
TCP Maintenance (TCPM) D. Borman
Internet-Draft Quantum Corporation
Intended status: Standards Track B. Braden
Expires: August 17, 2013 University of Southern
 California
 V. Jacobson
 Packet Design
 R. Scheffenegger, Ed.
 NetApp, Inc.
 February 13, 2013

TCP Extensions for High Performance
draft-ietf-tcpm-1323bis-05

Abstract

 This document specifies a set of TCP extensions to improve
 performance over paths with a large bandwidth*delay product and to
 provide reliable operation over very high-speed paths. It defines
 TCP options for scaled windows and timestamps. The timestamps are
 used for two distinct mechanisms, RTTM (Round Trip Time Measurement)
 and PAWS (Protection Against Wrapped Sequences).

 This document updates and obsoletes RFC 1323.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 17, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Borman, et al. Expires August 17, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Extensions for High Performance February 2013

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Borman, et al. Expires August 17, 2013 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP Extensions for High Performance February 2013

Table of Contents

1. Introduction . 4
1.1. TCP Performance . 4
1.2. TCP Reliability . 5
1.3. Using TCP options . 6

2. Terminology . 7
3. TCP Window Scale Option 7
3.1. Introduction . 7
3.2. Window Scale Option 7
3.3. Using the Window Scale Option 8
3.4. Addressing Window Retraction 10

4. RTTM -- Round-Trip Time Measurement 11
4.1. Introduction . 11
4.2. TCP Timestamps Option 12
4.3. The RTTM Mechanism . 13
4.4. Which Timestamp to Echo 14

5. PAWS -- Protection Against Wrapped Sequence Numbers 17
5.1. Introduction . 17
5.2. The PAWS Mechanism . 17
5.2.1. Basic PAWS Algorithm 18
5.2.2. Timestamp Clock 20
5.2.3. Outdated Timestamps 22
5.2.4. Header Prediction 22
5.2.5. IP Fragmentation 24

5.3. Duplicates from Earlier Incarnations of Connection 24
6. Conclusions and Acknowledgements 24
7. Security Considerations 25
8. IANA Considerations . 26
9. References . 26
9.1. Normative References 26
9.2. Informative References 26

Appendix A. Implementation Suggestions 28
Appendix B. Duplicates from Earlier Connection Incarnations . . . 29
B.1. System Crash with Loss of State 29
B.2. Closing and Reopening a Connection 30

Appendix C. Summary of Notation 31
Appendix D. Pseudo-code Summary 32
Appendix E. Event Processing Summary 34
Appendix F. Timestamps Edge Cases 39
Appendix G. Changes from RFC 1072, RFC 1185, and RFC 1323 40

 Authors' Addresses . 42

https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc1323

Borman, et al. Expires August 17, 2013 [Page 3]

Internet-Draft TCP Extensions for High Performance February 2013

1. Introduction

 The TCP protocol [RFC0793] was designed to operate reliably over
 almost any transmission medium regardless of transmission rate,
 delay, corruption, duplication, or reordering of segments. Over the
 years, advances in networking technology has resulted in ever-higher
 transmission speeds, and the fastest paths are well beyond the domain
 for which TCP was originally engineered.

 This document defines a set of modest extensions to TCP to extend the
 domain of its application to match the increasing network capability.
 It is an update to and obsoletes [RFC1323], which in turn is based
 upon and obsoletes [RFC1072] and [RFC1185].

 For brevity, the full discussions of the merits and history behind
 the TCP options defined within this document have been omitted.
 [RFC1323] should be consulted for reference. A modern TCP
 implementation SHOULD implement and make use of the extensions
 described in this document.

1.1. TCP Performance

 TCP performance problems arise when the bandwidth*delay product is
 large.

 There are three fundamental performance problems with the current TCP
 over LFN paths:

 (1) Window Size Limit

 The TCP header uses a 16 bit field to report the receive window
 size to the sender. Therefore, the largest window that can be
 used is 2^16 = 65K bytes.

 To circumvent this problem, Section 2 of this memo defines a new
 TCP option, "Window Scale", to allow windows larger than 2^16.
 This option defines an implicit scale factor, which is used to
 multiply the window size value found in a TCP header to obtain
 the true window size.

 (2) Recovery from Losses

 Packet losses in an LFN can have a catastrophic effect on
 throughput.

 To generalize the Fast Retransmit/Fast Recovery mechanism to
 handle multiple packets dropped per window, selective
 acknowledgments are required. Unlike the normal cumulative

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc1323

Borman, et al. Expires August 17, 2013 [Page 4]

Internet-Draft TCP Extensions for High Performance February 2013

 acknowledgments of TCP, selective acknowledgments give the
 sender a complete picture of which segments are queued at the
 receiver and which have not yet arrived.

 Selective acknowledgements are specified in a separate document,
 "A Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP" [RFC6675], and not further discussed
 in this document.

 (3) Round-Trip Measurement

 TCP implements reliable data delivery by retransmitting segments
 that are not acknowledged within some retransmission timeout
 (RTO) interval. Accurate dynamic determination of an
 appropriate RTO is essential to TCP performance. RTO is
 determined by estimating the mean and variance of the measured
 round-trip time (RTT), i.e., the time interval between sending a
 segment and receiving an acknowledgment for it [Jacobson88a].

Section 4.2 introduces a new TCP option, "Timestamps", and then
 defines a mechanism using this option that allows nearly every
 segment, including retransmissions, to be timed at negligible
 computational cost. We use the mnemonic RTTM (Round Trip Time
 Measurement) for this mechanism, to distinguish it from other
 uses of the Timestamps option.

1.2. TCP Reliability

 An especially serious kind of error may result from an accidental
 reuse of TCP sequence numbers in data segments. TCP reliability
 depends upon the existence of a bound on the lifetime of a segment:
 the "Maximum Segment Lifetime" or MSL.

 Duplication of sequence numbers might happen in either of two ways:

 (1) Sequence number wrap-around on the current connection

 A TCP sequence number contains 32 bits. At a high enough
 transfer rate, the 32-bit sequence space may be "wrapped"
 (cycled) within the time that a segment is delayed in queues.

 (2) Earlier incarnation of the connection

 Suppose that a connection terminates, either by a proper close
 sequence or due to a host crash, and the same connection (i.e.,
 using the same pair of port numbers) is immediately reopened. A
 delayed segment from the terminated connection could fall within
 the current window for the new incarnation and be accepted as

https://datatracker.ietf.org/doc/html/rfc6675

Borman, et al. Expires August 17, 2013 [Page 5]

Internet-Draft TCP Extensions for High Performance February 2013

 valid.

 Duplicates from earlier incarnations, Case (2), are avoided by
 enforcing the current fixed MSL of the TCP spec, as explained in

Section 5.3 and Appendix B. However, case (1), avoiding the reuse of
 sequence numbers within the same connection, requires an MSL bound
 that depends upon the transfer rate, and at high enough rates, a new
 mechanism is required.

 A possible fix for the problem of cycling the sequence space would be
 to increase the size of the TCP sequence number field. For example,
 the sequence number field (and also the acknowledgment field) could
 be expanded to 64 bits. This could be done either by changing the
 TCP header or by means of an additional option.

Section 5 presents a different mechanism, which we call PAWS
 (Protection Against Wrapped Sequence numbers), to extend TCP
 reliability to transfer rates well beyond the foreseeable upper limit
 of network bandwidths. PAWS uses the TCP Timestamps option defined
 in Section 4.2 to protect against old duplicates from the same
 connection.

1.3. Using TCP options

 The extensions defined in this document all use new TCP options.

 When RFC 1323 was published, there was concern that some buggy TCP
 implementation might be crashed by the first appearance of an option
 on a non-SYN segment. However, bugs like that can lead to DOS
 attacks against a TCP, so it is now expected that most TCP
 implementations will properly handle unknown options on non-SYN
 segments. But it is still prudent to be conservative in what you
 send, and avoiding buggy TCP implementation is not the only reason
 for negotiating TCP options on SYN segments. Therefore, for each of
 the extensions defined below, it is recommended that TCP options will
 be sent on non-SYN segments only after an exchange of options on the
 SYN segments has indicated that both sides understand the extension.
 Furthermore, an extension option will be sent in a <SYN,ACK> segment
 only if the corresponding option was received in the initial <SYN>
 segment.

 The timestamps option may appear in any data or ACK segment, adding
 12 bytes to the 20-byte TCP header. We believe that the bandwidth
 saved by reducing unnecessary retransmission timeouts will more than
 pay for the extra header bandwidth.

Appendix A contains a recommended layout of the options in TCP
 headers to achieve reasonable data field alignment.

https://datatracker.ietf.org/doc/html/rfc1323

Borman, et al. Expires August 17, 2013 [Page 6]

Internet-Draft TCP Extensions for High Performance February 2013

 Finally, we observe that most of the mechanisms defined in this memo
 are important for LFN's and/or very high-speed networks. For low-
 speed networks, it might be a performance optimization to NOT use
 these mechanisms. A TCP vendor concerned about optimal performance
 over low-speed paths might consider turning these extensions off for
 low-speed paths, or allow a user or installation manager to disable
 them.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. TCP Window Scale Option

3.1. Introduction

 The window scale extension expands the definition of the TCP window
 to 32 bits and then uses a scale factor to carry this 32-bit value in
 the 16-bit Window field of the TCP header (SEG.WND in RFC 793). The
 scale factor is carried in a new TCP option, Window Scale. This
 option is sent only in a SYN segment (a segment with the SYN bit on),
 hence the window scale is fixed in each direction when a connection
 is opened.

 The maximum receive window, and therefore the scale factor, is
 determined by the maximum receive buffer space. In a typical modern
 implementation, this maximum buffer space is set by default but can
 be overridden by a user program before a TCP connection is opened.
 This determines the scale factor, and therefore no new user interface
 is needed for window scaling.

3.2. Window Scale Option

 The three-byte Window Scale option MAY be sent in a SYN segment by a
 TCP. It has two purposes: (1) indicate that the TCP is prepared to
 do both send and receive window scaling, and (2) communicate a scale
 factor to be applied to its receive window. Thus, a TCP that is
 prepared to scale windows SHOULD send the option, even if its own
 scale factor is 1. The scale factor is limited to a power of two and
 encoded logarithmically, so it may be implemented by binary shift
 operations.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793

Borman, et al. Expires August 17, 2013 [Page 7]

Internet-Draft TCP Extensions for High Performance February 2013

 TCP Window Scale Option (WSopt):

 Kind: 3

 Length: 3 bytes

 +---------+---------+---------+
 | Kind=3 |Length=3 |shift.cnt|
 +---------+---------+---------+
 1 1 1

 This option is an offer, not a promise; both sides MUST send Window
 Scale options in their SYN segments to enable window scaling in
 either direction. If window scaling is enabled, then the TCP that
 sent this option will right-shift its true receive-window values by
 'shift.cnt' bits for transmission in SEG.WND. The value 'shift.cnt'
 MAY be zero (offering to scale, while applying a scale factor of 1 to
 the receive window).

 This option MAY be sent in an initial <SYN> segment (i.e., a segment
 with the SYN bit on and the ACK bit off). It MAY also be sent in a
 <SYN,ACK> segment, but only if a Window Scale option was received in
 the initial <SYN> segment. A Window Scale option in a segment
 without a SYN bit SHOULD be ignored.

 The Window field in a SYN (i.e., a <SYN> or <SYN,ACK>) segment itself
 is never scaled.

3.3. Using the Window Scale Option

 A model implementation of window scaling is as follows, using the
 notation of [RFC0793]:

 o All windows are treated as 32-bit quantities for storage in the
 connection control block and for local calculations. This
 includes the send-window (SND.WND) and the receive-window
 (RCV.WND) values, as well as the congestion window.

 o The connection state is augmented by two window shift counts,
 Snd.Wind.Scale and Rcv.Wind.Scale, to be applied to the incoming
 and outgoing window fields, respectively.

 o If a TCP receives a <SYN> segment containing a Window Scale
 option, it sends its own Window Scale option in the <SYN,ACK>
 segment.

 o The Window Scale option is sent with shift.cnt = R, where R is the
 value that the TCP would like to use for its receive window.

https://datatracker.ietf.org/doc/html/rfc0793

Borman, et al. Expires August 17, 2013 [Page 8]

Internet-Draft TCP Extensions for High Performance February 2013

 o Upon receiving a SYN segment with a Window Scale option containing
 shift.cnt = S, a TCP sets Snd.Wind.Scale to S and sets
 Rcv.Wind.Scale to R; otherwise, it sets both Snd.Wind.Scale and
 Rcv.Wind.Scale to zero.

 o The window field (SEG.WND) in the header of every incoming
 segment, with the exception of SYN segments, is left-shifted by
 Snd.Wind.Scale bits before updating SND.WND:

 SND.WND = SEG.WND << Snd.Wind.Scale

 (assuming the other conditions of [RFC0793] are met, and using the
 "C" notation "<<" for left-shift).

 o The window field (SEG.WND) of every outgoing segment, with the
 exception of SYN segments, is right-shifted by Rcv.Wind.Scale
 bits:

 SND.WND = RCV.WND >> Rcv.Wind.Scale

 TCP determines if a data segment is "old" or "new" by testing whether
 its sequence number is within 2^31 bytes of the left edge of the
 window, and if it is not, discarding the data as "old". To insure
 that new data is never mistakenly considered old and vice versa, the
 left edge of the sender's window has to be at most 2^31 away from the
 right edge of the receiver's window. Similarly with the sender's
 right edge and receiver's left edge. Since the right and left edges
 of either the sender's or receiver's window differ by the window
 size, and since the sender and receiver windows can be out of phase
 by at most the window size, the above constraints imply that two
 times the max window size must be less than 2^31, or

 max window < 2^30

 Since the max window is 2^S (where S is the scaling shift count)
 times at most 2^16 - 1 (the maximum unscaled window), the maximum
 window is guaranteed to be < 2^30 if S <= 14. Thus, the shift count
 MUST be limited to 14 (which allows windows of 2^30 = 1 Gbyte). If a
 Window Scale option is received with a shift.cnt value exceeding 14,
 the TCP SHOULD log the error but use 14 instead of the specified
 value.

 The scale factor applies only to the Window field as transmitted in
 the TCP header; each TCP using extended windows will maintain the
 window values locally as 32-bit numbers. For example, the
 "congestion window" computed by Slow Start and Congestion Avoidance
 is not affected by the scale factor, so window scaling will not
 introduce quantization into the congestion window.

https://datatracker.ietf.org/doc/html/rfc0793

Borman, et al. Expires August 17, 2013 [Page 9]

Internet-Draft TCP Extensions for High Performance February 2013

3.4. Addressing Window Retraction

 When a non-zero scale factor is in use, there are instances when a
 retracted window can be offered [Mathis08]. The end of the window
 will be on a boundary based on the granularity of the scale factor
 being used. If the sequence number is then updated by a number of
 bytes smaller than that granularity, the TCP will have to either
 advertise a new window that is beyond what it previously advertised
 (and perhaps beyond the buffer), or will have to advertise a smaller
 window, which will cause the TCP window to shrink. Implementations
 MUST ensure that they handle a shrinking window, as specified in

section 4.2.2.16 of [RFC1122].

 For the receiver, this implies that:

 1) The receiver MUST honor, as in-window, any segment that would
 have been in-window for any ACK sent by the receiver.

 2) When window scaling is in effect, the receiver SHOULD track the
 actual maximum window sequence number (which is likely to be
 greater than the window announced by the most recent ACK, if more
 than one segment has arrived since the application consumed any
 data in the receive buffer).

 On the sender side:

 3) The initial transmission MUST honor window on most recent ACK.

 4) On first retransmission, or if the sequence number is out-of-
 window by less than (2^Rcv.Wind.Scale) then do normal
 retransmission(s) without regard to receiver window as long as
 the original segment was in window when it was sent.

 5) On subsequent retransmissions, treat such ACKs as zero window
 probes.

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.16

Borman, et al. Expires August 17, 2013 [Page 10]

Internet-Draft TCP Extensions for High Performance February 2013

4. RTTM -- Round-Trip Time Measurement

4.1. Introduction

 Accurate and current RTT estimates are necessary to adapt to changing
 traffic conditions and to avoid an instability known as "congestion
 collapse" [RFC0896] in a busy network. However, accurate measurement
 of RTT may be difficult both in theory and in implementation.

 Many TCP implementations base their RTT measurements upon a sample of
 one packet per window or less. While this yields an adequate
 approximation to the RTT for small windows, it results in an
 unacceptably poor RTT estimate for a LFN. If we look at RTT
 estimation as a signal processing problem (which it is), a data
 signal at some frequency, the packet rate, is being sampled at a
 lower frequency, the window rate. This lower sampling frequency
 violates Nyquist's criteria and may therefore introduce "aliasing"
 artifacts into the estimated RTT [Hamming77].

 A good RTT estimator with a conservative retransmission timeout
 calculation can tolerate aliasing when the sampling frequency is
 "close" to the data frequency. For example, with a window of 8
 packets, the sample rate is 1/8 the data frequency -- less than an
 order of magnitude different. However, when the window is tens or
 hundreds of packets, the RTT estimator may be seriously in error,
 resulting in spurious retransmissions.

 If there are dropped packets, the problem becomes worse. Zhang
 [Zhang86], Jain [Jain86] and Karn [Karn87] have shown that it is not
 possible to accumulate reliable RTT estimates if retransmitted
 segments are included in the estimate. Since a full window of data
 will have been transmitted prior to a retransmission, all of the
 segments in that window will have to be ACKed before the next RTT
 sample can be taken. This means at least an additional window's
 worth of time between RTT measurements and, as the error rate
 approaches one per window of data (e.g., 10^-6 errors per bit for the
 Wideband satellite network), it becomes effectively impossible to
 obtain a valid RTT measurement.

 A solution to these problems, which actually simplifies the sender
 substantially, is as follows: using TCP options, the sender places a
 timestamp in each data segment, and the receiver reflects these
 timestamps back in ACK segments. Then a single subtract gives the
 sender an accurate RTT measurement for every ACK segment (which will
 correspond to every other data segment, with a sensible receiver).
 We call this the RTTM (Round-Trip Time Measurement) mechanism.

 It is vitally important to use the RTTM mechanism with big windows;

https://datatracker.ietf.org/doc/html/rfc0896

Borman, et al. Expires August 17, 2013 [Page 11]

Internet-Draft TCP Extensions for High Performance February 2013

 otherwise, the door is opened to some dangerous instabilities due to
 aliasing. Furthermore, the option is probably useful for all TCP's,
 since it simplifies the sender.

4.2. TCP Timestamps Option

 TCP is a symmetric protocol, allowing data to be sent at any time in
 either direction, and therefore timestamp echoing may occur in either
 direction. For simplicity and symmetry, we specify that timestamps
 always be sent and echoed in both directions. For efficiency, we
 combine the timestamp and timestamp reply fields into a single TCP
 Timestamps Option.

 TCP Timestamps Option (TSopt):

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 4

 The Timestamps option carries two four-byte timestamp fields. The
 Timestamp Value field (TSval) contains the current value of the
 timestamp clock of the TCP sending the option.

 The Timestamp Echo Reply field (TSecr) is valid if the ACK bit is set
 in the TCP header; if it is valid, it echoes a timestamp value that
 was sent by the remote TCP in the TSval field of a Timestamp option.
 When TSecr is not valid, its value MUST be zero. However, a value of
 zero does not imply TSecr being invalid. The TSecr value will
 generally be from the most recent Timestamps Option that was
 received; however, there are exceptions that are explained below.

 A TCP MAY send the Timestamps option (TSopt) in an initial <SYN>
 segment (i.e., a segment containing a SYN bit and no ACK bit). Once
 a TSopt has been sent or received in a non <SYN> segment, it MUST be
 sent in all segments. Once a TSopt has been received in a non <SYN>
 segment, then any successive segment that is received without the RST
 bit and without a TSopt MAY be dropped without further processing,
 and an ACK of the current SND.UNA generated.

 In the case of crossing SYN packets where one SYN contains a TSopt
 and the other doesn't, both sides SHOULD put a TSopt in the <SYN,ACK>
 segment.

Borman, et al. Expires August 17, 2013 [Page 12]

Internet-Draft TCP Extensions for High Performance February 2013

4.3. The RTTM Mechanism

 RTTM places a Timestamps option in every segment, with a TSval that
 is obtained from a (virtual) "timestamp clock". Values of this clock
 values MUST be at least approximately proportional to real time, in
 order to measure actual RTT.

 These TSval values are echoed in TSecr values in the reverse
 direction. The difference between a received TSecr value and the
 current timestamp clock value provides a RTT measurement.

 When timestamps are used, every segment that is received will contain
 a TSecr value. However, these values cannot all be used to update
 the measured RTT. The following example illustrates why. It shows a
 one-way data flow with segments arriving in sequence without loss.
 Here A, B, C... represent data blocks occupying successive blocks of
 sequence numbers, and ACK(A),... represent the corresponding
 cumulative acknowledgments. The two timestamp fields of the
 Timestamps option are shown symbolically as <TSval=x,TSecr=y>. Each
 TSecr field contains the value most recently received in a TSval
 field.

 TCP A TCP B

 <A,TSval=1,TSecr=120> ----->

 <---- <ACK(A),TSval=127,TSecr=1>

 <B,TSval=5,TSecr=127> ----->

 <---- <ACK(B),TSval=131,TSecr=5>

 .

 <C,TSval=65,TSecr=131> ---->

 <---- <ACK(C),TSval=191,TSecr=65>

 (etc.)

 The dotted line marks a pause (60 time units long) in which A had
 nothing to send. Note that this pause inflates the RTT which B could
 infer from receiving TSecr=131 in data segment C. Thus, in one-way
 data flows, RTTM in the reverse direction measures a value that is
 inflated by gaps in sending data. However, the following rule
 prevents a resulting inflation of the measured RTT:

Borman, et al. Expires August 17, 2013 [Page 13]

Internet-Draft TCP Extensions for High Performance February 2013

 RTTM Rule: A TSecr value received in a segment is used to update
 the averaged RTT measurement only if

 a) the segment acknowledges some new data, i.e., only if it
 advances the left edge of the send window, and

 b) the segment does not indicate any loss or reordering, i.e.
 contains SACK options

 Since TCP B is not sending data, the data segment C does not
 acknowledge any new data when it arrives at B. Thus, the inflated
 RTTM measurement is not used to update B's RTTM measurement.

 Implementers should note that with Timestamps multiple RTTMs can be
 taken per RTT. Many RTO estimators have a weighting factor based on
 an implicit assumption that at most one RTTM will be sampled per RTT.
 When using multiple RTTMs per RTT to update the RTO estimator, the
 weighting factor needs to be decreased to take into account the more
 frequent RTTMs. For example, an implementation could choose to just
 use one sample per RTT to update the RTO estimator, or vary the gain
 based on the congestion window, or take an average of all the RTTM
 measurements received over one RTT, and then use that value to update
 the RTO estimator. This document does not prescribe any particular
 method for modifying the RTO estimator.

4.4. Which Timestamp to Echo

 If more than one Timestamps option is received before a reply segment
 is sent, the TCP must choose only one of the TSvals to echo, ignoring
 the others. To minimize the state kept in the receiver (i.e., the
 number of unprocessed TSvals), the receiver should be required to
 retain at most one timestamp in the connection control block.

 There are three situations to consider:

 (A) Delayed ACKs.

 Many TCP's acknowledge only every Kth segment out of a group of
 segments arriving within a short time interval; this policy is
 known generally as "delayed ACKs". The data-sender TCP must
 measure the effective RTT, including the additional time due to
 delayed ACKs, or else it will retransmit unnecessarily. Thus,
 when delayed ACKs are in use, the receiver SHOULD reply with the
 TSval field from the earliest unacknowledged segment.

Borman, et al. Expires August 17, 2013 [Page 14]

Internet-Draft TCP Extensions for High Performance February 2013

 (B) A hole in the sequence space (segment(s) have been lost).

 The sender will continue sending until the window is filled, and
 the receiver may be generating ACKs as these out-of-order
 segments arrive (e.g., to aid "fast retransmit").

 The lost segment is probably a sign of congestion, and in that
 situation the sender should be conservative about
 retransmission. Furthermore, it is better to overestimate than
 underestimate the RTT. An ACK for an out-of-order segment
 SHOULD therefore contain the timestamp from the most recent
 segment that advanced the window.

 The same situation occurs if segments are re-ordered by the
 network.

 (C) A filled hole in the sequence space.

 The segment that fills the hole represents the most recent
 measurement of the network characteristics. On the other hand,
 an RTT computed from an earlier segment would probably include
 the sender's retransmit time-out, badly biasing the sender's
 average RTT estimate. Thus, the timestamp from the latest
 segment (which filled the hole) MUST be echoed.

 An algorithm that covers all three cases is described in the
 following rules for Timestamps option processing on a synchronized
 connection:

 (1) The connection state is augmented with two 32-bit slots:

 TS.Recent holds a timestamp to be echoed in TSecr whenever a
 segment is sent, and Last.ACK.sent holds the ACK field from the
 last segment sent. Last.ACK.sent will equal RCV.NXT except when
 ACKs have been delayed.

 (2) If:

 SEG.TSval >= TS.recent and SEG.SEQ <= Last.ACK.sent

 then SEG.TSval is copied to TS.Recent; otherwise, it is ignored.

 (3) When a TSopt is sent, its TSecr field is set to the current
 TS.Recent value.

 The following examples illustrate these rules. Here A, B, C...
 represent data segments occupying successive blocks of sequence
 numbers, and ACK(A),... represent the corresponding acknowledgment

Borman, et al. Expires August 17, 2013 [Page 15]

Internet-Draft TCP Extensions for High Performance February 2013

 segments. Note that ACK(A) has the same sequence number as B. We
 show only one direction of timestamp echoing, for clarity.

 o Packets arrive in sequence, and some of the ACKs are delayed.

 By case (A), the timestamp from the oldest unacknowledged segment
 is echoed.

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <B, TSval=2> ------------------->
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(C), TSecr=1>
 (etc)

 o Packets arrive out of order, and every packet is acknowledged.

 By case (B), the timestamp from the last segment that advanced the
 left window edge is echoed, until the missing segment arrives; it
 is echoed according to Case (C). The same sequence would occur if
 segments B and D were lost and retransmitted.

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <B, TSval=2> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <E, TSval=5> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <D, TSval=4> ------------------->
 4
 <---- <ACK(E), TSecr=4>
 (etc)

Borman, et al. Expires August 17, 2013 [Page 16]

Internet-Draft TCP Extensions for High Performance February 2013

5. PAWS -- Protection Against Wrapped Sequence Numbers

5.1. Introduction

Section 5.2 describes a simple mechanism to reject old duplicate
 segments that might corrupt an open TCP connection; we call this
 mechanism PAWS (Protection Against Wrapped Sequence numbers). PAWS
 operates within a single TCP connection, using state that is saved in
 the connection control block. Section 5.3 and Appendix G discuss the
 implications of the PAWS mechanism for avoiding old duplicates from
 previous incarnations of the same connection.

5.2. The PAWS Mechanism

 PAWS uses the same TCP Timestamps option as the RTTM mechanism
 described earlier, and assumes that every received TCP segment
 (including data and ACK segments) contains a timestamp SEG.TSval
 whose values are monotonically non-decreasing in time. The basic
 idea is that a segment can be discarded as an old duplicate if it is
 received with a timestamp SEG.TSval less than some timestamp recently
 received on this connection.

 In both the PAWS and the RTTM mechanism, the "timestamps" are 32-bit
 unsigned integers in a modular 32-bit space. Thus, "less than" is
 defined the same way it is for TCP sequence numbers, and the same
 implementation techniques apply. If s and t are timestamp values,

 s < t if 0 < (t - s) < 2^31,

 computed in unsigned 32-bit arithmetic.

 The choice of incoming timestamps to be saved for this comparison
 MUST guarantee a value that is monotonically increasing. For
 example, we might save the timestamp from the segment that last
 advanced the left edge of the receive window, i.e., the most recent
 in-sequence segment. Instead, we choose the value TS.Recent
 introduced in Section 4.4 for the RTTM mechanism, since using a
 common value for both PAWS and RTTM simplifies the implementation of
 both. As Section 4.4 explained, TS.Recent differs from the timestamp
 from the last in-sequence segment only in the case of delayed ACKs,
 and therefore by less than one window. Either choice will therefore
 protect against sequence number wrap-around.

 RTTM was specified in a symmetrical manner, so that TSval timestamps
 are carried in both data and ACK segments and are echoed in TSecr
 fields carried in returning ACK or data segments. PAWS submits all
 incoming segments to the same test, and therefore protects against
 duplicate ACK segments as well as data segments. (An alternative

Borman, et al. Expires August 17, 2013 [Page 17]

Internet-Draft TCP Extensions for High Performance February 2013

 non-symmetric algorithm would protect against old duplicate ACKs: the
 sender of data would reject incoming ACK segments whose TSecr values
 were less than the TSecr saved from the last segment whose ACK field
 advanced the left edge of the send window. This algorithm was deemed
 to lack economy of mechanism and symmetry.)

 TSval timestamps sent on <SYN> and <SYN,ACK> segments are used to
 initialize PAWS. PAWS protects against old duplicate non-SYN
 segments, and duplicate SYN segments received while there is a
 synchronized connection. Duplicate <SYN> and <SYN,ACK> segments
 received when there is no connection will be discarded by the normal
 3-way handshake and sequence number checks of TCP.

 [RFC1323] recommended that RST segments NOT carry timestamps, and
 that they be acceptable regardless of their timestamp. At that time,
 the thinking was that old duplicate RST segments should be
 exceedingly unlikely, and their cleanup function should take
 precedence over timestamps. More recently, discussions about various
 blind attacks on TCP connections have raised the suggestion that if
 the Timestamps option is present, SEG.TSecr could be used to provide
 stricter acceptance tests for RST packets. While still under
 discussion, to enable research into this area it is now RECOMMENDED
 that when generating a RST, that if the packet causing the RST to be
 generated contained a Timestamps option that the RST also contain a
 Timestamps option. In the RST segment, SEG.TSecr SHOULD be set to
 SEG.TSval from the incoming packet and SEG.TSval SHOULD be set to
 zero. If a RST is being generated because of a user abort, and
 Snd.TS.OK is set, then a Timestamps option SHOULD be included in the
 RST. When a RST packet is received, it MUST NOT be subjected to PAWS
 checks, and information from the Timestamps option MUST NOT be used
 to update connection state information. SEG.TSecr MAY be used to
 provide stricter RST acceptance checks.

5.2.1. Basic PAWS Algorithm

 The PAWS algorithm requires the following processing to be performed
 on all incoming segments for a synchronized connection:

 R1) If there is a Timestamps option in the arriving segment,
 SEG.TSval < TS.Recent, TS.Recent is valid (see later discussion)
 and the RST bit is not set, then treat the arriving segment as
 not acceptable:

 Send an acknowledgement in reply as specified in [RFC0793]
 page 69 and drop the segment.

 Note: it is necessary to send an ACK segment in order to
 retain TCP's mechanisms for detecting and recovering from

https://datatracker.ietf.org/doc/html/rfc0793

Borman, et al. Expires August 17, 2013 [Page 18]

Internet-Draft TCP Extensions for High Performance February 2013

 half-open connections. For example, see Figure 10 of
 [RFC0793].

 R2) If the segment is outside the window, reject it (normal TCP
 processing)

 R3) If an arriving segment satisfies: SEG.SEQ <= Last.ACK.sent (see
Section 4.4), then record its timestamp in TS.Recent.

 R4) If an arriving segment is in-sequence (i.e., at the left window
 edge), then accept it normally.

 R5) Otherwise, treat the segment as a normal in-window, out-of-
 sequence TCP segment (e.g., queue it for later delivery to the
 user).

 Steps R2, R4, and R5 are the normal TCP processing steps specified by
 [RFC0793].

 It is important to note that the timestamp is checked only when a
 segment first arrives at the receiver, regardless of whether it is
 in-sequence or it must be queued for later delivery.

 Consider the following example.

 Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has been
 sent, where the letter indicates the sequence number and the digit
 represents the timestamp. Suppose also that segment B.1 has been
 lost. The timestamp in TS.Recent is 1 (from A.1), so C.1, ...,
 Z.1 are considered acceptable and are queued. When B is
 retransmitted as segment B.2 (using the latest timestamp), it
 fills the hole and causes all the segments through Z to be
 acknowledged and passed to the user. The timestamps of the queued
 segments are *not* inspected again at this time, since they have
 already been accepted. When B.2 is accepted, TS.Recent is set to
 2.

 This rule allows reasonable performance under loss. A full window of
 data is in transit at all times, and after a loss a full window less
 one packet will show up out-of-sequence to be queued at the receiver
 (e.g., up to ~2^30 bytes of data); the timestamp option must not
 result in discarding this data.

 In certain unlikely circumstances, the algorithm of rules R1-R5 could
 lead to discarding some segments unnecessarily, as shown in the
 following example:

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Borman, et al. Expires August 17, 2013 [Page 19]

Internet-Draft TCP Extensions for High Performance February 2013

 Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have been
 sent in sequence and that segment B.1 has been lost. Furthermore,
 suppose delivery of some of C.1, ... Z.1 is delayed until AFTER
 the retransmission B.2 arrives at the receiver. These delayed
 segments will be discarded unnecessarily when they do arrive,
 since their timestamps are now out of date.

 This case is very unlikely to occur. If the retransmission was
 triggered by a timeout, some of the segments C.1, ... Z.1 must have
 been delayed longer than the RTO time. This is presumably an
 unlikely event, or there would be many spurious timeouts and
 retransmissions. If B's retransmission was triggered by the "fast
 retransmit" algorithm, i.e., by duplicate ACKs, then the queued
 segments that caused these ACKs must have been received already.

 Even if a segment were delayed past the RTO, the Fast Retransmit
 mechanism [Jacobson90c] will cause the delayed packets to be
 retransmitted at the same time as B.2, avoiding an extra RTT and
 therefore causing a very small performance penalty.

 We know of no case with a significant probability of occurrence in
 which timestamps will cause performance degradation by unnecessarily
 discarding segments.

5.2.2. Timestamp Clock

 It is important to understand that the PAWS algorithm does not
 require clock synchronization between sender and receiver. The
 sender's timestamp clock is used to stamp the segments, and the
 sender uses the echoed timestamp to measure RTTs. However, the
 receiver treats the timestamp as simply a monotonically increasing
 serial number, without any necessary connection to its clock. From
 the receiver's viewpoint, the timestamp is acting as a logical
 extension of the high-order bits of the sequence number.

 The receiver algorithm does place some requirements on the frequency
 of the timestamp clock.

 (a) The timestamp clock must not be "too slow".

 It MUST tick at least once for each 2^31 bytes sent. In fact,
 in order to be useful to the sender for round trip timing, the
 clock SHOULD tick at least once per window's worth of data, and
 even with the window extension defined in Section 3.2, 2^31
 bytes must be at least two windows.

 To make this more quantitative, any clock faster than 1 tick/sec
 will reject old duplicate segments for link speeds of ~8 Gbps.

Borman, et al. Expires August 17, 2013 [Page 20]

Internet-Draft TCP Extensions for High Performance February 2013

 A 1 ms timestamp clock will work at link speeds up to 8 Tbps
 (8*10^12) bps!

 (b) The timestamp clock must not be "too fast".

 The recycling time of the timestamp clock MUST be greater than
 MSL seconds. Since the clock (timestamp) is 32 bits and the
 worst-case MSL is 255 seconds, the maximum acceptable clock
 frequency is one tick every 59 ns.

 However, it is desirable to establish a much longer recycle
 period, in order to handle outdated timestamps on idle
 connections (see Section 5.2.3), and to relax the MSL
 requirement for preventing sequence number wrap-around. With a
 1 ms timestamp clock, the 32-bit timestamp will wrap its sign
 bit in 24.8 days. Thus, it will reject old duplicates on the
 same connection if MSL is 24.8 days or less. This appears to be
 a very safe figure; an MSL of 24.8 days or longer can probably
 be assumed in the internet without requiring precise MSL
 enforcement.

 Based upon these considerations, we choose a timestamp clock
 frequency in the range 1 ms to 1 sec per tick. This range also
 matches the requirements of the RTTM mechanism, which does not need
 much more resolution than the granularity of the retransmit timer,
 e.g., tens or hundreds of milliseconds.

 The PAWS mechanism also puts a strong monotonicity requirement on the
 sender's timestamp clock. The method of implementation of the
 timestamp clock to meet this requirement depends upon the system
 hardware and software.

 o Some hosts have a hardware clock that is guaranteed to be
 monotonic between hardware resets.

 o A clock interrupt may be used to simply increment a binary integer
 by 1 periodically.

 o The timestamp clock may be derived from a system clock that is
 subject to being abruptly changed, by adding a variable offset
 value. This offset is initialized to zero. When a new timestamp
 clock value is needed, the offset can be adjusted as necessary to
 make the new value equal to or larger than the previous value
 (which was saved for this purpose).

Borman, et al. Expires August 17, 2013 [Page 21]

Internet-Draft TCP Extensions for High Performance February 2013

5.2.3. Outdated Timestamps

 If a connection remains idle long enough for the timestamp clock of
 the other TCP to wrap its sign bit, then the value saved in TS.Recent
 will become too old; as a result, the PAWS mechanism will cause all
 subsequent segments to be rejected, freezing the connection (until
 the timestamp clock wraps its sign bit again).

 With the chosen range of timestamp clock frequencies (1 sec to 1 ms),
 the time to wrap the sign bit will be between 24.8 days and 24800
 days. A TCP connection that is idle for more than 24 days and then
 comes to life is exceedingly unusual. However, it is undesirable in
 principle to place any limitation on TCP connection lifetimes.

 We therefore require that an implementation of PAWS include a
 mechanism to "invalidate" the TS.Recent value when a connection is
 idle for more than 24 days. (An alternative solution to the problem
 of outdated timestamps would be to send keep-alive segments at a very
 low rate, but still more often than the wrap-around time for
 timestamps, e.g., once a day. This would impose negligible overhead.
 However, the TCP specification has never included keep-alives, so the
 solution based upon invalidation was chosen.)

 Note that a TCP does not know the frequency, and therefore, the
 wraparound time, of the other TCP, so it must assume the worst. The
 validity of TS.Recent needs to be checked only if the basic PAWS
 timestamp check fails, i.e., only if SEG.TSval < TS.Recent. If
 TS.Recent is found to be invalid, then the segment is accepted,
 regardless of the failure of the timestamp check, and rule R3 updates
 TS.Recent with the TSval from the new segment.

 To detect how long the connection has been idle, the TCP MAY update a
 clock or timestamp value associated with the connection whenever
 TS.Recent is updated, for example. The details will be
 implementation-dependent.

5.2.4. Header Prediction

 "Header prediction" [Jacobson90a] is a high-performance transport
 protocol implementation technique that is most important for high-
 speed links. This technique optimizes the code for the most common
 case, receiving a segment correctly and in order. Using header
 prediction, the receiver asks the question, "Is this segment the next
 in sequence?" This question can be answered in fewer machine
 instructions than the question, "Is this segment within the window?"

 Adding header prediction to our timestamp procedure leads to the
 following recommended sequence for processing an arriving TCP

Borman, et al. Expires August 17, 2013 [Page 22]

Internet-Draft TCP Extensions for High Performance February 2013

 segment:

 H1) Check timestamp (same as step R1 above)

 H2) Do header prediction: if segment is next in sequence and if
 there are no special conditions requiring additional processing,
 accept the segment, record its timestamp, and skip H3.

 H3) Process the segment normally, as specified in RFC 793. This
 includes dropping segments that are outside the window and
 possibly sending acknowledgments, and queuing in-window, out-of-
 sequence segments.

 Another possibility would be to interchange steps H1 and H2, i.e., to
 perform the header prediction step H2 FIRST, and perform H1 and H3
 only when header prediction fails. This could be a performance
 improvement, since the timestamp check in step H1 is very unlikely to
 fail, and it requires unsigned modulo arithmetic. To perform this
 check on every single segment is contrary to the philosophy of header
 prediction. We believe that this change might produce a measurable
 reduction in CPU time for TCP protocol processing on high-speed
 networks.

 However, putting H2 first would create a hazard: a segment from 2^32
 bytes in the past might arrive at exactly the wrong time and be
 accepted mistakenly by the header-prediction step. The following
 reasoning has been introduced in [RFC1185] to show that the
 probability of this failure is negligible.

 If all segments are equally likely to show up as old duplicates,
 then the probability of an old duplicate exactly matching the left
 window edge is the maximum segment size (MSS) divided by the size
 of the sequence space. This ratio must be less than 2^-16, since
 MSS must be < 2^16; for example, it will be (2^12)/(2^32) = 2^-20
 for a FDDI link. However, the older a segment is, the less likely
 it is to be retained in the Internet, and under any reasonable
 model of segment lifetime the probability of an old duplicate
 exactly at the left window edge must be much smaller than 2^-16.

 The 16 bit TCP checksum also allows a basic unreliability of one
 part in 2^16. A protocol mechanism whose reliability exceeds the
 reliability of the TCP checksum should be considered "good
 enough", i.e., it won't contribute significantly to the overall
 error rate. We therefore believe we can ignore the problem of an
 old duplicate being accepted by doing header prediction before
 checking the timestamp.

 However, this probabilistic argument is not universally accepted, and

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1185

Borman, et al. Expires August 17, 2013 [Page 23]

Internet-Draft TCP Extensions for High Performance February 2013

 the consensus at present is that the performance gain does not
 justify the hazard in the general case. It is therefore recommended
 that H2 follow H1.

5.2.5. IP Fragmentation

 At high data rates, the protection against old packets provided by
 PAWS can be circumvented by errors in IP fragment reassembly (see
 [RFC4963]). The only way to protect against incorrect IP fragment
 reassembly is to not allow the packets to be fragmented. This is
 done by setting the Don't Fragment (DF) bit in the IP header.
 Setting the DF bit implies the use of Path MTU Discovery as described
 in [RFC1191], [RFC1981], and [RFC4821], thus any TCP implementation
 that implements PAWS MUST also implement Path MTU Discovery.

5.3. Duplicates from Earlier Incarnations of Connection

 The PAWS mechanism protects against errors due to sequence number
 wrap-around on high-speed connections. Segments from an earlier
 incarnation of the same connection are also a potential cause of old
 duplicate errors. In both cases, the TCP mechanisms to prevent such
 errors depend upon the enforcement of a maximum segment lifetime
 (MSL) by the Internet (IP) layer (see Appendix of RFC 1185 for a
 detailed discussion). Unlike the case of sequence space wrap-around,
 the MSL required to prevent old duplicate errors from earlier
 incarnations does not depend upon the transfer rate. If the IP layer
 enforces the recommended 2 minute MSL of TCP, and if the TCP rules
 are followed, TCP connections will be safe from earlier incarnations,
 no matter how high the network speed. Thus, the PAWS mechanism is
 not required for this case.

 We may still ask whether the PAWS mechanism can provide additional
 security against old duplicates from earlier connections, allowing us
 to relax the enforcement of MSL by the IP layer. Appendix B explores
 this question, showing that further assumptions and/or mechanisms are
 required, beyond those of PAWS. This is not part of the current
 extension.

6. Conclusions and Acknowledgements

 This memo presented a set of extensions to TCP to provide efficient
 operation over large-bandwidth*delay-product paths and reliable
 operation over very high-speed paths. These extensions are designed
 to provide compatible interworking with TCP's that do not implement
 the extensions.

 These mechanisms are implemented using new TCP options for scaled

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1185

Borman, et al. Expires August 17, 2013 [Page 24]

Internet-Draft TCP Extensions for High Performance February 2013

 windows and timestamps. The timestamps are used for two distinct
 mechanisms: RTTM (Round Trip Time Measurement) and PAWS (Protection
 Against Wrapped Sequences).

 The Window Scale option was originally suggested by Mike St. Johns of
 USAF/DCA. The present form of the option was suggested by Mike
 Karels of UC Berkeley in response to a more cumbersome scheme defined
 by Van Jacobson. Lixia Zhang helped formulate the PAWS mechanism
 description in [RFC1185].

 Finally, much of this work originated as the result of discussions
 within the End-to-End Task Force on the theoretical limitations of
 transport protocols in general and TCP in particular. Task force
 members and other on the end2end-interest list have made valuable
 contributions by pointing out flaws in the algorithms and the
 documentation. Continued discussion and development since the
 publication of [RFC1323] originally occurred in the IETF TCP Large
 Windows Working Group, later on in the End-to-End Task Force, and
 most recently in the IETF TCP Maintenance Working Group. The authors
 are grateful for all these contributions.

7. Security Considerations

 The TCP sequence space is a fixed size, and as the window becomes
 larger it becomes easier for an attacker to generate forged packets
 that can fall within the TCP window, and be accepted as valid
 packets. While use of Timestamps and PAWS can help to mitigate this,
 when using PAWS, if an attacker is able to forge a packet that is
 acceptable to the TCP connection, a timestamp that is in the future
 would cause valid packets to be dropped due to PAWS checks. Hence,
 implementers should take care to not open the TCP window drastically
 beyond the requirements of the connection.

 Middle boxes and options: If a middle box removes TCP options from
 the SYN, such as TSopt, a high speed connection that needs PAWS would
 not have that protection. In this situation, an implementer could
 provide a mechanism for the application to determine whether or not
 PAWS is in use on the connection, and chose to terminate the
 connection if that protection doesn't exist.

 Mechanisms to protect the TCP header from modification should also
 protect the TCP options.

 Expanding the TCP window beyond 64K for IPv6 allows Jumbograms
 [RFC2675] to be used when the local network supports packets larger
 than 64K. When larger TCP packets are used, the TCP checksum becomes
 weaker.

https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2675

Borman, et al. Expires August 17, 2013 [Page 25]

Internet-Draft TCP Extensions for High Performance February 2013

8. IANA Considerations

 This document has no actions for IANA.

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [Garlick77]
 Garlick, L., Rom, R., and J. Postel, "Issues in Reliable
 Host-to-Host Protocols", Proc. Second Berkeley Workshop on
 Distributed Data Management and Computer Networks,
 May 1977, <http://www.rfc-editor.org/ien/ien12.txt>.

 [Hamming77]
 Hamming, R., "Digital Filters", Prentice Hall, Englewood
 Cliffs, N.J. ISBN 0-13-212571-4, 1977.

 [Jacobson88a]
 Jacobson, V., "Congestion Avoidance and Control", SIGCOMM
 '88, Stanford, CA., August 1988,
 <http://ee.lbl.gov/papers/congavoid.pdf>.

 [Jacobson90a]
 Jacobson, V., "4BSD Header Prediction", ACM Computer
 Communication Review, April 1990.

 [Jacobson90c]
 Jacobson, V., "Modified TCP congestion avoidance
 algorithm", Message to the end2end-interest mailing list,
 April 1990,
 <ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail>.

 [Jain86] Jain, R., "Divergence of Timeout Algorithms for Packet
 Retransmissions", Proc. Fifth Phoenix Conf. on Comp. and
 Comm., Scottsdale, Arizona, March 1986,

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/ien/ien12.txt
http://ee.lbl.gov/papers/congavoid.pdf
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

Borman, et al. Expires August 17, 2013 [Page 26]

Internet-Draft TCP Extensions for High Performance February 2013

 <http://arxiv.org/ftp/cs/papers/9809/9809097.pdf>.

 [Karn87] Karn, P. and C. Partridge, "Estimating Round-Trip Times in
 Reliable Transport Protocols", Proc. SIGCOMM '87,
 August 1987.

 [Martin03]
 Martin, D., "[Tsvwg] RFC 1323.bis", Message to the tsvwg
 mailing list, September 2003, <http://www.ietf.org/

mail-archive/web/tsvwg/current/msg04435.html>.

 [Mathis08]
 Mathis, M., "[tcpm] Example of 1323 window retraction
 problem", Message to the tcpm mailing list, March 2008,
 <http://www.ietf.org/mail-archive/web/tcpm/current/

msg03564.html>.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
RFC 896, January 1984.

 [RFC1072] Jacobson, V. and R. Braden, "TCP extensions for long-delay
 paths", RFC 1072, October 1988.

 [RFC1110] McKenzie, A., "Problem with the TCP big window option",
RFC 1110, August 1989.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1185] Jacobson, V., Braden, B., and L. Zhang, "TCP Extension for
 High-Speed Paths", RFC 1185, October 1990.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An

http://arxiv.org/ftp/cs/papers/9809/9809097.pdf
https://datatracker.ietf.org/doc/html/rfc1323
http://www.ietf.org/mail-archive/web/tsvwg/current/msg04435.html
http://www.ietf.org/mail-archive/web/tsvwg/current/msg04435.html
http://www.ietf.org/mail-archive/web/tcpm/current/msg03564.html
http://www.ietf.org/mail-archive/web/tcpm/current/msg03564.html
https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1110
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2675

Borman, et al. Expires August 17, 2013 [Page 27]

Internet-Draft TCP Extensions for High Performance February 2013

 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, August 2012.

 [Watson81]
 Watson, R., "Timer-based Mechanisms in Reliable Transport
 Protocol Connection Management", Computer Networks, Vol.
 5, 1981.

 [Zhang86] Zhang, L., "Why TCP Timers Don't Work Well", Proc. SIGCOMM
 '86, Stowe, VT, August 1986.

Appendix A. Implementation Suggestions

 TCP Option Layout

 The following layouts are recommended for sending options on non-
 SYN segments, to achieve maximum feasible alignment of 32-bit and
 64-bit machines.

 +--------+--------+--------+--------+
 | NOP | NOP | TSopt | 10 |
 +--------+--------+--------+--------+
 | TSval timestamp |
 +--------+--------+--------+--------+
 | TSecr timestamp |
 +--------+--------+--------+--------+

 Interaction with the TCP Urgent Pointer

 The TCP Urgent pointer, like the TCP window, is a 16 bit value.
 Some of the original discussion for the TCP Window Scale option
 included proposals to increase the Urgent pointer to 32 bits. As
 it turns out, this is unnecessary. There are two observations

https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Borman, et al. Expires August 17, 2013 [Page 28]

Internet-Draft TCP Extensions for High Performance February 2013

 that should be made:

 (1) With IP Version 4, the largest amount of TCP data that can be
 sent in a single packet is 65495 bytes (64K - 1 -- size of
 fixed IP and TCP headers).

 (2) Updates to the urgent pointer while the user is in "urgent
 mode" are invisible to the user.

 This means that if the Urgent Pointer points beyond the end of the
 TCP data in the current packet, then the user will remain in
 urgent mode until the next TCP packet arrives. That packet will
 update the urgent pointer to a new offset, and the user will never
 have left urgent mode.

 Thus, to properly implement the Urgent Pointer, the sending TCP
 only has to check for overflow of the 16 bit Urgent Pointer field
 before filling it in. If it does overflow, than a value of 65535
 should be inserted into the Urgent Pointer.

 The same technique applies to IP Version 6, except in the case of
 IPv6 Jumbograms. When IPv6 Jumbograms are supported, [RFC2675]
 requires additional steps for dealing with the Urgent Pointer,
 these are described in section 5.2 of [RFC2675].

Appendix B. Duplicates from Earlier Connection Incarnations

 There are two cases to be considered: (1) a system crashing (and
 losing connection state) and restarting, and (2) the same connection
 being closed and reopened without a loss of host state. These will
 be described in the following two sections.

B.1. System Crash with Loss of State

 TCP's quiet time of one MSL upon system startup handles the loss of
 connection state in a system crash/restart. For an explanation, see
 for example "When to Keep Quiet" in the TCP protocol specification
 [RFC0793]. The MSL that is required here does not depend upon the
 transfer speed. The current TCP MSL of 2 minutes seems acceptable as
 an operational compromise, as many host systems take this long to
 boot after a crash.

 However, the timestamp option may be used to ease the MSL
 requirements (or to provide additional security against data
 corruption). If timestamps are being used and if the timestamp clock
 can be guaranteed to be monotonic over a system crash/restart, i.e.,
 if the first value of the sender's timestamp clock after a crash/

https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc2675#section-5.2
https://datatracker.ietf.org/doc/html/rfc0793

Borman, et al. Expires August 17, 2013 [Page 29]

Internet-Draft TCP Extensions for High Performance February 2013

 restart can be guaranteed to be greater than the last value before
 the restart, then a quiet time will be unnecessary.

 To dispense totally with the quiet time would require that the host
 clock be synchronized to a time source that is stable over the crash/
 restart period, with an accuracy of one timestamp clock tick or
 better. We can back off from this strict requirement to take
 advantage of approximate clock synchronization. Suppose that the
 clock is always re-synchronized to within N timestamp clock ticks and
 that booting (extended with a quiet time, if necessary) takes more
 than N ticks. This will guarantee monotonicity of the timestamps,
 which can then be used to reject old duplicates even without an
 enforced MSL.

B.2. Closing and Reopening a Connection

 When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT state
 ties up the socket pair for 4 minutes (see Section 3.5 of [RFC0793].
 Applications built upon TCP that close one connection and open a new
 one (e.g., an FTP data transfer connection using Stream mode) must
 choose a new socket pair each time. The TIME-WAIT delay serves two
 different purposes:

 (a) Implement the full-duplex reliable close handshake of TCP.

 The proper time to delay the final close step is not really
 related to the MSL; it depends instead upon the RTO for the FIN
 segments and therefore upon the RTT of the path. (It could be
 argued that the side that is sending a FIN knows what degree of
 reliability it needs, and therefore it should be able to
 determine the length of the TIME-WAIT delay for the FIN's
 recipient. This could be accomplished with an appropriate TCP
 option in FIN segments.)

 Although there is no formal upper-bound on RTT, common network
 engineering practice makes an RTT greater than 1 minute very
 unlikely. Thus, the 4 minute delay in TIME-WAIT state works
 satisfactorily to provide a reliable full-duplex TCP close.
 Note again that this is independent of MSL enforcement and
 network speed.

 The TIME-WAIT state could cause an indirect performance problem
 if an application needed to repeatedly close one connection and
 open another at a very high frequency, since the number of
 available TCP ports on a host is less than 2^16. However, high
 network speeds are not the major contributor to this problem;
 the RTT is the limiting factor in how quickly connections can be
 opened and closed. Therefore, this problem will be no worse at

https://datatracker.ietf.org/doc/html/rfc0793#section-3.5

Borman, et al. Expires August 17, 2013 [Page 30]

Internet-Draft TCP Extensions for High Performance February 2013

 high transfer speeds.

 (b) Allow old duplicate segments to expire.

 To replace this function of TIME-WAIT state, a mechanism would
 have to operate across connections. PAWS is defined strictly
 within a single connection; the last timestamp (TS.Recent) is
 kept in the connection control block, and discarded when a
 connection is closed.

 An additional mechanism could be added to the TCP, a per-host
 cache of the last timestamp received from any connection. This
 value could then be used in the PAWS mechanism to reject old
 duplicate segments from earlier incarnations of the connection,
 if the timestamp clock can be guaranteed to have ticked at least
 once since the old connection was open. This would require that
 the TIME-WAIT delay plus the RTT together must be at least one
 tick of the sender's timestamp clock. Such an extension is not
 part of the proposal of this RFC.

 Note that this is a variant on the mechanism proposed by
 Garlick, Rom, and Postel [Garlick77], which required each host
 to maintain connection records containing the highest sequence
 numbers on every connection. Using timestamps instead, it is
 only necessary to keep one quantity per remote host, regardless
 of the number of simultaneous connections to that host.

Appendix C. Summary of Notation

 The following notation has been used in this document.

 Options

 WSopt: TCP Window Scale Option
 TSopt: TCP Timestamps Option

 Option Fields

 shift.cnt: Window scale byte in WSopt
 TSval: 32-bit Timestamp Value field in TSopt
 TSecr: 32-bit Timestamp Reply field in TSopt

 Option Fields in Current Segment

Borman, et al. Expires August 17, 2013 [Page 31]

Internet-Draft TCP Extensions for High Performance February 2013

 SEG.TSval: TSval field from TSopt in current segment
 SEG.TSecr: TSecr field from TSopt in current segment
 SEG.WSopt: 8-bit value in WSopt

 Clock Values

 my.TSclock: System wide source of 32-bit timestamp values
 my.TSclock.rate: Period of my.TSclock (1 ms to 1 sec)
 Snd.TSoffset: A offset for randomizing Snd.TSclock
 Snd.TSclock: my.TSclock + Snd.TSoffset

 Per-Connection State Variables

 TS.Recent: Latest received Timestamp
 Last.ACK.sent: Last ACK field sent
 Snd.TS.OK: 1-bit flag
 Snd.WS.OK: 1-bit flag
 Rcv.Wind.Scale: Receive window scale power
 Snd.Wind.Scale: Send window scale power
 Start.Time: Snd.TSclock value when segment being timed was
 sent (used by pre-1323 code).

 Procedure

 Update_SRTT(m) Procedure to update the smoothed RTT and RTT
 variance estimates, using the rules of
 [Jacobson88a], given m, a new RTT measurement

Appendix D. Pseudo-code Summary

 Create new TCB => {
 Rcv.wind.scale =
 MIN(14, MAX(0, floor(log2(receive buffer space)) - 15));
 Snd.wind.scale = 0;
 Last.ACK.sent = 0;
 Snd.TS.OK = Snd.WS.OK = FALSE;
 Snd.TSoffset = random 32 bit value
 }

 Send initial <SYN> segment => {
 SEG.WND = MIN(RCV.WND, 65535);
 Include in segment: TSopt(TSval=Snd.TSclock, TSecr=0);
 Include in segment: WSopt = Rcv.wind.scale;
 }

 Send <SYN,ACK> segment => {

Borman, et al. Expires August 17, 2013 [Page 32]

Internet-Draft TCP Extensions for High Performance February 2013

 SEG.ACK = Last.ACK.sent = RCV.NXT;
 SEG.WND = MIN(RCV.WND, 65535);
 if (Snd.TS.OK) then
 Include in segment:
 TSopt(TSval=Snd.TSclock, TSecr=TS.Recent);
 if (Snd.WS.OK) then
 Include in segment: WSopt = Rcv.wind.scale;
 }

 Receive <SYN> or <SYN,ACK> segment => {
 if (Segment contains TSopt) then {
 TS.Recent = SEG.TSval;
 Snd.TS.OK = TRUE;
 if (is <SYN,ACK> segment) then
 Update_SRTT(
 (Snd.TSclock - SEG.TSecr)/my.TSclock.rate);
 }
 if (Segment contains WSopt) then {
 Snd.wind.scale = SEG.WSopt;
 Snd.WS.OK = TRUE;
 if (the ACK bit is not set, and Rcv.wind.scale has not been
 initialized by the user) then
 Rcv.wind.scale = Snd.wind.scale;
 }
 else
 Rcv.wind.scale = Snd.wind.scale = 0;
 }

 Send non-SYN segment => {
 SEG.ACK = Last.ACK.sent = RCV.NXT;
 SEG.WND = MIN(RCV.WND >> Rcv.wind.scale, 65535);
 if (Snd.TS.OK) then
 Include in segment:
 TSopt(TSval=Snd.TSclock, TSecr=TS.Recent);
 }

 Receive non-SYN segment in (state >= ESTABLISHED) => {
 Window = (SEG.WND << Snd.wind.scale);
 /* Use 32-bit 'Window' instead of 16-bit 'SEG.WND'
 * in rest of processing.
 */
 if (Segment contains TSopt) then {
 if (SEG.TSval < TS.Recent && Idle less than 24 days) then {
 if (Send.TS.OK AND (NOT RST)) then {
 /* Timestamp too old =>
 * segment is unacceptable.
 */
 Send ACK segment;

Borman, et al. Expires August 17, 2013 [Page 33]

Internet-Draft TCP Extensions for High Performance February 2013

 Discard segment and return;
 }
 }
 else {
 if (SEG.SEQ <= Last.ACK.sent) then
 TS.Recent = SEG.TSval;
 }
 }
 if (SEG.ACK > SND.UNA) then {
 /* (At least part of) first segment in
 * retransmission queue has been ACKed
 */
 if (Segment contains TSopt) then
 Update_SRTT(
 (Snd.TSclock - SEG.TSecr)/my.TSclock.rate);
 else
 Update_SRTT(/* for compatibility */
 (Snd.TSclock - Start.Time)/my.TSclock.rate);
 }
 }

Appendix E. Event Processing Summary

 OPEN Call

 ...

 An initial send sequence number (ISS) is selected. Send a SYN
 segment of the form:

 <SEQ=ISS><CTL=SYN><TSval=Snd.TSclock><WSopt=Rcv.Wind.Scale>

 ...

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 ...

 LISTEN STATE

 If the foreign socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment
 containing the options: <TSval=Snd.TSclock> and
 <WSopt=Rcv.Wind.Scale>. Set SND.UNA to ISS, SND.NXT to ISS+1.
 Enter SYN-SENT state. ...

Borman, et al. Expires August 17, 2013 [Page 34]

Internet-Draft TCP Extensions for High Performance February 2013

 SYN-SENT STATE
 SYN-RECEIVED STATE

 ...

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). ...

 If the urgent flag is set ...

 If the Snd.TS.OK flag is set, then include the TCP Timestamps
 option <TSval=Snd.TSclock,TSecr=TS.Recent> in each data
 segment.

 Scale the receive window for transmission in the segment
 header:

 SEG.WND = (RCV.WND >> Rcv.Wind.Scale).

 SEGMENT ARRIVES

 ...

 If the state is LISTEN then

 first check for an RST

 ...

 second check for an ACK

 ...

 third check for a SYN

 if the SYN bit is set, check the security. If the ...

 ...

 if the SEG.PRC is less than the TCB.PRC then continue.

 Check for a Window Scale option (WSopt); if one is found,
 save SEG.WSopt in Snd.Wind.Scale and set Snd.WS.OK flag on.
 Otherwise, set both Snd.Wind.Scale and Rcv.Wind.Scale to
 zero and clear Snd.WS.OK flag.

Borman, et al. Expires August 17, 2013 [Page 35]

Internet-Draft TCP Extensions for High Performance February 2013

 Check for a TSopt option; if one is found, save SEG.TSval in
 the variable TS.Recent and turn on the Snd.TS.OK bit.

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any
 other control or text should be queued for processing later.
 ISS should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 If the Snd.WS.OK bit is on, include a WSopt option
 <WSopt=Rcv.Wind.Scale> in this segment. If the Snd.TS.OK
 bit is on, include a TSopt
 <TSval=Snd.TSclock,TSecr=TS.Recent> in this segment.
 Last.ACK.sent is set to RCV.NXT.

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any
 other incoming control or data (combined with SYN) will be
 processed in the SYN-RECEIVED state, but processing of SYN
 and ACK should not be repeated. If the listen was not fully
 specified (i.e., the foreign socket was not fully
 specified), then the unspecified fields should be filled in
 now.

 fourth other text or control

 ...

 If the state is SYN-SENT then

 first check the ACK bit

 ...

 ...

 fourth check the SYN bit

 ...

 If the SYN bit is on and the security/compartment and
 precedence are acceptable then, RCV.NXT is set to SEG.SEQ+1,
 IRS is set to SEG.SEQ, and any acknowledgements on the
 retransmission queue which are thereby acknowledged should
 be removed.

 Check for a Window Scale option (WSopt); if it is found,
 save SEG.WSopt in Snd.Wind.Scale; otherwise, set both

Borman, et al. Expires August 17, 2013 [Page 36]

Internet-Draft TCP Extensions for High Performance February 2013

 Snd.Wind.Scale and Rcv.Wind.Scale to zero.

 Check for a TSopt option; if one is found, save SEG.TSval in
 variable TS.Recent and turn on the Snd.TS.OK bit in the
 connection control block. If the ACK bit is set, use
 Snd.TSclock - SEG.TSecr as the initial RTT estimate.

 If SND.UNA > ISS (our SYN has been ACKed), change the
 connection state to ESTABLISHED, form an ACK segment:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. If the Snd.Echo.OK bit is on, include a TSopt
 option <TSval=Snd.TSclock,TSecr=TS.Recent> in this ACK
 segment. Last.ACK.sent is set to RCV.NXT.

 Data or controls which were queued for transmission may be
 included. If there are other controls or text in the
 segment then continue processing at the sixth step below
 where the URG bit is checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. If the Snd.Echo.OK bit is on, include a TSopt
 option <TSval=Snd.TSclock,TSecr=TS.Recent> in this segment.
 If the Snd.WS.OK bit is on, include a WSopt option
 <WSopt=Rcv.Wind.Scale> in this segment. Last.ACK.sent is
 set to RCV.NXT.

 If there are other controls or text in the segment, queue
 them for processing after the ESTABLISHED state has been
 reached, return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

 Otherwise,

 First, check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE

Borman, et al. Expires August 17, 2013 [Page 37]

Internet-Draft TCP Extensions for High Performance February 2013

 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on
 arrival are used to discard old duplicates, but further
 processing is done in SEG.SEQ order. If a segment's
 contents straddle the boundary between old and new, only the
 new parts should be processed.

 Rescale the received window field:

 TrueWindow = SEG.WND << Snd.Wind.Scale,

 and use "TrueWindow" in place of SEG.WND in the following
 steps.

 Check whether the segment contains a Timestamps option and
 bit Snd.TS.OK is on. If so:

 If SEG.TSval < TS.Recent and the RST bit is off, then
 test whether connection has been idle less than 24 days;
 if all are true, then the segment is not acceptable;
 follow steps below for an unacceptable segment.

 If SEG.SEQ is less than or equal to Last.ACK.sent, then
 save SEG.TSval in variable TS.Recent.

 There are four cases for the acceptability test for an
 incoming segment:

 ...

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so
 drop the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 Last.ACK.sent is set to SEG.ACK of the acknowledgment. If
 the Snd.Echo.OK bit is on, include the Timestamps option
 <TSval=Snd.TSclock,TSecr=TS.Recent> in this ACK segment.
 Set Last.ACK.sent to SEG.ACK and send the ACK segment.
 After sending the acknowledgment, drop the unacceptable
 segment and return.

 ...

Borman, et al. Expires August 17, 2013 [Page 38]

Internet-Draft TCP Extensions for High Performance February 2013

 fifth check the ACK field.

 if the ACK bit is off drop the segment and return.

 if the ACK bit is on

 ...

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK <= SND.NXT then, set SND.UNA <-
 SEG.ACK. Also compute a new estimate of round-trip time.
 If Snd.TS.OK bit is on, use Snd.TSclock - SEG.TSecr;
 otherwise use the elapsed time since the first segment in
 the retransmission queue was sent. Any segments on the
 retransmission queue which are thereby entirely
 acknowledged...

 ...

 Seventh, process the segment text.

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 ...

 Send an acknowledgment of the form:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 If the Snd.TS.OK bit is on, include Timestamps option
 <TSval=Snd.TSclock,TSecr=TS.Recent> in this ACK segment.
 Set Last.ACK.sent to SEG.ACK of the acknowledgment, and send
 it. This acknowledgment should be piggy-backed on a segment
 being transmitted if possible without incurring undue delay.

 ...

Appendix F. Timestamps Edge Cases

 While the rules laid out for when to calculate RTTM produce the
 correct results most of the time, there are some edge cases where an
 incorrect RTTM can be calculated. All of these situations involve
 the loss of packets. It is felt that these scenarios are rare, and
 that if they should happen, they will cause a single RTTM measurement

Borman, et al. Expires August 17, 2013 [Page 39]

Internet-Draft TCP Extensions for High Performance February 2013

 to be inflated, which mitigates its effects on RTO calculations.

 [Martin03] cites two similar cases when the returning ACK is lost,
 and before the retransmission timer fires, another returning packet
 arrives, which ACKs the data. In this case, the RTTM calculated will
 be inflated:

 clock
 tc=1 <A, TSval=1> ------------------->

 tc=2 (lost) <---- <ACK(A), TSecr=1, win=n>
 (RTTM would have been 1)

 (receive window opens, window update is sent)
 tc=5 <---- <ACK(A), TSecr=1, win=m>
 (RTTM is calculated at 4)

 One thing to note about this situation is that it is somewhat bounded
 by RTO + RTT, limiting how far off the RTTM calculation will be.
 While more complex scenarios can be constructed that produce larger
 inflations (e.g., retransmissions are lost), those scenarios involve
 multiple packet losses, and the connection will have other more
 serious operational problems than using an inflated RTTM in the RTO
 calculation.

Appendix G. Changes from RFC 1072, RFC 1185, and RFC 1323

 The protocol extensions defined in RFC 1323 document differ in
 several important ways from those defined in RFC 1072 and RFC 1185.

 (a) SACK has been split off into a separate document, [RFC2018].

 (b) The detailed rules for sending timestamp replies (see
Section 4.4) differ in important ways. The earlier rules could

 result in an under-estimate of the RTT in certain cases (packets
 dropped or out of order).

 (c) The same value TS.Recent is now shared by the two distinct
 mechanisms RTTM and PAWS. This simplification became possible
 because of change (b).

 (d) An ambiguity in RFC 1185 was resolved in favor of putting
 timestamps on ACK as well as data segments. This supports the
 symmetry of the underlying TCP protocol.

https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc1185

Borman, et al. Expires August 17, 2013 [Page 40]

Internet-Draft TCP Extensions for High Performance February 2013

 (e) The echo and echo reply options of RFC 1072 were combined into a
 single Timestamps option, to reflect the symmetry and to
 simplify processing.

 (f) The problem of outdated timestamps on long-idle connections,
 discussed in Section 5.2.2, was realized and resolved.

 (g) RFC 1185 recommended that header prediction take precedence over
 the timestamp check. Based upon some skepticism about the
 probabilistic arguments given in Section 5.2.4, it was decided
 to recommend that the timestamp check be performed first.

 (h) The spec was modified so that the extended options will be sent
 on <SYN,ACK> segments only when they are received in the
 corresponding <SYN> segments. This provides the most
 conservative possible conditions for interoperation with
 implementations without the extensions.

 In addition to these substantive changes, the present RFC attempts to
 specify the algorithms unambiguously by presenting modifications to
 the Event Processing rules of RFC 793; see Appendix E.

 There are additional changes in this document from RFC 1323. These
 changes are:

 (a) The description of which TSecr values can be used to update the
 measured RTT has been clarified. Specifically, with Timestamps,
 the Karn algorithm [Karn87] is disabled. The Karn algorithm
 disables all RTT measurements during retransmission, since it is
 ambiguous whether the ACK is for the original packet, or the
 retransmitted packet. With Timestamps, that ambiguity is
 removed since the TSecr in the ACK will contain the TSval from
 whichever data packet made it to the destination.

 (b) In RFC1323, section 3.4, step (2) of the algorithm to control
 which timestamp is echoed was incorrect in two regards:

 (1) It failed to update TS.recent for a retransmitted segment
 that resulted from a lost ACK.

 (2) It failed if SEG.LEN = 0.

 In the new algorithm, the case of SEG.TSval >= TS.recent is
 included for consistency with the PAWS test.

https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1185
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323#section-3.4

Borman, et al. Expires August 17, 2013 [Page 41]

Internet-Draft TCP Extensions for High Performance February 2013

 (c) One correction was made to the Event Processing Summary in
Appendix E. In SEND CALL/ESTABLISHED STATE, RCV.WND is used to

 fill in the SEG.WND value, not SND.WND.

 (d) New pseudo-code summary has been added in Appendix D.

 (e) Appendix A has been expanded with information about the TCP MSS
 option and the TCP Urgent Pointer.

 (f) It is now recommended that Timestamps options be included in RST
 packets if the incoming packet contained a Timestamps option.

 (g) RST packets are explicitly excluded from PAWS processing.

 (h) Snd.TSoffset and Snd.TSclock variables have been added.
 Snd.TSclock is the sum of my.TSclock and Snd.TSoffset. This
 allows the starting points for timestamps to be randomized on a
 per-connection basis. Setting Snd.TSoffset to zero yields the
 same results as [RFC1323].

 (i) RTTM update processing explicitly excludes packets containing
 SACK options. This addresses inflation of the RTT during
 episodes of packet loss in both directions.

 (j) In Section 4.2 the if-clause allowing sending of timestamps only
 when received in a <SYN> or <SYN,ACK> was removed, to allow for
 late timestamp negotiation.

 (k) Section 3.4 was added describing the unavoidable window
 retraction issue, and explicitly describing the mitigation steps
 necessary.

 (l) Section 2 was added for RFC2119 wording. Normative text was
 updated with the appropriate phrases.

 (m) Removed much of the discussion in Section 1 to streamline the
 document. However, detailed examples and discussions in

Section 3, Section 4 and Section 5 are kept as guideline for
 implementers.

 (n) Moved Appendix "Changes" at the end of the appendices for easier
 lookup.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2119

Borman, et al. Expires August 17, 2013 [Page 42]

Internet-Draft TCP Extensions for High Performance February 2013

Authors' Addresses

 David Borman
 Quantum Corporation
 Mendota Heights MN 55120
 USA

 Email: david.borman@quantum.com

 Bob Braden
 University of Southern California
 4676 Admiralty Way
 Marina del Rey CA 90292
 USA

 Email: braden@isi.edu

 Van Jacobson
 Packet Design
 2465 Latham Street
 Mountain View CA 94040
 USA

 Email: van@packetdesign.com

 Richard Scheffenegger (editor)
 NetApp, Inc.
 Am Euro Platz 2
 Vienna, 1120
 Austria

 Email: rs@netapp.com

Borman, et al. Expires August 17, 2013 [Page 43]

