
Internet Engineering Task Force G. Fairhurst
Internet-Draft T. Jones
Intended status: Informational University of Aberdeen
Expires: March 23, 2018 September 19, 2017

Features of the User Datagram Protocol (UDP) and Lightweight UDP (UDP-
Lite) Transport Protocols

draft-ietf-taps-transports-usage-udp-07

Abstract

 This is an informational document that describes the transport
 protocol interface primitives provided by the User Datagram Protocol
 (UDP) and the Lightweight User Datagram Protocol (UDP-Lite) transport
 protocols. It identifies the datagram services exposed to
 applications and how an application can configure and use the
 features offered by the Internet datagram transport service. RFCxxxx
 documents the usage of transport features provided by IETF transport
 protocols, describing the way UDP, UDP-Lite and other transport
 protocols expose their services to applications and how an
 application can configure and use the features that make up these
 services. This document provides input to and context for that
 document, as well as offering a road map to documentation that may be
 of help to users of the UDP and UDP-Lite protocols.

 XXX RFC-Ed Note - please replace RFCxxxx with the published RFC
 number for I-D.ietf-taps-transports-usage, when these documents are
 both published XXX.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 23, 2018.

Fairhurst & Jones Expires March 23, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft UDP Transport Features September 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. UDP and UDP-Lite Primitives 4
3.1. Primitives Provided by UDP 4
3.1.1. Excluded Primitives 11

3.2. Primitives Provided by UDP-Lite 11
4. Acknowledgements . 12
5. IANA Considerations . 12
6. Security Considerations 12
7. References . 13
7.1. Normative References 13
7.2. Informative References 14

Appendix A. Multicast Primitives 16
Appendix B. Revision Notes 19

 Authors' Addresses . 22

1. Introduction

 This document presents defined interactions between transport
 protocols and applications in the form of 'primitives' (function
 calls) for the User Datagram Protocol (UDP) [RFC0768] and the
 Lightweight User Datagram Protocol (UDP-Lite) [RFC3828]. In this
 usage, the word application refers to any program built on the
 datagram interface, and including tunnels and other upper layer
 protocols that use UDP and UDP-LIte.

 UDP is widely implemented and deployed. It is used for a wide range
 of applicatons. A special class of applications can derive benefit
 from having partially damaged payloads delivered, rather than
 discarded, when using paths that include error-prone links.
 Applications that can tolerate payload corruption can choose to use

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc3828

Fairhurst & Jones Expires March 23, 2018 [Page 2]

Internet-Draft UDP Transport Features September 2017

 UDP-Lite instead of UDP and use the application programming interface
 (API) to control checksum protection. Conversely, UDP applications
 could choose to use UDP-Lite, but this is currently less widely
 deployed and users could encounter paths that do not support UDP-
 LIte. These topics are discussed more in section 3.4 of the UDP
 Usage Guidelines [RFC8085].

 The IEEE standard API for TCP/IP applications is the "socket"
 interface [POSIX]. An application can use the recv() and send()
 POSIX functions as well as the recvfrom() and sendto() and recvmsg()
 and sendmsg() functions. The UDP and UDP-Lite sockets API differs
 from that for TCP in several key ways. (Examples of usage of this
 API are provided in [STEVENS].) In UDP and UDP-Lite, each datagram
 is a self-contained message of a specified length, and options at the
 transport layer can be used to set properties for all subsequent
 datagrams sent using a socket or changed for each datagram. For
 datagrams, this can require the application to use the API to set IP-
 level information (the IP Time To Live (TTL), Differentiated Services
 (DiffServ) Code Point, IP fragmentation, etc) for the datagrams it
 sends and receives. In contrast, when using TCP and other
 connection-oriented transports, the IP-level information normally
 either remains the same for the duration of a connection or is
 controlled by the transport protocol rather than the application.

 Socket options are used in the socket API to provide additional
 functions For example, the IP_RECVTTL socket option is used by some
 UDP multicast applications to return the IP TTL field from IP header
 of a received datagram.

 Some platforms also offer applications the ability to directly
 assemble and transmit IP packets through "raw sockets" or similar
 facilities. The raw socket API is a second, more cumbersome, method
 to send UDP datagrams. The use of this API is discussed in the RFC
 series in the UDP Guidelines [RFC8085].

 The list of transport service features and primitives in this
 document is strictly based on the parts of protocol specifications in
 RFC-series that relate to what the transport protocol provides to an
 application that uses it and how the application interacts with the
 transport protocol. Primitives can be invoked by an application or a
 transport protocol; the latter type is called an "event".

 The description in Section 3 follows the methodology defined by the
 IETF TAPS working group in [I-D.ietf-taps-transports-usage].
 Specifically, this document provides the first pass of this process,
 which discusses the relevant RFC text describing primitives for each
 protocol. [I-D.ietf-taps-transports-usage] uses this input to
 document the usage of transport features provided by IETF transport

https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8085

Fairhurst & Jones Expires March 23, 2018 [Page 3]

Internet-Draft UDP Transport Features September 2017

 protocols, describing the way UDP, UDP-Lite and other transport
 protocols expose their services to applications and how an
 application can configure and use the features that make up these
 services.

 The presented road map to documentation of the transport interface
 may also help developers working with UDP and UDP-Lite.

2. Terminology

 This document provides details for the Pass 1 analysis of UDP and
 UDP-Lite that is used in "Usage of Transport Features Provided by
 IETF Transport Protocols" [I-D.ietf-taps-transports-usage]. It uses
 common terminology defined in that document and also quotes RFCs that
 use the terminology of RFC 2119 [RFC2119].

3. UDP and UDP-Lite Primitives

 The User Datagram Protocol (UDP) [RFC0768][RFC8200] and UDP-Lite
 protocols [RFC3828] are IETF standards track transport protocols.
 These protocols provide unidirectional, datagram services, supporting
 transmit and receive operations that preserve message boundaries.

 This section summarises the relevant text parts of the RFCs
 describing the UDP and UDP-Lite protocols, focusing on what the
 transport protocols provide to the application and how the transport
 is used (based on abstract API descriptions, where they are
 available). It describes how UDP is used with IPv4 or IPv6 to send
 unicast or anycast datagrams and the use to send broadcast datagrams
 for IPv4. A set of network-layer primitives required to use UDP or
 UDP-Lite with IP multicast (for IPv4 and IPv6) have been specified in
 the RFC series. Appendix A describes where to find documentation for
 network-layer primitives required to use UDP or UDP-Lite with IP
 multicast (for IPv4 and IPv6).

3.1. Primitives Provided by UDP

 The User Datagram Protocol (UDP) [RFC0768] States: "This User
 Datagram Protocol (UDP) is defined to make available a datagram mode
 of packet-switched computer communication in the environment of an
 interconnected set of computer networks." It "provides a procedure
 for application programs to send messages to other programs with a
 minimum of protocol mechanism (..)".

 The User Interface section of RFC768 states that the user interface
 to an application should allow "the creation of new receive ports,
 receive operations on the receive ports that return the data octets
 and an indication of source port and source address, and an operation

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc768

Fairhurst & Jones Expires March 23, 2018 [Page 4]

Internet-Draft UDP Transport Features September 2017

 that allows a datagram to be sent, specifying the data, source and
 destination ports and addresses to be sent".

 UDP has been defined for IPv6 [RFC8200], together with API extensions
 for a Basic Socket Interface Extensions for IPv6 [RFC3493].
 [RFC6935] and [RFC6936] define an update to the UDP transport
 originally specified in RFC2460. This enables use of a zero UDP
 checksum mode with a tunnel protocol, providing that the method
 satisfies the requirements in the corresponding applicability
 statement [RFC6936].

 UDP offers only a basic transport interface. UDP datagrams may be
 directly sent and received, without exchanging messages between the
 endpoints to setup a connection (i.e., no handshake is performed by
 the transport protocol prior to communication). Using the sockets
 API, applications can receive packets from more than one IP source
 address on a single UDP socket. Common support allows specification
 of the local IP address, destination IP address, local port and
 destination port values. Any or all of these can be indicated, with
 defaults supplied by the local system when these are not specified.
 The local endpoint is set using the BIND call and set on the remote
 endpoint using the CONNECT call. The CLOSE function has local
 significance only. It does not impact the status of the remote
 endpoint.

 Neither UDP nor UDP-Lite provide congestion control, retransmission,
 nor do they provide mechanisms for application-level packetisation
 that would avoid IP fragmentation and other transport functions.
 This means that applications using UDP need to provide additional
 functions on top of the UDP transport API [RFC8085]. Some transport
 functions require parameters to be passed through the API to control
 the network layer (IPv4 or IPv6). These additional primitives could
 be considered a part of the network layer (e.g., control of the
 setting of the Don't Fragment (DF) flag on a transmitted IPv4
 datagram), but are nonetheless essential to allow a user of the UDP
 API to implement functions that are normally associated with the
 transport layer (such as probing for the path maximum transmission
 size). This document includes such primitives.

 Guidance on the use of the services provided by UDP is provided in
 the UDP Guidelines [RFC8085]. This also states "many operating
 systems also allow a UDP socket to be connected, i.e., to bind a UDP
 socket to a specific pair of addresses and ports. This is similar to
 the corresponding TCP sockets API functionality. However, for UDP,
 this is only a local operation that serves to simplify the local
 send/receive functions and to filter the traffic for the specified
 addresses and ports. Binding a UDP socket does not establish a
 connection - UDP does not notify the remote endpoint when a local UDP

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8085

Fairhurst & Jones Expires March 23, 2018 [Page 5]

Internet-Draft UDP Transport Features September 2017

 socket is bound. Binding a socket also allows configuring options
 that affect the UDP or IP layers, for example, use of the UDP
 checksum or the IP Timestamp Option. On some stacks, a bound socket
 also allows an application to be notified when Internet Control
 Message (ICMP) error messages are received for its transmissions
 [RFC1122]."

 The POSIX Base Specifications [POSIX] define an API that offers
 mechanisms for an application to receive asynchronous data events at
 the socket layer. Calls such as "poll", "select" or "queue" allow an
 application to be notified when data has arrived at a socket or when
 a socket has flushed its buffers.

 A callback-driven API to the network interface can be structured on
 top of these calls. Implicit connection setup allows an application
 to delegate connection life management to the transport API. The
 transport API uses protocol primitives to offer the automated service
 to the application via the sockets API. By combining UDP primitives
 (CONNECT.UDP, SEND.UDP), a higher level API could offer a similar
 service.

 The following datagram primitives are specified:

 CONNECT: The CONNECT primitive allows the association of source and
 destination port sets to a socket to enable creation of a
 'connection' for UDP traffic. This UDP connection allows an
 application to be notified of errors received from the network
 stack and provides a shorthand access to the send and receive
 primitives. Since UDP is itself connectionless, no datagrams are
 sent because this primitive is executed. A further connect call
 can be used to change the association.

 The roles of a client and a server are often not appropriate for
 UDP, where connections can be peer-to-peer. The listening
 functions are performed using one of the forms of the CONNECT
 primitive:

 1. bind(): A bind operation sets the local port, either
 implicitly, triggered by a "sendto" operation on an unbound
 unconnected socket using an ephemeral port. Or by an explicit
 "bind" to use a configured or well-known port.

 2. bind(); connect(): A bind operation that is followed by a
 CONNECT primitive. The bind operation establishes the use of
 a known local port for datagrams, rather than using an
 ephemeral port. The connect operation specifies a known

https://datatracker.ietf.org/doc/html/rfc1122

Fairhurst & Jones Expires March 23, 2018 [Page 6]

Internet-Draft UDP Transport Features September 2017

 address port combination to be used by default for future
 datagrams. This form is used either after receiving a
 datagram from an endpoint that causes the creation of a
 connection, or can be triggered by third party configuration
 or a protocol trigger (such as reception of a UDP Service
 Description Protocol, SDP [RFC4566], record).

 SEND: The SEND primitive hands over a provided number of bytes that
 UDP should send to the other side of a UDP connection in a UDP
 datagram. The primitive can be used by an application to directly
 send datagrams to an endpoint defined by an address/port pair. If
 a connection has been created, then the address/port pair is
 inferred from the current connection for the socket. Connecting a
 socket allows network errors to be returned to the application as
 a notification on the send primitive. Messages passed to the send
 primitive that cannot be sent atomically in an IP packet will not
 be sent by the network layer, generating an error.

 RECEIVE: The RECEIVE primitive allocates a receiving buffer to
 accommodate a received datagram. The primitive returns the number
 of bytes provided from a received UDP datagram. Section 4.1.3.5
 of the requirements of Internet hosts [RFC1122] states "When a UDP
 datagram is received, its specific-destination address MUST be
 passed up to the application layer."

 CHECKSUM_ENABLED: The optional CHECKSUM_ENABLED primitive controls
 whether a sender enables the UDP checksum when sending datagrams (
 [RFC0768] and [RFC6935] [RFC6936] [RFC8085]). When unset, this
 overrides the default UDP behaviour, disabling the checksum on
 sending. Section 4.1.3.4 of the requirements for Internet hosts
 [RFC1122] states "An application MAY optionally be able to control
 whether a UDP checksum will be generated, but it MUST default to
 checksumming on."

 REQUIRE_CHECKSUM: The optional REQUIRE_CHECKSUM primitive determines
 whether UDP datagrams received with a zero checksum are permitted
 or discarded, UDP defaults to requiring checksums.

Section 4.1.3.4 of the requirements for Internet hosts [RFC1122]
 states "An application MAY optionally be able to control whether
 UDP datagrams without checksums should be discarded or passed to
 the application." Section 3.1 of the specification for UDP-Lite
 [RFC3828] requires that the checksum field is non-zero, and hence
 the UDP-Lite API must discard all datagrams received with a zero
 checksum.

 SET_IP_OPTIONS: The SET_IP_OPTIONS primitive requests the network-
 layer to send a datagram with the specified IP options.

Section 4.1.3.2 of the requirements for Internet hosts[RFC1122]

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3828

Fairhurst & Jones Expires March 23, 2018 [Page 7]

Internet-Draft UDP Transport Features September 2017

 states that an "application MUST be able to specify IP options to
 be sent in its UDP datagrams, and UDP MUST pass these options to
 the IP layer."

 GET_IP_OPTIONS: The GET_IP_OPTIONS primitive retrieves the IP
 options of a datagram received at the network-layer.

Section 4.1.3.2 of the requirements for Internet hosts[RFC1122]
 states that a UDP receiver "MUST pass any IP option that it
 receives from the IP layer transparently to the application
 layer".

 SET_DF: The SET_DF primitive allows the network-layer to fragment
 packets using the Fragment Offset in IPv4 [RFC6864] and a host to
 use Fragment Headers in IPv6 [RFC8200]. The SET_DF primitive sets
 the Don't Fragment (DF) flag in the IPv4 packet header that
 carries a UDP datagram, which allows routers to fragment IPv4
 packets. Although some specific applications rely on
 fragmentation support, in general, a UDP application should
 implement a method that avoids IP fragmentation (section 4 of
 [RFC8085]). NOTE: In many other IETF transports (e.g., TCP, SCTP)
 the transport provides the support needed to use DF. However,
 when using UDP, the application is responsible for the techniques
 needed to discover the effective Path Maximum Transmission Unit
 (PMTU) allowed on the network path, coordinating with the network
 layer. Classical PMTU Discovery (PMTUD) [RFC1191] relies upon the
 network path returning ICMP Fragmentation Needed or ICMPv6 Packet
 Too Big messages to the sender. When these ICMP messages are not
 delivered (or filtered) a sender is unable to learn the actual
 path MTU, and UDP Datagrams larger than the PMTU will be "black
 holed". To avoid this, an application can instead implement
 Packetization Layer Path MTU Discovery (PLPMTUD) [RFC4821] that
 does not rely upon network support for ICMPv6 messages and is
 therefore considered more robust than standard PMTUD, as
 recommended in [RFC8085] and [RFC8201].

 GET_MMS_S: The GET_MMS_S primitive retrieves a network-layer value
 that indicates the maximum message size (MMS) that may be sent at
 the transport layer using a non-fragmented IP packet from the
 configured interface. This value is specified in section 6.1 of
 [RFC1191] and section 5.1 of [RFC8201]. It is calculated from
 Effective Maximum Transmit Unit for Sending (EMTU_S), and the link
 MTU for the given source IP address. This takes into account the
 size of the IP header plus space reserved by the IP layer for
 additional headers (if any). UDP applications should use this
 value as part of a method to avoid sending UDP datagrams that
 would result in IP packets that exceed the effective PMTU allowed
 across the network path. The effective PMTU (specified in

Section 1 of [RFC1191]) is equivalent to the EMTU_S (specified in

https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8085#section-4
https://datatracker.ietf.org/doc/html/rfc8085#section-4
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc1191#section-6.1
https://datatracker.ietf.org/doc/html/rfc1191#section-6.1
https://datatracker.ietf.org/doc/html/rfc8201#section-5.1
https://datatracker.ietf.org/doc/html/rfc1191#section-1

Fairhurst & Jones Expires March 23, 2018 [Page 8]

Internet-Draft UDP Transport Features September 2017

 [RFC1122]). The specification of PLPMTUD [RFC4821] states: "If
 PLPMTUD updates the MTU for a particular path, all Packetization
 Layer sessions that share the path representation (as described in

Section 5.2) SHOULD be notified to make use of the new MTU and
 make the required congestion control adjustments".

 GET_MMS_R: The GET_MMS_R primitive retrieves a network-layer value
 that indicates the maximum message size (MMS) that may be received
 at the transport layer from the configured interface. This value
 is specified in section 3.1 of [RFC1191]. It is calculated from
 Effective Maximum Transmit Unit for Receiving (EMTU_R), and the
 link MTU for the given source IP address, and takes into account
 the size of the IP header plus space reserved by the IP layer for
 additional headers (if any).

 SET_TTL: The SET_TTL primitive sets the hop limit (TTL field) in the
 network-layer that is used in the IPv4 header of a packet that
 carries an UDP datagram. This is used to limit the scope of
 unicast datagrams. Section 3.2.2.4 of the requirements for
 Internet hosts [RFC1122] states an "incoming Time Exceeded message
 MUST be passed to the transport layer".

 GET_TTL: The GET_TTL primitive retrieves the value of the TTL field
 in an IP packet received at the network layer. An application
 using the Generalized TTL Security Mechanism (GTSM) [RFC5082] can
 use this information to trust datagrams with a TTL value within
 the expected range, as described in Section 3 of RFC5082.

 SET_MIN_TTL: The SET_MIN_TTL primitive restricts Datagrams delivered
 to the application to those received with an IP TTL value greater
 than or equal to passed parameter. This primitive can be used to
 implement applications such as Generalized TTL Security Mechanism
 (GTSM) [RFC5082] to as described in Section 3 of RFC5082, but this
 RFC does not specify this method.

 SET_IPV6_UNICAST_HOPS: The SET_IPV6_UNICAST_HOPS primitive sets the
 network-layer hop limit field in an IPv6 packet header [RFC8200]
 carrying a UDP datagram. For IPv6 unicast datagrams, this is
 functionally equivalent to the SET_TTL IPv4 function.

 GET_IPV6_UNICAST_HOPS: The GET_IPV6_UNICAST_HOPS primitive is a
 network-layer function that reads the hop count in the IPv6 header
 [RFC8200] information of a received UDP datagram. This is
 specified in section 6.3 of RFC3542. For IPv6 unicast datagrams,
 this is functionally equivalent to the GET_TTL IPv4 function.

 SET_DSCP: The SET_DSCP primitive is a network-layer function that
 sets the DSCP, (or the legacy Type of Service, ToS) value

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1191#section-3.1
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5082
https://datatracker.ietf.org/doc/html/rfc5082#section-3
https://datatracker.ietf.org/doc/html/rfc5082
https://datatracker.ietf.org/doc/html/rfc5082#section-3
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc3542#section-6.3

Fairhurst & Jones Expires March 23, 2018 [Page 9]

Internet-Draft UDP Transport Features September 2017

 [RFC2474] to be used in the field of an IP header of a packet that
 carries a UDP datagram. Section 2.4 of the requirements for
 Internet hosts[RFC1123] states that "Applications MUST select
 appropriate ToS values when they invoke transport layer services,
 and these values MUST be configurable.". The application should
 be able to change the ToS during the connection lifetime, and the
 ToS value should be passed to the IP layer unchanged.

Section 4.1.4 of [RFC1122] also states that on reception the "UDP
 MAY pass the received ToS value up to the application layer". The
 DiffServ model [RFC2475] [RFC3260] replaces this field in the IP
 Header assigning the six most significant bits to carry the DSCP
 field [RFC2474]. Preserving the intention of the host
 requirements [RFC1122] to allow the application to specify the
 "Type of Service", this should be interpreted to mean that an API
 should allow the application to set the DSCP. Section 3.1.6 of
 the UDP Guidelines [RFC8085] describes the way UDP applications
 should use this field. Normally a UDP socket will assign a single
 DSCP value to all datagrams in a flow, but a sender is allowed to
 use different DSCP values for datagrams within the same flow in
 certain cases[RFC8085]. There are guidelines for WebRTC that
 illustrate this use [RFC7657].

 SET_ECN: The SET_ECN primitive is a network-layer function that sets
 the Explicit Congestion Notification (ECN) field in the IP Header
 of a UDP datagram. The ECN field defaults to a value of 00. When
 the use of the ToS field was redefined by DiffServ [RFC3260], 2
 bits of the field were assigned to support ECN [RFC3168].

Section 3.1.5 of the UDP Guidelines [RFC8085] describes the way
 UDP applications should use this field. NOTE: In many other IETF
 transports (e.g., TCP) the transport provides the support needed
 to use ECN, when using UDP, the application or higher layer
 protocol is itself responsible for the techniques needed to use
 ECN.

 GET_ECN: The GET_ECN primitive is a network-layer function that
 returns the value of the ECN field in the IP Header of a received
 UDP datagram. Section 3.1.5 of the UDP Guidelines [RFC8085]
 states that a UDP receiver "MUST check the ECN field at the
 receiver for each UDP datagram that it receives on this port",
 requiring the UDP receiver API to pass to pass the received ECN
 field up to the application layer to enable appropriate congestion
 feedback.

 ERROR_REPORT The ERROR_REPORT event informs an application of "soft
 errors", including the arrival of an ICMP or ICMPv6 error message.

Section 4.1.4 of the host requirements [RFC1122] states "UDP MUST
 pass to the application layer all ICMP error messages that it
 receives from the IP layer." For example, this event is required

https://datatracker.ietf.org/doc/html/rfc1122#section-4.1.4
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc3260
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc7657
https://datatracker.ietf.org/doc/html/rfc3260
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc1122

Fairhurst & Jones Expires March 23, 2018 [Page 10]

Internet-Draft UDP Transport Features September 2017

 to implement ICMP-based Path MTU Discovery [RFC1191] [RFC8201].
 UDP applications must perform a CONNECT to receive ICMP errors.

 CLOSE: The close primitive closes a connection. No further
 datagrams can be sent or received. Since UDP is itself
 connectionless, no datagrams are sent when this primitive is
 executed.

3.1.1. Excluded Primitives

Section 3.4 of the host requirements [RFC1122] also describes
 "GET_MAXSIZES, GET_SRCADDR (Section 3.3.4.3) and ADVISE_DELIVPROB:".
 These mechanisms are no longer used. It also specifies use of the
 Source Quench ICMP message, which has since been deprecated
 [RFC6633].

 The IPV6_V6ONLY function is a network-layer primitive that applies to
 all transport services, defined in Section 5.3 of the basic socket
 interface for IPv6 [RFC3493]. This restricts the use of information
 from the name resolver to only allow communication of AF_INET6
 sockets to use IPv6 only. This is not considered part of the
 transport service.

3.2. Primitives Provided by UDP-Lite

 The Lightweight User Datagram Protocol (UDP-Lite) [RFC3828] provides
 similar services to UDP. It changed the semantics of the UDP
 "payload length" field to that of a "checksum coverage length" field.
 UDP-Lite requires the pseudo-header checksum to be computed at the
 sender and checked at a receiver. Apart from the length and coverage
 changes, UDP-Lite is semantically identical to UDP.

 The sending interface of UDP-Lite differs from that of UDP by the
 addition of a single (socket) option that communicates the checksum
 coverage length. This specifies the intended checksum coverage, with
 the remaining unprotected part of the payload called the "error-
 insensitive part".

 The receiving interface of UDP-Lite differs from that of UDP by the
 addition of a single (socket) option that specifies the minimum
 acceptable checksum coverage. The UDP-Lite Management Information
 Base (MIB) [RFC5097] further defines the checksum coverage method.
 Guidance on the use of services provided by UDP-Lite is provided in
 the UDP Guidelines [RFC8085].

 UDP-Lite requires use of the UDP or UDP-Lite checksum, and hence it
 is not permitted to use the "DISABLE_CHECKSUM:" function to disable
 use of a checksum, nor is it possible to disable receiver checksum

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6633
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc5097
https://datatracker.ietf.org/doc/html/rfc8085

Fairhurst & Jones Expires March 23, 2018 [Page 11]

Internet-Draft UDP Transport Features September 2017

 processing using the "REQUIRE_CHECKSUM:" function . All other
 primitives and functions for UDP are permitted.

 In addition, the following are defined:

 SET_CHECKSUM_COVERAGE: The SET_CHECKSUM_COVERAGE primitive sets the
 coverage area for a sent datagram. UDP-Lite traffic uses this
 primitive to set the coverage length provided by the UDP checksum.

Section 3.3 of the UDP-Lite MIB [RFC5097] states that
 "Applications that wish to define the payload as partially
 insensitive to bit errors ... Should do this by an explicit
 system call on the sender side." The default is to provide the
 same coverage as for UDP.

 SET_MIN_COVERAGE The SET_MIN_COVERAGE primitive sets the minimum
 acceptable coverage protection for received datagrams. UDP-Lite
 traffic uses this primitive to set the coverage length that is
 checked on receive. (Section 1.1 of the UDP-Lite MIB [RFC5097]
 describes the corresponding MIB entry as
 udpliteEndpointMinCoverage.) Section 3.3 of the UDP-Lite
 specification [RFC3828] states that "applications that wish to
 receive payloads that were only partially covered by a checksum
 should inform the receiving system by an explicit system call".
 The default is to require only minimal coverage of the datagram
 payload.

4. Acknowledgements

 This work was partially funded by the European Union's Horizon 2020
 research and innovation programme under grant agreement No. 644334
 (NEAT). Thanks to all who have commented or contributed, including
 Joe Touch, Ted Hardie, Aaron Falk, Tommy Pauly, and Francis Dupont.

5. IANA Considerations

 This memo includes no request to IANA.

 The authors request the section to be removed during conversion into
 an RFC by the RFC Editor.

6. Security Considerations

 Security considerations for the use of UDP and UDP-Lite are provided
 in the referenced RFCs. Security guidance for application usage is
 provided in the UDP-Guidelines [RFC8085].

https://datatracker.ietf.org/doc/html/rfc5097
https://datatracker.ietf.org/doc/html/rfc5097
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc8085

Fairhurst & Jones Expires March 23, 2018 [Page 12]

Internet-Draft UDP Transport Features September 2017

7. References

7.1. Normative References

 [I-D.ietf-taps-transports-usage]
 Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",

draft-ietf-taps-transports-usage-08 (work in progress),
 August 2017.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5,
RFC 1112, DOI 10.17487/RFC1112, August 1989,

 <https://www.rfc-editor.org/info/rfc1112>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <https://www.rfc-editor.org/info/rfc3493>.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-usage-08
https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc1112
https://www.rfc-editor.org/info/rfc1112
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3493
https://www.rfc-editor.org/info/rfc3493

Fairhurst & Jones Expires March 23, 2018 [Page 13]

Internet-Draft UDP Transport Features September 2017

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828, July
 2004, <https://www.rfc-editor.org/info/rfc3828>.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, DOI 10.17487/RFC6864, February 2013,

 <https://www.rfc-editor.org/info/rfc6864>.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935,
 DOI 10.17487/RFC6935, April 2013,
 <https://www.rfc-editor.org/info/rfc6935>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <https://www.rfc-editor.org/info/rfc6936>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

7.2. Informative References

 [POSIX] "IEEE Std. 1003.1-2001, , "Standard for Information
 Technology - Portable Operating System Interface (POSIX)",
 Open Group Technical Standard: Base Specifications Issue
 6, ISO/IEC 9945:2002", December 2001.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

https://datatracker.ietf.org/doc/html/rfc3828
https://www.rfc-editor.org/info/rfc3828
https://datatracker.ietf.org/doc/html/rfc6864
https://www.rfc-editor.org/info/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
https://www.rfc-editor.org/info/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
https://www.rfc-editor.org/info/rfc6936
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474

Fairhurst & Jones Expires March 23, 2018 [Page 14]

Internet-Draft UDP Transport Features September 2017

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC3260] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, DOI 10.17487/RFC3260, April 2002,
 <https://www.rfc-editor.org/info/rfc3260>.

 [RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
 <https://www.rfc-editor.org/info/rfc3376>.

 [RFC3678] Thaler, D., Fenner, B., and B. Quinn, "Socket Interface
 Extensions for Multicast Source Filters", RFC 3678,
 DOI 10.17487/RFC3678, January 2004,
 <https://www.rfc-editor.org/info/rfc3678>.

 [RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <https://www.rfc-editor.org/info/rfc4566>.

 [RFC4604] Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, DOI 10.17487/RFC4604,
 August 2006, <https://www.rfc-editor.org/info/rfc4604>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
 Pignataro, "The Generalized TTL Security Mechanism
 (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,
 <https://www.rfc-editor.org/info/rfc5082>.

 [RFC5097] Renker, G. and G. Fairhurst, "MIB for the UDP-Lite
 protocol", RFC 5097, DOI 10.17487/RFC5097, January 2008,
 <https://www.rfc-editor.org/info/rfc5097>.

https://datatracker.ietf.org/doc/html/rfc2475
https://www.rfc-editor.org/info/rfc2475
https://datatracker.ietf.org/doc/html/rfc3260
https://www.rfc-editor.org/info/rfc3260
https://datatracker.ietf.org/doc/html/rfc3376
https://www.rfc-editor.org/info/rfc3376
https://datatracker.ietf.org/doc/html/rfc3678
https://www.rfc-editor.org/info/rfc3678
https://datatracker.ietf.org/doc/html/rfc3810
https://www.rfc-editor.org/info/rfc3810
https://datatracker.ietf.org/doc/html/rfc4566
https://www.rfc-editor.org/info/rfc4566
https://datatracker.ietf.org/doc/html/rfc4604
https://www.rfc-editor.org/info/rfc4604
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc5082
https://www.rfc-editor.org/info/rfc5082
https://datatracker.ietf.org/doc/html/rfc5097
https://www.rfc-editor.org/info/rfc5097

Fairhurst & Jones Expires March 23, 2018 [Page 15]

Internet-Draft UDP Transport Features September 2017

 [RFC5790] Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Version 2 (MLDv2) Protocols", RFC 5790,
 DOI 10.17487/RFC5790, February 2010,
 <https://www.rfc-editor.org/info/rfc5790>.

 [RFC6633] Gont, F., "Deprecation of ICMP Source Quench Messages",
RFC 6633, DOI 10.17487/RFC6633, May 2012,

 <https://www.rfc-editor.org/info/rfc6633>.

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

 [STEVENS] "Stevens, W., Fenner, B., and A. Rudoff, "UNIX Network
 Programming, The sockets Networking API", Addison-
 Wesley.", 2004.

Appendix A. Multicast Primitives

 This appendix describes primitives that are used when UDP and UDP-
 Lite support IPv4/IPv6 Multicast. Multicast services are not
 considered by the IETF TAPS WG, but the currently specified
 primitives are included for completeness in this appendix. Guidance
 on the use of UDP and UDP-Lite for multicast services is provided in
 the UDP Guidelines[RFC8085].

 IP multicast may be supported using the Any Source Multicast (ASM)
 model or by the Source-Specific Multicast (SSM) model. The latter
 requires use of a Multicast Source Filter (MSF) when specifying an IP
 multicast group destination address.

 Use of multicast requires additional primitives at the transport API
 that need to be called to coordinate operation of the IPv4 and IPv6
 network layer protocols. For example, to receive datagrams sent to a
 group, an endpoint must first become a member of a multicast group at
 the network layer. Local multicast reception is signalled for IPv4
 by the Internet Group Management Protocol (IGMP) [RFC3376] [RFC4604].
 IPv6 uses the equivalent Multicast Listener Discovery (MLD) protocol
 [RFC3810] [RFC5790], carried over ICMPv6. A lightweight version of
 these protocols has also been specified [RFC5790].

 The following are defined:

 JoinGroup: Section 7.1 of the Host Extensions for IP Multicasting
 [RFC1112] provides a function that allows receiving traffic from
 an IP multicast group.

https://datatracker.ietf.org/doc/html/rfc5790
https://www.rfc-editor.org/info/rfc5790
https://datatracker.ietf.org/doc/html/rfc6633
https://www.rfc-editor.org/info/rfc6633
https://datatracker.ietf.org/doc/html/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://datatracker.ietf.org/doc/html/rfc3376
https://datatracker.ietf.org/doc/html/rfc4604
https://datatracker.ietf.org/doc/html/rfc3810
https://datatracker.ietf.org/doc/html/rfc5790
https://datatracker.ietf.org/doc/html/rfc5790
https://datatracker.ietf.org/doc/html/rfc1112

Fairhurst & Jones Expires March 23, 2018 [Page 16]

Internet-Draft UDP Transport Features September 2017

 JoinLocalGroup: Section 7.2 of the Host Extensions for IP
 Multicasting [RFC1112] provides a function that allows receiving
 traffic from a local IP multicast group.

 LeaveHostGroup: Section 7.1 of the Host Extensions for IP
 Multicasting [RFC1112] provides a function that allows leaving an
 IP multicast group.

 LeaveLocalGroup: Section 7.2 of the Host Extensions for IP
 Multicasting [RFC1112] provides a function that allows leaving a
 local IP multicast group.

 IPV6_MULTICAST_IF: Section 5.2 of the basic socket extensions for
 IPv6 [RFC3493] states that this sets the interface that will be
 used for outgoing multicast packets.

 IP_MULTICAST_TTL: This sets the time to live field t to use for
 outgoing IPv4 multicast packets. This is used to limit scope of
 multicast datagrams. Methods such as The Generalized TTL Security
 Mechanism (GTSM) [RFC5082], set this value to ensure link-local
 transmission. GTSM also requires the UDP receiver API to pass the
 received value of this field to the application.

 IPV6_MULTICAST_HOPS: Section 5.2 of the basic socket extensions for
 IPv6 [RFC3493] states that sets the hop count to use for outgoing
 multicast IPv6 packets. (This is equivalent to IP_MULTICAST_TTL
 used for IPv4 multicast).

 IPV6_MULTICAST_LOOP: Section 5.2 of the basic socket extensions for
 IPv6 [RFC3493] states that this sets whether a copy of a datagram
 is looped back by the IP layer for local delivery when the
 datagram is sent to a group to which the sending host itself
 belongs).

 IPV6_JOIN_GROUP: Section 5.2 of the basic socket extensions for IPv6
 [RFC3493] provides a function that allows an endpoint to join an
 IPv6 multicast group.

 SIOCGIPMSFILTER: Section 8.1 of the socket interface for MSF
 [RFC3678] provides a function that allows reading the multicast
 source filters.

 SIOCSIPMSFILTER: Section 8.1 of the socket interface for MSF
 [RFC3678] provides a function that allows setting/modifying the
 multicast source filters.

https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc5082
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3678
https://datatracker.ietf.org/doc/html/rfc3678

Fairhurst & Jones Expires March 23, 2018 [Page 17]

Internet-Draft UDP Transport Features September 2017

 IPV6_LEAVE_GROUP: Section 5.2 of the basic socket extensions for
 IPv6 [RFC3493] provides a function that allows leaving an IPv6
 multicast group.

Section 4.1.1 of the Socket Interface Extensions for MSF [RFC3678]
 updates the multicast interface to add support for MSF for IPv4 and
 IPv6 required by IGMPv3. Three sets of API functionality are
 defined:

 1. IPv4 Basic (Delta-based) API. "Each function call specifies a
 single source address which should be added to or removed from
 the existing filter for a given multicast group address on which
 to listen."

 2. IPv4 Advanced (Full-state) API. "This API allows an application
 to define a complete source-filter comprised of zero or more
 source addresses, and replace the previous filter with a new
 one."

 3. Protocol-Independent Basic MSF (Delta-based) API.

 4. Protocol-Independent Advanced MSF (Full-state) API.

 It specifies the following primitives:

 IP_ADD_MEMBERSHIP: This is used to join an ASM group.

 IP_BLOCK_SOURCE: This MSF can block data from a given multicast
 source to a given ASM or SSM group.

 IP_UNBLOCK_SOURCE: This updates an MSF to undo a previous call to
 IP_UNBLOCK_SOURCE for an ASM or SSM group.

 IP_DROP_MEMBERSHIP: This is used to leave an ASM or SSM group. (In
 SSM, this drops all sources that have been joined for a particular
 group and interface. The operations are the same as if the socket
 had been closed.)

Section 4.1.2 of the socket interface for MSF [RFC3678] updates the
 interface to add IPv4 MSF support to IGMPv3 using ASM:

 IP_ADD_SOURCE_MEMBERSHIP: This is used to join an SSM group.

 IP_DROP_SOURCE_MEMBERSHIP: This is used to leave an SSM group.

Section 4.1.2 of the socket interface for MSF [RFC3678] defines the
 Advanced (Full-state) API:

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3678
https://datatracker.ietf.org/doc/html/rfc3678
https://datatracker.ietf.org/doc/html/rfc3678

Fairhurst & Jones Expires March 23, 2018 [Page 18]

Internet-Draft UDP Transport Features September 2017

 setipv4sourcefilter This is used to join an IPv4 multicast group, or
 to enable multicast from a specified source.

 getipv4sourcefilter: This is used to leave an IPv4 multicast group,
 or to filter multicast from a specified source.

Section 5.1 of the socket interface for MSF [RFC3678] specifies
 Protocol-Independent Multicast API functions:

 MCAST_JOIN_GROUP This is used to join an ASM group.

 MCAST_JOIN_SOURCE_GROUP This is used to join an SSM group.

 MCAST_BLOCK_SOURCE: This is used to block a source in an ASM group.

 MCAST_UNBLOCK_SOURCE: This removes a previous MSF set by
 MCAST_BLOCK_SOURCE.

 MCAST_LEAVE_GROUP: This leaves an ASM or SSM group.

 MCAST_LEAVE_SOURCE_GROUP: This leaves a SSM group.

Section 5.2 of the socket interface for MSF [RFC3678] specifies the
 Protocol-Independent Advanced MSF (Full-state) API applicable for
 both IPv4 and IPv6:

 setsourcefilter This is used to join an IPv4 or IPv6 multicast
 group, or to enable multicast from a specified source.

 getsourcefilter: This is used to leave an IPv4 or IPv6 multicast
 group, or to filter multicast from a specified source.

 The Lightweight IGMPv3 (LW_IGMPv3) and MLDv2 protocol [RFC5790]
 updates this interface (in Section 7.2 of RFC5790).

Appendix B. Revision Notes

 Note to RFC-Editor: please remove this entire section prior to
 publication.

 Individual draft -00:

 o This is the first version. Comments and corrections are welcome
 directly to the authors or via the IETF TAPS working group mailing
 list.

 Individual draft -01:

https://datatracker.ietf.org/doc/html/rfc3678
https://datatracker.ietf.org/doc/html/rfc3678
https://datatracker.ietf.org/doc/html/rfc5790
https://datatracker.ietf.org/doc/html/rfc5790#section-7.2

Fairhurst & Jones Expires March 23, 2018 [Page 19]

Internet-Draft UDP Transport Features September 2017

 o Includes ability of a UDP receiver to disallow zero checksum
 datagrams.

 o Fixes to references and some connect on UDP usage.

 Individual draft -02:

 o Fixes to address issues noted by WG.

 o Completed Multicast section to specify modern APIs.

 o Noted comments on API usage for UDP.

 o Feedback from various reviewers.

 Individual draft -03:

 o Removes pass 2 and 3 of the TAPS analysis from this revision.
 These are expected to be incorporated into a combined draft of the
 TAPS WG.

 o Fixed Typos.

 TAPS WG draft -00:

 o Expected to progress with draft-ietf-taps-transports-usage of the
 TAPS WG.

 TAPS WG draft -01:

 o No intentional changes were made to the specification of
 primitives, this update is editorial

 o Reorganised text to eliminate the appendices.

 o Editorial changes were make to complete the document for a WGLSeC.

 o Rephrasing to eliminate using references as nouns, and to make
 text more consistent.

 o One appendix was incorporated.

 o This appendix was moved to the end (for later deletion by the RFC-
 Ed).

 TAPS WG draft -02:

 o Updated to align with latest taps-transport-usage ID.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-usage

Fairhurst & Jones Expires March 23, 2018 [Page 20]

Internet-Draft UDP Transport Features September 2017

 o Revised to clarify MTU usage and track work in IPv6 PMTU

 o Usage of DF clarified.

 o

 TAPS WG draft -03

 o edit to MMS entries.

 TAPS WG draft -04

 o Typos noted by Tommy Pauly 4/6/2017 and corrected here.

 o Checked and corrected parenthesis and use of period.

 o Document Shepherd review 7/2017.

 o Fixed citations and abbreviations.

 TAPS WG draft -05

 o AD review 8/2017.

 o Updates to reflect published RFCs and refer to PMTUD for IPv6.

 o Aligned to latest TAPS transport usage ID.

 TAPS WG draft -06

 o Fix to text for get TTL and IPv6 Hop Count

 TAPS WG draft -07

 o Edit after secdir review - text on how a sender knows how to
 request UDP-Lite - added a para;

 o Abstract query about citing TAPS-transports;

 o Secdir editorial/format fixes have been applied.

 o Moved the note about "LISTEN:" to the text on "CONNECT:", Mirja
 suggested clarity that there is no LISTEN primitive for UDP.

 o Ben Campbell: Clarified the socket options were common examples
 used by multicast sockets.

Fairhurst & Jones Expires March 23, 2018 [Page 21]

Internet-Draft UDP Transport Features September 2017

 o Ben Campbell: Clarified that RFC 2119 is being cited, and not used
 to create new terms.

 o Ben Campbell: Added a direct copy of the text in RFC 768
 describing the User Interface.

 o Francis Dupont: Many technical corrections.

Authors' Addresses

 Godred Fairhurst
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Fraser Noble Building Aberdeen AB24 3UE
 UK

 Email: gorry@erg.abdn.ac.uk

 Tom Jones
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen AB24 3UE
 UK

 Email: tom@erg.abdn.ac.uk

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc768

Fairhurst & Jones Expires March 23, 2018 [Page 22]

