
Network Working Group A. Bittau
Internet-Draft D. Boneh
Intended status: Experimental D. Giffin
Expires: January 29, 2017 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Stanford University
 E. Smith
 Kestrel Institute
 July 28, 2016

TCP-ENO: Encryption Negotiation Option
draft-ietf-tcpinc-tcpeno-04

Abstract

 Despite growing adoption of TLS [RFC5246], a significant fraction of
 TCP traffic on the Internet remains unencrypted. The persistence of
 unencrypted traffic can be attributed to at least two factors.
 First, some legacy protocols lack a signaling mechanism (such as a
 "STARTTLS" command) by which to convey support for encryption, making
 incremental deployment impossible. Second, legacy applications
 themselves cannot always be upgraded, requiring a way to implement
 encryption transparently entirely within the transport layer. The
 TCP Encryption Negotiation Option (TCP-ENO) addresses both of these
 problems through a new TCP option kind providing out-of-band, fully
 backward-compatible negotiation of encryption.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 29, 2017.

Bittau, et al. Expires January 29, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft tcpeno July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Requirements language . 3
2. Introduction . 3
2.1. Design goals . 3

3. Terminology . 4
4. TCP-ENO specification . 5
4.1. ENO option . 6
4.2. The global suboption 9
4.3. TCP-ENO roles . 10
4.4. Specifying suboption data length 10
4.5. The negotiated TEP 12
4.6. TCP-ENO handshake . 12
4.7. Data in SYN segments 13
4.8. Negotiation transcript 14

5. Requirements for TEPs . 14
5.1. Session IDs . 15

6. Examples . 16
7. Design rationale . 18
7.1. Future developments 18
7.2. Handshake robustness 19
7.3. Suboption data . 19
7.4. Passive role bit . 20
7.5. Option kind sharing 20

8. Experiments . 20
9. Security considerations 21
10. IANA Considerations . 22
11. Acknowledgments . 23
12. References . 23
12.1. Normative References 24
12.2. Informative References 24

 Authors' Addresses . 25

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bittau, et al. Expires January 29, 2017 [Page 2]

Internet-Draft tcpeno July 2016

1. Requirements language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 Many applications and protocols running on top of TCP today do not
 encrypt traffic. This failure to encrypt lowers the bar for certain
 attacks, harming both user privacy and system security.
 Counteracting the problem demands a minimally intrusive, backward-
 compatible mechanism for incrementally deploying encryption. The TCP
 Encryption Negotiation Option (TCP-ENO) specified in this document
 provides such a mechanism.

 Introducing TCP options, extending operating system interfaces to
 support TCP-level encryption, and extending applications to take
 advantage of TCP-level encryption all require effort. To the
 greatest extent possible, the effort invested in realizing TCP-level
 encryption today needs to remain applicable in the future should the
 need arise to change encryption strategies. To this end, it is
 useful to consider two questions separately:

 1. How to negotiate the use of encryption at the TCP layer, and

 2. How to perform encryption at the TCP layer.

 This document addresses question 1 with a new TCP option, ENO. TCP-
 ENO provides a framework in which two endpoints can agree on one
 among multiple possible TCP encryption protocols or _TEPs_. For
 future compatibility, TEPs can vary widely in terms of wire format,
 use of TCP option space, and integration with the TCP header and
 segmentation. However, ENO abstracts these differences to ensure the
 introduction of new TEPs can be transparent to applications taking
 advantage of TCP-level encryption.

 Question 2 is addressed by one or more companion TEP specification
 documents. While current TEPs enable TCP-level traffic encryption
 today, TCP-ENO ensures that the effort invested to deploy today's
 TEPs will additionally benefit future ones.

2.1. Design goals

 TCP-ENO was designed to achieve the following goals:

 1. Enable endpoints to negotiate the use of a separately specified
 TCP encryption protocol or _TEP_.

https://datatracker.ietf.org/doc/html/rfc2119

Bittau, et al. Expires January 29, 2017 [Page 3]

Internet-Draft tcpeno July 2016

 2. Transparently fall back to unencrypted TCP when not supported by
 both endpoints.

 3. Provide out-of-band signaling through which applications can
 better take advantage of TCP-level encryption (for instance, by
 improving authentication mechanisms in the presence of TCP-level
 encryption).

 4. Provide a standard negotiation transcript through which TEPs can
 defend against tampering with TCP-ENO.

 5. Make parsimonious use of TCP option space.

 6. Define roles for the two ends of a TCP connection, so as to name
 each end of a connection for encryption or authentication
 purposes even following a symmetric simultaneous open.

3. Terminology

 We define the following terms, which are used throughout this
 document:

 SYN segment
 A TCP segment in which the SYN flag is set

 ACK segment
 A TCP segment in which the ACK flag is set (which includes most
 segments other than an initial SYN segment)

 non-SYN segment
 A TCP segment in which the SYN flag is clear

 SYN-only segment
 A TCP segment in which the SYN flag is set but the ACK flag is
 clear

 SYN-ACK segment
 A TCP segment in which the SYN and ACK flags are both set

 Active opener
 A host that initiates a connection by sending a SYN-only segment.
 With the BSD socket API, an active opener calls "connect". In
 client-server configurations, active openers are typically
 clients.

 Passive opener
 A host that does not send a SYN-only segment, but responds to one
 with a SYN-ACK segment. With the BSD socket API, passive openers

Bittau, et al. Expires January 29, 2017 [Page 4]

Internet-Draft tcpeno July 2016

 call "listen" and "accept", rather than "connect". In client-
 server configurations, passive openers are typically servers.

 Simultaneous open
 The act of symmetrically establishing a TCP connection between two
 active openers (both of which call "connect" with BSD sockets).
 Each host of a simultaneous open sends both a SYN-only and a SYN-
 ACK segment. Simultaneous open is less common than asymmetric
 open with one active and one passive opener, but can be used for
 NAT traversal by peer-to-peer applications [RFC5382].

 TEP
 A TCP encryption protocol intended for use with TCP-ENO and
 specified in a separate document.

 TEP identifier
 A unique 7-bit value in the range 0x20-0x7f that IANA has assigned
 to a TEP.

 Negotiated TEP
 The single TEP governing a TCP connection, determined by use of
 the TCP ENO option specified in this document.

4. TCP-ENO specification

 TCP-ENO extends TCP connection establishment to enable encryption
 opportunistically. It uses a new TCP option kind to negotiate one
 among multiple possible TCP encryption protocols or TEPs. The
 negotiation involves hosts exchanging sets of supported TEPs, where
 each TEP is represented by a _suboption_ within a larger TCP ENO
 option in the offering host's SYN segment.

 If TCP-ENO succeeds, it yields the following information:

 o A negotiated TEP, represented by a unique 7-bit TEP identifier,

 o A few extra bytes of suboption data from each host, if needed by
 the TEP,

 o A negotiation transcript with which to mitigate attacks on the
 negotiation itself,

 o Role assignments designating one endpoint "host A" and the other
 endpoint "host B", and

 o A bit indicating whether or not the application at each end knows
 it is using TCP-ENO.

https://datatracker.ietf.org/doc/html/rfc5382

Bittau, et al. Expires January 29, 2017 [Page 5]

Internet-Draft tcpeno July 2016

 If TCP-ENO fails, encryption is disabled and the connection falls
 back to traditional unencrypted TCP.

 The remainder of this section provides the normative description of
 the TCP ENO option and handshake protocol.

4.1. ENO option

 TCP-ENO employs an option in the TCP header [RFC0793]. There are two
 equivalent kinds of ENO option, shown in Figure 1. Section 10
 specifies which of the two kinds is permissible and/or preferred.

 byte 0 1 2 N+1 (N+2 bytes total)
 +-----+-----+-----+--....--+-----+
 |Kind=|Len= | |
 | TBD | N+2 | contents (N bytes) |
 +-----+-----+-----+--....--+-----+

 byte 0 1 2 3 4 N+3 (N+4 bytes total)
 +-----+-----+-----+-----+-----+--....--+-----+
 |Kind=|Len= | ExID | |
 | 253 | N+4 | 69 | 78 | contents (N bytes) |
 +-----+-----+-----+-----+-----+--....--+-----+

 Figure 1: Two equivalent kinds of TCP-ENO option

 The contents of an ENO option can take one of two forms. A SYN form,
 illustrated in Figure 2, appears only in SYN segments. A non-SYN
 form, illustrated in Figure 3, appears only in non-SYN segments. The
 SYN form of ENO acts as a container for one or more suboptions,
 labeled "Opt_0", "Opt_1", ... in Figure 2. The non-SYN form, by its
 presence, acts as a one-bit acknowledgment, with the actual contents
 ignored by ENO. Particular TEPs MAY assign additional meaning to the
 contents of non-SYN ENO options. When a negotiated TEP does not
 assign such meaning, the contents of a non-SYN ENO option SHOULD be
 zero bytes.

https://datatracker.ietf.org/doc/html/rfc0793

Bittau, et al. Expires January 29, 2017 [Page 6]

Internet-Draft tcpeno July 2016

 byte 0 1 2 3 ... N+1
 +-----+-----+-----+-----+--...--+-----+----...----+
 |Kind=|Len= |Opt_0|Opt_1| |Opt_i| Opt_i |
 | TBD | N+2 | | | | | data |
 +-----+-----+-----+-----+--...--+-----+----...----+

 byte 0 1 2 3 4 5 ... N+3
 +-----+-----+-----+-----+-----+-----+--...--+-----+----...----+
 |Kind=|Len= | ExID |Opt_0|Opt_1| |Opt_i| Opt_i |
 | 253 | N+4 | 69 | 78 | | | | | data |
 +-----+-----+-----+-----+-----+-----+--...--+-----+----...----+

 Figure 2: SYN form of ENO

 byte 0 1 2 N+1
 +-----+-----+-----...----+
 |Kind=|Len= | ignored |
 | TBD | N+2 | by TCP-ENO |
 +-----+-----+-----...----+

 byte 0 1 2 3 4 N+3
 +-----+-----+-----+-----+-----...----+
 |Kind=|Len= | ExID | ignored |
 | 253 | N+4 | 69 | 78 | by TCP-ENO |
 +-----+-----+-----+-----+-----...----+

 Figure 3: Non-SYN form of ENO, where N MAY be 0

 Every suboption starts with a byte of the form illustrated in
 Figure 4. The high bit "v", when set, introduces suboptions with
 variable-length data. When "v = 0", the byte itself constitutes the
 entirety of the suboption. The 7-bit value "cs" expresses one of:

 o Global configuration data (discussed in Section 4.2),

 o Suboption data length for the next suboption (discussed in
Section 4.4), or

 o An offer to use a particular TEP defined in a separate TEP
 specification document.

Bittau, et al. Expires January 29, 2017 [Page 7]

Internet-Draft tcpeno July 2016

 bit 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | v | glt |
 +---+---+---+---+---+---+---+---+

 v - non-zero for use with variable-length suboption data
 glt - Global suboption, Length, or TEP identifier

 Figure 4: Format of initial suboption byte

 Table 1 summarizes the meaning of initial suboption bytes. Values of
 "glt" below 0x20 are used for global suboptions and length
 information (the "gl" in "glt"), while those greater than or equal to
 0x20 are TEP identifiers (the "t"). When "v = 0", the initial
 suboption byte constitutes the entirety of the suboption and all
 information is expressed by the 7-bit "glt" value, which can be
 either a global suboption or TEP identifier. When "v = 1", it
 indicates a suboption with variable-length suboption data. Only TEP
 identifiers may have suboption data, not global suboptions. Hence,
 bytes with "v = 1" and "glt < 0x20" are not global suboptions but
 rather length bytes governing the length of the next suboption (which
 MUST be a TEP identifer). In the absence of a length byte, a TEP
 identifier suboption with "v = 1" has suboption data extending to the
 end of the TCP option.

 +-----------+---+---+
 | glt | v | Meaning |
 +-----------+---+---+
 | 0x00-0x1f | 0 | Global suboption (Section 4.2) |
 | 0x00-0x1f | 1 | Length byte (Section 4.4) |
 | 0x20-0x7f | 0 | TEP identifier without suboption data |
 | 0x20-0x7f | 1 | TEP identifier followed by suboption data |
 +-----------+---+---+

 Table 1: Initial suboption byte values

 A SYN segment MUST contain at most one TCP ENO option. If a SYN
 segment contains more than one ENO option, the receiver MUST behave
 as though the segment contained no ENO options and disable
 encryption. A TEP MAY specify the use of multiple ENO options in a
 non-SYN segment. For non-SYN segments, ENO itself only distinguishes
 between the presence or absence of ENO options; multiple ENO options
 are interpreted the same as one.

Bittau, et al. Expires January 29, 2017 [Page 8]

Internet-Draft tcpeno July 2016

4.2. The global suboption

 Suboptions 0x00-0x1f are used for global configuration that applies
 regardless of the negotiated TEP. A TCP SYN segment MUST include at
 most one ENO suboption in this range. A receiver MUST ignore all but
 the first suboption in this range so as to anticipate updates to ENO
 that assign new meaning to bits in subsequent global suboptions. The
 value of a global suboption byte is interpreted as a bitmask,
 illustrated in Figure 5.

 bit 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 |z1 |z2 |z3 | a | b |
 +---+---+---+---+---+---+---+---+

 b - Passive role bit
 a - Application-aware bit
 z* - Zero bits (reserved for future use)

 Figure 5: Format of the global suboption byte

 The fields of the bitmask are interpreted as follows:

 b
 The passive role bit MUST be 1 for all passive openers. For
 active openers, it MUST default to 0, but implementations SHOULD
 provide an API through which an application can set "b = 1" before
 initiating an active open. (Manual configuration of "b" is
 necessary for simultaneous open.)

 a
 The application-aware bit "a" is an out-of-band signal indicating
 that the application on the sending host is aware of TCP-ENO and
 has been extended to alter its behavior in the presence of
 encrypted TCP. Implementations MUST set this bit to 0 by default,
 and SHOULD provide an API through which applications can change
 the value of the bit as well as examine the value of the bit sent
 by the remote host. Implementations SHOULD furthermore support a
 mandatory application-aware mode in which TCP-ENO is
 automatically disabled if the remote host does not set "a = 1".

 z1, z2, z3
 The "z" bits are reserved for future updates to TCP-ENO. They
 MUST be set to zero in sent segments and MUST be ignored in
 received segments.

 A SYN segment without an explicit global suboption has an implicit
 global suboption of 0x00. Because passive openers MUST always set "b

Bittau, et al. Expires January 29, 2017 [Page 9]

Internet-Draft tcpeno July 2016

 = 1", they cannot rely on this implicit 0x00 byte and MUST include an
 explicit global suboption in their SYN-ACK segments.

4.3. TCP-ENO roles

 TCP-ENO uses abstract roles to distinguish the two ends of a TCP
 connection. These roles are determined by the "b" bit in the global
 suboption. The host that sent an implicit or explicit suboption with
 "b = 0" plays the "A" role. The host that sent "b = 1" plays the "B"
 role.

 If both sides of a connection set "b = 1" (which can happen if the
 active opener misconfigures "b" before calling "connect"), or both
 sides set "b = 0" (which can happen with simultaneous open), then
 TCP-ENO MUST be disabled and the connection MUST fall back to
 unencrypted TCP.

 TEP specifications SHOULD refer to TCP-ENO's A and B roles to specify
 asymmetric behavior by the two hosts. For the remainder of this
 document, we will use the terms "host A" and "host B" to designate
 the hosts with A and B roles, respectively, in a connection.

4.4. Specifying suboption data length

 A TEP MAY optionally make use of one or more bytes of suboption data.
 The presence of such data is indicated by setting "v = 1" in the
 initial suboption byte (see Figure 4). By default, suboption data
 extends to the end of the TCP option. Hence, if only one suboption
 requires data, the most compact way to encode it is to place it last
 in the ENO option, after all other suboptions. As an example, in
 Figure 2, the last suboption, "Opt_i", has suboption data and thus
 requires "v = 1"; however, the suboption data length can be inferred
 from the total length of the TCP option.

 When a suboption with data is not last in an ENO option, the sender
 MUST explicitly specify the suboption data length for the receiver to
 know where the next suboption starts. The sender does so by
 preceding the suboption with a length byte, depicted in Figure 6.
 The length byte encodes a 5-bit value "nnnnn". Adding one to "nnnnn"
 yields the length of the suboption data (not including the length
 byte or the TEP identifier). Hence, a length byte can designate
 anywhere from 1 to 32 bytes of suboption data (inclusive).

Bittau, et al. Expires January 29, 2017 [Page 10]

Internet-Draft tcpeno July 2016

 bit 7 6 5 4 3 2 1 0
 +---+---+---+-------------------+
 | 1 0 0 nnnnn |
 +---+---+---+-------------------+

 nnnnn - 5-bit value encoding (length - 1)

 Figure 6: Format of a length byte

 A suboption preceded by a length byte MUST be a TEP identifier ("glt
 >= 0x20") and MUST have "v = 1". Figure 7 shows an example of such a
 suboption.

 byte 0 1 2 nnnnn+2 (nnnnn+3 bytes total)
 +------+------+-------...-------+
 |length| TEP | suboption data |
 | byte |ident.| (nnnnn+1 bytes) |
 +------+------+-------...-------+

 length byte - specifies nnnnn
 TEP identifier - MUST have v = 1 and glt >= 0x20
 suboption data - length specified by nnnnn+1

 Figure 7: Suboption with length byte

 A host MUST ignore an ENO option in a SYN segment and MUST disable
 encryption if either:

 1. A length byte indicates that suboption data would extend beyond
 the end of the TCP ENO option, or

 2. A length byte is followed by an octet in the range 0x00-0x9f
 (meaning the following byte has "v = 0" or "glt < 0x20").

 Because the last suboption in an ENO option is special-cased to have
 its length inferred from the 8-bit TCP option length, it MAY contain
 more than 32 bytes of suboption data. Other suboptions are limited
 to 32 bytes by the length byte format. The TCP header itself can
 only accommodate a maximum of 40 bytes of options per segment,
 however, so regardless of the length byte could not fit more than one
 suboption over 32 bytes. That said, TEPs MAY define the use of
 multiple suboptions with the same TEP identifier in the same SYN
 segment, providing another way to convey over 32 bytes of suboption
 data even with length bytes.

Bittau, et al. Expires January 29, 2017 [Page 11]

Internet-Draft tcpeno July 2016

4.5. The negotiated TEP

 A TEP identifier "glt" (with "glt >= 0x20") is _valid_ for a
 connection when:

 1. Each side has sent a suboption for "glt" in its SYN-form ENO
 option,

 2. Any suboption data in these "glt" suboptions is valid according
 to the TEP specification and satisfies any runtime constraints,
 and

 3. If an ENO option contains multiple suboptions with "glt", then
 such repetition is well-defined by the TEP specification.

 The _negotiated TEP_ is the last valid TEP identifier in host B's
 SYN-form ENO option. This definition means host B specifies TEP
 suboptions in order of increasing priority, while host A does not
 influence TEP priority.

 A passive opener (which is always host B) sees the remote host's SYN
 segment before constructing its own SYN-ACK. Hence, a passive opener
 SHOULD include only one TEP identifier in SYN-ACK segments and SHOULD
 ensure this TEP identifier is valid. However, simultaneous open or
 implementation considerations can prevent host B from offering only
 one TEP.

4.6. TCP-ENO handshake

 A host employing TCP-ENO for a connection MUST include an ENO option
 in every TCP segment sent until either encryption is disabled or the
 host receives a non-SYN segment.

 A host MUST disable encryption, refrain from sending any further ENO
 options, and fall back to unencrypted TCP if any of the following
 occurs:

 1. Any segment it receives up to and including the first received
 ACK segment does not contain a ENO option (or contains an ill-
 formed SYN-form ENO option),

 2. The SYN segment it receives does not contain a valid TEP
 identifier, or

 3. It receives a SYN segment with an incompatible global suboption.
 (Specifically, incompatible means the two hosts set the same "b"
 value or the connection is in mandatory application-aware mode
 and the remote host set "a = 0".)

Bittau, et al. Expires January 29, 2017 [Page 12]

Internet-Draft tcpeno July 2016

 Hosts MUST NOT alter SYN-form ENO options in retransmitted segments,
 or between the SYN and SYN-ACK segments of a simultaneous open, with
 two exceptions for an active opener. First, an active opener MAY
 unilaterally disable ENO (and thus remove the ENO option) between
 retransmissions of a SYN-only segment. (Such removal could be useful
 if middleboxes are dropping segments with the ENO option.) Second,
 an active opener performing simultaneous open MAY include no TCP-ENO
 option in its SYN-ACK if the received SYN caused it to disable
 encryption according to the above rules (for instance because role
 negotiation failed).

 Once a host has both sent and received an ACK segment containing an
 ENO option, encryption MUST be enabled. Once encryption is enabled,
 hosts MUST follow the specification of the negotiated TEP and MUST
 NOT present raw TCP payload data to the application. In particular,
 data segments MUST NOT contain plaintext application data, but rather
 ciphertext, key negotiation parameters, or other messages as
 determined by negotiated TEP.

4.7. Data in SYN segments

 A SYN segment containing an ENO option MUST NOT include a TCP Fast
 Open (TFO) option [RFC7413]. However, TEPs MAY specify the use of
 data in SYN segments to achieve similar benefits to TFO.

 The last TEP identifier suboption in host A's SYN segment is the _SYN
 TEP_. The SYN TEP governs the use of data in A's SYN segment. If
 the SYN TEP's specification does not define the use of such data,
 then host A's SYN segment MUST NOT contain data and host B MUST
 discard any such data. Host B must also discard data in A's SYN
 segment if either the SYN TEP differs from the negotiated TEP or host
 B disables encryption.

 The use of data in B's SYN-ACK segment is governed by the negotiated
 TEP. If the negotiated TEP's specification does not define the use
 of such data, then host B's SYN-ACK segment MUST NOT contain data and
 host A MUST discard any such data. Host A MUST also discard any
 received SYN data if it disables encryption.

 When a host discards SYN data, it MUST NOT acknowledge the sequence
 number of the discarded data. Rather, it MUST acknowledge the other
 host's initial sequence number as if the received SYN segment
 contained no data.

 Regardless of the SYN TEP and negotiated TEP, host A MUST NOT include
 data in a SYN-only segment when in mandatory application-aware mode.
 Moreover, in the event that host B is an active opener (because of
 simultaneous open), host B's SYN-only segment MUST NOT include data.

https://datatracker.ietf.org/doc/html/rfc7413

Bittau, et al. Expires January 29, 2017 [Page 13]

Internet-Draft tcpeno July 2016

 Using data in SYN segments deviates from TCP semantics and can cause
 problems with middleboxes or non-compliant TCP hosts. Hence, all
 TEPs SHOULD support a normal mode of operation that does not make use
 of data in SYN segments. Moreover, implementations SHOULD employ SYN
 data only if explicitly requested by the application or in cases
 where such use is highly unlikely to pose problems.

4.8. Negotiation transcript

 To defend against attacks on encryption negotiation itself, TEPs need
 a way to reference a transcript of TCP-ENO's negotiation. In
 particular, a TEP MUST with high probability fail to reach key
 agreement between two honest endpoints if the TEP's selection
 resulted from tampering with the contents of SYN-form ENO options.
 (Of course, in the absence of endpoint authentication, two honest
 endpoints can still each end up talking to a man-in-the-middle
 attacker rather than to each other.)

 TCP-ENO defines its negotiation transcript as a packed data structure
 consisting of two TCP-ENO options exactly as they appeared in the TCP
 header (including the TCP option kind, TCP option length byte, and,
 for option kind 253, the bytes 69 and 78 as illustrated in Figure 1).
 The transcript is constructed from the following, in order:

 1. The TCP-ENO option in host A's SYN segment, including the kind
 and length bytes.

 2. The TCP-ENO option in host B's SYN segment, including the kind
 and length bytes.

 Note that because the ENO options in the transcript contain length
 bytes as specified by TCP, the transcript unambiguously delimits A's
 and B's ENO options.

5. Requirements for TEPs

 TCP-ENO affords TEP specifications a large amount of design
 flexibility. However, to abstract TEP differences away from
 applications requires fitting them all into a coherent framework. As
 such, any TEP claiming an ENO TEP identifier MUST satisfy the
 following normative list of properties.

 o TEPs MUST protect TCP data streams with authenticated encryption.

 o TEPs MUST define a session ID whose value identifies the TCP
 connection and, with overwhelming probability, is unique over all
 time if either host correctly obeys the TEP. Section 5.1
 describes the requirements of the session ID in more detail.

Bittau, et al. Expires January 29, 2017 [Page 14]

Internet-Draft tcpeno July 2016

 o TEPs MUST NOT permit the negotiation of any encryption algorithms
 with significantly less than 128-bit security.

 o TEPs MUST NOT allow the negotiation of null cipher suites, even
 for debugging purposes. (Implementations MAY support debugging
 modes that allow applications to extract their own session keys.)

 o TEPs MUST NOT depend on long-lived secrets for data
 confidentiality, as implementations SHOULD provide forward secrecy
 some bounded, short time after the close of a TCP connection.

 o TEPs MUST protect and authenticate the end-of-file marker
 traditionally conveyed by TCP's FIN flag when the remote
 application calls "close" or "shutdown". However, end-of-file MAY
 be conveyed though a mechanism other than TCP FIN. Moreover, TEPs
 MAY permit attacks that cause TCP connections to abort, but such
 an abort MUST raise an error that is distinct from an end-of-file
 condition.

 o TEPs MAY disallow the use of TCP urgent data by applications, but
 MUST NOT allow attackers to manipulate the URG flag and urgent
 pointer in ways that are visible to applications.

5.1. Session IDs

 Each TEP MUST define a session ID that uniquely identifies each
 encrypted TCP connection and that is computable by both endpoints of
 the connection. Implementations SHOULD expose the session ID to
 applications via an API extension. Applications that are aware of
 TCP-ENO SHOULD authenticate the TCP endpoints by incorporating the
 values of the session ID and TCP-ENO role (A or B) into higher-layer
 authentication mechanisms.

 In order to avoid replay attacks and prevent authenticated session
 IDs from being used out of context, session IDs MUST be unique over
 all time with high probability. This uniqueness property MUST hold
 even if one end of a connection maliciously manipulates the protocol
 in an effort to create duplicate session IDs. In other words, it
 MUST be infeasible for a host, even by violating the TEP
 specification, to establish two TCP connections with the same session
 ID to remote hosts properly implementing the TEP.

 To prevent session IDs from being confused across TEPs, all session
 IDs begin with the negotiated TEP identifier--that is, the last valid
 TEP identifier in host B's SYN segment. If the "v" bit was 1 in host
 B's SYN segment, then it is also 1 in the session ID. However, only
 the first byte is included, not the suboption data. Figure 8 shows
 the resulting format. This format is designed for TEPs to compute

Bittau, et al. Expires January 29, 2017 [Page 15]

Internet-Draft tcpeno July 2016

 unique identifiers; it is not intended for application authors to
 pick apart session IDs. Applications SHOULD treat session IDs as
 monolithic opaque values and SHOULD NOT discard the first byte to
 shorten identifiers.

 byte 0 1 2 N-1 N
 +-----+------------...------------+
 | sub-| collision-resistant hash |
 | opt | of connection information |
 +-----+------------...------------+

 Figure 8: Format of a session ID

 Though TEP specifications retain considerable flexibility in their
 definitions of the session ID, all session IDs MUST meet the
 following normative list of requirements:

 o The session ID MUST be at least 33 bytes (including the one-byte
 suboption), though TEPs may choose longer session IDs.

 o The session ID MUST depend in a collision-resistant way on all of
 the following (meaning it is computationally infeasible to produce
 collisions of the session ID derivation function unless all of the
 following quantities are identical):

 * Fresh data contributed by both sides of the connection,

 * Any public keys, public Diffie-Hellman parameters, or other
 public asymmetric cryptographic parameters that are employed by
 the TEP and have corresponding private data that is known by
 only one side of the connection, and

 * The negotiation transcript specified in Section 4.8.

 o Unless and until applications disclose information about the
 session ID, all but the first byte MUST be computationally
 indistinguishable from random bytes to a network eavesdropper.

 o Applications MAY choose to make session IDs public. Therefore,
 TEPs MUST NOT place any confidential data in the session ID (such
 as data permitting the derivation of session keys).

6. Examples

 This subsection illustrates the TCP-ENO handshake with a few non-
 normative examples.

Bittau, et al. Expires January 29, 2017 [Page 16]

Internet-Draft tcpeno July 2016

 (1) A -> B: SYN ENO<X,Y>
 (2) B -> A: SYN-ACK ENO<b=1,Y>
 (3) A -> B: ACK ENO<>
 [rest of connection encrypted according to TEP Y]

 Figure 9: Three-way handshake with successful TCP-ENO negotiation

 Figure 9 shows a three-way handshake with a successful TCP-ENO
 negotiation. The two sides agree to follow the TEP identified by
 suboption Y.

 (1) A -> B: SYN ENO<X,Y>
 (2) B -> A: SYN-ACK
 (3) A -> B: ACK
 [rest of connection unencrypted legacy TCP]

 Figure 10: Three-way handshake with failed TCP-ENO negotiation

 Figure 10 shows a failed TCP-ENO negotiation. The active opener (A)
 indicates support for TEPs corresponding to suboptions X and Y.
 Unfortunately, at this point one of several things occurs:

 1. The passive opener (B) does not support TCP-ENO,

 2. B supports TCP-ENO, but supports neither of TEPs X and Y, and so
 does not reply with an ENO option,

 3. B supports TCP-ENO, but has the connection configured in
 mandatory application-aware mode and thus disables ENO because
 A's SYN segment does not set the application-aware bit, or

 4. The network stripped the ENO option out of A's SYN segment, so B
 did not receive it.

 Whichever of the above applies, the connection transparently falls
 back to unencrypted TCP.

 (1) A -> B: SYN ENO<X,Y>
 (2) B -> A: SYN-ACK ENO<b=1,X> [ENO stripped by middlebox]
 (3) A -> B: ACK
 [rest of connection unencrypted legacy TCP]

 Figure 11: Failed TCP-ENO negotiation because of network filtering

 Figure 11 Shows another handshake with a failed encryption
 negotiation. In this case, the passive opener B receives an ENO
 option from A and replies. However, the reverse network path from B
 to A strips ENO options. Hence, A does not receive an ENO option

Bittau, et al. Expires January 29, 2017 [Page 17]

Internet-Draft tcpeno July 2016

 from B, disables ENO, and does not include a non-SYN form ENO option
 when ACKing B's SYN segment. The lack of ENO in A's ACK segment
 signals to B that the connection will not be encrypted. At this
 point, the two hosts proceed with an unencrypted TCP connection.

 (1) A -> B: SYN ENO<Y,X>
 (2) B -> A: SYN ENO<b=1,X,Y,Z>
 (3) A -> B: SYN-ACK ENO<Y,X>
 (4) B -> A: SYN-ACK ENO<b=1,X,Y,Z>
 [rest of connection encrypted according to TEP Y]

 Figure 12: Simultaneous open with successful TCP-ENO negotiation

 Figure 12 shows a successful TCP-ENO negotiation with simultaneous
 open. Here the first four segments MUST contain a SYN-form ENO
 option, as each side sends both a SYN-only and a SYN-ACK segment.
 The ENO option in each host's SYN-ACK is identical to the ENO option
 in its SYN-only segment, as otherwise connection establishment could
 not recover from the loss of a SYN segment. The last valid TEP in
 host B's ENO option is Y, so Y is the negotiated TEP.

7. Design rationale

 This section describes some of the design rationale behind TCP-ENO.

7.1. Future developments

 TCP-ENO is designed to capitalize on future developments that could
 alter trade-offs and change the best approach to TCP-level encryption
 (beyond introducing new cipher suites). By way of example, we
 discuss a few such possible developments.

 Various proposals exist to increase option space in TCP [I-D.ietf-tcp
 m-tcp-edo][I-D.briscoe-tcpm-inspace-mode-tcpbis][I-D.touch-tcpm-tcp-s
 yn-ext-opt]. If SYN segments gain large options, it becomes possible
 to fit public keys or Diffie-Hellman parameters into SYN segments.
 Future TEPs can take advantage of this by performing key agreement
 directly within suboption data, both simplifying protocols and
 reducing the number of round trips required for connection setup.

 If TCP gains large SYN option support, the 32-byte limit on length
 bytes may prove problematic. This draft intentionally aborts TCP-ENO
 if a length byte is followed by an octet in the range 0x00-0x9f. Any
 document updating TCP's option size limit can also enable larger
 suboptions by updating this draft to assign meaning to such currently
 undefined byte sequences.

Bittau, et al. Expires January 29, 2017 [Page 18]

Internet-Draft tcpeno July 2016

 New revisions to socket interfaces [RFC3493] could involve library
 calls that simultaneously have access to hostname information and an
 underlying TCP connection. Such an API enables the possibility of
 authenticating servers transparently to the application, particularly
 in conjunction with technologies such as DANE [RFC6394]. An update
 to TCP-ENO can adopt one of the "z" bits in the global suboption to
 negotiate use of an endpoint authentication protocol before any
 application use of the TCP connection. Over time, the consequences
 of failed or missing endpoint authentication can gradually be
 increased from issuing log messages to aborting the connection if
 some as yet unspecified DNS record indicates authentication is
 mandatory. Through shared library updates, such endpoint
 authentication can potentially be added transparently to legacy
 applications without recompilation.

 TLS can currently only be added to legacy applications whose
 protocols accommodate a STARTTLS command or equivalent. TCP-ENO,
 because it provides out-of-band signaling, opens the possibility of
 future TLS revisions being generically applicable to any TCP
 application.

7.2. Handshake robustness

 Incremental deployment of TCP-ENO depends critically on failure cases
 devolving to unencrypted TCP rather than causing the entire TCP
 connection to fail.

 Because a network path may drop ENO options in one direction only, a
 host must know not just that the peer supports encryption, but that
 the peer has received an ENO option. To this end, ENO disables
 encryption unless it receives an ACK segment bearing an ENO option.
 To stay robust in the face of dropped segments, hosts must continue
 to include non-SYN form ENO options in segments until such point as
 they have received a non-SYN segment from the other side.

 One particularly pernicious middlebox behavior found in the wild is
 load balancers that echo unknown TCP options found in SYN segments
 back to an active opener. The passive role bit "b" in global
 suboptions ensures encryption will always be disabled under such
 circumstances, as sending back a verbatim copy of an active opener's
 SYN-form ENO option always causes role negotiation to fail.

7.3. Suboption data

 TEPs can employ suboption data for session caching, cipher suite
 negotiation, or other purposes. However, TCP currently limits total
 option space consumed by all options to only 40 bytes, making it
 impractical to have many suboptions with data. For this reason, ENO

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc6394

Bittau, et al. Expires January 29, 2017 [Page 19]

Internet-Draft tcpeno July 2016

 optimizes the case of a single suboption with data by inferring the
 length of the last suboption from the TCP option length. Doing so
 saves one byte.

7.4. Passive role bit

 TCP-ENO, TEPs, and applications all have asymmetries that require an
 unambiguous way to identify one of the two connection endpoints. As
 an example, Section 4.8 specifies that host A's ENO option comes
 before host B's in the negotiation transcript. As another example,
 an application might need to authenticate one end of a TCP connection
 with a digital signature. To ensure the signed message cannot not be
 interpreted out of context to authenticate the other end, the signed
 message would need to include both the session ID and the local role,
 A or B.

 A normal TCP three-way handshake involves one active and one passive
 opener. This asymmetry is captured by the default configuration of
 the "b" bit in the global suboption. With simultaneous open, both
 hosts are active openers, so TCP-ENO requires that one host manually
 configure "b = 1". An alternate design might automatically break the
 symmetry to avoid this need for manual configuration. However, all
 such designs we considered either lacked robustness or consumed
 precious bytes of SYN option space even in the absence of
 simultaneous open. (One complicating factor is that TCP does not
 know it is participating in a simultaneous open until after it has
 sent a SYN segment. Moreover, with packet loss, one host might never
 learn it has participated in a simultaneous open.)

7.5. Option kind sharing

 This draft does not specify the use of ENO options beyond the first
 few segments of a connection. Moreover, it does not specify the
 content of ENO options in non-SYN segments, only their presence. As
 a result, any use of option kind TBD (or option kind 253 with ExID
 0x454E) after the SYN exchange does not conflict with this document.
 Because in addition ENO guarantees at most one negotiated TEP per
 connection, TEPs will not conflict with one another or ENO if they
 use ENO's option kind for out-of-band signaling in non-SYN segments.

8. Experiments

 This document has experimental status because TCP-ENO's viability
 depends on middlebox behavior that can only be determined _a
 posteriori_. Specifically, we must determine to what extent
 middleboxes will permit the use of TCP-ENO. Once TCP-ENO is
 deployed, we will be in a better position to gather data on two types
 of failure:

Bittau, et al. Expires January 29, 2017 [Page 20]

Internet-Draft tcpeno July 2016

 1. Middleboxes downgrading TCP-ENO connections to unencrypted TCP.
 This can happen if middleboxes strip unknown TCP options or if
 they terminate TCP connections and relay data back and forth.

 2. Middleboxes causing TCP-ENO connections to fail completely. This
 can happen if applications perform deep packet inspection and
 start dropping segments that unexpectedly contain ciphertext.

 The first type of failure is tolerable since TCP-ENO is designed for
 incremental deployment anyway. The second type of failure is more
 problematic, and, if prevalent, will require the development of
 techniques to avoid and recover from such failures.

9. Security considerations

 An obvious use case for TCP-ENO is opportunistic encryption--that is,
 encrypting some connections, but only where supported and without any
 kind of endpoint authentication. Opportunistic encryption protects
 against undetectable large-scale eavesdropping. However, it does not
 protect against detectable large-scale eavesdropping (for instance,
 if ISPs terminate TCP connections and proxy them, or simply downgrade
 connections to unencrypted). Moreover, opportunistic encryption
 emphatically does not protect against targeted attacks that employ
 trivial spoofing to redirect a specific high-value connection to a
 man-in-the-middle attacker.

 Achieving stronger security with TCP-ENO requires verifying session
 IDs. Any application relying on ENO for communications security MUST
 incorporate session IDs into its endpoint authentication. By way of
 example, an authentication mechanism based on keyed digests (such
 Digest Access Authentication [RFC7616]) can be extended to include
 the role and session ID in the input of the keyed digest. Where
 necessary for backwards compatibility, applications SHOULD use the
 application-aware bit to negotiate the inclusion of session IDs in
 authentication.

 Because TCP-ENO enables multiple different TEPs to coexist, security
 could potentially be only as strong as the weakest available TEP. In
 particular, if session IDs do not depend on the TCP-ENO transcript in
 a strong way, an attacker can undetectably tamper with ENO options to
 force negotiation of a deprecated and vulnerable TEP. To avoid such
 problems, TEPs SHOULD compute session IDs using only well-studied and
 conservative hash functions. That way, even if other parts of a TEP
 are vulnerable, it is still intractable for an attacker to induce
 identical session IDs at both ends after tampering with ENO contents
 in SYN segments.

https://datatracker.ietf.org/doc/html/rfc7616

Bittau, et al. Expires January 29, 2017 [Page 21]

Internet-Draft tcpeno July 2016

 Implementations MUST NOT send ENO options unless they have access to
 an adequate source of randomness [RFC4086]. Without secret
 unpredictable data at both ends of a connection, it is impossible for
 TEPs to achieve confidentiality and forward secrecy. Because systems
 typically have very little entropy on bootup, implementations might
 need to disable TCP-ENO until after system initialization.

 With a regular three-way handshake (meaning no simultaneous open),
 the non-SYN form ENO option in an active opener's first ACK segment
 MAY contain N > 0 bytes of TEP-specific data, as shown in Figure 3.
 Such data is not part of the TCP-ENO negotiation transcript, and
 hence MUST be separately authenticated by the TEP.

10. IANA Considerations

 This document defines a new TCP option kind for TCP-ENO, assigned a
 value of TBD from the TCP option space. This value is defined as:

 +------+--------+----------------------------------+-----------+
 | Kind | Length | Meaning | Reference |
 +------+--------+----------------------------------+-----------+
 | TBD | N | Encryption Negotiation (TCP-ENO) | [RFC-TBD] |
 +------+--------+----------------------------------+-----------+

 TCP Option Kind Numbers

 Early implementations of TCP-ENO and a predecessor TCP encryption
 protocol made unauthorized use of TCP option kind 69.

 [RFC-editor: please glue the following text to the previous paragraph
 iff TBD == 69, otherwise delete it.] These earlier uses of option 69
 are not compatible with TCP-ENO and could disable encryption or
 suffer complete connection failure when interoperating with TCP-ENO-
 compliant hosts. Hence, legacy use of option 69 MUST be disabled on
 hosts that cannot be upgraded to TCP-ENO.

 [RFC-editor: please glue this to the previous paragraph regardless of
 the value of TBD.] More recent implementations used experimental
 option 253 per [RFC6994] with 16-bit ExID 0x454E, and SHOULD migrate
 to option TBD by default.

 This document defines a 7-bit "glt" field in the range of 0x20-0x7f
 for which IANA shall maintain a new sub-registry entitled "TCP
 encryption protocol identifiers" under the "Transmission Control
 Protocol (TCP) Parameters" registry. The description of this
 registry should be interpreted with respect to the terminology
 defined in [RFC5226].

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc5226

Bittau, et al. Expires January 29, 2017 [Page 22]

Internet-Draft tcpeno July 2016

 The intention is for IANA to grant registration requests for TEP
 identifiers in anticipation of a published RFC. Hence, a
 Specification is Required. However, to allow for implementation
 experience, identifiers should be allocated prior to the RFC being
 approved for publication. A Designated Expert appointed by the IESG
 area director shall approve allocations once it seems more likely
 than not that an RFC will eventually be published. The Designated
 Expert shall post a request to the TCPINC WG mailing list (or a
 successor designated by the Area Director) for comment and review,
 including an Internet-Draft. Before a period of 30 days has passed,
 the Designated Expert will either approve or deny the registration
 request and publish a notice of the decision to the TCPINC WG mailing
 list or its successor, as well as informing IANA. A denial notice
 must be justified by an explanation, and in the cases where it is
 possible, concrete suggestions on how the request can be modified so
 as to become acceptable should be provided.

 The initial values of the TCP-ENO encryption protocol identifier
 registry are shown in Table 2.

 +-------+---------------------------+----------------------------+
 | Value | Meaning | Reference |
 +-------+---------------------------+----------------------------+
 | 0x20 | Experimental Use | |
 | 0x21 | TCPCRYPT_ECDHE_P256 | [I-D.ietf-tcpinc-tcpcrypt] |
 | 0x22 | TCPCRYPT_ECDHE_P521 | [I-D.ietf-tcpinc-tcpcrypt] |
 | 0x23 | TCPCRYPT_ECDHE_Curve25519 | [I-D.ietf-tcpinc-tcpcrypt] |
 | 0x24 | TCPCRYPT_ECDHE_Curve448 | [I-D.ietf-tcpinc-tcpcrypt] |
 | 0x30 | TCP-Use-TLS | [I-D.ietf-tcpinc-use-tls] |
 +-------+---------------------------+----------------------------+

 Table 2: TCP encryption protocol identifiers

11. Acknowledgments

 We are grateful for contributions, help, discussions, and feedback
 from the TCPINC working group, including Marcelo Bagnulo, David
 Black, Bob Briscoe, Jana Iyengar, Tero Kivinen, Mirja Kuhlewind, Yoav
 Nir, Christoph Paasch, Eric Rescorla, and Kyle Rose. This work was
 funded by DARPA CRASH and the Stanford Secure Internet of Things
 Project.

12. References

Bittau, et al. Expires January 29, 2017 [Page 23]

Internet-Draft tcpeno July 2016

12.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options",
RFC 6994, DOI 10.17487/RFC6994, August 2013,

 <http://www.rfc-editor.org/info/rfc6994>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

12.2. Informative References

 [I-D.briscoe-tcpm-inspace-mode-tcpbis]
 Briscoe, B., "Inner Space for all TCP Options (Kitchen
 Sink Draft - to be Split Up)", draft-briscoe-tcpm-inspace-

mode-tcpbis-00 (work in progress), March 2015.

 [I-D.ietf-tcpinc-tcpcrypt]
 Bittau, A., Boneh, D., Giffin, D., Hamburg, M., Handley,
 M., Mazieres, D., Slack, Q., and E. Smith, "Cryptographic
 protection of TCP Streams (tcpcrypt)", draft-ietf-tcpinc-

tcpcrypt-02 (work in progress), July 2016.

 [I-D.ietf-tcpinc-use-tls]
 Rescorla, E., "Using TLS to Protect TCP Streams", draft-

ietf-tcpinc-use-tls-01 (work in progress), May 2016.

https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc6994
http://www.rfc-editor.org/info/rfc6994
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inspace-mode-tcpbis-00
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inspace-mode-tcpbis-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-use-tls-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-use-tls-01

Bittau, et al. Expires January 29, 2017 [Page 24]

Internet-Draft tcpeno July 2016

 [I-D.ietf-tcpm-tcp-edo]
 Touch, D. and W. Eddy, "TCP Extended Data Offset Option",

draft-ietf-tcpm-tcp-edo-06 (work in progress), June 2016.

 [I-D.touch-tcpm-tcp-syn-ext-opt]
 Touch, D. and T. Faber, "TCP SYN Extended Option Space
 Using an Out-of-Band Segment", draft-touch-tcpm-tcp-syn-

ext-opt-04 (work in progress), April 2016.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <http://www.rfc-editor.org/info/rfc3493>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <http://www.rfc-editor.org/info/rfc5382>.

 [RFC6394] Barnes, R., "Use Cases and Requirements for DNS-Based
 Authentication of Named Entities (DANE)", RFC 6394,
 DOI 10.17487/RFC6394, October 2011,
 <http://www.rfc-editor.org/info/rfc6394>.

 [RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
 Digest Access Authentication", RFC 7616,
 DOI 10.17487/RFC7616, September 2015,
 <http://www.rfc-editor.org/info/rfc7616>.

Authors' Addresses

 Andrea Bittau
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: bittau@cs.stanford.edu

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-edo-06
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt-04
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt-04
https://datatracker.ietf.org/doc/html/rfc3493
http://www.rfc-editor.org/info/rfc3493
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382
http://www.rfc-editor.org/info/rfc5382
https://datatracker.ietf.org/doc/html/rfc6394
http://www.rfc-editor.org/info/rfc6394
https://datatracker.ietf.org/doc/html/rfc7616
http://www.rfc-editor.org/info/rfc7616

Bittau, et al. Expires January 29, 2017 [Page 25]

Internet-Draft tcpeno July 2016

 Dan Boneh
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: dabo@cs.stanford.edu

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: dbg@scs.stanford.edu

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 US

 Email: eric.smith@kestrel.edu

Bittau, et al. Expires January 29, 2017 [Page 26]

