
Network Working Group A. Bittau
Internet-Draft Google
Intended status: Standards Track D. Boneh
Expires: May 4, 2017 D. Giffin
 M. Hamburg
 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Q. Slack
 Stanford University
 E. Smith
 Kestrel Institute
 October 31, 2016

Cryptographic protection of TCP Streams (tcpcrypt)
draft-ietf-tcpinc-tcpcrypt-03

Abstract

 This document specifies tcpcrypt, a TCP encryption protocol designed
 for use in conjunction with the TCP Encryption Negotiation Option
 (TCP-ENO) [I-D.ietf-tcpinc-tcpeno]. Tcpcrypt coexists with
 middleboxes by tolerating resegmentation, NATs, and other
 manipulations of the TCP header. The protocol is self-contained and
 specifically tailored to TCP implementations, which often reside in
 kernels or other environments in which large external software
 dependencies can be undesirable. Because the size of TCP options is
 limited, the protocol requires one additional one-way message latency
 to perform key exchange before application data may be transmitted.
 However, this cost can be avoided between two hosts that have
 recently established a previous tcpcrypt connection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bittau, et al. Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft tcpcrypt October 2016

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Requirements language . 3
2. Introduction . 3
3. Encryption protocol . 3
3.1. Cryptographic algorithms 4
3.2. Protocol negotiation 5
3.3. Key exchange . 6
3.4. Session caching . 8
3.5. Data encryption and authentication 10
3.6. TCP header protection 11
3.7. Re-keying . 11
3.8. Keep-alive . 12

4. Encodings . 13
4.1. Key exchange messages 13
4.2. Application frames 15
4.2.1. Plaintext . 15
4.2.2. Associated data 16
4.2.3. Frame nonce . 17

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bittau, et al. Expires May 4, 2017 [Page 2]

Internet-Draft tcpcrypt October 2016

5. Key agreement schemes . 17
6. AEAD algorithms . 18
7. IANA considerations . 18
8. Security considerations 19
9. Design notes . 20
9.1. Asymmetric roles . 20
9.2. Verified liveness . 21

10. Acknowledgments . 21
11. References . 21
11.1. Normative References 21
11.2. Informative References 22

Appendix A. Protocol constant values 22
 Authors' Addresses . 23

1. Requirements language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 This document describes tcpcrypt, an extension to TCP for
 cryptographic protection of session data. Tcpcrypt was designed to
 meet the following goals:

 o Meet the requirements of the TCP Encryption Negotiation Option
 (TCP-ENO) [I-D.ietf-tcpinc-tcpeno] for protecting connection data.

 o Be amenable to small, self-contained implementations inside TCP
 stacks.

 o Minimize additional latency at connection startup.

 o As much as possible, prevent connection failure in the presence of
 NATs and other middleboxes that might normalize traffic or
 otherwise manipulate TCP segments.

 o Operate independently of IP addresses, making it possible to
 authenticate resumed sessions efficiently even when either end
 changes IP address.

3. Encryption protocol

 This section describes the tcpcrypt protocol at an abstract level.
 The concrete format of all messages is specified in Section 4.

https://datatracker.ietf.org/doc/html/rfc2119

Bittau, et al. Expires May 4, 2017 [Page 3]

Internet-Draft tcpcrypt October 2016

3.1. Cryptographic algorithms

 Setting up a tcpcrypt connection employs three types of cryptographic
 algorithms:

 o A _key agreement scheme_ is used with a short-lived public key to
 agree upon a shared secret.

 o An _extract function_ is used to generate a pseudo-random key from
 some initial keying material, typically the output of the key
 agreement scheme. The notation Extract(S, IKM) denotes the output
 of the extract function with salt S and initial keying material
 IKM.

 o A _collision-resistant pseudo-random function (CPRF)_ is used to
 generate multiple cryptographic keys from a pseudo-random key,
 typically the output of the extract function. We use the notation
 CPRF(K, CONST, L) to designate the output of L bytes of the
 pseudo-random function identified by key K on CONST.

 The Extract and CPRF functions used by default are the Extract and
 Expand functions of HKDF [RFC5869]. These are defined as follows in
 terms of the PRF "HMAC-Hash(key, value)" for a negotiated "Hash"
 function:

 HKDF-Extract(salt, IKM) -> PRK
 PRK = HMAC-Hash(salt, IKM)

 HKDF-Expand(PRK, CONST, L) -> OKM
 T(0) = empty string (zero length)
 T(1) = HMAC-Hash(PRK, T(0) | CONST | 0x01)
 T(2) = HMAC-Hash(PRK, T(1) | CONST | 0x02)
 T(3) = HMAC-Hash(PRK, T(2) | CONST | 0x03)
 ...

 OKM = first L octets of T(1) | T(2) | T(3) | ...

 Figure 1: The symbol | denotes concatenation, and the counter
 concatenated to the right of CONST is a single octet.

 Lastly, once tcpcrypt has been successfully set up, an _authenticated
 encryption mode_ is used to protect the confidentiality and integrity
 of all transmitted application data.

https://datatracker.ietf.org/doc/html/rfc5869

Bittau, et al. Expires May 4, 2017 [Page 4]

Internet-Draft tcpcrypt October 2016

3.2. Protocol negotiation

 Tcpcrypt depends on TCP-ENO [I-D.ietf-tcpinc-tcpeno] to negotiate
 whether encryption will be enabled for a connection, and also which
 key agreement scheme to use. TCP-ENO negotiates the use of a
 particular TCP encryption protocol or _TEP_ by including protocol
 identifiers in ENO suboptions. This document associates four TEP
 identifiers with the tcpcrypt protocol, as listed in Table 1. Future
 standards may associate additional identifiers with tcpcrypt.

 An active opener that wishes to negotiate the use of tcpcrypt will
 include an ENO option in its SYN segment. That option will include
 suboptions with TEP identifiers indicating the key-agreement schemes
 it is willing to enable. The active opener MAY additionally include
 suboptions indicating support for encryption protocols other than
 tcpcrypt, as well as other general options as specified by TCP-ENO.

 If a passive opener receives an ENO option including tcpcrypt TEPs it
 supports, it MAY then attach an ENO option to its SYN-ACK segment,
 including _solely_ the TEP it wishes to enable.

 To establish distinct roles for the two hosts in each connection,
 tcpcrypt depends on the role-negotiation mechanism of TCP-ENO
 [I-D.ietf-tcpinc-tcpeno]. As part of the negotiation process, TCP-
 ENO assigns hosts unique roles abstractly called "A" at one end of
 the connection and "B" at the other. Generally, an active opener
 plays the "A" role and a passive opener plays the "B" role; but in
 the case of simultaneous open, an additional mechanism breaks the
 symmetry and assigns different roles to the two hosts. This document
 adopts the terms "host A" and "host B" to identify each end of a
 connection uniquely, following TCP-ENO's designation.

 Once two hosts have exchanged SYN segments, the _negotiated TEP_ is
 the last TEP identifier in the SYN segment of host B (that is, the
 passive opener in the absence of simultaneous open) that also occurs
 in that of host A. If there is no such TEP, hosts MUST disable TCP-
 ENO and tcpcrypt.

 The _negotiated suboption_ is the ENO suboption from the SYN segment
 of host B that contains the negotiated TEP, if it exists. This
 suboption includes a one-bit flag "v" which indicates the presence of
 additional data. For tcpcrypt TEPs, if the negotiated suboption
 contains "v = 0", a fresh key agreement will be perfomed as described
 below in Section 3.3. If it contains "v = 1", it is a _resumption
 suboption_: this indicates that the key-exchange messages will be
 omitted in favor of determining keys via session-caching as described
 in Section 3.4, and protected application data may immediately be
 sent as detailed in Section 3.5.

Bittau, et al. Expires May 4, 2017 [Page 5]

Internet-Draft tcpcrypt October 2016

 Note that the negotiated TEP is determined without reference to the
 "v" bits in ENO suboptions, so if host A offers a resumption
 suboption with a particular TEP and host B replies with a non-
 resumption suboption with the same TEP, that may become the
 negotiated suboption and fresh key agreement will be performed. That
 is, sending a resumption suboption also implies willingness to
 perform fresh key-exchange with the indicated TEP.

 As required by TCP-ENO, once a host has both sent and received an ACK
 segment containing an ENO option, encryption MUST be enabled and
 plaintext application data MUST NOT ever be exchanged on the
 connection. If the negotiated TEP is among those listed in Table 1,
 a host MUST follow the protocol described in this document.

3.3. Key exchange

 Following successful negotiation of a tcpcrypt TEP, all further
 signaling is performed in the Data portion of TCP segments. Except
 when resumption was negotiated (described below in Section 3.4), the
 two hosts perform key exchange through two messages, "Init1" and
 "Init2", at the start of the data streams of host A and host B,
 respectively. These messages may span multiple TCP segments and need
 not end at a segment boundary. However, the segment containing the
 last byte of an "Init1" or "Init2" message SHOULD have TCP's PSH bit
 set.

 The key exchange protocol, in abstract, proceeds as follows:

 A -> B: Init1 = { INIT1_MAGIC, sym-cipher-list, N_A, PK_A }
 B -> A: Init2 = { INIT2_MAGIC, sym-cipher, N_B, PK_B }

 The concrete format of these messages is specified in further detail
 in Section 4.1.

 The parameters are defined as follows:

 o "INIT1_MAGIC", "INIT2_MAGIC": constants defined in Table 3.

 o "sym-cipher-list": a list of symmetric ciphers (AEAD algorithms)
 acceptable to host A. These are specified in Table 2.

 o "sym-cipher": the symmetric cipher selected by host B from the
 "sym-cipher-list" sent by host A.

 o "N_A", "N_B": nonces chosen at random by hosts A and B,
 respectively.

Bittau, et al. Expires May 4, 2017 [Page 6]

Internet-Draft tcpcrypt October 2016

 o "PK_A", "PK_B": ephemeral public keys for hosts A and B,
 respectively. These, as well as their corresponding private keys,
 are short-lived values that SHOULD be refreshed periodically. The
 private keys SHOULD NOT ever be written to persistent storage.

 The ephemeral secret ("ES") is defined to be the result of the key-
 agreement algorithm whose inputs are the local host's ephemeral
 private key and the remote host's ephemeral public key. For example,
 host A would compute "ES" using its own private key (not transmitted)
 and host B's public key, "PK_B".

 The two sides then compute a pseudo-random key ("PRK"), from which
 all session keys are derived, as follows:

 PRK = Extract (N_A, eno-transcript | Init1 | Init2 | ES)

 Above, "|" denotes concatenation; "eno-transcript" is the protocol-
 negotiation transcript defined in TCP-ENO; and "Init1" and "Init2"
 are the transmitted encodings of the messages described in

Section 4.1.

 A series of "session secrets" and corresponding session identifiers
 are then computed from "PRK" as follows:

 ss[0] = PRK
 ss[i] = CPRF (ss[i-1], CONST_NEXTK, K_LEN)

 SID[i] = CPRF (ss[i], CONST_SESSID, K_LEN)

 The value "ss[0]" is used to generate all key material for the
 current connection. "SID[0]" is the _bare session ID_ for the
 current connection, and will with overwhelming probability be unique
 for each individual TCP connection.

 The values of "ss[i]" for "i > 0" can be used to avoid public key
 cryptography when establishing subsequent connections between the
 same two hosts, as described in Section 3.4. The "CONST_*" values
 are constants defined in Table 3. The length "K_LEN" depends on the
 tcpcrypt TEP in use, and is specified in Section 5.

 To yield the _session ID_ required by TCP-ENO
 [I-D.ietf-tcpinc-tcpeno], tcpcrypt concatenates the first byte of the
 negotiated suboption (that is, including the "v" bit as transmitted
 by host B) with the bare session ID for a particular connection:

 session ID = subopt-byte | SID

Bittau, et al. Expires May 4, 2017 [Page 7]

Internet-Draft tcpcrypt October 2016

 Given a session secret "ss", the two sides compute a series of master
 keys as follows:

 mk[0] = CPRF (ss, CONST_REKEY, K_LEN)
 mk[i] = CPRF (mk[i-1], CONST_REKEY, K_LEN)

 Finally, each master key "mk" is used to generate keys for
 authenticated encryption for the "A" and "B" roles. Key "k_ab" is
 used by host A to encrypt and host B to decrypt, while "k_ba" is used
 by host B to encrypt and host A to decrypt.

 k_ab = CPRF (mk, CONST_KEY_A, ae_keylen)
 k_ba = CPRF (mk, CONST_KEY_B, ae_keylen)

 The value "ae_keylen" depends on the authenticated-encryption
 algorithm selected, and is given under "Key Length" in Table 2.

 After host B sends "Init2" or host A receives it, that host may
 immediately begin transmitting protected application data as
 described in Section 3.5.

3.4. Session caching

 When two hosts have already negotiated session secret "ss[i-1]", they
 can establish a new connection without public-key operations using
 "ss[i]". Willingness to employ this facility is signalled by sending
 a SYN segment with a resumption suboption: an ENO suboption
 containing the negotiated TEP identifier from the original session
 and the flag "v = 1" (indicating variable-length data).

 An active opener wishing to resume from a cached session may send a
 resumption suboption whose content is the nine-byte prefix of the
 associated bare session ID:

 byte 0 1 9 (10 bytes total)
 +--------+--------+---...---+--------+
 | TEP- | SID[i]{0..8} |
 | byte | |
 +--------+--------+---...---+--------+

 Figure 2: ENO suboption used to initiate session resumption. The
 TEP-byte contains a tcpcrypt TEP identifier and v = 1.

 The active opener MUST use the lowest value of "i" that has not
 already been used to successfully negotiate resumption with the same
 host and for the same pre-session key "ss[0]".

Bittau, et al. Expires May 4, 2017 [Page 8]

Internet-Draft tcpcrypt October 2016

 In a particular SYN segment, a host SHOULD NOT send more than one
 resumption suboption, and MUST NOT send more than one resumption
 suboption with the same TEP identifier. But in addition to any
 resumption suboptions, an active opener MAY include non-resumption
 suboptions describing other key-agreement schemes it supports (in
 addition to that indicated by the TEP in the resumption suboption).

 If the passive opener recognizes the prefix of "SID[i]" and knows
 "ss[i]", it SHOULD (with exceptions specified below) respond with an
 ENO option containing an _empty resumption suboption_ indicating the
 same key-exchange scheme; that is, a suboption whose initial byte
 gives the TEP identifier from host A's resumption suboption and sets
 "v = 1", but whose contents are empty. (The only way to encode this
 is as the last ENO suboption.)

 Otherwise, the passive opener SHOULD attempt to negotiate fresh key
 exchange by responding with a single, non-resumption suboption with
 the same TEP as in the received resumption suboption, or with a TEP
 from another received suboption.

 A host MUST ignore a resumption suboption if it has successfully
 negotiated resumption in the past, in either role, with the same
 "SID[i]". In the event that two hosts simultaneously send SYN
 segments to each other with the same "SID[i]", but the two segments
 are not part of a simultaneous open, both connections will have to
 revert to fresh key exchange. To avoid this limitation,
 implementations MAY choose to implement session caching such that a
 given pre-session key "ss[0]" is only used for either passive or
 active opens at the same host, not both.

 In the case of simultaneous open where TCP-ENO is able to establish
 asymmetric roles, two hosts that simultaneously send SYN segments
 with resumption suboptions containing the same "SID[i]" may resume
 the associated session.

 A host MUST NOT send, and upon receipt MUST ignore, an empty
 resumption suboption in a SYN-only segment.

 After using "ss[i]" to compute "mk[0]", implementations SHOULD
 compute and cache "ss[i+1]" for possible use by a later session, then
 erase "ss[i]" from memory. Hosts SHOULD retain "ss[i+1]" until it is
 used or the memory needs to be reclaimed. Hosts SHOULD NOT write a
 cached "ss[i+1]" value to non-volatile storage.

 When two hosts have previously negotiated a tcpcrypt session, either
 host may initiate session resumption regardless of which host was the
 active opener or played the "A" role in the previous session.

Bittau, et al. Expires May 4, 2017 [Page 9]

Internet-Draft tcpcrypt October 2016

 However, a given host must either encrypt with "k_ab" for all
 sessions derived from the same pre-session key "ss[0]", or with
 "k_ba". Thus, which keys a host uses to send segments is not
 affected by the role it plays in the current connection: it depends
 only on whether the host played the "A" or "B" role in the initial
 session.

 Implementations that perform session caching MUST provide a means for
 applications to control session caching, including flushing cached
 session secrets associated with an ESTABLISHED connection or
 disabling the use of caching for a particular connection.

 The session ID required by TCP-ENO and exposed to applications is
 constructed in the same way for resumed sessions as it is for fresh
 ones, as described above in Section 3.3. In particular, the first
 byte of the session ID is the first byte of the current connection's
 negotiated suboption, which means the byte will contain "v = 1"; and
 the remainder is "SID[i]", the bare session ID for the resumed
 session.

3.5. Data encryption and authentication

 Following key exchange (or its omission via session caching), all
 further communication in a tcpcrypt-enabled connection is carried out
 within delimited _application frames_ that are encrypted and
 authenticated using the agreed keys.

 This protection is provided via algorithms for Authenticated
 Encryption with Associated Data (AEAD). The particular algorithms
 that may be used are listed in Table 2. One algorithm is selected
 during the negotiation described in Section 3.3.

 The format of an application frame is specified in Section 4.2. A
 sending host breaks its stream of application data into a series of
 chunks. Each chunk is placed in the "data" portion of a "plaintext"
 value, which is then encrypted to yield a frame's "ciphertext" field.
 Chunks must be small enough that the ciphertext (whose length depends
 on the AEAD cipher used, and is generally slightly longer than the
 plaintext) has length less than 2^16 bytes.

 An "associated data" value (see Section 4.2.2) is constructed for the
 frame. It contains the frame's "control" field and the length of the
 ciphertext.

 A "frame nonce" value (see Section 4.2.3) is also constructed for the
 frame (but not explicitly transmitted), containing an "offset" field
 whose integer value is the zero-indexed byte offset of the beginning
 of the current application frame in the underlying TCP datastream.

Bittau, et al. Expires May 4, 2017 [Page 10]

Internet-Draft tcpcrypt October 2016

 (That is, the offset in the framing stream, not the plaintext
 application stream.) Because it is strictly necessary for the
 security of the AEAD algorithm, an implementation MUST NOT ever
 transmit distinct frames with the same nonce value under the same
 encryption key. In particular, a retransmitted TCP segment MUST
 contain the same payload bytes for the same TCP sequence numbers, and
 a host MUST NOT transmit more than 2^64 bytes in the underlying TCP
 datastream (which would cause the "offset" field to wrap) before re-
 keying.

 With reference to the "AEAD Interface" described in Section 2 of
 [RFC5116], tcpcrypt invokes the AEAD algorithm with the secret key
 "K" set to k_ab or k_ba, according to the host's role as described in

Section 3.3. The plaintext value serves as "P", the associated data
 as "A", and the frame nonce as "N". The output of the encryption
 operation, "C", is transmitted in the frame's "ciphertext" field.

 When a frame is received, tcpcrypt reconstructs the associated data
 and frame nonce values (the former contains only data sent in the
 clear, and the latter is implicit in the TCP stream), and provides
 these and the ciphertext value to the the AEAD decryption operation.
 The output of this operation is either "P", a plaintext value, or the
 special symbol FAIL. In the latter case, the implementation MUST
 either ignore the frame or abort the connection; but if it aborts,
 the implementation MUST raise an error condition distinct from the
 end-of-file condition.

3.6. TCP header protection

 The "ciphertext" field of the application frame contains protected
 versions of certain TCP header values.

 When "URGp" is set, the "urgent" value indicates an offset from the
 current frame's beginning offset; the sum of these offsets gives the
 index of the last byte of urgent data in the application datastream.

 When "FINp" is set, it indicates that the sender will send no more
 application data after this frame. A receiver MUST ignore the TCP
 FIN flag and instead wait for "FINp" to signal to the local
 application that the stream is complete.

3.7. Re-keying

 Re-keying allows hosts to wipe from memory keys that could decrypt
 previously transmitted segments. It also allows the use of AEAD
 ciphers that can securely encrypt only a bounded number of messages
 under a given key.

https://datatracker.ietf.org/doc/html/rfc5116#section-2
https://datatracker.ietf.org/doc/html/rfc5116#section-2

Bittau, et al. Expires May 4, 2017 [Page 11]

Internet-Draft tcpcrypt October 2016

 We refer to the two encryption keys (k_ab, k_ba) as a _key-set_. We
 refer to the key-set generated by mk[i] as the key-set with
 generation number "i" within a session. Each host maintains a
 current generation number that it uses to encrypt outgoing frames.
 Initially, the two hosts have current generation number 0.

 When a host has just incremented its current generation number and
 has used the new key-set for the first time to encrypt an outgoing
 frame, it MUST set that frame's "rekey" field (see Section 4.2) to 1.
 It MUST set this field to zero in all other cases.

 A host MAY increment its current generation number beyond the highest
 generation it knows the other side to be using. We call this action
 initiating re-keying.

 A host SHOULD NOT initiate more than one concurrent re-key operation
 if it has no data to send; that is, it should not initiate re-keying
 with an empty application frame more than once while its record of
 the remote host's current generation number is less than its own.

 On receipt, a host increments its record of the remote host's current
 generation number if and only if the "rekey" field is set to 1.

 If a received frame's generation number is greater than the
 receiver's current generation number, the receiver MUST immediately
 increment its current generation number to match. After incrementing
 its generation number, if the receiver does not have any application
 data to send, it MUST send an empty application frame with the
 "rekey" field set to 1.

 When retransmitting, implementations must always transmit the same
 bytes for the same TCP sequence numbers. Thus, a frame in a
 retransmitted segment MUST always be encrypted with the same key as
 when it was originally transmitted.

 Implementations SHOULD delete older-generation keys from memory once
 they have received all frames they will need to decrypt with the old
 keys and have encrypted all outgoing frames under the old keys.

3.8. Keep-alive

 Instead of using TCP Keep-Alives to verify that the remote endpoint
 is still responsive, tcpcrypt implementations SHOULD employ the re-
 keying mechanism, as follows. When necessary, a host SHOULD probe
 the liveness of its peer by initiating re-keying as described in

Section 3.7, and then transmitting a new frame (with zero-length
 application data if necessary). A host receiving a frame whose key
 generation number is greater than its current generation number MUST

Bittau, et al. Expires May 4, 2017 [Page 12]

Internet-Draft tcpcrypt October 2016

 increment its current generation number and MUST immediately transmit
 a new frame (with zero-length application data, if necessary).

 Implementations MAY use TCP Keep-Alives for purposes that do not
 require endpoint authentication, as discussed in Section 9.2.

4. Encodings

 This section provides byte-level encodings for values transmitted or
 computed by the protocol.

4.1. Key exchange messages

 The "Init1" message has the following encoding:

 byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT1_MAGIC |
 | |
 +-------+-------+-------+-------+

 4 5 6 7
 +-------+-------+-------+-------+
 | message_len |
 | = M |
 +-------+-------+-------+-------+

 8
 +--------+-------+-------+---...---+-------+
 |nciphers|sym- |sym- | |sym- |
 | =K+1 |cipher0|cipher1| |cipherK|
 +--------+-------+-------+---...---+-------+

 K + 10 K + 10 + N_A_LEN
 | |
 v v
 +-------+---...---+-------+-------+---...---+-------+
 | N_A | PK_A |
 | | |
 +-------+---...---+-------+-------+---...---+-------+

 M - 1
 +-------+---...---+-------+
 | ignored |
 | |
 +-------+---...---+-------+

Bittau, et al. Expires May 4, 2017 [Page 13]

Internet-Draft tcpcrypt October 2016

 The constant "INIT1_MAGIC" is defined in Table 3. The four-byte
 field "message_len" gives the length of the entire "Init1" message,
 encoded as a big-endian integer. The "nciphers" field contains an
 integer value that specifies the number of one-byte symmetric-cipher
 identifiers that follow. The "sym-cipher" bytes identify
 cryptographic algorithms in Table 2. The length "N_A_LEN" and the
 length of "PK_A" are both determined by the negotiated key-agreement
 scheme, as described in Section 5.

 When sending "Init1", implementations of this protocol MUST omit the
 field "ignored"; that is, they must construct the message such that
 its end, as determined by "message_len", coincides with the end of
 the field "PK_A". When receiving "Init1", however, implementations
 MUST permit and ignore any bytes following "PK_A".

 The "Init2" message has the following encoding:

 byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT2_MAGIC |
 | |
 +-------+-------+-------+-------+

 4 5 6 7 8
 +-------+-------+-------+-------+-------+
 | message_len |sym- |
 | = M |cipher |
 +-------+-------+-------+-------+-------+

 9 9 + N_B_LEN
 | |
 v v
 +-------+---...---+-------+-------+---...---+-------+
 | N_B | PK_B |
 | | |
 +-------+---...---+-------+-------+---...---+-------+

 M - 1
 +-------+---...---+-------+
 | ignored |
 | |
 +-------+---...---+-------+

 The constant "INIT2_MAGIC" is defined in Table 3. The four-byte
 field "message_len" gives the length of the entire "Init2" message,
 encoded as a big-endian integer. The "sym-cipher" value is a
 selection from the symmetric-cipher identifiers in the previously-

Bittau, et al. Expires May 4, 2017 [Page 14]

Internet-Draft tcpcrypt October 2016

 received "Init1" message. The length "N_B_LEN" and the length of
 "PK_B" are both determined by the negotiated key-agreement scheme, as
 described in Section 5.

 When sending "Init2", implementations of this protocol MUST omit the
 field "ignored"; that is, they must construct the message such that
 its end, as determined by "message_len", coincides with the end of
 the "PK_B" field. When receiving "Init2", however, implementations
 MUST permit and ignore any bytes following "PK_B".

4.2. Application frames

 An _application frame_ comprises a control byte and a length-prefixed
 ciphertext value:

 byte 0 1 2 3 clen+2
 +-------+-------+-------+-------+---...---+-------+
 |control| clen | ciphertext |
 +-------+-------+-------+-------+---...---+-------+

 The field "clen" is an integer in big-endian format and gives the
 length of the "ciphertext" field.

 The byte "control" has this structure:

 bit 7 1 0
 +-------+---...---+-------+-------+
 | cres | rekey |
 +-------+---...---+-------+-------+

 The seven-bit field "cres" is reserved; implementations MUST set
 these bits to zero when sending, and MUST ignore them when receiving.

 The use of the "rekey" field is described in Section 3.7.

4.2.1. Plaintext

 The "ciphertext" field is the result of applying the negotiated
 authenticated-encryption algorithm to a "plaintext" value, which has
 one of these two formats:

Bittau, et al. Expires May 4, 2017 [Page 15]

Internet-Draft tcpcrypt October 2016

 byte 0 1 plen-1
 +-------+-------+---...---+-------+
 | flags | data |
 +-------+-------+---...---+-------+

 byte 0 1 2 3 plen-1
 +-------+-------+-------+-------+---...---+-------+
 | flags | urgent | data |
 +-------+-------+-------+-------+---...---+-------+

 (Note that "clen" in the previous section will generally be greater
 than "plen", as the ciphertext produced by the authenticated-
 encryption scheme must both encrypt the application data and provide
 a way to verify its integrity.)

 The "flags" byte has this structure:

 bit 7 6 5 4 3 2 1 0
 +----+----+----+----+----+----+----+----+
 | fres |URGp|FINp|
 +----+----+----+----+----+----+----+----+

 The six-bit value "fres" is reserved; implementations MUST set these
 six bits to zero when sending, and MUST ignore them when receiving.

 When the "URGp" bit is set, it indicates that the "urgent" field is
 present, and thus that the plaintext value has the second structure
 variant above; otherwise the first variant is used.

 The meaning of "urgent" and of the flag bits is described in
Section 3.6.

4.2.2. Associated data

 An application frame's "associated data" (which is supplied to the
 AEAD algorithm when decrypting the ciphertext and verifying the
 frame's integrity) has this format:

 byte 0 1 2
 +-------+-------+-------+
 |control| clen |
 +-------+-------+-------+

 It contains the same values as the frame's "control" and "clen"
 fields.

Bittau, et al. Expires May 4, 2017 [Page 16]

Internet-Draft tcpcrypt October 2016

4.2.3. Frame nonce

 Lastly, a "frame nonce" (provided as input to the AEAD algorithm) has
 this format:

 byte
 +------+------+------+------+
 0 | FRAME_NONCE_MAGIC |
 +------+------+------+------+
 4 | |
 + offset +
 8 | |
 +------+------+------+------+

 The 4-byte magic constant is defined in Table 3. The 8-byte "offset"
 field contains an integer in big-endian format. Its value is
 specified in Section 3.5.

5. Key agreement schemes

 The TEP negotiated via TCP-ENO may indicate the use of one of the
 key-agreement schemes named in Table 1. For example,
 "TCPCRYPT_ECDHE_P256" names the tcpcrypt protocol with key-agreement
 scheme ECDHE-P256.

 All schemes listed there use HKDF-Expand-SHA256 as the CPRF, and
 these lengths for nonces and session keys:

 N_A_LEN: 32 bytes
 N_B_LEN: 32 bytes
 K_LEN: 32 bytes

 Key-agreement schemes ECDHE-P256 and ECDHE-P521 employ the ECSVDP-DH
 secret value derivation primitive defined in [ieee1363]. The named
 curves are defined in [nist-dss]. When the public-key values "PK_A"
 and "PK_B" are transmitted as described in Section 4.1, they are
 encoded with the "Elliptic Curve Point to Octet String Conversion
 Primitive" described in Section E.2.3 of [ieee1363], and are prefixed
 by a two-byte length in big-endian format:

 byte 0 1 2 L - 1
 +-------+-------+-------+---...---+-------+
 | pubkey_len | pubkey |
 | = L | |
 +-------+-------+-------+---...---+-------+

Bittau, et al. Expires May 4, 2017 [Page 17]

Internet-Draft tcpcrypt October 2016

 Implementations SHOULD encode these "pubkey" values in "compressed
 format", and MUST accept values encoded in "compressed",
 "uncompressed" or "hybrid" formats.

 Key-agreement schemes ECDHE-Curve25519 and ECDHE-Curve448 use the
 functions X25519 and X448, respectively, to perform the Diffie-Helman
 protocol as described in [RFC7748]. When using these ciphers,
 public-key values "PK_A" and "PK_B" are transmitted directly with no
 length prefix: 32 bytes for Curve25519, and 56 bytes for Curve448.

 A tcpcrypt implementation MUST support at least the schemes
 ECDHE-P256 and ECDHE-P521, although system administrators need not
 enable them.

6. AEAD algorithms

 Specifiers and key-lengths for AEAD algorithms are given in Table 2.
 The algorithms "AEAD_AES_128_GCM" and "AEAD_AES_256_GCM" are
 specified in [RFC5116]. The algorithm "AEAD_CHACHA20_POLY1305" is
 specified in [RFC7539].

7. IANA considerations

 Tcpcrypt's TEP identifiers will need to be incorporated in IANA's
 TCP-ENO encryption protocol identifier registry, as follows:

 +------+---------------------------+
 | cs | Spec name |
 +------+---------------------------+
 | 0x21 | TCPCRYPT_ECDHE_P256 |
 | 0x22 | TCPCRYPT_ECDHE_P521 |
 | 0x23 | TCPCRYPT_ECDHE_Curve25519 |
 | 0x24 | TCPCRYPT_ECDHE_Curve448 |
 +------+---------------------------+

 Table 1: TEP identifiers for use with tcpcrypt

 A "tcpcrypt AEAD parameter" registry needs to be maintained by IANA
 as in the following table. The use of encryption is described in

Section 3.5.

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc7539

Bittau, et al. Expires May 4, 2017 [Page 18]

Internet-Draft tcpcrypt October 2016

 +------------------------+------------+------------+
 | AEAD Algorithm | Key Length | sym-cipher |
 +------------------------+------------+------------+
 | AEAD_AES_128_GCM | 16 bytes | 0x01 |
 | AEAD_AES_256_GCM | 32 bytes | 0x02 |
 | AEAD_CHACHA20_POLY1305 | 32 bytes | 0x10 |
 +------------------------+------------+------------+

 Table 2: Authenticated-encryption algorithms corresponding to sym-
 cipher specifiers in Init1 and Init2 messages.

8. Security considerations

 Public-key generation, public-key encryption, and shared-secret
 generation all require randomness. Other tcpcrypt functions may also
 require randomness, depending on the algorithms and modes of
 operation selected. A weak pseudo-random generator at either host
 will compromise tcpcrypt's security. Many of tcpcrypt's
 cryptographic functions require random input, and thus any host
 implementing tcpcrypt MUST have access to a cryptographically-secure
 source of randomness or pseudo-randomness.

 Most implementations will rely on system-wide pseudo-random
 generators seeded from hardware events and a seed carried over from
 the previous boot. Once a pseudo-random generator has been properly
 seeded, it can generate effectively arbitrary amounts of pseudo-
 random data. However, until a pseudo-random generator has been
 seeded with sufficient entropy, not only will tcpcrypt be insecure,
 it will reveal information that further weakens the security of the
 pseudo-random generator, potentially harming other applications. As
 required by TCP-ENO, implementations MUST NOT send ENO options unless
 they have access to an adequate source of randomness.

 The cipher-suites specified in this document all use HMAC-SHA256 to
 implement the collision-resistant pseudo-random function denoted by
 "CPRF". A collision-resistant function is one on which, for
 sufficiently large L, an attacker cannot find two distinct inputs
 "K_1", "CONST_1" and "K_2", "CONST_2" such that "CPRF(K_1, CONST_1,
 L) = CPRF(K_2, CONST_2, L)". Collision resistance is important to
 assure the uniqueness of session IDs, which are generated using the
 CPRF.

 All of the security considerations of TCP-ENO apply to tcpcrypt. In
 particular, tcpcrypt does not protect against active eavesdroppers
 unless applications authenticate the session ID. If it can be
 established that the session IDs computed at each end of the
 connection match, then tcpcrypt guarantees that no man-in-the-middle
 attacks occurred unless the attacker has broken the underlying

Bittau, et al. Expires May 4, 2017 [Page 19]

Internet-Draft tcpcrypt October 2016

 cryptographic primitives (e.g., ECDH). A proof of this property for
 an earlier version of the protocol has been published [tcpcrypt].

 To gain middlebox compatibility, tcpcrypt does not protect TCP
 headers. Hence, the protocol is vulnerable to denial-of-service from
 off-path attackers. Possible attacks include desynchronizing the
 underlying TCP stream, injecting RST packets, and forging or
 suppressing rekey bits. These attacks will cause a tcpcrypt
 connection to hang or fail with an error. Implementations MUST give
 higher-level software a way to distinguish such errors from a clean
 end-of-stream (indicated by an authenticated "FINp" bit) so that
 applications can avoid semantic truncation attacks.

 There is no "key confirmation" step in tcpcrypt. This is not
 required because tcpcrypt's threat model includes the possibility of
 a connection to an adversary. If key negotiation is compromised and
 yields two different keys, all subsequent frames will be ignored due
 to failed integrity checks, causing the application's connection to
 hang. This is not a new threat because in plain TCP, an active
 attacker could have modified sequence and acknowledgement numbers to
 hang the connection anyway.

 Tcpcrypt uses short-lived public keys to provide forward secrecy.
 All currently specified key agreement schemes involve ECDHE-based key
 agreement, meaning a new key can be efficiently computed for each
 connection. If implementations reuse these parameters, they SHOULD
 limit the lifetime of the private parameters, ideally to no more than
 two minutes.

 Attackers cannot force passive openers to move forward in their
 session caching chain without guessing the content of the resumption
 suboption, which will be difficult without key knowledge.

9. Design notes

9.1. Asymmetric roles

 Tcpcrypt transforms a shared pseudo-random key (PRK) into
 cryptographic session keys for each direction. Doing so requires an
 asymmetry in the protocol, as the key derivation function must be
 perturbed differently to generate different keys in each direction.
 Tcpcrypt includes other asymmetries in the roles of the two hosts,
 such as the process of negotiating algorithms (e.g., proposing vs.
 selecting cipher suites).

Bittau, et al. Expires May 4, 2017 [Page 20]

Internet-Draft tcpcrypt October 2016

9.2. Verified liveness

 Many hosts implement TCP Keep-Alives [RFC1122] as an option for
 applications to ensure that the other end of a TCP connection still
 exists even when there is no data to be sent. A TCP Keep-Alive
 segment carries a sequence number one prior to the beginning of the
 send window, and may carry one byte of "garbage" data. Such a
 segment causes the remote side to send an acknowledgment.

 Unfortunately, tcpcrypt cannot cryptographically verify Keep-Alive
 acknowledgments. Hence, an attacker could prolong the existence of a
 session at one host after the other end of the connection no longer
 exists. (Such an attack might prevent a process with sensitive data
 from exiting, giving an attacker more time to compromise a host and
 extract the sensitive data.)

 Thus, tcpcrypt specifies a way to stimulate the remote host to send
 verifiably fresh and authentic data, described in Section 3.8.

 The TCP keep-alive mechanism has also been used for its effects on
 intermediate nodes in the network, such as preventing flow state from
 expiring at NAT boxes or firewalls. As these purposes do not require
 the authentication of endpoints, implementations may safely
 accomplish them using either the existing TCP keep-alive mechanism or
 tcpcrypt's verified keep-alive mechanism.

10. Acknowledgments

 We are grateful for contributions, help, discussions, and feedback
 from the TCPINC working group, including Marcelo Bagnulo, David
 Black, Bob Briscoe, Jana Iyengar, Tero Kivinen, Mirja Kuhlewind, Yoav
 Nir, Christoph Paasch, Eric Rescorla, and Kyle Rose.

 This work was funded by gifts from Intel (to Brad Karp) and from
 Google; by NSF award CNS-0716806 (A Clean-Slate Infrastructure for
 Information Flow Control); by DARPA CRASH under contract
 #N66001-10-2-4088; and by the Stanford Secure Internet of Things
 Project.

11. References

11.1. Normative References

 [I-D.ietf-tcpinc-tcpeno]
 Bittau, A., Boneh, D., Giffin, D., Handley, M., Mazieres,
 D., and E. Smith, "TCP-ENO: Encryption Negotiation
 Option", draft-ietf-tcpinc-tcpeno-06 (work in progress),
 October 2016.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpeno-06

Bittau, et al. Expires May 4, 2017 [Page 21]

Internet-Draft tcpcrypt October 2016

 [ieee1363]
 "IEEE Standard Specifications for Public-Key Cryptography
 (IEEE Std 1363-2000)", 2000.

 [nist-dss]
 "Digital Signature Standard, FIPS 186-2", 2000.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <http://www.rfc-editor.org/info/rfc7539>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <http://www.rfc-editor.org/info/rfc7748>.

11.2. Informative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [tcpcrypt]
 Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and D.
 Boneh, "The case for ubiquitous transport-level
 encryption", USENIX Security , 2010.

Appendix A. Protocol constant values

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116
http://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7539
http://www.rfc-editor.org/info/rfc7539
https://datatracker.ietf.org/doc/html/rfc7748
http://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122

Bittau, et al. Expires May 4, 2017 [Page 22]

Internet-Draft tcpcrypt October 2016

 +------------+-------------------+
 | Value | Name |
 +------------+-------------------+
 | 0x01 | CONST_NEXTK |
 | 0x02 | CONST_SESSID |
 | 0x03 | CONST_REKEY |
 | 0x04 | CONST_KEY_A |
 | 0x05 | CONST_KEY_B |
 | 0x15101a0e | INIT1_MAGIC |
 | 0x097105e0 | INIT2_MAGIC |
 | 0x44415441 | FRAME_NONCE_MAGIC |
 +------------+-------------------+

 Table 3: Protocol constants

Authors' Addresses

 Andrea Bittau
 Google
 345 Spear Street
 San Francisco, CA 94105
 US

 Email: bittau@google.com

 Dan Boneh
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: dabo@cs.stanford.edu

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: dbg@scs.stanford.edu

Bittau, et al. Expires May 4, 2017 [Page 23]

Internet-Draft tcpcrypt October 2016

 Mike Hamburg
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: mike@shiftleft.org

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

 Quinn Slack
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: sqs@cs.stanford.edu

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 US

 Email: eric.smith@kestrel.edu

Bittau, et al. Expires May 4, 2017 [Page 24]

