
TCPM WG J. Touch
Internet Draft Independent
Intended status: Informational M. Welzl
Obsoletes: 2140 S. Islam
Expires: October 2020 University of Oslo
 April 24, 2020

TCP Control Block Interdependence
draft-ietf-tcpm-2140bis-03.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 24, 2020.

Touch, et al. Expires October 24, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP Control Block Interdependence April 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided
 without warranty as described in the Simplified BSD License.

Abstract

 This memo provides guidance to TCP implementers that are intended to
 help improve convergence to steady-state operation without affecting
 interoperability. It updates and replaces RFC 2140's description of
 interdependent TCP control blocks and the ways that part of TCP
 state can be shared among similar concurrent or consecutive
 connections. TCP state includes a combination of parameters, such as
 connection state, current round-trip time estimates, congestion
 control information, and process information. Most of this state is
 maintained on a per-connection basis in the TCP Control Block (TCB),
 but implementations can (and do) share certain TCB information
 across connections to the same host. Such sharing is intended to
 improve overall transient transport performance, while maintaining
 backward-compatibility with existing implementations. The sharing
 described herein is limited to only the TCB initialization and so
 has no effect on the long-term behavior of TCP after a connection
 has been established.

Table of Contents

1. Introduction...3
2. Conventions Used in This Document..............................4
3. Terminology..4
4. The TCP Control Block (TCB)....................................4
5. TCB Interdependence..5
6. Temporal Sharing...6
6.1. Initialization of the new TCB................................6
6.2. Updates to the new TCB.......................................7
6.3. Discussion...8
7. Ensemble Sharing...9

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 24, 2020 [Page 2]

Internet-Draft TCP Control Block Interdependence April 2020

7.1. Initialization of a new TCB..................................9
7.2. Updates to the new TCB......................................10
7.3. Discussion..11
8. Compatibility Issues..12
8.1. Traversing the same network path............................13
8.2. State dependence..13
8.3. Problems with IP sharing....................................14
9. Implications..14
9.1. Layering..14
9.2. Other possibilities...15
10. Implementation Observations..................................15
11. Updates to RFC 2140..16
12. Security Considerations......................................17
13. IANA Considerations..17
14. References...18

14.1. Normative References....................................18
14.2. Informative References..................................18

15. Acknowledgments..21
16. Change log...21
Appendix A : TCB Sharing History.................................24
Appendix B : TCP Option Sharing and Caching......................25
Appendix C : Automating the Initial Window in TCP over Long

 Timescales...27
C.1. Introduction...27
C.2. Design Considerations....................................27
C.3. Proposed IW Algorithm....................................28
C.4. Discussion...31
C.5. Observations...32

1. Introduction

 TCP is a connection-oriented reliable transport protocol layered
 over IP [RFC793]. Each TCP connection maintains state, usually in a
 data structure called the TCP Control Block (TCB). The TCB contains
 information about the connection state, its associated local
 process, and feedback parameters about the connection's transmission
 properties. As originally specified and usually implemented, most
 TCB information is maintained on a per-connection basis. Some
 implementations can (and now do) share certain TCB information
 across connections to the same host [RFC2140]. Such sharing is
 intended to lead to better overall transient performance, especially
 for numerous short-lived and simultaneous connections, as often used
 in the World-Wide Web [Be94][Br02]. This sharing of state is
 intended to help TCP connections converge to steady-state behavior
 more quickly without affecting TCP interoperability.

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 24, 2020 [Page 3]

Internet-Draft TCP Control Block Interdependence April 2020

 This document updates RFC 2140's discussion of TCB state sharing and
 provides a complete replacement for that document. This state
 sharing affects only TCB initialization [RFC2140] and thus has no
 effect on the long-term behavior of TCP after a connection has been
 established nor on interoperability. Path information shared across
 SYN destination port numbers assumes that TCP segments having the
 same host-pair experience the same path properties, irrespective of
 TCP port numbers. The observations about TCB sharing in this
 document apply similarly to any protocol with congestion state,
 including SCTP [RFC4960] and DCCP [RFC4340], as well as for
 individual subflows in Multipath TCP [RFC6824].

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 However, this document is intended to describe behavior that is
 already permitted by TCP standards. As a result, it provides
 informative guidance but does not use such normative language,
 except when quoting other documents.

3. Terminology

 Host - a source or sink of TCP segments associated with a single IP
 address

 Host-pair - a pair of hosts and their corresponding IP addresses

 Path - an Internet path between the IP addresses of two hosts

4. The TCP Control Block (TCB)

 A TCB describes the data associated with each connection, i.e., with
 each association of a pair of applications across the network. The
 TCB contains at least the following information [RFC793]:

Touch Expires October 24, 2020 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc793

Internet-Draft TCP Control Block Interdependence April 2020

 Local process state
 pointers to send and receive buffers
 pointers to retransmission queue and current segment
 pointers to Internet Protocol (IP) PCB
 Per-connection shared state
 macro-state
 connection state
 timers
 flags
 local and remote host numbers and ports
 TCP option state
 micro-state
 send and receive window state (size*, current number)
 cong. window size (snd_cwnd)*
 cong. window size threshold (ssthresh)*
 max window size seen*
 sendMSS#
 MMS_S#
 MMS_R#
 PMTU#
 round-trip time and variance#

 The per-connection information is shown as split into macro-state
 and micro-state, terminology borrowed from [Co91]. Macro-state
 describes the protocol for establishing the initial shared state
 about the connection; we include the endpoint numbers and components
 (timers, flags) required upon commencement that are later used to
 help maintain that state. Micro-state describes the protocol after a
 connection has been established, to maintain the reliability and
 congestion control of the data transferred in the connection.

 We further distinguish two other classes of shared micro-state that
 are associated more with host-pairs than with application pairs. One
 class is clearly host-pair dependent (#, e.g., MSS, MMS, PMTU, RTT),
 and the other is host-pair dependent in its aggregate (*, e.g.,
 congestion window information, current window sizes, etc.).

5. TCB Interdependence

 There are two cases of TCB interdependence. Temporal sharing occurs
 when the TCB of an earlier (now CLOSED) connection to a host is used
 to initialize some parameters of a new connection to that same host,
 i.e., in sequence. Ensemble sharing occurs when a currently active
 connection to a host is used to initialize another (concurrent)
 connection to that host.

Touch Expires October 24, 2020 [Page 5]

Internet-Draft TCP Control Block Interdependence April 2020

6. Temporal Sharing

 The TCB data cache is accessed in two ways: it is read to initialize
 new TCBs and written when more current per-host state is available.

6.1. Initialization of the new TCB

 TCBs for new connections can be initialized using context from past
 connections as follows:

 TEMPORAL SHARING - TCB Initialization

 Cached TCB New TCB

 old_MMS_S old_MMS_S or not cached

 old_MMS_R old_MMS_R or not cached

 old_sendMSS old_sendMSS

 old_PMTU old_PMTU

 old_RTT old_RTT

 old_RTTvar old_RTTvar

 old_option (option specific)

 old_ssthresh old_ssthresh

 old_snd_cwnd old_snd_cwnd

 The table below gives an overview of option-specific information
 that can be shared. Additional information on some specific TCP
 options and sharing is provided in 0.

Touch Expires October 24, 2020 [Page 6]

Internet-Draft TCP Control Block Interdependence April 2020

 TEMPORAL SHARING - Option Info Initialization

 Cached New
 --
 old_TFO_Cookie old_TFO_Cookie

 old_TFO_Failure old_TFO_Failure

6.2. Updates to the new TCB

 During the connection, the associated TCB can be updated based on
 particular events, as shown below:

 TEMPORAL SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB
 --
 old_MMS_S curr_ MMS_S OPEN curr MMS_S

 old_MMS_R curr_ MMS_R OPEN curr_MMS_R

 old_sendMSS curr_sendMSS MSSopt curr_sendMSS

 old_PMTU curr_PMTU PMTUD curr_PMTU

 old_RTT curr_RTT CLOSE merge(curr,old)

 old_RTTvar curr_RTTvar CLOSE merge(curr,old)

 old_option curr option ESTAB (depends on option)

 old_ssthresh curr_ssthresh CLOSE merge(curr,old)

 old_snd_cwnd curr_snd_cwnd CLOSE merge(curr,old)

 The table below gives an overview of option-specific information
 that can be similarly shared.

Touch Expires October 24, 2020 [Page 7]

Internet-Draft TCP Control Block Interdependence April 2020

 TEMPORAL SHARING - Option Info Updates

 Cached Current when? New Cached
 --
 old_TFO_Cookie old_TFO_Cookie ESTAB old_TFO_Cookie

 old_TFO_Failure old_TFO_Failure ESTAB old_TFO_Failure

6.3. Discussion

 There is no particular benefit to caching MMS_S and MMS R as these
 are reported by the local IP stack. Caching sendMSS and PMTU is
 trivial; reported values are cached, and the most recent values are
 used. The cache is updated when the MSS option is received in a SYN
 or after PMTUD (i.e., when an ICMPv4 Fraqmentation Needed [RFC1191]
 or ICMPv6 Packet Too Big message is received [RFC8201] or the
 equivalent is inferred, e.g. as from PLPMTUD [RFC4821]),
 respectively, so the cache always has the most recent values from
 any connection. For sendMSS, the cache is consulted only at
 connection establishment and not otherwise updated, which means that
 MSS options do not affect current connections. The default sendMSS
 is never saved; only reported MSS values update the cache, so an
 explicit override is required to reduce the sendMSS.

 RTT values are updated by formulae that merge the old and new
 values. Dynamic RTT estimation requires a sequence of RTT
 measurements. As a result, the cached RTT (and its variance) is an
 average of its previous value with the contents of the currently
 active TCB for that host, when a TCB is closed. RTT values are
 updated only when a connection is closed. The method for merging old
 and current values needs to attempt to reduce the transient effects
 of the new connections.

 The updates for RTT, RTTvar and ssthresh rely on existing
 information, i.e., old values. Should no such values exist, the
 current values are cached instead.

 TCP options are copied or merged depending on the details of each
 option, where "merge" is some function that combines the values of
 "curr" and "old". E.g., TFO state is updated when a connection is
 established and read before establishing a new connection.

 Sections 8 and 9 discuss compatibility issues and implications of
 sharing the specific information listed above. Section 10 gives an
 overview of known implementations.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc4821

Touch Expires October 24, 2020 [Page 8]

Internet-Draft TCP Control Block Interdependence April 2020

 Most cached TCB values are updated when a connection closes. The
 exceptions are MMS_R and MMS_S, which are reported by IP [RFC1122],
 PMTU which is updated after Path MTU Discovery
 [RFC1191][RFC4821][RFC8201], and sendMSS, which is updated if the
 MSS option is received in the TCP SYN header.

 Sharing sendMSS information affects only data in the SYN of the next
 connection, because sendMSS information is typically included in
 most TCP SYN segments. Caching PMTU can accelerate the efficiency of
 PMTUD, but can also result in black-holing until corrected if in
 error. Caching MMS_R and MMS_S may be of little direct value as they
 are reported by the local IP stack anyway.

 The way in which other TCP option state can be shared depends on the
 details of that option. E.g., TFO state includes the TCP Fast Open
 Cookie [RFC7413] or, in case TFO fails, a negative TCP Fast Open
 response. RFC 7413 states, "The client MUST cache negative responses
 from the server in order to avoid potential connection failures.
 Negative responses include the server not acknowledging the data in
 the SYN, ICMP error messages, and (most importantly) no response
 (SYN-ACK) from the server at all, i.e., connection timeout." [RFC
 7413]. TFOinfo is cached when a connection is established.

 Other TCP option state might not be as readily cached. E.g., TCP-AO
 [RFC5925] success or failure between a host pair for a single SYN
 destination port might be usefully cached. TCP-AO success or failure
 to other SYN destination ports on that host pair is never useful to
 cache because TCP-AO security parameters can vary per service.

7. Ensemble Sharing

 Sharing cached TCB data across concurrent connections requires
 attention to the aggregate nature of some of the shared state. For
 example, although MSS and RTT values can be shared by copying, it
 may not be appropriate to simply copy congestion window or ssthresh
 information; instead, the new values can be a function (f) of the
 cumulative values and the number of connections (N).

7.1. Initialization of a new TCB

 TCBs for new connections can be initialized using context from
 concurrent connections as follows:

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc5925

Touch Expires October 24, 2020 [Page 9]

Internet-Draft TCP Control Block Interdependence April 2020

 ENSEMBLE SHARING - TCB Initialization

 Cached TCB New TCB

 old_MMS_S old_MMS_S

 old_MMS_R old_MMS_R

 old_sendMSS old_sendMSS

 old_PMTU old_PMTU

 old_RTT old_RTT

 old_RTTvar old_RTTvar

 old ssthresh sum f(old ssthresh sum, N)

 old snd_cwnd sum f(old snd cwnd sum, N)

 old_option (option-specific)

 The table below gives an overview of option-specific information
 that can be similarly shared.

 ENSEMBLE SHARING - Option Info Initialization

 Cached New
 --
 old_TFO_Cookie old_TFO_Cookie

 old_TFO_Failure old_TFO_Failure

7.2. Updates to the new TCB

 During the connection, the associated TCB can be updated based on
 changes to concurrent connections, as shown below:

Touch Expires October 24, 2020 [Page 10]

Internet-Draft TCP Control Block Interdependence April 2020

 ENSEMBLE SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB

 old_MMS_S curr_MMS_S OPEN curr_MMS_S

 old_MMS_R curr_MMS_R OPEN curr_MMS_R

 old_sendMSS curr_sendMSS MSSopt curr_sendMSS

 old_PMTU curr_PMTU PMTUD curr_PMTU
 /PLPMTUD

 old_RTT curr_RTT update rtt_update(old,curr)

 old_RTTvar curr_RTTvar update rtt_update(old,curr)

 old ssthresh curr ssthresh update adjust sum as appopriate

 old snd_cwnd curr snd_cwnd update adjust sum as appopriate

 old_option curr option (depends) (option specific)

 The table below gives an overview of option-specific information
 that can be similarly shared.

 ENSEMBLE SHARING - Option Info Updates

 Cached Current when? New Cached
 --
 old_TFO_Cookie old_TFO_Cookie ESTAB old_TFO_Cookie

 old_TFO_Failure old_TFO_Failure ESTAB old_TFO_Failure

7.3. Discussion

 For ensemble sharing, TCB information should be cached as early as
 possible, sometimes before a connection is closed. Otherwise,
 opening multiple concurrent connections may not result in TCB data
 sharing if no connection closes before others open. The amount of
 work involved in updating the aggregate average should be minimized,
 but the resulting value should be equivalent to having all values
 measured within a single connection. The function "rtt_update" in
 the ensemble sharing table indicates this operation, which occurs
 whenever the RTT would have been updated in the individual TCP

Touch Expires October 24, 2020 [Page 11]

Internet-Draft TCP Control Block Interdependence April 2020

 connection. As a result, the cache contains the shared RTT
 variables, which no longer need to reside in the TCB.

 Congestion window size and ssthresh aggregation are more complicated
 in the concurrent case. When there is an ensemble of connections, we
 need to decide how that ensemble would have shared these variables,
 in order to derive initial values for new TCBs.

 Sections 8 and 9 discuss compatibility issues and implications of
 sharing the specific information listed above.

 Any assumption of TCB information sharing can be incorrect because
 identical endpoint address pairs may not share network paths. In
 current implementations, new congestion windows are set at an
 initial value of 4-10 segments [RFC3390][RFC6928], so that the sum
 of the current windows is increased for any new connection. This can
 have detrimental consequences where several connections share a
 highly congested link.

 There are several ways to initialize the congestion window in a new
 TCB among an ensemble of current connections to a host. Current TCP
 implementations initialize it to four segments as standard [rfc3390]
 and 10 segments experimentally [RFC6928]. These approaches assume
 that new connections should behave as conservatively as possible.
 The algorithm described in [Ba12] adjusts the initial cwnd depending
 on the cwnd values of ongoing connections. There have also been
 suggestions to use the kind of sharing mechanisms described in this
 document over long timescales to adapt TCP's initial window
 automatically, as described further in Appendix A [To12].

8. Compatibility Issues

 Here, we discuss various types of problems that may arise with TCB
 information sharing.

 For the congestion and current window information, the initial
 values computed by TCB interdependence may not be consistent with
 the long-term aggregate behavior of a set of concurrent connections
 between the same endpoints. Under conventional TCP congestion
 control, if a single existing connection has converged to a
 congestion window of 40 segments, two newly joining concurrent
 connections assume initial windows of 10 segments [RFC6928], and the
 current connection's window doesn't decrease to accommodate this
 additional load and connections can mutually interfere. One example
 of this is seen on low-bandwidth, high-delay links, where concurrent
 connections supporting Web traffic can collide because their initial
 windows were too large, even when set at one segment.

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928

Touch Expires October 24, 2020 [Page 12]

Internet-Draft TCP Control Block Interdependence April 2020

 The authors of [Hu12] recommend caching ssthresh for temporal
 sharing only when flows are long. Some studies suggest that sharing
 ssthresh between short flows can deteriorate the performance of
 individual connections [Hu12, Du16], although this may benefit
 aggregate network performance.

8.1. Traversing the same network path

 TCP is sometimes used in situations where packets of the same host-
 pair do not always take the same path. Multipath routing that relies
 on examining transport headers, such as ECMP and LAG [RFC7424], may
 not result in repeatable path selection when TCP segments are
 encapsulated, encrypted, or altered - for example, in some Virtual
 Private Network (VPN) tunnels that rely on proprietary
 encapsulation. Similarly, such approaches cannot operate
 deterministically when the TCP header is encrypted, e.g., when using
 IPsec ESP (although TCB interdependence among the entire set sharing
 the same endpoint IP addresses should work without problems when the
 TCP header is encrypted). Measures to increase the probability that
 connections use the same path could be applied: e.g., the
 connections could be given the same IPv6 flow label. TCB
 interdependence can also be extended to sets of host IP address
 pairs that share the same network path conditions, such as when a
 group of addresses is on the same LAN (see Section 9).

 Traversing the same path is not important for host-specific
 information such as RWIN and TCP option state, such as TFOinfo. When
 TCB information is shared across different SYN destination ports,
 path-related information can be incorrect; however, the impact of
 this error is potentially diminished if (as discussed here) TCB
 sharing affects only the transient event of a connection start or if
 TCB information is shared only within connections to the same SYN
 destination port. In case of Temporal Sharing, TCB information could
 also become invalid over time. Because this is similar to the case
 when a connection becomes idle, mechanisms that address idle TCP
 connections (e.g., [RFC7661]) could also be applied to TCB cache
 management, especially when TCP Fast Open is used [RFC7413].

8.2. State dependence

 There may be additional considerations to the way in which TCB
 interdependence rebalances congestion feedback among the current
 connections, e.g., it may be appropriate to consider the impact of a
 connection being in Fast Recovery [RFC5681] or some other similar
 unusual feedback state, e.g., as inhibiting or affecting the
 calculations described herein.

https://datatracker.ietf.org/doc/html/rfc7424
https://datatracker.ietf.org/doc/html/rfc7661
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc5681

Touch Expires October 24, 2020 [Page 13]

Internet-Draft TCP Control Block Interdependence April 2020

8.3. Problems with IP sharing

 It can be wrong to share TCB information between TCP connections on
 the same host as identified by the IP address if an IP address is
 assigned to a new host (e.g., IP address spinning, as is used by
 ISPs to inhibit running servers). It can be wrong if Network Address
 (and Port) Translation (NA(P)T) [RFC2663] or any other IP sharing
 mechanism is used. Such mechanisms are less likely to be used with
 IPv6. Other methods to identify a host could also be considered to
 make correct TCB sharing more likely. Moreover, some TCB information
 is about dominant path properties rather than the specific host. IP
 addresses may differ, yet the relevant part of the path may be the
 same.

9. Implications

 There are several implications to incorporating TCB interdependence
 in TCP implementations. First, it may reduce the need for
 application-layer multiplexing for performance enhancement
 [RFC7231]. Protocols like HTTP/2 [RFC7540] avoid connection
 reestablishment costs by serializing or multiplexing a set of per-
 host connections across a single TCP connection. This avoids TCP's
 per-connection OPEN handshake and also avoids recomputing the MSS,
 RTT, and congestion window values. By avoiding the so-called, "slow-
 start restart," performance can be optimized [Hu01]. TCB
 interdependence can provide the "slow-start restart avoidance" of
 multiplexing, without requiring a multiplexing mechanism at the
 application layer.

 Like the initial version of this document [RFC2140], this update's
 approach to TCB interdependence focuses on sharing a set of TCBs by
 updating the TCB state to reduce the impact of transients when
 connections begin or end. Other mechanisms have since been proposed
 to continuously share information between all ongoing communication
 (including connectionless protocols), updating the congestion state
 during any congestion-related event (e.g., timeout, loss
 confirmation, etc.) [RFC3124]. By dealing exclusively with
 transients, TCB interdependence is more likely to exhibit the same
 behavior as unmodified, independent TCP connections.

9.1. Layering

 TCB interdependence pushes some of the TCP implementation from the
 traditional transport layer (in the ISO model), to the network
 layer. This acknowledges that some state is in fact per-host-pair or
 can be per-path as indicated solely by that host-pair. Transport
 protocols typically manage per-application-pair associations (per

https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc3124

Touch Expires October 24, 2020 [Page 14]

Internet-Draft TCP Control Block Interdependence April 2020

 stream), and network protocols manage per-host-pair and path
 associations (routing). Round-trip time, MSS, and congestion
 information could be more appropriately handled in a network-layer
 fashion, aggregated among concurrent connections, and shared across
 connection instances [RFC3124].

 An earlier version of RTT sharing suggested implementing RTT state
 at the IP layer, rather than at the TCP layer. Our observations
 describe sharing state among TCP connections, which avoids some of
 the difficulties in an IP-layer solution. One such problem of an IP
 layer solution is determining the correspondence between packet
 exchanges using IP header information alone, where such
 correspondence is needed to compute RTT. Because TCB sharing
 computes RTTs inside the TCP layer using TCP header information, it
 can be implemented more directly and simply than at the IP layer.
 This is a case where information should be computed at the transport
 layer but could be shared at the network layer.

9.2. Other possibilities

 Per-host-pair associations are not the limit of these techniques. It
 is possible that TCBs could be similarly shared between hosts on a
 subnet or within a cluster, because the predominant path can be
 subnet-subnet, rather than host-host. Additionally, TCB
 interdependence can be applied to any protocol with congestion
 state, including SCTP [RFC4960] and DCCP [RFC4340], as well as for
 individual subflows in Multipath TCP [RFC6824].

 There may be other information that can be shared between concurrent
 connections. For example, knowing that another connection has just
 tried to expand its window size and failed, a connection may not
 attempt to do the same for some period. The idea is that existing
 TCP implementations infer the behavior of all competing connections,
 including those within the same host or subnet. One possible
 optimization is to make that implicit feedback explicit, via
 extended information associated with the endpoint IP address and its
 TCP implementation, rather than per-connection state in the TCB.

10. Implementation Observations

 The observation that some TCB state is host-pair specific rather
 than application-pair dependent is not new and is a common
 engineering decision in layered protocol implementations. Although
 now deprecated, T/TCP [RFC1644] was the first to propose using
 caches in order to maintain TCB states (see Appendix A for more
 information).

https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc1644

Touch Expires October 24, 2020 [Page 15]

Internet-Draft TCP Control Block Interdependence April 2020

 The table below describes the current implementation status for some
 TCB information in Linux kernel version 4.6, FreeBSD 10 and Windows
 (as of October 2016). In the table, "shared" only refers to temporal
 sharing.

 CURRENT IMPLEMENTATION STATUS (as of 2016)

 TCB data Status

 old MMS_S Not shared

 old MMS_R Not shared

 old_sendMSS Cached and shared in Linux (MSS)

 old PMTU Cached and shared in FreeBSD and Windows (PMTU)

 old_RTT Cached and shared in FreeBSD and Linux

 old_RTTvar Cached and shared in FreeBSD

 old TFOinfo Cached and shared in Linux and Windows

 old_snd_cwnd Not shared

 old_ssthresh Cached and shared in FreeBSD and Linux:
 FreeBSD: arithmetic
 mean of ssthresh and previous value if
 a previous value exists;
 Linux: depending on state,
 max(cwnd/2, ssthresh) in most cases

11. Updates to RFC 2140

 This document updates the description of TCB sharing in RFC 2140 and
 its associated impact on existing and new connection state,
 providing a complete replacement for that document [RFC2140]. It
 clarifies the previous description and terminology and extends the
 mechanism to its impact on new protocols and mechanisms, including
 multipath TCP, fast open, PLPMTUD, NAT, and the TCP Authentication
 Option.

 The detailed impact on TCB state addresses TCB parameters in greater
 detail, addressing RSS in both the send and receive direction, MSS
 and send-MSS separately, adds path MTU and ssthresh, and addresses
 the impact on TCP option state.

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 24, 2020 [Page 16]

Internet-Draft TCP Control Block Interdependence April 2020

 New sections have been added to address compatibility issues and
 implementation observations. The relation of this work to T/TCP has
 been moved to Appendix A on history, partly to reflect the
 deprecation of that protocol.

Appendix C has been added to discuss the potential to use temporal
 sharing over long timescales to adapt TCP's initial window
 automatically, largely imported from [To12].

 Finally, this document updates and significantly expands the
 referenced literature.

12. Security Considerations

 These presented implementation methods do not have additional
 ramifications for explicit attacks. They may be susceptible to
 denial-of-service attacks if not otherwise secured.

 TCB sharing may be susceptible to denial-of-service attacks,
 wherever the TCB is shared, between connections in a single host, or
 between hosts if TCB sharing is implemented within a subnet (see
 Implications section). Some shared TCB parameters are used only to
 create new TCBs, others are shared among the TCBs of ongoing
 connections. New connections can join the ongoing set, e.g., to
 optimize send window size among a set of connections to the same
 host.

 Attacks on parameters used only for initialization affect only the
 transient performance of a TCP connection. For short connections,
 the performance ramification can approach that of a denial-of-
 service attack. E.g., if an application changes its TCB to have a
 false and small window size, subsequent connections would experience
 performance degradation until their window grew appropriately.

 TCB sharing reuses and mixes information from past and current
 connections. Although reusing information could create a potential
 for fingerprinting to identify hosts, the mixing reduces that
 potential. There has been no evidence of fingerprinting based on
 this technique and it is currently considered safe in that regard.

13. IANA Considerations

 There are no IANA implications or requests in this document.

 This section should be removed upon final publication as an RFC.

Touch Expires October 24, 2020 [Page 17]

Internet-Draft TCP Control Block Interdependence April 2020

14. References

14.1. Normative References

 [RFC793] Postel, Jon, "Transmission Control Protocol," Network
 Working Group RFC-793/STD-7, ISI, Sept. 1981.

 [RFC1122] Braden, R. (ed), "Requirements for Internet Hosts --
 Communication Layers", RFC-1122, Oct. 1989.

 [RFC1191] Mogul, J., Deering, S., "Path MTU Discovery," RFC 1191,
 Nov. 1990.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4821] Mathis, M., Heffner, J., "Packetization Layer Path MTU
 Discovery," RFC 4821, Mar. 2007.

 [RFC5681] Allman, M., Paxson, V., Blanton, E., "TCP Congestion
 Control," RFC 5681 (Standards Track), Sep. 2009.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A., "TCP Fast
 Open", RFC 7413, Dec. 2014.

 [RFC8174] Leiba., B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", RFC 8174, May 2017.

 [RFC8201] McCann, J., Deering. S., Mogul, J., Hinden, R. (Ed.),
 "Path MTU Discovery for IP version 6," RFC 8201, Jul.
 2017.

14.2. Informative References

 [Al10] Allman, M., "Initial Congestion Window Specification",
 (work in progress), draft-allman-tcpm-bump-initcwnd-00,
 Nov. 2010.

 [Ba12] Barik, R., Welzl, M., Ferlin, S., Alay, O., " LISA: A
 Linked Slow-Start Algorithm for MPTCP", IEEE ICC, Kuala
 Lumpur, Malaysia, May 23-27 2016.

 [Be94] Berners-Lee, T., et al., "The World-Wide Web,"
 Communications of the ACM, V37, Aug. 1994, pp. 76-82.

 [Br94] Braden, B., "T/TCP -- Transaction TCP: Source Changes for
 Sun OS 4.1.3,", Release 1.0, USC/ISI, September 14, 1994.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/draft-allman-tcpm-bump-initcwnd-00

Touch Expires October 24, 2020 [Page 18]

Internet-Draft TCP Control Block Interdependence April 2020

 [Br02] Brownlee, N. and K. Claffy, "Understanding Internet
 Traffic Streams: Dragonflies and Tortoises", IEEE
 Communications Magazine p110-117, 2002.

 [Co91] Comer, D., Stevens, D., Internetworking with TCP/IP, V2,
 Prentice-Hall, NJ, 1991.

 [Du16] Dukkipati, N., Yuchung C., and Amin V., "Research
 Impacting the Practice of Congestion Control." ACM SIGCOMM
 CCR (editorial), on-line post, July 2016.

 [FreeBSD] FreeBSD source code, Release 2.10, http://www.freebsd.org/

 [Hu01] Hugues, A., Touch, J., Heidemann, J., "Issues in Slow-
 Start Restart After Idle", draft-hughes-restart-00
 (expired), Dec. 2001.

 [Hu12] Hurtig, P., Brunstrom, A., "Enhanced metric caching for
 short TCP flows," 2012 IEEE International Conference on
 Communications (ICC), Ottawa, ON, 2012, pp. 1209-1213.

 [Ja88] Jacobson, V., M. Karels, "Congestion Avoidance and
 Control", Proc. Sigcomm 1988.

 [RFC1644] Braden, R., "T/TCP -- TCP Extensions for Transactions
 Functional Specification," RFC-1644, July 1994.

 [RFC1379] Braden, R., "Transaction TCP -- Concepts," RFC-1379,
 September 1992.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", RFC2001
 (Standards Track), Jan. 1997.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 April 1997.

 [RFC2414] Allman, M., Floyd, S., Partridge, C., "Increasing TCP's
 Initial Window", RFC 2414 (Experimental), Sept. 1998.

 [RFC2581] Allman, M., Paxson, V., Stevens, W., "TCP Congestion
 Control," RFC2581 (Standards Track), Apr. 1999.

 [RFC2663] Srisuresh, P., Holdrege, M., "IP Network Address
 Translator (NAT) Terminology and Considerations", RFC-

2663, August 1999.

http://www.freebsd.org/
https://datatracker.ietf.org/doc/html/draft-hughes-restart-00
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc2663

Touch Expires October 24, 2020 [Page 19]

Internet-Draft TCP Control Block Interdependence April 2020

 [RFC2861] Handley, M., Padhye, J., Floyd, S., "TCP Congestion Window
 Validation", RFC2861 (Experimental), June 2000.

 [RFC3390] Allman, M., Floyd, S., Partridge, C., "Increasing TCP's
 Initial Window," RFC 3390, Oct. 2002.

 [RFC3124] Balakrishnan, H., Seshan, S., "The Congestion Manager,"
RFC 3124, June 2001.

 [RFC4340] Kohler, E., Handley, M., Floyd, S., "Datagram Congestion
 Control Protocol (DCCP)," RFC 4340, Mar. 2006.

 [RFC4960] Stewart, R., (Ed.), "Stream Control Transmission
 Protocol," RFC4960, Sept. 2007.

 [RFC5925] Touch, J., Mankin, A., Bonica, R., "The TCP Authentication
 Option," RFC 5925, June 2010.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., Bonaventure, O., "TCP
 Extensions for Multipath Operation with Multiple
 Addresses," RFC 6824, Jan. 2013.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., Mathis, M., "Increasing
 TCP's Initial Window," RFC 6928, Apr. 2013.

 [RFC7231] Fielding, R., J. Reshke, Eds., "HTTP/1.1 Semantics and
 Content," RFC-7231, June 2014.

 [RFC7323] Borman, D., B. Braden, V. Jacobson, R. Scheffenegger
 (Ed.), "TCP Extensions for High Performance," RFC 7323,
 Sept. 2014.

 [RFC7424] Krishnan, R., Yong, L., Ghanwani, A., So, N., Khasnabish,
 B., "Mechanisms for Optimizing Link Aggregation Group
 (LAG) and Equal-Cost Multipath (ECMP) Component Link
 Utilization in Networks", RFC 7424, Jan. 2015

 [RFC7540] Belshe, M., Peon, R., Thomson, M., "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", RFC 7540, May 2015.

 [RFC7661] Fairhurst, G., Sathiaseelan, A., Secchi, R., "Updating TCP
 to Support Rate-Limited Traffic", RFC 7661, Oct. 2015.

 [To12] Touch, J., "Automating the Initial Window in TCP," draft-
touch-tcpm-automatic-iw-03 (expired), July 2012.

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7424
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7661
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-automatic-iw-03
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-automatic-iw-03

Touch Expires October 24, 2020 [Page 20]

Internet-Draft TCP Control Block Interdependence April 2020

15. Acknowledgments

 The authors would like to thank for Praveen Balasubramanian for
 information regarding TCB sharing in Windows, and Yuchung Cheng,
 Lars Eggert, Ilpo Jarvinen and Michael Scharf for comments on
 earlier versions of the draft. Earlier revisions of this work
 received funding from a collaborative research project between the
 University of Oslo and Huawei Technologies Co., Ltd. and were partly
 supported by USC/ISI's Postel Center.

 This document was prepared using 2-Word-v2.0.template.dot.

16. Change log

 This section should be removed upon final publication as an RFC.

 ietf-02:

 - Minor reorganization and correction of typographic errors
 - Added text to address fingerprinting in Security section
 - Now retains Appendix B and body option tables upon publication

 ietf-01:

 - Added Appendix C to address long-timescale temporal adaptation.

 ietf-00:

 - Re-issued as draft-ietf-tcpm-2140bis due to WG adoption.
 - Cleaned orphan references to T/TCP, removed incomplete refs
 - Moved references to informative section and updated Sec 2
 - Updated to clarify no impact to interoperability
 - Updated appendix B to avoid 2119 language

 06:

 - Changed to update 2140, cite it normatively, and summarize the
 updates in a separate section

05:

 - Fixed some TBDs.

 04:

 - Removed BCP-style recommendations and fixed some TBDs.

Touch Expires October 24, 2020 [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-2140bis

Internet-Draft TCP Control Block Interdependence April 2020

 03:

 - Updated Touch's affiliation and address information

 02:

 - Stated that our OS implementation overview table only covers
 temporal sharing.

 - Correctly reflected sharing of old_RTT in Linux in the
 implementation overview table.

 - Marked entries that are considered safe to share with an
 asterisk (suggestion was to split the table)

 - Discussed correct host identification: NATs may make IP
 addresses the wrong input, could e.g. use HTTP cookie.

 - Included MMS_S and MMS_R from RFC1122; fixed the use of MSS and
 MTU

 - Added information about option sharing, listed options in 0

Authors' Addresses

 Joe Touch
 Manhattan Beach, CA 90266
 USA

 Phone: +1 (310) 560-0334
 Email: touch@strayalpha.com

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

Touch Expires October 24, 2020 [Page 22]

https://datatracker.ietf.org/doc/html/rfc1122

Internet-Draft TCP Control Block Interdependence April 2020

 Safiqul Islam
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 84 08 37
 Email: safiquli@ifi.uio.no

Touch Expires October 24, 2020 [Page 23]

Internet-Draft TCP Control Block Interdependence April 2020

Appendix A: TCB Sharing History

 T/TCP proposed using caches to maintain TCB information across
 instances (temporal sharing), e.g., smoothed RTT, RTT variance,
 congestion avoidance threshold, and MSS [RFC1644]. These values were
 in addition to connection counts used by T/TCP to accelerate data
 delivery prior to the full three-way handshake during an OPEN. The
 goal was to aggregate TCB components where they reflect one
 association - that of the host-pair, rather than artificially
 separating those components by connection.

 At least one T/TCP implementation saved the MSS and aggregated the
 RTT parameters across multiple connections but omitted caching the
 congestion window information [Br94], as originally specified in
 [RFC1379]. Some T/TCP implementations immediately updated MSS when
 the TCP MSS header option was received [Br94], although this was not
 addressed specifically in the concepts or functional specification
 [RFC1379][RFC1644]. In later T/TCP implementations, RTT values were
 updated only after a CLOSE, which does not benefit concurrent
 sessions.

 Temporal sharing of cached TCB data was originally implemented in
 the SunOS 4.1.3 T/TCP extensions [Br94] and the FreeBSD port of same
 [FreeBSD]. As mentioned before, only the MSS and RTT parameters were
 cached, as originally specified in [RFC1379]. Later discussion of
 T/TCP suggested including congestion control parameters in this
 cache; for example, [RFC1644] (Section 3.1) hints at initializing
 the congestion window to the old window size.

Touch Expires October 24, 2020 [Page 24]

https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1644

Internet-Draft TCP Control Block Interdependence April 2020

Appendix B: TCP Option Sharing and Caching

 In addition to the options that can be cached and shared, this memo
 also lists known options for which state is unsafe to be kept. This
 list is not intended to be authoritative or exhaustive.

 Obsolete (unsafe to keep state):

 ECHO

 ECHO REPLY

 PO Conn permitted

 PO service profile

 CC

 CC.NEW

 CC.ECHO

 Alt CS req

 Alt CS data

 No state to keep:

 EOL

 NOP

 WS

 SACK

 TS

 MD5

 TCP-AO

 EXP1

 EXP2

Touch Expires October 24, 2020 [Page 25]

Internet-Draft TCP Control Block Interdependence April 2020

 Unsafe to keep state:

 Skeeter (DH exchange, known to be vulnerable)

 Bubba (DH exchange, known to be vulnerable)

 Trailer CS

 SCPS capabilities

 S-NACK

 Records boundaries

 Corruption experienced

 SNAP

 TCP Compression

 Quickstart response

 UTO

 MPTCP negotiation success (see below for negotiation failure)

 TFO negotiation success (see below for negotiation failure)

 Safe but optional to keep state:

 MPTCP negotiation failure (to avoid negotiation retries)

 MSS

 TFO negotiation failure (to avoid negotiation retries)

 Safe and necessary to keep state:

 TFP cookie (if TFO succeeded in the past)

Touch Expires October 24, 2020 [Page 26]

Internet-Draft TCP Control Block Interdependence April 2020

Appendix C: Automating the Initial Window in TCP over Long Timescales

 Note: this section is taken verbatim from [To12], updated to refer
 to itself as an appendix.

C.1. Introduction

 TCP's congestion control algorithm uses an initial window value
 (IW), both as a starting point for new connections and after one RTO
 or more [RFC2581][RFC2861]. This value has evolved over time,
 originally one maximum segment size (MSS), and increased to the
 lesser of four MSS or 4,380 bytes [RFC3390][RFC5681]. For typical
 Internet connections with an maximum transmission units (MTUs) of
 1500 bytes, this permits three segments of 1,460 bytes each.

 The IW value was originally implied in the original TCP congestion
 control description, and documented as a standard in 1997
 [RFC2001][Ja88]. The value was last updated in 1998 experimentally,
 and moved to the standards track in 2002 [RFC2414][RFC3390]. There
 have been recent proposals to update the IW based on further
 increases in host and router capabilities and network capacity, some
 focusing on specific values (e.g., IW=10), and others prescribing a
 schedule for increases over time (e.g., IW=6 for 2011, increasing by
 1-2 MSS per year).

 This appendix discusses how TCP can objectively measure when an IW
 is too large, and that such feedback should be used over long
 timescales to adjust the IW automatically. The result should be
 safer to deploy and might avoid the need to repeatedly revisit IW
 size over time.

 Note that this mechanism attempts to make the IW more adaptive over
 time. It can increase the IW beyond that which is currently
 recommended for widescale deployment, and so its use should be
 carefully monitored.

C.2. Design Considerations

 TCP's IW value has existed statically for over two decades, so any
 solution to adjusting the IW dynamically should have similarly
 stable, non-invasive effects on the performance and complexity of
 TCP. In order to be fair, the IW should be similar for most machines
 on the public Internet. Finally, a desirable goal is to develop a
 self-correcting algorithm, so that IW values that cause network
 problems can be avoided. To that end, we propose the following list
 of design goals:

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2414

Touch Expires October 24, 2020 [Page 27]

Internet-Draft TCP Control Block Interdependence April 2020

 o Impart little to no impact to TCP in the absence of loss, i.e.,
 it should not increase the complexity of default packet
 processing in the normal case.

 o Adapt to network feedback over long timescales, avoiding values
 that persistently cause network problems.

 o Decrease the IW in the presence of sustained loss of IW segments,
 as determined over a number of different connections.

 o Increase the IW in the absence of sustained loss of IW segments,
 as determined over a number of different connections.

 o Operate conservatively, i.e., tend towards leaving the IW the
 same in the absence of sufficient information, and give greater
 consideration to IW segment loss than IW segment success.

 We expect that, without other context, a good IW algorithm will
 converge to a single value, but this is not required. An endpoint
 with additional context or information, or deployed in a constrained
 environment, can always use a different value. In specific,
 information from previous connections, or sets of connections with a
 similar path, can already be used as context for such decisions (as
 noted in the core of this document).

 However, if a given IW value persistently causes packet loss during
 the initial burst of packets, it is clearly inappropriate and could
 be inducing unnecessary loss in other competing connections. This
 might happen for sites behind very slow boxes with small buffers,
 which may or may not be the first hop.

C.3. Proposed IW Algorithm

 Below is a simple description of the proposed IW algorithm. It
 relies on the following parameters:

 o MinIW = 3 MSS or 4,380 bytes (as per RFC3390]

 o MaxIW = 10

 o MulDecr = 0.5

 o AddIncr = 2 MSS

 o Threshold = 0.05

https://datatracker.ietf.org/doc/html/rfc3390

Touch Expires October 24, 2020 [Page 28]

Internet-Draft TCP Control Block Interdependence April 2020

 We assume that the minimum IW (MinIW) should be as currently
 specified [RFC3390]. The maximum IW can be set to a fixed value
 [RFC6928], or set based on a schedule if trusted time references are
 available [Al10]; here we prefer a fixed value. We also propose to
 use an AIMD algorithm, with increase and decreases as noted.

 Although these parameters are somewhat arbitrary, their initial
 values are not important except that the algorithm is AIMD and the
 MaxIW should not exceed that recommended for other systems on the
 Internet. Current proposals, including default current operation,
 are degenerate cases of the algorithm below for given parameters -
 notably MulDec = 1.0 and AddIncr = 0 MSS, thus disabling the
 automatic part of the algorithm.

 The proposed algorithm is as follows:

 1. On boot:

 IW = MaxIW; # assume this is in bytes, and an even number of MSS

 2. Upon starting a new connection

 CWND = IW;
 conncount++;
 IWnotchecked = 1; # true

 3. During a connection's SYN-ACK processing, if SYN-ACK includes
 ECN, treat as if the IW is too large

 if (IWnotchecked && (synackecn == 1)) {
 losscount++;
 IWnotchecked = 0; # never check again
 }

 4. During a connection, if retransmission occurs, check the seqno of
 the outgoing packet (in bytes) to see if the resent segment fixes
 an IW loss:

 if (Retransmitting && IWnotchecked && ((ISN - seqno) < IW))) {
 losscount++;
 IWnotchecked = 0; # never do this entire "if" again
 } else {
 IWnotchecked = 0; # you're beyond the IW so stop checking
 }

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928

Touch Expires October 24, 2020 [Page 29]

Internet-Draft TCP Control Block Interdependence April 2020

 5. Once every 1000 conections, as a separate process (i.e., not as
 part of processing a given connection):

 if (conncount > 1000) {
 if (losscount/conncount > threshold) {
 # the number of connections with errors is too high
 IW = IW * MulDecr;
 } else {
 IW = IW + AddIncr;
 }
 }

 We recognize that this algorithm can yield a false positive when the
 sequence number wraps around. This can be avoided using either PAWS
 [RFC7323] context or 64-bit internal sequence numbers (as in TCP-AO
 [RFC5925]). Alternately, false positives can be allowed since they
 are expected to be infrequent and thus will not affect the overall
 statistics of the algorithm.

 The following additional constraints are imposed:

 >> The automatic IW algorithm MUST initialize to MaxIW, in the
 absence of other context information.

 If there are too few connections to make a decision or if there is
 otherwise insufficient information to increase the IW, then the
 MaxIW defaults to the current recommended value.

 >> An implementation may allow the MaxIW to grow beyond the
 currently recommended Internet default, but not more than 2 segments
 per calendar year.

 If an endpoint has a persistent history of successfully transmitting
 IW segments without loss, then it is allowed to probe the Internet
 to determine if larger IW values have similar success. This probing
 is limited and requires a trusted time source, otherwise the MaxIW
 remains constant.

 >> An implementation MUST adjust the IW based on loss statistics at
 least once every 1000 connections.

 An endpoint needs to be sufficiently reactive to IW loss.

 >> An implementation MUST decrease the IW by at least one MSS when
 indicated during an evaluation interval.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc5925

Touch Expires October 24, 2020 [Page 30]

Internet-Draft TCP Control Block Interdependence April 2020

 An endpoint that detects loss needs to decrease its IW by at least
 one MSS, otherwise it is not participating in an automatic reactive
 algorithm.

 >> An implementation MUST increase by no more than 2 MSS per
 evaluation interval.

 An endpoint that does not experience IW loss needs to probe the
 network incrementally.

 >> An implementation SHOULD use an IW that is an integer multiple of
 2 MSS.

 The IW should remain a multiple of 2 MSS segments, to enable
 efficient ACK compression without incurring unnecessary timeouts.

 >> An implementation MUST decrease the IW if more than 95% of
 connections have IW losses.

 Again, this is to ensure an implementation is sufficiently reactive.

 >> An implementation MAY group IW values and statistics within
 subsets of connections. Such grouping MAY use any information about
 connections to form groups except loss statistics.

 There are some TCP connections which might not be counted at all,
 such as those to/from loopback addresses, or those within the same
 subnet as that of a local interface (for which congestion control is
 sometimes disabled anyway). This may also include connections that
 terminate before the IW is full, i.e., as a separate check at the
 time of the connection closing.

 The period over which the IW is updated is intended to be a long
 timescale, e.g., a month or so, or 1,000 connections, whichever is
 longer. An implementation might check the IW once a month, and
 simply not update the IW or clear the connection counts in months
 where the number of connections is too small.

C.4. Discussion

 There are numerous parameters to the above algorithm that are
 compliant with the given requirements; this is intended to allow
 variation in configuration and implementation while ensuring that
 all such algorithms are reactive and safe.

 This algorithm continues to assume segments because that is the
 basis of most TCP implementations. It might be useful to consider

Touch Expires October 24, 2020 [Page 31]

Internet-Draft TCP Control Block Interdependence April 2020

 revising the specifications to allow byte-based congestion given
 sufficient experience.

 The algorithm checks for IW losses only during the first IW after a
 connection start; it does not check for IW losses elsewhere the IW
 is used, e.g., during slow-start restarts.

 >> An implementation MAY detect IW losses during slow-start restarts
 in addition to losses during the first IW of a connection. In this
 case, the implementation MUST count each restart as a "connection"
 for the purposes of connection counts and periodic rechecking of the
 IW value.

 False positives can occur during some kinds of segment reordering,
 e.g., that might trigger spurious retransmissions even without a
 true segment loss. These are not expected to be sufficiently common
 to dominate the algorithm and its conclusions.

 This mechanism does require additional per-connection state which is
 currently common in some implementations, and is useful for other
 reasons (e.g., the ISN is used in TCP-AO [RFC5925]). The mechanism
 also benefits from persistent state kept across reboots, as would be
 other state sharing mechanisms (e.g., TCP Control Block Sharing
 [RFC2140]). The mechanism is inspired by RFC 2140's use of
 information across connections.

 The receive window (RWIN) is not involved in this calculation. The
 size of RWIN is determined by receiver resources, and provides space
 to accommodate segment reordering. It is not involved with
 congestion control, which is the focus of this document and its
 management of the IW.

C.5. Observations

 The IW may not converge to a single, global value. It also may not
 converge at all, but rather may oscillate by a few MSS as it
 repeatedly probes the Internet for larger IWs and fails. Both
 properties are consistent with TCP behavior during each individual
 connection.

 This mechanism assumes that losses during the IW are due to IW size.
 Persistent errors that drop packets for other reasons - e.g., OS
 bugs, can cause false positives. Again, this is consistent with
 TCP's basic assumption that loss is caused by congestion and
 requires backoff. This algorithm treats the IW of new connections as
 a long-timescale backoff system.

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 24, 2020 [Page 32]

