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Abstract

   This document specifies tcpcrypt, a TCP encryption protocol designed
   for use in conjunction with the TCP Encryption Negotiation Option
   (TCP-ENO) [I-D.ietf-tcpinc-tcpeno].  Tcpcrypt coexists with
   middleboxes by tolerating resegmentation, NATs, and other
   manipulations of the TCP header.  The protocol is self-contained and
   specifically tailored to TCP implementations, which often reside in
   kernels or other environments in which large external software
   dependencies can be undesirable.  Because the size of TCP options is
   limited, the protocol requires one additional one-way message latency
   to perform key exchange before application data may be transmitted.
   However, this cost can be avoided between two hosts that have
   recently established a previous tcpcrypt connection.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on May 4, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
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   Without obtaining an adequate license from the person(s) controlling
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1.  Requirements language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Introduction

   This document describes tcpcrypt, an extension to TCP for
   cryptographic protection of session data.  Tcpcrypt was designed to
   meet the following goals:

   o  Meet the requirements of the TCP Encryption Negotiation Option
      (TCP-ENO) [I-D.ietf-tcpinc-tcpeno] for protecting connection data.

   o  Be amenable to small, self-contained implementations inside TCP
      stacks.

   o  Minimize additional latency at connection startup.

   o  As much as possible, prevent connection failure in the presence of
      NATs and other middleboxes that might normalize traffic or
      otherwise manipulate TCP segments.

   o  Operate independently of IP addresses, making it possible to
      authenticate resumed sessions efficiently even when either end
      changes IP address.

3.  Encryption protocol

   This section describes the tcpcrypt protocol at an abstract level.
   The concrete format of all messages is specified in Section 4.

https://datatracker.ietf.org/doc/html/rfc2119
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3.1.  Cryptographic algorithms

   Setting up a tcpcrypt connection employs three types of cryptographic
   algorithms:

   o  A _key agreement scheme_ is used with a short-lived public key to
      agree upon a shared secret.

   o  An _extract function_ is used to generate a pseudo-random key from
      some initial keying material, typically the output of the key
      agreement scheme.  The notation Extract(S, IKM) denotes the output
      of the extract function with salt S and initial keying material
      IKM.

   o  A _collision-resistant pseudo-random function (CPRF)_ is used to
      generate multiple cryptographic keys from a pseudo-random key,
      typically the output of the extract function.  We use the notation
      CPRF(K, CONST, L) to designate the output of L bytes of the
      pseudo-random function identified by key K on CONST.

   The Extract and CPRF functions used by default are the Extract and
   Expand functions of HKDF [RFC5869].  These are defined as follows in
   terms of the PRF "HMAC-Hash(key, value)" for a negotiated "Hash"
   function:

           HKDF-Extract(salt, IKM) -> PRK
              PRK = HMAC-Hash(salt, IKM)

           HKDF-Expand(PRK, CONST, L) -> OKM
              T(0) = empty string (zero length)
              T(1) = HMAC-Hash(PRK, T(0) | CONST | 0x01)
              T(2) = HMAC-Hash(PRK, T(1) | CONST | 0x02)
              T(3) = HMAC-Hash(PRK, T(2) | CONST | 0x03)
              ...

              OKM  = first L octets of T(1) | T(2) | T(3) | ...

       Figure 1: The symbol | denotes concatenation, and the counter
           concatenated to the right of CONST is a single octet.

   Lastly, once tcpcrypt has been successfully set up, an _authenticated
   encryption mode_ is used to protect the confidentiality and integrity
   of all transmitted application data.

https://datatracker.ietf.org/doc/html/rfc5869
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3.2.  Protocol negotiation

   Tcpcrypt depends on TCP-ENO [I-D.ietf-tcpinc-tcpeno] to negotiate
   whether encryption will be enabled for a connection, and also which
   key agreement scheme to use.  TCP-ENO negotiates the use of a
   particular TCP encryption protocol or _TEP_ by including protocol
   identifiers in ENO suboptions.  This document associates four TEP
   identifiers with the tcpcrypt protocol, as listed in Table 1.  Future
   standards may associate additional identifiers with tcpcrypt.

   An active opener that wishes to negotiate the use of tcpcrypt will
   include an ENO option in its SYN segment.  That option will include
   suboptions with TEP identifiers indicating the key-agreement schemes
   it is willing to enable.  The active opener MAY additionally include
   suboptions indicating support for encryption protocols other than
   tcpcrypt, as well as other general options as specified by TCP-ENO.

   If a passive opener receives an ENO option including tcpcrypt TEPs it
   supports, it MAY then attach an ENO option to its SYN-ACK segment,
   including _solely_ the TEP it wishes to enable.

   To establish distinct roles for the two hosts in each connection,
   tcpcrypt depends on the role-negotiation mechanism of TCP-ENO
   [I-D.ietf-tcpinc-tcpeno].  As part of the negotiation process, TCP-
   ENO assigns hosts unique roles abstractly called "A" at one end of
   the connection and "B" at the other.  Generally, an active opener
   plays the "A" role and a passive opener plays the "B" role; but in
   the case of simultaneous open, an additional mechanism breaks the
   symmetry and assigns different roles to the two hosts.  This document
   adopts the terms "host A" and "host B" to identify each end of a
   connection uniquely, following TCP-ENO's designation.

   Once two hosts have exchanged SYN segments, the _negotiated TEP_ is
   the last TEP identifier in the SYN segment of host B (that is, the
   passive opener in the absence of simultaneous open) that also occurs
   in that of host A.  If there is no such TEP, hosts MUST disable TCP-
   ENO and tcpcrypt.

   The _negotiated suboption_ is the ENO suboption from the SYN segment
   of host B that contains the negotiated TEP, if it exists.  This
   suboption includes a one-bit flag "v" which indicates the presence of
   additional data.  For tcpcrypt TEPs, if the negotiated suboption
   contains "v = 0", a fresh key agreement will be perfomed as described
   below in Section 3.3.  If it contains "v = 1", it is a _resumption
   suboption_: this indicates that the key-exchange messages will be
   omitted in favor of determining keys via session-caching as described
   in Section 3.4, and protected application data may immediately be
   sent as detailed in Section 3.5.
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   Note that the negotiated TEP is determined without reference to the
   "v" bits in ENO suboptions, so if host A offers a resumption
   suboption with a particular TEP and host B replies with a non-
   resumption suboption with the same TEP, that may become the
   negotiated suboption and fresh key agreement will be performed.  That
   is, sending a resumption suboption also implies willingness to
   perform fresh key-exchange with the indicated TEP.

   As required by TCP-ENO, once a host has both sent and received an ACK
   segment containing an ENO option, encryption MUST be enabled and
   plaintext application data MUST NOT ever be exchanged on the
   connection.  If the negotiated TEP is among those listed in Table 1,
   a host MUST follow the protocol described in this document.

3.3.  Key exchange

   Following successful negotiation of a tcpcrypt TEP, all further
   signaling is performed in the Data portion of TCP segments.  Except
   when resumption was negotiated (described below in Section 3.4), the
   two hosts perform key exchange through two messages, "Init1" and
   "Init2", at the start of the data streams of host A and host B,
   respectively.  These messages may span multiple TCP segments and need
   not end at a segment boundary.  However, the segment containing the
   last byte of an "Init1" or "Init2" message SHOULD have TCP's PSH bit
   set.

   The key exchange protocol, in abstract, proceeds as follows:

       A -> B:  Init1 = { INIT1_MAGIC, sym-cipher-list, N_A, PK_A }
       B -> A:  Init2 = { INIT2_MAGIC, sym-cipher, N_B, PK_B }

   The concrete format of these messages is specified in further detail
   in Section 4.1.

   The parameters are defined as follows:

   o  "INIT1_MAGIC", "INIT2_MAGIC": constants defined in Table 3.

   o  "sym-cipher-list": a list of symmetric ciphers (AEAD algorithms)
      acceptable to host A.  These are specified in Table 2.

   o  "sym-cipher": the symmetric cipher selected by host B from the
      "sym-cipher-list" sent by host A.

   o  "N_A", "N_B": nonces chosen at random by hosts A and B,
      respectively.
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   o  "PK_A", "PK_B": ephemeral public keys for hosts A and B,
      respectively.  These, as well as their corresponding private keys,
      are short-lived values that SHOULD be refreshed periodically.  The
      private keys SHOULD NOT ever be written to persistent storage.

   The ephemeral secret ("ES") is defined to be the result of the key-
   agreement algorithm whose inputs are the local host's ephemeral
   private key and the remote host's ephemeral public key.  For example,
   host A would compute "ES" using its own private key (not transmitted)
   and host B's public key, "PK_B".

   The two sides then compute a pseudo-random key ("PRK"), from which
   all session keys are derived, as follows:

         PRK = Extract (N_A, eno-transcript | Init1 | Init2 | ES)

   Above, "|" denotes concatenation; "eno-transcript" is the protocol-
   negotiation transcript defined in TCP-ENO; and "Init1" and "Init2"
   are the transmitted encodings of the messages described in

Section 4.1.

   A series of "session secrets" and corresponding session identifiers
   are then computed from "PRK" as follows:

                 ss[0] = PRK
                 ss[i] = CPRF (ss[i-1], CONST_NEXTK, K_LEN)

                SID[i] = CPRF (ss[i], CONST_SESSID, K_LEN)

   The value "ss[0]" is used to generate all key material for the
   current connection.  "SID[0]" is the _bare session ID_ for the
   current connection, and will with overwhelming probability be unique
   for each individual TCP connection.

   The values of "ss[i]" for "i > 0" can be used to avoid public key
   cryptography when establishing subsequent connections between the
   same two hosts, as described in Section 3.4.  The "CONST_*" values
   are constants defined in Table 3.  The length "K_LEN" depends on the
   tcpcrypt TEP in use, and is specified in Section 5.

   To yield the _session ID_ required by TCP-ENO
   [I-D.ietf-tcpinc-tcpeno], tcpcrypt concatenates the first byte of the
   negotiated suboption (that is, including the "v" bit as transmitted
   by host B) with the bare session ID for a particular connection:

                      session ID = subopt-byte | SID
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   Given a session secret "ss", the two sides compute a series of master
   keys as follows:

                mk[0] = CPRF (ss, CONST_REKEY, K_LEN)
                mk[i] = CPRF (mk[i-1], CONST_REKEY, K_LEN)

   Finally, each master key "mk" is used to generate keys for
   authenticated encryption for the "A" and "B" roles.  Key "k_ab" is
   used by host A to encrypt and host B to decrypt, while "k_ba" is used
   by host B to encrypt and host A to decrypt.

                 k_ab = CPRF (mk, CONST_KEY_A, ae_keylen)
                 k_ba = CPRF (mk, CONST_KEY_B, ae_keylen)

   The value "ae_keylen" depends on the authenticated-encryption
   algorithm selected, and is given under "Key Length" in Table 2.

   After host B sends "Init2" or host A receives it, that host may
   immediately begin transmitting protected application data as
   described in Section 3.5.

3.4.  Session caching

   When two hosts have already negotiated session secret "ss[i-1]", they
   can establish a new connection without public-key operations using
   "ss[i]".  Willingness to employ this facility is signalled by sending
   a SYN segment with a resumption suboption: an ENO suboption
   containing the negotiated TEP identifier from the original session
   and the flag "v = 1" (indicating variable-length data).

   An active opener wishing to resume from a cached session may send a
   resumption suboption whose content is the nine-byte prefix of the
   associated bare session ID:

       byte     0        1                  9      (10 bytes total)
            +--------+--------+---...---+--------+
            |  TEP-  |       SID[i]{0..8}        |
            |  byte  |                           |
            +--------+--------+---...---+--------+

     Figure 2: ENO suboption used to initiate session resumption.  The
          TEP-byte contains a tcpcrypt TEP identifier and v = 1.

   The active opener MUST use the lowest value of "i" that has not
   already been used to successfully negotiate resumption with the same
   host and for the same pre-session key "ss[0]".



Bittau, et al.             Expires May 4, 2017                  [Page 8]



Internet-Draft                  tcpcrypt                    October 2016

   In a particular SYN segment, a host SHOULD NOT send more than one
   resumption suboption, and MUST NOT send more than one resumption
   suboption with the same TEP identifier.  But in addition to any
   resumption suboptions, an active opener MAY include non-resumption
   suboptions describing other key-agreement schemes it supports (in
   addition to that indicated by the TEP in the resumption suboption).

   If the passive opener recognizes the prefix of "SID[i]" and knows
   "ss[i]", it SHOULD (with exceptions specified below) respond with an
   ENO option containing an _empty resumption suboption_ indicating the
   same key-exchange scheme; that is, a suboption whose initial byte
   gives the TEP identifier from host A's resumption suboption and sets
   "v = 1", but whose contents are empty.  (The only way to encode this
   is as the last ENO suboption.)

   Otherwise, the passive opener SHOULD attempt to negotiate fresh key
   exchange by responding with a single, non-resumption suboption with
   the same TEP as in the received resumption suboption, or with a TEP
   from another received suboption.

   A host MUST ignore a resumption suboption if it has successfully
   negotiated resumption in the past, in either role, with the same
   "SID[i]".  In the event that two hosts simultaneously send SYN
   segments to each other with the same "SID[i]", but the two segments
   are not part of a simultaneous open, both connections will have to
   revert to fresh key exchange.  To avoid this limitation,
   implementations MAY choose to implement session caching such that a
   given pre-session key "ss[0]" is only used for either passive or
   active opens at the same host, not both.

   In the case of simultaneous open where TCP-ENO is able to establish
   asymmetric roles, two hosts that simultaneously send SYN segments
   with resumption suboptions containing the same "SID[i]" may resume
   the associated session.

   A host MUST NOT send, and upon receipt MUST ignore, an empty
   resumption suboption in a SYN-only segment.

   After using "ss[i]" to compute "mk[0]", implementations SHOULD
   compute and cache "ss[i+1]" for possible use by a later session, then
   erase "ss[i]" from memory.  Hosts SHOULD retain "ss[i+1]" until it is
   used or the memory needs to be reclaimed.  Hosts SHOULD NOT write a
   cached "ss[i+1]" value to non-volatile storage.

   When two hosts have previously negotiated a tcpcrypt session, either
   host may initiate session resumption regardless of which host was the
   active opener or played the "A" role in the previous session.
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   However, a given host must either encrypt with "k_ab" for all
   sessions derived from the same pre-session key "ss[0]", or with
   "k_ba".  Thus, which keys a host uses to send segments is not
   affected by the role it plays in the current connection: it depends
   only on whether the host played the "A" or "B" role in the initial
   session.

   Implementations that perform session caching MUST provide a means for
   applications to control session caching, including flushing cached
   session secrets associated with an ESTABLISHED connection or
   disabling the use of caching for a particular connection.

   The session ID required by TCP-ENO and exposed to applications is
   constructed in the same way for resumed sessions as it is for fresh
   ones, as described above in Section 3.3.  In particular, the first
   byte of the session ID is the first byte of the current connection's
   negotiated suboption, which means the byte will contain "v = 1"; and
   the remainder is "SID[i]", the bare session ID for the resumed
   session.

3.5.  Data encryption and authentication

   Following key exchange (or its omission via session caching), all
   further communication in a tcpcrypt-enabled connection is carried out
   within delimited _application frames_ that are encrypted and
   authenticated using the agreed keys.

   This protection is provided via algorithms for Authenticated
   Encryption with Associated Data (AEAD).  The particular algorithms
   that may be used are listed in Table 2.  One algorithm is selected
   during the negotiation described in Section 3.3.

   The format of an application frame is specified in Section 4.2.  A
   sending host breaks its stream of application data into a series of
   chunks.  Each chunk is placed in the "data" portion of a "plaintext"
   value, which is then encrypted to yield a frame's "ciphertext" field.
   Chunks must be small enough that the ciphertext (whose length depends
   on the AEAD cipher used, and is generally slightly longer than the
   plaintext) has length less than 2^16 bytes.

   An "associated data" value (see Section 4.2.2) is constructed for the
   frame.  It contains the frame's "control" field and the length of the
   ciphertext.

   A "frame nonce" value (see Section 4.2.3) is also constructed for the
   frame (but not explicitly transmitted), containing an "offset" field
   whose integer value is the zero-indexed byte offset of the beginning
   of the current application frame in the underlying TCP datastream.
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   (That is, the offset in the framing stream, not the plaintext
   application stream.)  Because it is strictly necessary for the
   security of the AEAD algorithm, an implementation MUST NOT ever
   transmit distinct frames with the same nonce value under the same
   encryption key.  In particular, a retransmitted TCP segment MUST
   contain the same payload bytes for the same TCP sequence numbers, and
   a host MUST NOT transmit more than 2^64 bytes in the underlying TCP
   datastream (which would cause the "offset" field to wrap) before re-
   keying.

   With reference to the "AEAD Interface" described in Section 2 of
   [RFC5116], tcpcrypt invokes the AEAD algorithm with the secret key
   "K" set to k_ab or k_ba, according to the host's role as described in

Section 3.3.  The plaintext value serves as "P", the associated data
   as "A", and the frame nonce as "N".  The output of the encryption
   operation, "C", is transmitted in the frame's "ciphertext" field.

   When a frame is received, tcpcrypt reconstructs the associated data
   and frame nonce values (the former contains only data sent in the
   clear, and the latter is implicit in the TCP stream), and provides
   these and the ciphertext value to the the AEAD decryption operation.
   The output of this operation is either "P", a plaintext value, or the
   special symbol FAIL.  In the latter case, the implementation MUST
   either ignore the frame or abort the connection; but if it aborts,
   the implementation MUST raise an error condition distinct from the
   end-of-file condition.

3.6.  TCP header protection

   The "ciphertext" field of the application frame contains protected
   versions of certain TCP header values.

   When "URGp" is set, the "urgent" value indicates an offset from the
   current frame's beginning offset; the sum of these offsets gives the
   index of the last byte of urgent data in the application datastream.

   When "FINp" is set, it indicates that the sender will send no more
   application data after this frame.  A receiver MUST ignore the TCP
   FIN flag and instead wait for "FINp" to signal to the local
   application that the stream is complete.

3.7.  Re-keying

   Re-keying allows hosts to wipe from memory keys that could decrypt
   previously transmitted segments.  It also allows the use of AEAD
   ciphers that can securely encrypt only a bounded number of messages
   under a given key.

https://datatracker.ietf.org/doc/html/rfc5116#section-2
https://datatracker.ietf.org/doc/html/rfc5116#section-2
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   We refer to the two encryption keys (k_ab, k_ba) as a _key-set_.  We
   refer to the key-set generated by mk[i] as the key-set with
   _generation number_ "i" within a session.  Each host maintains a
   _current generation number_ that it uses to encrypt outgoing frames.
   Initially, the two hosts have current generation number 0.

   When a host has just incremented its current generation number and
   has used the new key-set for the first time to encrypt an outgoing
   frame, it MUST set that frame's "rekey" field (see Section 4.2) to 1.
   It MUST set this field to zero in all other cases.

   A host MAY increment its current generation number beyond the highest
   generation it knows the other side to be using.  We call this action
   _initiating re-keying_.

   A host SHOULD NOT initiate more than one concurrent re-key operation
   if it has no data to send; that is, it should not initiate re-keying
   with an empty application frame more than once while its record of
   the remote host's current generation number is less than its own.

   On receipt, a host increments its record of the remote host's current
   generation number if and only if the "rekey" field is set to 1.

   If a received frame's generation number is greater than the
   receiver's current generation number, the receiver MUST immediately
   increment its current generation number to match.  After incrementing
   its generation number, if the receiver does not have any application
   data to send, it MUST send an empty application frame with the
   "rekey" field set to 1.

   When retransmitting, implementations must always transmit the same
   bytes for the same TCP sequence numbers.  Thus, a frame in a
   retransmitted segment MUST always be encrypted with the same key as
   when it was originally transmitted.

   Implementations SHOULD delete older-generation keys from memory once
   they have received all frames they will need to decrypt with the old
   keys and have encrypted all outgoing frames under the old keys.

3.8.  Keep-alive

   Instead of using TCP Keep-Alives to verify that the remote endpoint
   is still responsive, tcpcrypt implementations SHOULD employ the re-
   keying mechanism, as follows.  When necessary, a host SHOULD probe
   the liveness of its peer by initiating re-keying as described in

Section 3.7, and then transmitting a new frame (with zero-length
   application data if necessary).  A host receiving a frame whose key
   generation number is greater than its current generation number MUST
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   increment its current generation number and MUST immediately transmit
   a new frame (with zero-length application data, if necessary).

   Implementations MAY use TCP Keep-Alives for purposes that do not
   require endpoint authentication, as discussed in Section 9.2.

4.  Encodings

   This section provides byte-level encodings for values transmitted or
   computed by the protocol.

4.1.  Key exchange messages

   The "Init1" message has the following encoding:

       byte   0       1       2       3
          +-------+-------+-------+-------+
          |          INIT1_MAGIC          |
          |                               |
          +-------+-------+-------+-------+

                  4        5      6       7
              +-------+-------+-------+-------+
              |          message_len          |
              |              = M              |
              +-------+-------+-------+-------+

                  8
              +--------+-------+-------+---...---+-------+
              |nciphers|sym-   |sym-   |         |sym-   |
              | =K+1   |cipher0|cipher1|         |cipherK|
              +--------+-------+-------+---...---+-------+

                 K + 10                    K + 10 + N_A_LEN
                  |                         |
                  v                         v
              +-------+---...---+-------+-------+---...---+-------+
              |           N_A           |          PK_A           |
              |                         |                         |
              +-------+---...---+-------+-------+---...---+-------+

                                  M - 1
              +-------+---...---+-------+
              |          ignored        |
              |                         |
              +-------+---...---+-------+
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   The constant "INIT1_MAGIC" is defined in Table 3.  The four-byte
   field "message_len" gives the length of the entire "Init1" message,
   encoded as a big-endian integer.  The "nciphers" field contains an
   integer value that specifies the number of one-byte symmetric-cipher
   identifiers that follow.  The "sym-cipher" bytes identify
   cryptographic algorithms in Table 2.  The length "N_A_LEN" and the
   length of "PK_A" are both determined by the negotiated key-agreement
   scheme, as described in Section 5.

   When sending "Init1", implementations of this protocol MUST omit the
   field "ignored"; that is, they must construct the message such that
   its end, as determined by "message_len", coincides with the end of
   the field "PK_A".  When receiving "Init1", however, implementations
   MUST permit and ignore any bytes following "PK_A".

   The "Init2" message has the following encoding:

       byte   0       1       2       3
          +-------+-------+-------+-------+
          |          INIT2_MAGIC          |
          |                               |
          +-------+-------+-------+-------+

                  4        5      6       7       8
              +-------+-------+-------+-------+-------+
              |          message_len          |sym-   |
              |              = M              |cipher |
              +-------+-------+-------+-------+-------+

                  9                        9 + N_B_LEN
                  |                         |
                  v                         v
              +-------+---...---+-------+-------+---...---+-------+
              |           N_B           |          PK_B           |
              |                         |                         |
              +-------+---...---+-------+-------+---...---+-------+

                                  M - 1
              +-------+---...---+-------+
              |          ignored        |
              |                         |
              +-------+---...---+-------+

   The constant "INIT2_MAGIC" is defined in Table 3.  The four-byte
   field "message_len" gives the length of the entire "Init2" message,
   encoded as a big-endian integer.  The "sym-cipher" value is a
   selection from the symmetric-cipher identifiers in the previously-
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   received "Init1" message.  The length "N_B_LEN" and the length of
   "PK_B" are both determined by the negotiated key-agreement scheme, as
   described in Section 5.

   When sending "Init2", implementations of this protocol MUST omit the
   field "ignored"; that is, they must construct the message such that
   its end, as determined by "message_len", coincides with the end of
   the "PK_B" field.  When receiving "Init2", however, implementations
   MUST permit and ignore any bytes following "PK_B".

4.2.  Application frames

   An _application frame_ comprises a control byte and a length-prefixed
   ciphertext value:

          byte   0       1       2       3               clen+2
             +-------+-------+-------+-------+---...---+-------+
             |control|      clen     |        ciphertext       |
             +-------+-------+-------+-------+---...---+-------+

   The field "clen" is an integer in big-endian format and gives the
   length of the "ciphertext" field.

   The byte "control" has this structure:

                  bit     7                 1       0
                      +-------+---...---+-------+-------+
                      |          cres           | rekey |
                      +-------+---...---+-------+-------+

   The seven-bit field "cres" is reserved; implementations MUST set
   these bits to zero when sending, and MUST ignore them when receiving.

   The use of the "rekey" field is described in Section 3.7.

4.2.1.  Plaintext

   The "ciphertext" field is the result of applying the negotiated
   authenticated-encryption algorithm to a "plaintext" value, which has
   one of these two formats:
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          byte   0       1               plen-1
             +-------+-------+---...---+-------+
             | flags |           data          |
             +-------+-------+---...---+-------+

          byte   0       1       2       3              plen-1
             +-------+-------+-------+-------+---...---+-------+
             | flags |    urgent     |          data           |
             +-------+-------+-------+-------+---...---+-------+

   (Note that "clen" in the previous section will generally be greater
   than "plen", as the ciphertext produced by the authenticated-
   encryption scheme must both encrypt the application data and provide
   a way to verify its integrity.)

   The "flags" byte has this structure:

               bit    7    6    5    4    3    2    1    0
                   +----+----+----+----+----+----+----+----+
                   |            fres             |URGp|FINp|
                   +----+----+----+----+----+----+----+----+

   The six-bit value "fres" is reserved; implementations MUST set these
   six bits to zero when sending, and MUST ignore them when receiving.

   When the "URGp" bit is set, it indicates that the "urgent" field is
   present, and thus that the plaintext value has the second structure
   variant above; otherwise the first variant is used.

   The meaning of "urgent" and of the flag bits is described in
Section 3.6.

4.2.2.  Associated data

   An application frame's "associated data" (which is supplied to the
   AEAD algorithm when decrypting the ciphertext and verifying the
   frame's integrity) has this format:

                       byte   0       1       2
                          +-------+-------+-------+
                          |control|     clen      |
                          +-------+-------+-------+

   It contains the same values as the frame's "control" and "clen"
   fields.
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4.2.3.  Frame nonce

   Lastly, a "frame nonce" (provided as input to the AEAD algorithm) has
   this format:

                     byte
                        +------+------+------+------+
                      0 |     FRAME_NONCE_MAGIC     |
                        +------+------+------+------+
                      4 |                           |
                        +           offset          +
                      8 |                           |
                        +------+------+------+------+

   The 4-byte magic constant is defined in Table 3.  The 8-byte "offset"
   field contains an integer in big-endian format.  Its value is
   specified in Section 3.5.

5.  Key agreement schemes

   The TEP negotiated via TCP-ENO may indicate the use of one of the
   key-agreement schemes named in Table 1.  For example,
   "TCPCRYPT_ECDHE_P256" names the tcpcrypt protocol with key-agreement
   scheme ECDHE-P256.

   All schemes listed there use HKDF-Expand-SHA256 as the CPRF, and
   these lengths for nonces and session keys:

                             N_A_LEN: 32 bytes
                             N_B_LEN: 32 bytes
                             K_LEN:   32 bytes

   Key-agreement schemes ECDHE-P256 and ECDHE-P521 employ the ECSVDP-DH
   secret value derivation primitive defined in [ieee1363].  The named
   curves are defined in [nist-dss].  When the public-key values "PK_A"
   and "PK_B" are transmitted as described in Section 4.1, they are
   encoded with the "Elliptic Curve Point to Octet String Conversion
   Primitive" described in Section E.2.3 of [ieee1363], and are prefixed
   by a two-byte length in big-endian format:

              byte   0       1       2               L - 1
                 +-------+-------+-------+---...---+-------+
                 |   pubkey_len  |          pubkey         |
                 |      = L      |                         |
                 +-------+-------+-------+---...---+-------+
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   Implementations SHOULD encode these "pubkey" values in "compressed
   format", and MUST accept values encoded in "compressed",
   "uncompressed" or "hybrid" formats.

   Key-agreement schemes ECDHE-Curve25519 and ECDHE-Curve448 use the
   functions X25519 and X448, respectively, to perform the Diffie-Helman
   protocol as described in [RFC7748].  When using these ciphers,
   public-key values "PK_A" and "PK_B" are transmitted directly with no
   length prefix: 32 bytes for Curve25519, and 56 bytes for Curve448.

   A tcpcrypt implementation MUST support at least the schemes
   ECDHE-P256 and ECDHE-P521, although system administrators need not
   enable them.

6.  AEAD algorithms

   Specifiers and key-lengths for AEAD algorithms are given in Table 2.
   The algorithms "AEAD_AES_128_GCM" and "AEAD_AES_256_GCM" are
   specified in [RFC5116].  The algorithm "AEAD_CHACHA20_POLY1305" is
   specified in [RFC7539].

7.  IANA considerations

   Tcpcrypt's TEP identifiers will need to be incorporated in IANA's
   TCP-ENO encryption protocol identifier registry, as follows:

                   +------+---------------------------+
                   |  cs  | Spec name                 |
                   +------+---------------------------+
                   | 0x21 | TCPCRYPT_ECDHE_P256       |
                   | 0x22 | TCPCRYPT_ECDHE_P521       |
                   | 0x23 | TCPCRYPT_ECDHE_Curve25519 |
                   | 0x24 | TCPCRYPT_ECDHE_Curve448   |
                   +------+---------------------------+

              Table 1: TEP identifiers for use with tcpcrypt

   A "tcpcrypt AEAD parameter" registry needs to be maintained by IANA
   as in the following table.  The use of encryption is described in

Section 3.5.

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc7539
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           +------------------------+------------+------------+
           | AEAD Algorithm         | Key Length | sym-cipher |
           +------------------------+------------+------------+
           | AEAD_AES_128_GCM       | 16 bytes   |       0x01 |
           | AEAD_AES_256_GCM       | 32 bytes   |       0x02 |
           | AEAD_CHACHA20_POLY1305 | 32 bytes   |       0x10 |
           +------------------------+------------+------------+

    Table 2: Authenticated-encryption algorithms corresponding to sym-
              cipher specifiers in Init1 and Init2 messages.

8.  Security considerations

   Public-key generation, public-key encryption, and shared-secret
   generation all require randomness.  Other tcpcrypt functions may also
   require randomness, depending on the algorithms and modes of
   operation selected.  A weak pseudo-random generator at either host
   will compromise tcpcrypt's security.  Many of tcpcrypt's
   cryptographic functions require random input, and thus any host
   implementing tcpcrypt MUST have access to a cryptographically-secure
   source of randomness or pseudo-randomness.

   Most implementations will rely on system-wide pseudo-random
   generators seeded from hardware events and a seed carried over from
   the previous boot.  Once a pseudo-random generator has been properly
   seeded, it can generate effectively arbitrary amounts of pseudo-
   random data.  However, until a pseudo-random generator has been
   seeded with sufficient entropy, not only will tcpcrypt be insecure,
   it will reveal information that further weakens the security of the
   pseudo-random generator, potentially harming other applications.  As
   required by TCP-ENO, implementations MUST NOT send ENO options unless
   they have access to an adequate source of randomness.

   The cipher-suites specified in this document all use HMAC-SHA256 to
   implement the collision-resistant pseudo-random function denoted by
   "CPRF".  A collision-resistant function is one on which, for
   sufficiently large L, an attacker cannot find two distinct inputs
   "K_1", "CONST_1" and "K_2", "CONST_2" such that "CPRF(K_1, CONST_1,
   L) = CPRF(K_2, CONST_2, L)".  Collision resistance is important to
   assure the uniqueness of session IDs, which are generated using the
   CPRF.

   All of the security considerations of TCP-ENO apply to tcpcrypt.  In
   particular, tcpcrypt does not protect against active eavesdroppers
   unless applications authenticate the session ID.  If it can be
   established that the session IDs computed at each end of the
   connection match, then tcpcrypt guarantees that no man-in-the-middle
   attacks occurred unless the attacker has broken the underlying
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   cryptographic primitives (e.g., ECDH).  A proof of this property for
   an earlier version of the protocol has been published [tcpcrypt].

   To gain middlebox compatibility, tcpcrypt does not protect TCP
   headers.  Hence, the protocol is vulnerable to denial-of-service from
   off-path attackers.  Possible attacks include desynchronizing the
   underlying TCP stream, injecting RST packets, and forging or
   suppressing rekey bits.  These attacks will cause a tcpcrypt
   connection to hang or fail with an error.  Implementations MUST give
   higher-level software a way to distinguish such errors from a clean
   end-of-stream (indicated by an authenticated "FINp" bit) so that
   applications can avoid semantic truncation attacks.

   There is no "key confirmation" step in tcpcrypt.  This is not
   required because tcpcrypt's threat model includes the possibility of
   a connection to an adversary.  If key negotiation is compromised and
   yields two different keys, all subsequent frames will be ignored due
   to failed integrity checks, causing the application's connection to
   hang.  This is not a new threat because in plain TCP, an active
   attacker could have modified sequence and acknowledgement numbers to
   hang the connection anyway.

   Tcpcrypt uses short-lived public keys to provide forward secrecy.
   All currently specified key agreement schemes involve ECDHE-based key
   agreement, meaning a new key can be efficiently computed for each
   connection.  If implementations reuse these parameters, they SHOULD
   limit the lifetime of the private parameters, ideally to no more than
   two minutes.

   Attackers cannot force passive openers to move forward in their
   session caching chain without guessing the content of the resumption
   suboption, which will be difficult without key knowledge.

9.  Design notes

9.1.  Asymmetric roles

   Tcpcrypt transforms a shared pseudo-random key (PRK) into
   cryptographic session keys for each direction.  Doing so requires an
   asymmetry in the protocol, as the key derivation function must be
   perturbed differently to generate different keys in each direction.
   Tcpcrypt includes other asymmetries in the roles of the two hosts,
   such as the process of negotiating algorithms (e.g., proposing vs.
   selecting cipher suites).
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9.2.  Verified liveness

   Many hosts implement TCP Keep-Alives [RFC1122] as an option for
   applications to ensure that the other end of a TCP connection still
   exists even when there is no data to be sent.  A TCP Keep-Alive
   segment carries a sequence number one prior to the beginning of the
   send window, and may carry one byte of "garbage" data.  Such a
   segment causes the remote side to send an acknowledgment.

   Unfortunately, tcpcrypt cannot cryptographically verify Keep-Alive
   acknowledgments.  Hence, an attacker could prolong the existence of a
   session at one host after the other end of the connection no longer
   exists.  (Such an attack might prevent a process with sensitive data
   from exiting, giving an attacker more time to compromise a host and
   extract the sensitive data.)

   Thus, tcpcrypt specifies a way to stimulate the remote host to send
   verifiably fresh and authentic data, described in Section 3.8.

   The TCP keep-alive mechanism has also been used for its effects on
   intermediate nodes in the network, such as preventing flow state from
   expiring at NAT boxes or firewalls.  As these purposes do not require
   the authentication of endpoints, implementations may safely
   accomplish them using either the existing TCP keep-alive mechanism or
   tcpcrypt's verified keep-alive mechanism.
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                    +------------+-------------------+
                    | Value      | Name              |
                    +------------+-------------------+
                    | 0x01       | CONST_NEXTK       |
                    | 0x02       | CONST_SESSID      |
                    | 0x03       | CONST_REKEY       |
                    | 0x04       | CONST_KEY_A       |
                    | 0x05       | CONST_KEY_B       |
                    | 0x15101a0e | INIT1_MAGIC       |
                    | 0x097105e0 | INIT2_MAGIC       |
                    | 0x44415441 | FRAME_NONCE_MAGIC |
                    +------------+-------------------+

                        Table 3: Protocol constants
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