set IPv6 flow label'
 Parameters: flow label
 Comments: this allows an application to change the IPv6 header's
 flow label field for outgoing packets on a path.

 o AUTHENTICATION_NOTIFICATION-EVENT.SCTP:
 Pass 1 primitive / event: 'AUTHENTICATION notification'
 Returns: information regarding key management.

 o CONFIG_SEND_BUFFER.SCTP:
 Pass 1 primitive / event: 'Configure send buffer size'
 Parameters: size value in octets

 o CONFIG_RECEIVE_BUFFER.SCTP:
 Pass 1 primitive / event: 'Configure receive buffer size'
 Parameters: size value in octets
 Comments: this controls the receiver window.

 o CONFIG_FRAGMENTATION.SCTP:
 Pass 1 primitive / event: 'Configure message fragmentation'
 Parameters: one boolean value (enable/disable), maximum
 fragmentation size (optional; default: PMTU)

Welzl, et al. Expires November 25, 2017 [Page 30]

Internet-Draft Transport Services May 2017

 Comments: if fragmentation is enabled, messages exceeding the
 maximum fragmentation size will be fragmented. If fragmentation
 is disabled, trying to send a message that exceeds the maximum
 fragmentation size will produce an error.

 o CONFIG_PMTUD.SCTP:
 Pass 1 primitive / event: 'Configure Path MTU Discovery'
 Parameters: one boolean value (PMTUD on/off), PMTU value
 (optional)
 Returns: PMTU value
 Comments: This returns a meaningful PMTU value when PMTUD is
 enabled (the boolean is true), and the PMTU value can be set if
 PMTUD is disabled (the boolean is false)

 o CONFIG_DELAYED_SACK.SCTP:
 Pass 1 primitive / event: 'Configure delayed SACK timer'
 Parameters: one boolean value (delayed SACK on/off), timer value
 (optional), number of packets to wait for (default 2)
 Comments: If delayed SACK is enabled, SCTP will send a SACK upon
 either receiving the provided number of packets or when the timer
 expires, whatever occurs first.

 o CONFIG_RTO.SCTP:
 Pass 1 primitive / event: 'Configure RTO calculation'
 Parameters: init (optional), min (optional), max (optional)
 Comments: This adjusts the initial, minimum and maximum RTO
 values.

 o SET_COOKIE_LIFE.SCTP:
 Pass 1 primitive / event: 'Set Cookie life value'
 Parameters: cookie life value

 o SET_MAX_BURST.SCTP:
 Pass 1 primitive / event: 'Set maximum burst'
 Parameters: max burst value
 Comments: not all implementations allow values above the default
 of 4.

Welzl, et al. Expires November 25, 2017 [Page 31]

Internet-Draft Transport Services May 2017

 o SET_PARTIAL_DELIVERY_POINT.SCTP:
 Pass 1 primitive / event: 'Set Partial Delivery Point'
 Parameters: partial delivery point (integer)
 Comments: this parameter must be smaller or equal to the socket
 receive buffer size.

 o SET_CHECKSUM_ENABLED.UDP:
 Pass 1 primitive / event: 'CHECKSUM_ENABLED'.
 Parameters: 0 when zero checksum is used at sender, 1 for checksum
 at sender (default)

 o SET_CHECKSUM_REQUIRED.UDP:
 Pass 1 primitive / event: 'REQUIRE_CHECKSUM'.
 Parameter: 0 to allow zero checksum, 1 when a non-zero checksum is
 required (default) at receiver

 o SET_CHECKSUM_COVERAGE.UDP-Lite:
 Pass 1 primitive / event: 'SET_CHECKSUM_COVERAGE'
 Parameters: Coverage length at sender (default maximum coverage)

 o SET_MIN_CHECKSUM_COVERAGE.UDP-Lite:
 Pass 1 primitive / event: 'SET_MIN_COVERAGE'.
 Parameter: Coverage length at receiver (default minimum coverage)

 o SET_DF.UDP(-Lite):
 Pass 1 primitive event: 'SET_DF'.
 Parameter: 0 when DF is not set (default) in the IPv4 header, 1
 when DF is set

 o GET_MMS_S.UDP(-Lite):
 Pass 1 primitive event: 'GET_MMS_S'.
 Comments: this retrieves the maximum transport-message size that
 may be sent using a non-fragmented IP packet from the configured
 interface.

Welzl, et al. Expires November 25, 2017 [Page 32]

Internet-Draft Transport Services May 2017

 o GET_MMS_R.UDP(-Lite):
 Pass 1 primitive event: 'GET_MMS_R'.
 Comments: this retrieves the maximum transport-message size that
 may be received from the configured interface.

 o SET_TTL.UDP(-Lite) (IPV6_UNICAST_HOPS):
 Pass 1 primitive / event: 'SET_TTL' and 'SET_IPV6_UNICAST_HOPS'
 Parameters: IPv4 TTL value or IPv6 Hop Count value
 Comments: This allows an application to change the IPv4 TTL of
 IPv6 Hop count value for outgoing UDP(-Lite) datagrams.

 o GET_TTL.UDP(-Lite) (IPV6_UNICAST_HOPS):
 Pass 1 primitive / event: 'GET_TTL' and 'GET_IPV6_UNICAST_HOPS'
 Returns: IPv4 TTL value or IPv6 Hop Count value
 Comments: This allows an application to read the the IPv4 TTL of
 IPv6 Hop count value from a received UDP(-Lite) datagram.

 o SET_ECN.UDP(-Lite):
 Pass 1 primitive / event: 'SET_ECN'
 Parameters: ECN value
 Comments: This allows a UDP(-Lite) application to set the ECN
 codepoint field for outgoing UDP(-Lite) datagrams. Defaults to
 sending '00'.

 o GET_ECN.UDP(-Lite):
 Pass 1 primitive / event: 'GET_ECN'
 Parameters: ECN value
 Comments: This allows a UDP(-Lite) application to read the ECN
 codepoint field from a received UDP(-Lite) datagram.

 o SET_IP_OPTIONS.UDP(-Lite):
 Pass 1 primitive / event: 'SET_IP_OPTIONS'
 Parameters: options
 Comments: This allows a UDP(-Lite) application to set IP Options
 for outgoing UDP(-Lite) datagrams. These options can at least be
 the Source Route, Record Route, and Time Stamp option.

Welzl, et al. Expires November 25, 2017 [Page 33]

Internet-Draft Transport Services May 2017

 o GET_IP_OPTIONS.UDP(-Lite):
 Pass 1 primitive / event: 'GET_IP_OPTIONS'
 Returns: options
 Comments: This allows a UDP(-Lite) application to receive any IP
 options that are contained in a received UDP(-Lite) datagram.

 o CONFIGURE.LEDBAT:
 Pass 1 primitive / event: N/A
 Parameters: enable (boolean), TARGET, ALLOWED_INCREASE, GAIN_INC,
 GAIN_DEC, BASE_HISTORY, CURRENT_FILTER, INIT_CWND, MIN_CWND
 Comments: enable is a newly invented parameter that enables or
 disables the whole LEDBAT service.

 TERMINATION:
 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o CLOSE.TCP:
 Pass 1 primitive / event: 'close'
 Comments: this terminates the sending side of a connection after
 reliably delivering all remaining data.

 o CLOSE.SCTP:
 Pass 1 primitive / event: 'Shutdown'
 Comments: this terminates a connection after reliably delivering
 all remaining data.

 o ABORT.TCP:
 Pass 1 primitive / event: 'abort'
 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o ABORT.SCTP:
 Pass 1 primitive / event: 'abort'
 Parameters: abort reason to be given to the peer (optional)

Welzl, et al. Expires November 25, 2017 [Page 34]

Internet-Draft Transport Services May 2017

 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o ABORT.UDP(-Lite):
 Pass 1 primitive event: 'CLOSE'
 Comments: this terminates a connection without delivering
 remaining data. No further UDP(-Lite) datagrams are sent/received
 for this transport service instance.

 o TIMEOUT.TCP:
 Pass 1 primitive / event: 'USER TIMEOUT' event
 Comments: the application is informed that the connection is
 aborted. This event is executed on expiration of the timeout set
 in CONNECTION.ESTABLISHMENT.CONNECT.TCP (possibly adjusted in
 CONNECTION.MAINTENANCE.CHANGE_TIMEOUT.TCP).

 o TIMEOUT.SCTP:
 Pass 1 primitive / event: 'COMMUNICATION LOST' event
 Comments: the application is informed that the connection is
 aborted. this event is executed on expiration of the timeout that
 should be enabled by default (see the beginning of section 8.3 in
 [RFC4960]) and was possibly adjusted in
 CONNECTION.MAINTENANCE.CHANGE_TIMEOOUT.SCTP.

 o ABORT-EVENT.TCP:
 Pass 1 primitive / event: not specified.

 o ABORT-EVENT.SCTP:
 Pass 1 primitive / event: 'COMMUNICATION LOST' event
 Returns: abort reason from the peer (if available)
 Comments: the application is informed that the other side has
 aborted the connection using CONNECTION.TERMINATION.ABORT.SCTP.

 o CLOSE-EVENT.TCP:
 Pass 1 primitive / event: not specified.

https://datatracker.ietf.org/doc/html/rfc4960#section-8.3
https://datatracker.ietf.org/doc/html/rfc4960#section-8.3

Welzl, et al. Expires November 25, 2017 [Page 35]

Internet-Draft Transport Services May 2017

 o CLOSE-EVENT.SCTP:
 Pass 1 primitive / event: 'SHUTDOWN COMPLETE' event
 Comments: the application is informed that
 CONNECTION.TERMINATION.CLOSE.SCTP was successfully completed.

4.2. DATA Transfer Related Primitives

 All primitives in this section refer to an existing connection, i.e.
 a connection that was either established or made available for
 receiving data (although this is optional for the primitives of UDP(-
 Lite)). In addition to the listed parameters, all sending primitives
 contain a reference to a data block and all receiving primitives
 contain a reference to available buffer space for the data. Note
 that CONNECT.TCP and LISTEN.TCP in the ESTABLISHMENT and AVAILABILITY
 category also allow to transfer data (an optional user message)
 before the connection is fully established.

 o SEND.TCP:
 Pass 1 primitive / event: 'send'
 Parameters: timeout (optional), current_key (optional), rnext_key
 (optional)
 Comments: this gives TCP a data block for reliable transmission to
 the TCP on the other side of the connection. The timeout can be
 configured with this call (see also
 CONNECTION.MAINTENANCE.CHANGE_TIMEOUT.TCP). current_key and
 rnext_key are authentication parameters that can be configured
 with this call (see also CONNECTION.MAINTENANCE.SET_AUTH.TCP).

 o SEND.SCTP:
 Pass 1 primitive / event: 'Send'
 Parameters: stream number; context (optional); socket (optional);
 unordered flag (optional); no-bundle flag (optional); payload
 protocol-id (optional); pr-policy (optional) pr-value (optional);
 sack-immediately flag (optional); key-id (optional)
 Comments: this gives SCTP a data block for transmission to the
 SCTP on the other side of the connection (SCTP association). The
 'stream number' denotes the stream to be used. The 'context'
 number can later be used to refer to the correct message when an
 error is reported. The 'socket' can be used to state which path
 should be preferred, if there are multiple paths available (see
 also CONNECTION.MAINTENANCE.SETPRIMARY.SCTP). The data block can
 be delivered out-of-order if the 'unordered flag' is set. The
 'no-bundle flag' can be set to indicate a preference to avoid

Welzl, et al. Expires November 25, 2017 [Page 36]

Internet-Draft Transport Services May 2017

 bundling. The 'payload protocol-id' is a number that will, if
 provided, be handed over to the receiving application. Using pr-
 policy and pr-value the level of reliability can be controlled.
 The 'sack-immediately' flag can be used to indicate that the peer
 should not delay the sending of a SACK corresponding to the
 provided user message. If specified, the provided key-id is used
 for authenticating the user message.

 o SEND.UDP(-Lite):
 Pass 1 primitive / event: 'SEND'
 Parameters: IP Address and Port Number of the destination endpoint
 (optional if connected).
 Comments: This provides a message for unreliable transmission
 using UDP(-Lite) to the specified transport address. IP address
 and Port may be omitted for connected UDP(-Lite) sockets. All
 CONNECTION.MAINTENANCE.SET_*.UDP(-Lite) primitives apply per
 message sent.

 o RECEIVE.TCP:
 Pass 1 primitive / event: 'receive'.
 Parameters: current_key (optional), rnext_key (optional).
 Comments: current_key and rnext_key are authentication parameters
 that can be read with this call (see also
 CONNECTION.MAINTENANCE.GET_AUTH.TCP).

 o RECEIVE.SCTP:
 Pass 1 primitive / event: 'DATA ARRIVE' notification, followed by
 'Receive'
 Parameters: stream number (optional)
 Returns: stream sequence number (optional), partial flag
 (optional)
 Comments: if the 'stream number' is provided, the call to receive
 only receives data on one particular stream. If a partial message
 arrives, this is indicated by the 'partial flag', and then the
 'stream sequence number' must be provided such that an application
 can restore the correct order of data blocks that comprise an
 entire message. Additionally, a delivery number lets the
 application detect reordering.

 o RECEIVE.UDP(-Lite):

Welzl, et al. Expires November 25, 2017 [Page 37]

Internet-Draft Transport Services May 2017

 Pass 1 primitive / event: 'RECEIVE',
 Parameters: Buffer for received datagram.
 Comments: All CONNECTION.MAINTENANCE.GET_*.UDP(-Lite) primitives
 apply per message received.

 o SENDFAILURE-EVENT.SCTP:
 Pass 1 primitive / event: 'SEND FAILURE' notification, optionally
 followed by 'Receive Unsent Message' or 'Receive Unacknowledged
 Message'
 Returns: cause code; context; unsent or unacknowledged message
 (optional)
 Comments: 'cause code' indicates the reason of the failure, and
 'context' is the context number if such a number has been provided
 in DATA.SEND.SCTP, for later use with 'Receive Unsent Message' or
 'Receive Unacknowledged Message', respectively. These primitives
 can be used to retrieve the unsent or unacknowledged message (or
 part of the message, in case a part was delivered) if desired.

 o SEND_FAILURE.UDP(-Lite):
 Pass 1 primitive / event: 'SEND'
 Comments: This may be used to probe for the effective PMTU when
 using in combination with the 'MAINTENANCE.SET_DF' primitive.

 o SENDER_DRY-EVENT.SCTP:
 Pass 1 primitive / event: 'SENDER DRY' notification
 Comments: This informs the application that the stack has no more
 user data to send.

 o PARTIAL_DELIVERY_ABORTED-EVENT.SCTP:
 Pass 1 primitive / event: 'PARTIAL DELIVERY ABORTED' notification
 Comments: This informs the receiver of a partial message that the
 further delivery of the message has been aborted.

Welzl, et al. Expires November 25, 2017 [Page 38]

Internet-Draft Transport Services May 2017

5. Pass 3

 This section presents the superset of all transport features in all
 protocols that were discussed in the preceding sections, based on the
 list of primitives in pass 2 but also on text in pass 1 to include
 transport features that can be configured in one protocol and are
 static properties in another (congestion control, for example).
 Again, some minor details are omitted for the sake of generalization
 -- e.g., TCP may provide various different IP options, but only
 source route is mandatory to implement, and this detail is not
 visible in the Pass 3 transport feature "Specify IP Options".

5.1. CONNECTION Related Transport Features

 ESTABLISHMENT:
 Active creation of a connection from one transport endpoint to one or
 more transport endpoints.

 o Connect
 Protocols: TCP, SCTP, UDP(-Lite)

 o Specify which IP Options must always be used
 Protocols: TCP, UDP(-Lite)

 o Request multiple streams
 Protocols: SCTP

 o Limit the number of inbound streams
 Protocols: SCTP

 o Specify number of attempts and/or timeout for the first
 establishment message
 Protocols: TCP, SCTP

 o Obtain multiple sockets
 Protocols: SCTP

Welzl, et al. Expires November 25, 2017 [Page 39]

Internet-Draft Transport Services May 2017

 o Disable MPTCP
 Protocols: MPTCP

 o Configure authentication
 Protocols: TCP, SCTP
 Comments: With TCP, this allows to configure Master Key Tuples
 (MKTs). In SCTP, this allows to specify which chunk types must
 always be authenticated. DATA, ACK etc. are different 'chunks' in
 SCTP; one or more chunks may be included in a single packet.

 o Indicate an Adaptation Layer (via an adaptation code point)
 Protocols: SCTP

 o Request to negotiate interleaving of user messages
 Protocols: SCTP

 o Hand over a message to transfer (possibly multiple times) before
 connection establishment
 Protocols: TCP

 o Hand over a message to transfer during connection establishment
 Protocols: SCTP

 o Enable UDP encapsulation with a specified remote UDP port number
 Protocols: SCTP

 AVAILABILITY:
 Preparing to receive incoming connection requests.

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP, UDP(-Lite)

Welzl, et al. Expires November 25, 2017 [Page 40]

Internet-Draft Transport Services May 2017

 o Listen, N specified local interfaces
 Protocols: SCTP

 o Listen, all local interfaces
 Protocols: TCP, SCTP, UDP(-Lite)

 o Obtain requested number of streams
 Protocols: SCTP

 o Limit the number of inbound streams
 Protocols: SCTP

 o Specify which IP Options must always be used
 Protocols: TCP, UDP(-Lite)

 o Disable MPTCP
 Protocols: MPTCP

 o Configure authentication
 Protocols: TCP, SCTP
 Comments: With TCP, this allows to configure Master Key Tuples
 (MKTs). In SCTP, this allows to specify which chunk types must
 always be authenticated. DATA, ACK etc. are different 'chunks' in
 SCTP; one or more chunks may be included in a single packet.

 o Indicate an Adaptation Layer (via an adaptation code point)
 Protocols: SCTP

 MAINTENANCE:
 Adjustments made to an open connection, or notifications about it.

Welzl, et al. Expires November 25, 2017 [Page 41]

Internet-Draft Transport Services May 2017

 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP, SCTP

 o Suggest timeout to the peer
 Protocols: TCP

 o Disable Nagle algorithm
 Protocols: TCP, SCTP

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 Protocols: TCP

 o Add path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address

 o Remove path
 Protocols: MPTCP, SCTP
 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port
 SCTP Parameters: local IP address

 o Set primary path
 Protocols: SCTP

Welzl, et al. Expires November 25, 2017 [Page 42]

Internet-Draft Transport Services May 2017

 o Suggest primary path to the peer
 Protocols: SCTP

 o Configure Path Switchover
 Protocols: SCTP

 o Obtain status (query or notification)
 Protocols: SCTP, MPTCP
 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window sizes; current
 local congestion window sizes; number of unacknowledged DATA
 chunks; number of DATA chunks pending receipt; primary path; most
 recent SRTT on primary path; RTO on primary path; SRTT and RTO on
 other destination addresses; MTU per path; interleaving supported
 yes/no
 MPTCP parameters: subflow-list (identified by source-IP; source-
 Port; destination-IP; destination-Port)

 o Specify DSCP field
 Protocols: TCP, SCTP, UDP(-Lite)

 o Notification of ICMP error message arrival
 Protocols: TCP, UDP(-Lite)

 o Change authentication parameters
 Protocols: TCP, SCTP

 o Obtain authentication information
 Protocols: TCP, SCTP

 o Reset Stream
 Protocols: SCTP

Welzl, et al. Expires November 25, 2017 [Page 43]

Internet-Draft Transport Services May 2017

 o Notification of Stream Reset
 Protocols: STCP

 o Reset Association
 Protocols: SCTP

 o Notification of Association Reset
 Protocols: STCP

 o Add Streams
 Protocols: SCTP

 o Notification of Added Stream
 Protocols: STCP

 o Choose a scheduler to operate between streams of an association
 Protocols: SCTP

 o Configure priority or weight for a scheduler
 Protocols: SCTP

 o Specify IPv6 flow label field
 Protocols: SCTP

 o Configure send buffer size
 Protocols: SCTP

 o Configure receive buffer (and rwnd) size
 Protocols: SCTP

Welzl, et al. Expires November 25, 2017 [Page 44]

Internet-Draft Transport Services May 2017

 o Configure message fragmentation
 Protocols: SCTP

 o Configure PMTUD
 Protocols: SCTP

 o Configure delayed SACK timer
 Protocols: SCTP

 o Set Cookie life value
 Protocols: SCTP

 o Set maximum burst
 Protocols: SCTP

 o Configure size where messages are broken up for partial delivery
 Protocols: SCTP

 o Disable checksum when sending
 Protocols: UDP

 o Disable checksum requirement when receiving
 Protocols: UDP

 o Specify checksum coverage used by the sender
 Protocols: UDP-Lite

 o Specify minimum checksum coverage required by receiver
 Protocols: UDP-Lite

Welzl, et al. Expires November 25, 2017 [Page 45]

Internet-Draft Transport Services May 2017

 o Specify DF field
 Protocols: UDP(-Lite)

 o Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 Protocols: UDP(-Lite)

 o Get max. transport-message size that may be received from the
 configured interface
 Protocols: UDP(-Lite)

 o Specify TTL/Hop count field
 Protocols: UDP(-Lite)

 o Obtain TTL/Hop count field
 Protocols: UDP(-Lite)

 o Specify ECN field
 Protocols: UDP(-Lite)

 o Obtain ECN field
 Protocols: UDP(-Lite)

 o Specify IP Options
 Protocols: UDP(-Lite)

 o Obtain IP Options
 Protocols: UDP(-Lite)

 o Enable and configure "Low Extra Delay Background Transfer"

Welzl, et al. Expires November 25, 2017 [Page 46]

Internet-Draft Transport Services May 2017

 Protocols: A protocol implementing the LEDBAT congestion control
 mechanism

 TERMINATION:
 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP, SCTP
 Comments: A TCP endpoint locally only closes the connection for
 sending; it may still receive data afterwards.

 o Abort without delivering remaining data, causing an event
 informing the application on the other side
 Protocols: TCP, SCTP
 Comments: In SCTP a reason can optionally be given by the
 application on the aborting side, which can then be received by
 the application on the other side.

 o Abort without delivering remaining data, not causing an event
 informing the application on the other side
 Protocols: UDP(-Lite)

 o Timeout event when data could not be delivered for too long
 Protocols: TCP, SCTP
 Comments: the timeout is configured with CONNECTION.MAINTENANCE
 "Change timeout for aborting connection (using retransmit limit or
 time value)".

5.2. DATA Transfer Related Transport Features

 All transport features in this section refer to an existing
 connection, i.e. a connection that was either established or made
 available for receiving data. Note that TCP allows to transfer data
 (a single optional user message, possibly arriving multiple times)

Welzl, et al. Expires November 25, 2017 [Page 47]

Internet-Draft Transport Services May 2017

 before the connection is fully established. Reliable data transfer
 entails delay -- e.g. for the sender to wait until it can transmit
 data, or due to retransmission in case of packet loss.

5.2.1. Sending Data

 All transport features in this section are provided by DATA.SEND from
 pass 2. DATA.SEND is given a data block from the application, which
 we here call a "message" if the beginning and end of the data block
 can be identified at the receiver, and "data" otherwise.

 o Reliably transfer data, with congestion control
 Protocols: TCP

 o Reliably transfer a message, with congestion control
 Protocols: SCTP

 o Unreliably transfer a message, with congestion control
 Protocols: SCTP

 o Unreliably transfer a message, without congestion control
 Protocols: UDP(-Lite)

 o Configurable Message Reliability
 Protocols: SCTP

 o Choice of stream
 Protocols: SCTP

 o Choice of path (destination address)
 Protocols: SCTP

 o Choice between unordered (potentially faster) or ordered delivery
 of messages

Welzl, et al. Expires November 25, 2017 [Page 48]

Internet-Draft Transport Services May 2017

 Protocols: SCTP

 o Request not to bundle messages
 Protocols: SCTP

 o Specifying a "payload protocol-id" (handed over as such by the
 receiver)
 Protocols: SCTP

 o Specifying a key id to be used to authenticate a message
 Protocols: SCTP

 o Request not to delay the acknowledgement (SACK) of a message
 Protocols: SCTP

5.2.2. Receiving Data

 All transport features in this section are provided by DATA.RECEIVE
 from pass 2. DATA.RECEIVE fills a buffer provided by the
 application, with what we here call a "message" if the beginning and
 end of the data block can be identified at the receiver, and "data"
 otherwise.

 o Receive data (with no message delineation)
 Protocols: TCP

 o Receive a message
 Protocols: SCTP, UDP(-Lite)

 o Choice of stream to receive from
 Protocols: SCTP

Welzl, et al. Expires November 25, 2017 [Page 49]

Internet-Draft Transport Services May 2017

 o Information about partial message arrival
 Protocols: SCTP
 Comments: In SCTP, partial messages are combined with a stream
 sequence number so that the application can restore the correct
 order of data blocks an entire message consists of.

 o Obtain a message delivery number
 Protocols: SCTP
 Comments: This number can let applications detect and, if desired,
 correct reordering.

5.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to DATA.SEND from pass 2.

 o Notification of an unsent (part of a) message
 Protocols: SCTP, UDP(-Lite)

 o Notification of an unacknowledged (part of a) message
 Protocols: SCTP

 o Notification that the stack has no more user data to send
 Protocols: SCTP

 o Notification to a receiver that a partial message delivery has
 been aborted
 Protocols: SCTP

6. Acknowledgements

 The authors would like to thank (in alphabetical order) Bob Briscoe,
 David Hayes, Karen Nielsen, Joe Touch and Brian Trammell for
 providing valuable feedback on this document. We especially thank

Welzl, et al. Expires November 25, 2017 [Page 50]

Internet-Draft Transport Services May 2017

 Christoph Paasch for providing input related to Multipath TCP, and
 Gorry Fairhurst and Tom Jones for providing input related to UDP(-
 Lite). This work has received funding from the European Union's
 Horizon 2020 research and innovation programme under grant agreement
 No. 644334 (NEAT). The views expressed are solely those of the
 author(s).

7. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

8. Security Considerations

 Authentication, confidentiality protection, and integrity protection
 are identified as transport features [RFC8095]. As currently
 deployed in the Internet, these transport features are generally
 provided by a protocol or layer on top of the transport protocol; no
 current full-featured standards-track transport protocol provides
 these transport features on its own. Therefore, these transport
 features are not considered in this document, with the exception of
 native authentication capabilities of TCP and SCTP for which the
 security considerations in [RFC5925] and [RFC4895] apply.

 Security considerations for the use of UDP and UDP-Lite are provided
 in the referenced RFCs. Security guidance for application usage is
 provided in the UDP-Guidelines [RFC8085].

9. References

9.1. Normative References

 [FJ16] Fairhurst, G. and T. Jones, "Features of the User Datagram
 Protocol (UDP) and Lightweight UDP (UDP-Lite) Transport
 Protocols", Internet-draft draft-ietf-taps-transports-

usage-udp-02, May 2017.

 [I-D.ietf-tsvwg-sctp-ndata]
 Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", draft-ietf-tsvwg-

sctp-ndata-08 (work in progress), October 2016.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-usage-udp-02
https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-usage-udp-02
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-08
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata-08
https://datatracker.ietf.org/doc/html/rfc768
http://www.rfc-editor.org/info/rfc768

Welzl, et al. Expires November 25, 2017 [Page 51]

Internet-Draft Transport Services May 2017

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <http://www.rfc-editor.org/info/rfc3758>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <http://www.rfc-editor.org/info/rfc4895>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061,
 DOI 10.17487/RFC5061, September 2007,
 <http://www.rfc-editor.org/info/rfc5061>.

 [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
RFC 5482, DOI 10.17487/RFC5482, March 2009,

 <http://www.rfc-editor.org/info/rfc5482>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458,
 DOI 10.17487/RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc3758
http://www.rfc-editor.org/info/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
http://www.rfc-editor.org/info/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5061
http://www.rfc-editor.org/info/rfc5061
https://datatracker.ietf.org/doc/html/rfc5482
http://www.rfc-editor.org/info/rfc5482
https://datatracker.ietf.org/doc/html/rfc5925
http://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6182
http://www.rfc-editor.org/info/rfc6182
https://datatracker.ietf.org/doc/html/rfc6458
http://www.rfc-editor.org/info/rfc6458

Welzl, et al. Expires November 25, 2017 [Page 52]

Internet-Draft Transport Services May 2017

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration",

RFC 6525, DOI 10.17487/RFC6525, February 2012,
 <http://www.rfc-editor.org/info/rfc6525>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <http://www.rfc-editor.org/info/rfc6817>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <http://www.rfc-editor.org/info/rfc6897>.

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951,
 DOI 10.17487/RFC6951, May 2013,
 <http://www.rfc-editor.org/info/rfc6951>.

 [RFC7053] Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
 <http://www.rfc-editor.org/info/rfc7053>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

 [RFC7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partially Reliable Stream
 Control Transmission Protocol Extension", RFC 7496,
 DOI 10.17487/RFC7496, April 2015,
 <http://www.rfc-editor.org/info/rfc7496>.

 [RFC7829] Nishida, Y., Natarajan, P., Caro, A., Amer, P., and K.
 Nielsen, "SCTP-PF: A Quick Failover Algorithm for the
 Stream Control Transmission Protocol", RFC 7829,
 DOI 10.17487/RFC7829, April 2016,
 <http://www.rfc-editor.org/info/rfc7829>.

https://datatracker.ietf.org/doc/html/rfc6525
http://www.rfc-editor.org/info/rfc6525
https://datatracker.ietf.org/doc/html/rfc6817
http://www.rfc-editor.org/info/rfc6817
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
http://www.rfc-editor.org/info/rfc6897
https://datatracker.ietf.org/doc/html/rfc6951
http://www.rfc-editor.org/info/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
http://www.rfc-editor.org/info/rfc7053
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7496
http://www.rfc-editor.org/info/rfc7496
https://datatracker.ietf.org/doc/html/rfc7829
http://www.rfc-editor.org/info/rfc7829

Welzl, et al. Expires November 25, 2017 [Page 53]

Internet-Draft Transport Services May 2017

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <http://www.rfc-editor.org/info/rfc8085>.

9.2. Informative References

 [I-D.draft-gjessing-taps-minset]
 Gjessing, S. and M. Welzl, "A Minimal Set of Transport
 Services for TAPS Systems", Internet-draft draft-gjessing-

taps-minset-04, March 2017.

 [RFC0854] Postel, J. and J. Reynolds, "Telnet Protocol
 Specification", STD 8, RFC 854, DOI 10.17487/RFC0854, May
 1983, <http://www.rfc-editor.org/info/rfc854>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <http://www.rfc-editor.org/info/rfc2474>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <http://www.rfc-editor.org/info/rfc2475>.

 [RFC3260] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, DOI 10.17487/RFC3260, April 2002,
 <http://www.rfc-editor.org/info/rfc3260>.

 [RFC5461] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461,
 DOI 10.17487/RFC5461, February 2009,
 <http://www.rfc-editor.org/info/rfc5461>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <http://www.rfc-editor.org/info/rfc6093>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <http://www.rfc-editor.org/info/rfc7414>.

https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc8085
http://www.rfc-editor.org/info/rfc8085
https://datatracker.ietf.org/doc/html/draft-gjessing-taps-minset
https://datatracker.ietf.org/doc/html/draft-gjessing-taps-minset-04
https://datatracker.ietf.org/doc/html/draft-gjessing-taps-minset-04
https://datatracker.ietf.org/doc/html/rfc854
http://www.rfc-editor.org/info/rfc854
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2474
http://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc2475
http://www.rfc-editor.org/info/rfc2475
https://datatracker.ietf.org/doc/html/rfc3260
http://www.rfc-editor.org/info/rfc3260
https://datatracker.ietf.org/doc/html/rfc5461
http://www.rfc-editor.org/info/rfc5461
https://datatracker.ietf.org/doc/html/rfc6093
http://www.rfc-editor.org/info/rfc6093
https://datatracker.ietf.org/doc/html/rfc7414
http://www.rfc-editor.org/info/rfc7414

Welzl, et al. Expires November 25, 2017 [Page 54]

Internet-Draft Transport Services May 2017

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <http://www.rfc-editor.org/info/rfc7657>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <http://www.rfc-editor.org/info/rfc8095>.

Appendix A. Overview of RFCs used as input for pass 1

 TCP: [RFC0793], [RFC1122], [RFC5482], [RFC5925], [RFC7413]
 MPTCP: [RFC6182], [RFC6824], [RFC6897]
 SCTP: RFCs without a socket API specification: [RFC3758], [RFC4895],
 [RFC4960], [RFC5061].
 RFCs that include a socket API specification: [RFC6458],
 [RFC6525], [RFC6951], [RFC7053], [RFC7496] [RFC7829].
 UDP(-Lite): See [FJ16]
 LEDBAT: [RFC6817].

Appendix B. How this document was developed

 This section gives an overview of the method that was used to develop
 this document. It was given to contributors for guidance, and it can
 be helpful for future updates or extensions.

 This document is only concerned with transport features that are
 explicitly exposed to applications via primitives. It also strictly
 follows RFC text: if a transport feature is truly relevant for an
 application, the RFCs should say so, and they should describe how to
 use and configure it. Thus, the approach followed for developing
 this document was to identify the right RFCs, then analyze and
 process their text.

 Primitives that MAY be implemented by a transport protocol were
 excluded. To be included, the minimum requirement level for a
 primitive to be implemented by a protocol was SHOULD. Where
 [RFC2119]-style requirements levels are not used, primitives were
 excluded when they are described in conjunction with statements like,
 e.g.: "some implementations also provide" or "an implementation may
 also". Excluded primitives or parameters were briefly described in a
 dedicated subsection.

 Pass 1: This began by identifying text that talks about primitives.
 An API specification, abstract or not, obviously describes primitives
 -- but we are not *only* interested in API specifications. The text

https://datatracker.ietf.org/doc/html/rfc7657
http://www.rfc-editor.org/info/rfc7657
https://datatracker.ietf.org/doc/html/rfc8095
http://www.rfc-editor.org/info/rfc8095
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc3758
https://datatracker.ietf.org/doc/html/rfc4895
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5061
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6525
https://datatracker.ietf.org/doc/html/rfc6951
https://datatracker.ietf.org/doc/html/rfc7053
https://datatracker.ietf.org/doc/html/rfc7496
https://datatracker.ietf.org/doc/html/rfc7829
https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc2119

Welzl, et al. Expires November 25, 2017 [Page 55]

Internet-Draft Transport Services May 2017

 describing the 'send' primitive in the API specified in [RFC0793],
 for instance, does not say that data transfer is reliable. TCP's
 reliability is clear, however, from this text in Section 1 of
 [RFC0793]: "The Transmission Control Protocol (TCP) is intended for
 use as a highly reliable host-to-host protocol between hosts in
 packet-switched computer communication networks, and in
 interconnected systems of such networks."

 Some text for pass 1 subsections was developed copy+pasting all the
 relevant text parts from the relevant RFCs, then adjusting
 terminology to match the terminology in Section 1 and adjusting
 (shortening!) phrasing to match the general style of the document.
 An effort was made to formulate everything as a primitive description
 such that the primitive descriptions became as complete as possible
 (e.g., the "SEND.TCP" primitive in pass 2 is explicitly described as
 reliably transferring data); text that is relevant for the primitives
 presented in this pass but still does not fit directly under any
 primitive was used in a subsection's introduction.

 Pass 2: The main goal of this pass is unification of primitives. As
 input, only text from pass 1 was used (no exterior sources). The
 list in pass 2 is not arranged by protocol ("first protocol X, here
 are all the primitives; then protocol Y, here are all the primitives,
 ..") but by primitive ("primitive A, implemented this way in protocol
 X, this way in protocol Y, ..."). It was a goal to obtain as many
 similar pass 2 primitives as possible. For instance, this was
 sometimes achieved by not always maintaining a 1:1 mapping between
 pass 1 and pass 2 primitives, renaming primitives etc. For every new
 primitive, the already existing primitives were considered to try to
 make them as coherent as possible.

 For each primitive, the following style was used:

 o PRIMITIVENAME.PROTOCOL:
 Pass 1 primitive / event:
 Parameters:
 Returns:
 Comments:

 The entries "Parameters", "Returns" and "Comments" were skipped when
 a primitive had no parameters, no described return value or no
 comments seemed necessary, respectively. Optional parameters are
 followed by "(optional)". When a default value is known, this was
 also provided.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793#section-1
https://datatracker.ietf.org/doc/html/rfc0793#section-1

Welzl, et al. Expires November 25, 2017 [Page 56]

Internet-Draft Transport Services May 2017

 Pass 3: the main point of this pass is to identify transport features
 that are the result of static properties of protocols, for which all
 protocols have to be listed together; this is then the final list of
 all available transport features. This list was primarily based on
 text from pass 2, with additional input from pass 1 (but no external
 sources).

Appendix C. Revision information

 XXX RFC-Ed please remove this section prior to publication.

 -00 (from draft-welzl-taps-transports): this now covers TCP based on
 all TCP RFCs (this means: if you know of something in any TCP RFC
 that you think should be addressed, please speak up!) as well as
 SCTP, exclusively based on [RFC4960]. We decided to also incorporate
 [RFC6458] for SCTP, but this hasn't happened yet. Terminology made
 in line with [RFC8095]. Addressed comments by Karen Nielsen and
 Gorry Fairhurst; various other fixes. Appendices (TCP overview and
 how-to-contribute) added.

 -01: this now also covers MPTCP based on [RFC6182], [RFC6824] and
 [RFC6897].

 -02: included UDP, UDP-Lite, and all extensions of SCTPs. This
 includes fixing the [RFC6458] omission from -00.

 -03: wrote security considerations. The "how to contribute" section
 was updated to reflect how the document WAS created, not how it
 SHOULD BE created; it also no longer wrongly says that Experimental
 RFCs are excluded. Included LEDBAT. Changed abstract and intro to
 reflect which protocols/mechanisms are covered (TCP, MPTCP, SCTP,
 UDP, UDP-Lite, LEDBAT) instead of talking about "transport
 protocols". Interleaving and stream scheduling added (draft-ietf-

tsvwg-sctp-ndata). TFO added. "Set protocol parameters" in SCTP
 replaced with per-parameter (or parameter group) primitives. More
 primitives added, mostly previously overlooked ones from [RFC6458].
 Updated terminology (s/transport service feature/transport feature)
 in line with an update of [RFC8095]. Made sequence of transport
 features / primitives more logical. Combined MPTCP's add/rem subflow
 with SCTP's add/remove local address.

 -04: changed UDP's close into an ABORT (to better fit with the
 primitives of TCP and SCTP), and incorporated the corresponding
 transport feature in step 3 (this addresses a comment from Gorry
 Fairhurst). Added TCP Authentication (RFC 5925, section 7.1).
 Changed TFO from looking like a primitive in pass 1 to be a part of
 'open'. Changed description of SCTP authentication in pass 3 to
 encompass both TCP and SCTP. Added citations of [RFC8095] and minset

https://datatracker.ietf.org/doc/html/draft-welzl-taps-transports
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctp-ndata
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/rfc5925#section-7.1
https://datatracker.ietf.org/doc/html/rfc8095

Welzl, et al. Expires November 25, 2017 [Page 57]

Internet-Draft Transport Services May 2017

 [I-D.draft-gjessing-taps-minset] to the intro, to give the context of
 this document.

 -05: minor fix to TCP authentication (comment from Joe Touch),
 several fixes from Gorry Fairhurst and Tom Jones. Language fixes;
 updated to align with latest taps-transport-usage-udp ID.

Authors' Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Email: michawe@ifi.uio.no

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 Steinfurt 48565
 Germany

 Email: tuexen@fh-muenster.de

 Naeem Khademi
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Email: naeemk@ifi.uio.no

https://datatracker.ietf.org/doc/html/draft-gjessing-taps-minset

Welzl, et al. Expires November 25, 2017 [Page 58]

