
Network Working Group Steve Parker
Internet Draft Chris Schmechel
Expiration Date: May 1998 Sun Microsystems, Inc.
 November 1997

Some Testing Tools for TCP Implementors
<draft-ietf-tcpimpl-tools-03.txt>

 1. Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months, and may be updated, replaced, or obsoleted by other docu-
 ments at any time. It is inappropriate to use Internet Drafts as
 reference material or to cite them other than as ``work in pro-
 gress''.

 To learn the current status of any Internet Draft, please check
 the ``1id-abstracts.txt'' listing contained in the Internet
 Drafts shadow directories on ftp.is.co.za (Africa),
 nic.nordu.net (Europe), munnari.oz.au (Pacific Rim),
 ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

 This memo provides information for the Internet community. This
 memo does not specify an Internet standard of any kind. Distri-
 bution of this memo is unlimited.

 2. Introduction

 Available tools for testing TCP implementations are catalogued by
 this memo. Hopefully disseminating this information will
 encourage those responsible for building and maintaining TCP to
 make the best use of available tests. The type of testing the
 tool provides, the type of tests it is capable of doing, and its
 availability is enumerated. This document lists only tools which
 can evaluate one or more TCP implementations, or which can privde
 some specific results which describe or evaluate the TCP being
 tested. A number of these tools produce time-sequence plots, see

Parker, Schmechel, Editors [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpimpl-tools-03.txt

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Tim Shepard's thesis [She91] for a general discussion of these
 plots.

 Each tools is defined as follows:

 Name

 The name associated with the testing tool.

 Category

 One or more categories of tests which the tools is capable of
 providing. Categories used so far: functional correctness, per-
 formance, stress. Functional correctness tests how stringent a
 TCP implementation is to the RFC specifications. Performance
 tests how quickly a TCP implementation can send and receive data,
 etc. Stress tests how a TCP implementation is effected under
 high load conditions.

 Description

 A description of the tools construction, and the implementation
 methodology of the tests.

 Automation

 What steps are required to complete the test? What human inter-
 vention is required?

 Availability

 How do you retrieve this tool and get more information about it?

 Required Environment

 Compilers, OS version, etc. required to build and/or run the
 associated tool.

 References

 A list of publications relating to the tool, if any.

 3. Tools

Parker, Schmechel, Editors [Page 2]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 3.1. Dbs

 Author
 Yukio Murayama

 Category
 Performance / Stress

 Description
 Dbs is a tool which allows multiple data transfers to be coordi-
 nated, and the resulting TCP behavior to be reviewed. Results
 are presented as ASCII log files.

 Automation
 Command of execution is driven by a script file.

 Availability
 See http://www.ai3.net/products/dbs for details of precise OS
 versions supported, and for download of the source code. Current
 implementation supports BSDI BSD/OS, Linux, mkLinux, SunOS, IRIX,
 Ultrix, NEWS OS, HP-UX. Other environments are likely easy to
 add.

 Required Environment
 C language compiler, UNIX-style socket API support.

 3.2. Dummynet

 Author
 Luigi Rizzo

 Category
 Functional Correctness / Performance

http://www.ai3.net/products/dbs

Parker, Schmechel, Editors [Page 3]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Description
 Dummynet is a tool which simulates the presence of finite size
 queues, bandwidth limitations, and communication delays. Dum-
 mynet inserts between two layers of the protocol stack (in the
 current implementation between TCP and IP), simulating the above
 effects in an operational system. This way experiments can be
 done using real protocol implementations and real applications,
 even running on the same host (dummynet also intercepts communi-
 cations on the loopback interface). Reconfiguration of dummynet
 parameters (delay, queue size, bandwidth) can be done on the fly
 by using a sysctl call. The overhead of dummynet is extremely
 low.

 Automation
 Requires merging diff files with kernel source code. Command-
 line driven through the sysctl command to modify kernel vari-
 ables.

 Availability
 See http://www.iet.unipi.it/~luigi/research.html or e-mail Luigi
 Rizzo (l.rizzo@iet.unipi.it). Source code is available for
 FreeBSD 2.1 and FreeBSD 2.2 (easily adaptable to other BSD-
 derived systems).

 Required Environment
 C language compiler, BSD-derived system, kernel source code.

 References
 [Riz97]

 3.3. Netperf

 Author
 Rick Jones

 Category
 Performance

http://www.iet.unipi.it/~luigi/research.html

Parker, Schmechel, Editors [Page 4]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Description
 Single connection bandwidth or latency tests for TCP, UDP, and
 DLPI. Includes provisions for CPU utilization measurement.

 Automation
 Requires compilation (K&R C sufficient for all but -DHISTOGRAM,
 may require ANSI C in the future) if starting from source. Execu-
 tion as child of inetd requires editing of /etc/services and
 /etc/inetd.conf. Scripts are provided for a quick look
 (snapshot_script), bulk throughput of TCP and UDP, and latency
 for TCP and UDP. It is command-line driven.

 Availability
 See http://www.cup.hp.com/netperf/NetperfPage.html or e-mail Rick
 Jones (raj@cup.hp.com). Binaries are available here for HP/UX
 Irix, Solaris, and Win32.

 Required Environment
 C language compiler, POSIX.1, sockets.

 3.4. NIST Net

 Author
 Mark Carson

 Category
 Functional Correctness / Performance

 Description
 NIST Net is a network emulator. The tool is packaged as a Linux
 kernel patch, a kernel module, a set of programming APIs, and
 command-line and X-based user interfaces.

 NIST Net works by turning the system into a "selectively bad"
 router - incoming packets may be delayed, dropped, duplicated,
 bandwidth-constrained, etc. Packet delays may be fixed or ran-
 domly distributed, with loadable probability distributions.
 Packet loss may be uniformly distributed or congestion-dependent.

http://www.cup.hp.com/netperf/NetperfPage.html

Parker, Schmechel, Editors [Page 5]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Automation
 To control the operation of the emulator, there is an interactive
 user interface, a non-interactive command-line interface, and a
 set of APIs. Any or all of these may be used in concert. The
 interactive interface is suitable for simple, spur-of-the-moment
 testing, while the command-line or APIs may be used to create
 scripted, non-interactive tests.

 Availability
 NIST Net is available for public download from the NIST Net web
 site, http://www.antd.nist.gov/itg/nistnet/. The web site also
 has installation instructions and documentation.

 Required Environment
 NIST Net requires a Linux installtion, with kernel version 2.0.27
 - 2.0.33. A kernel source tree and build tools are required to
 build and install the NIST Net components. Building the X inter-
 face requires a version of XFree86 (Current Version is 3.3.2).
 An Athena-replacement widget set such as neXtaw
 (http://www.inf.ufrgs.br/~kojima/nextaw/) is also desirable for
 an improved user interface.

 NIST Net should run on any i386-compatible machine capable of
 running Linux, with one or more interfaces.

 3.5. Orchestra

 Author
 Scott Dawson, Farnam Jahanian, and Todd Mitton

 Category
 Functional Correctness / Performance

 Description
 This tool is a library which provides the user with an ability to
 build a protocol layer capable of performing fault injection on
 protocols. Several fault injection layers have been built using
 this library, one of which has been used to test different vendor
 implementations of TCP. This is accomplished by probing the ven-
 dor implementation from one machine containing a protocol stack
 that has been instrumented with Orchestra. A connection is

http://www.antd.nist.gov/itg/nistnet/
http://www.inf.ufrgs.br/~kojima/nextaw/

Parker, Schmechel, Editors [Page 6]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 opened from the vendor TCP implementation to the machine which
 has been instrumented. Faults may then be injected at the
 Orchestra side of the connection and the vendor TCP's response
 may be monitored. The most recent version of Orchestra runs
 inside the X-kernel protocol stack on the OSF MK operating sys-
 tem.

 When using Orchestra to test a protocol, the fault injection
 layer is placed below the target protocol in the protocol stack.
 This can either be done on one machine on the network, if proto-
 col stacks on the other machines cannot be modified (as in the
 case of testing TCP), or can be done on all machines on the net-
 work (as in the case of testing a protocol under development).
 Once the fault injection layer is in the protocol stack, all mes-
 sages sent by and destined for the target protocol pass through
 it on their way to/from the network. The Orchestra fault injec-
 tion layer can manipulate these messages. In particular, it can
 drop, delay, re-order, duplicate, or modify messages. It can
 also introduce new messages into the system if desired.

 The actions of the Orchestra fault injection layer on each mes-
 sage are determined by a script, written in Tcl. This script is
 interpreted by the fault injection layer when the message enters
 the layer. The script has access to the header information about
 the message, and can make decisions based on header values. It
 can also keep information about previous messages, counters, or
 any other data which the script writer deems useful. Users of
 Orchestra may also define their own actions to be taken on mes-
 sages, written in C, that may be called from the fault injection
 scripts.

 Automation
 Scripts can be specified either using a graphical user interface
 which generates Tcl, or by writing Tcl directly. At this time,
 post-analysis of the results of the test must also be performed
 by the user. Essentially this consists of looking at a packet
 trace that Orchestra generates for (in)correct behavior. Must
 compile and link fault generated layer with the protocol stack.

 Availability
 See http://www.eecs.umich.edu/RTCL/projects/orchestra/ or e-mail
 Scott Dawson (sdawson@eecs.umich.edu).

http://www.eecs.umich.edu/RTCL/projects/orchestra/

Parker, Schmechel, Editors [Page 7]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Required Environment
 OSF MK operating system, or X-kernel like network architecture,
 or adapted to network stack.

 References
 [DJ94], [DJM96a], [DJM96b]

 3.6. Packet Shell

 Author
 Steve Parker and Chris Schmechel

 Category
 Functional Correctness / Performance

 Description
 An extensible Tcl/Tk based software toolset for protocol develop-
 ment and testing. Tcl (Tool Command Language) is an embeddable
 scripting language and Tk is a graphical user interface toolkit
 based on Tcl. The Packet Shell creates Tcl commands that allow
 you to create, modify, send, and receive packets on networks.
 The operations for each protocol are supplied by a dynamic linked
 library called a protocol library. These libraries are silently
 linked in from a special directory when the Packet Shell begins
 execution. The current protocol libraries are: IP, IPv6, IPv6
 extensions, ICMP, ICMPv6, Ethernet layer, data layer, file layer
 (snoop and tcpdump support), socket layer, TCP, TLI.

 It includes harness, which is a Tk based graphical user interface
 for creating test scripts within the Packet Shell. It includes
 tests for no initial slow start, and retain out of sequence data
 as TCP test cases mentioned in [PADHV98].

 It includes tcpgraph, which is used with a snoop or tcpdump cap-
 ture file to produce a TCP time-sequence plot using xplot.

 Automation
 Command-line driven through Tcl commands, or graphical user
 interface models are available through the harness format.

Parker, Schmechel, Editors [Page 8]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Availability
 See http://playground.sun.com/psh/ or e-mail owner-packet-
 shell@sunroof.eng.sun.com.

 Required Environment
 Solaris 2.4 or higher. Porting required for other operating sys-
 tems.

 3.7. Tcpanaly

 Author
 Vern Paxson

 Category
 Functional Correctness / Performance

 Description
 This is a tool for automatically analyzing a TCP implementation's
 behavior by inspecting packet traces of the TCP's activity. It
 does so through packet filter traces produced by tcpdump. It has
 coded within it knowledge of a large number of TCP implementa-
 tions. Using this, it can determine whether a given trace
 appears consistent with a given implementation, and, if so,
 exactly why the TCP chose to transmit each packet at the time it
 did. If a trace is found inconsistent with a TCP, tcpanaly
 either diagnoses a likely measurement error present in the trace,
 or indicates exactly whether the activity in the trace deviates
 from that of the TCP, which can greatly aid in determining how
 the traced implementation behaves.

 Tcpanaly's category is somewhat difficult to classify, since it
 attempts to profile the behavior of an implementation, rather
 than to explicitly test specific correctness or performance
 issues. However, this profile identifies correctness and perfor-
 mance problems.

 Adding new implementations of TCP behavior is possible with tcpa-
 naly through the use of C++ classes.

http://playground.sun.com/psh/

Parker, Schmechel, Editors [Page 9]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Automation
 Command-line driven and only the traces of the TCP sending and
 receiving bulk data transfers are needed as input.

 Availability
 Contact Vern Paxson (vern@ee.lbl.gov).

 Required Environment
 C++ compiler.

 References
 [Pax97a]

 3.8. Tcptrace

 Author
 Shawn Ostermann

 Category
 Functional Correctness / Performance

 Description
 This is a TCP trace file analysis tool. It reads output trace
 files in the formats of : tcpdump, snoop, etherpeek, and netm.

 For each connection, it keeps track of elapsed time,
 bytes/segments sent and received, retransmissions, round trip
 times, window advertisements, throughput, etc from simple to very
 detailed output.

 It can also produce three different types of graphs:

 Time Sequence Graph (shows the segments sent and ACKs returned as
 a function of time)

 Instantaneous Throughput (shows the instantaneous, averaged over
 a few segments, throughput of the connection as a function of
 time).

 Round Trip Times (shows the round trip times for the ACKs as a

Parker, Schmechel, Editors [Page 10]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 function of time)

 Automation
 Command-line driven, and uses the xplot program to view the
 graphs.

 Availability
 Source code is available, and Solaris binary along with sample
 traces. See

http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html or e-
 mail Shawn Ostermann (ostermann@cs.ohiou.edu).

 Required Environment
 C compiler, Solaris, FreeBSD, NetBSD, HPUX, Linux.

 3.9. Tracelook

 Author
 Greg Minshall

 Category
 Functional Correctness / Performance

 Description
 This is a Tcl/Tk program for graphically viewing the contents of
 tcpdump trace files. When plotting a connection, a user can
 select various variables to be plotted. In each direction of the
 connection, the user can plot the advertised window in each
 packet, the highest sequence number in each packet, the lowest
 sequence number in each packet, and the acknowledgement number in
 each packet.

 Automation
 Command-line driven with a graphical user interface for the
 graph.

http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

Parker, Schmechel, Editors [Page 11]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Availability
 See http://www.ipsilon.com/~minshall/sw/tracelook/tracelook.html
 or e-mail Greg Minshall (minshall@ipsilon.com).

 Required Environment
 A modern version of awk, and Tcl/Tk (Tk version 3.6 or higher).
 The program xgraph is required to view the graphs under X11.

 3.10. TReno

 Author
 Matt Mathis and Jamshid Mahdavi

 Category
 Performance

 Description
 This is a TCP throughput measurement tool based on sending UDP or
 ICMP packets in patterns that are controlled at the user-level so
 that their timing reflects what would be sent by a TCP that
 observes proper congestion control (and implements SACK). This
 allows it to measure throughput independent of the TCP implemen-
 tation of end hosts and serve as a useful platform for prototyp-
 ing TCP changes.

 Automation
 Command-line driven. No "server" is required, and it only
 requires a single argument of the machine to run the test to.

 Availability
 See http://www.psc.edu/networking/treno_info.html or e-mail Matt
 Mathis (mathis@psc.edu) or Jamshid Mahdavi (mahdavi@psc.edu).

 Required Environment
 C compiler, POSIX.1, raw sockets.

http://www.ipsilon.com/~minshall/sw/tracelook/tracelook.html
http://www.psc.edu/networking/treno_info.html

Parker, Schmechel, Editors [Page 12]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 3.11. Ttcp

 Author
 Unknown

 Category
 Performance

 Description
 Originally written to move files around, ttcp became the classic
 throughput benchmark or load generator, with the addition of sup-
 port for sourcing to/from memory. It can also be used as a
 traffic absorber. It has spawned many variants, recent ones
 include support for UDP, data pattern generation, page alignment,
 and even alignment offset control.

 Automation
 Command-line driven.

 Availability
 See ftp://ftp.arl.mil/pub/ttcp/ or e-mail ARL (ftp@arl.mil) which
 include the most common variants available.

 Required Environment
 C compiler, BSD sockets.

 3.12. Xplot

 Author
 Tim Shepard

 Category
 Functional Correctness / Performance

ftp://ftp.arl.mil/pub/ttcp/

Parker, Schmechel, Editors [Page 13]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Description
 This is a fairly conventional graphing/plotting tool (xplot
 itself), a script to turn tcpdump output into xplot input, and
 some sample code to generate xplot commands to plot the TCP
 time-sequence graph. graph).

 Automation
 Command-line driven with a graphical user interface for the plot.

 Availability
 See ftp://mercury.lcs.mit.edu/pub/shep/xplot.tar.gz or e-mail Tim
 Shepard (shep@lcs.mit.edu).

 Required Environment
 C compiler, X11.

 References
 [She91]

 4. Summary

 This draft lists all TCP tests and testing tools reported to the
 authors as part of TCP Implementer's working group and is not
 exhaustive. These tools have been verified as available by the
 authors.

 5. Security Considerations

 Network analysis tools are improving at a steady pace. The con-
 tinuing improvement in these tools such as the ones described
 make security concerns significant.

 Some of the tools could be used to create rogue packets or
 denial-of-service attacks against other hosts. Also, some of the
 tools require changes to the kernel (foreign code) and might
 require root privileges to execute. So you are trusting code
 that you have fetched from some perhaps untrustworthy remote
 site. This code could contain malicious code that could present
 any kind of attack.

ftp://mercury.lcs.mit.edu/pub/shep/xplot.tar.gz

Parker, Schmechel, Editors [Page 14]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 None of the listed tools evaluate security in any way or form.

 There are privacy concerns when grabbing packets from the network
 in that you are now able to read other people's mail, files, etc.
 This impacts more than just the host running the tool but all
 traffic crossing the host's physical network.

 6. References

 [DJ94] Scott Dawson and Farnam Jahanian, "Probing and Fault
 Injection of Distributed Protocol Implementations",
 University of Michigan Technical Report CSE-TR-217-94,
 EECS Department.

 [DJM96a] Scott Dawson, Farnam Jahanian, and Todd Mitton,
 "ORCHESTRA: A Fault Injection Environment for Distri-
 buted Systems", University of Michigan Technical Report
 CSE-TR-318-96, EECS Department.

 [DJM96b] Scott Dawson, Farnam Jahanian, and Todd Mitton, "Exper-
 iments on Six Commercial TCP Implementations Using a
 Software Fault Injection Tool", University of Michigan
 Technical Report CSE-TR-298-96, EECS Department.

 [Pax97a] Vern Paxson, "Automated Packet Trace Analysis of TCP
 Implementations", ACM SIGCOMM '97, September 1997,
 Cannes, France.

 [PADHV98] V. Paxson, M. Allman, S. Dawson, I. Heavens, and B.
 Volz, "Known TCP Implementation Problems", Work In Pro-
 gress, March, 1998.

 [Riz97] Luigi Rizzo, "Dummynet: a simple approach to the
 evaluation of network protocols", ACM Computer Communi-
 cation Review, Vol. 27, N. 1, January 1997, pp. 31-41.

 [She91] Tim Shepard, "TCP Packet Trace Analysis", MIT Labora-
 tory for Computer Science MIT-LCS-TR-494, February,
 1991.

 7. Author's Address

Parker, Schmechel, Editors [Page 15]

INTERNET-DRAFT Some Testing Tools for TCP Implementors November 1997

 Steve Parker <sparker@eng.sun.com>
 Sun Microsystems, Inc.
 901 San Antonio Road, UMPK17-202
 Palo Alto, CA 94043
 USA
 Phone: (650) 786-5176

 Chris Schmechel <cschmec@eng.sun.com>
 Sun Microsystems, Inc.
 901 San Antonio Road, UMPK17-202
 Palo Alto, CA, 94043
 USA
 Phone: (650) 786-4053

Parker, Schmechel, Editors [Page 16]

