
TCPM WG J. Touch
Internet Draft Independent
Intended status: Informational M. Welzl
Obsoletes: 2140 S. Islam
Expires: October 2021 University of Oslo
 April 12, 2021

TCP Control Block Interdependence
draft-ietf-tcpm-2140bis-11.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 12, 2021.

Touch, et al. Expires October 12, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP Control Block Interdependence April 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided
 without warranty as described in the Simplified BSD License.

Abstract

 This memo provides guidance to TCP implementers that is intended to
 help improve connection convergence to steady-state operation
 without affecting interoperability. It updates and replaces RFC

2140's description of sharing TCP state, as typically represented in
 TCP Control Blocks, among similar concurrent or consecutive
 connections.

Table of Contents

1. Introduction...3
2. Conventions Used in This Document..............................4
3. Terminology..4
4. The TCP Control Block (TCB)....................................5
5. TCB Interdependence..7
6. Temporal Sharing...7
6.1. Initialization of a new TCB..................................7
6.2. Updates to the TCB cache.....................................8
6.3. Discussion..10
7. Ensemble Sharing..11
7.1. Initialization of a new TCB.................................11
7.2. Updates to the TCB cache....................................12
7.3. Discussion..13
8. Issues with TCB information sharing...........................14
8.1. Traversing the same network path............................15
8.2. State dependence..15
8.3. Problems with sharing based on IP address...................16
9. Implications..16
9.1. Layering..17
9.2. Other possibilities...17

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 12, 2021 [Page 2]

Internet-Draft TCP Control Block Interdependence April 2021

10. Implementation Observations..................................18
11. Changes Compared to RFC 2140.................................19
12. Security Considerations......................................19
13. IANA Considerations..20
14. References...20

14.1. Normative References....................................20
14.2. Informative References..................................21

15. Acknowledgments..24
16. Change log...24
Appendix A : TCB Sharing History.................................28
Appendix B : TCP Option Sharing and Caching......................29
Appendix C : Automating the Initial Window in TCP over Long

 Timescales...31
C.1. Introduction...31
C.2. Design Considerations....................................31
C.3. Proposed IW Algorithm....................................32
C.4. Discussion...36
C.5. Observations...37

1. Introduction

 TCP is a connection-oriented reliable transport protocol layered
 over IP [RFC793]. Each TCP connection maintains state, usually in a
 data structure called the TCP Control Block (TCB). The TCB contains
 information about the connection state, its associated local
 process, and feedback parameters about the connection's transmission
 properties. As originally specified and usually implemented, most
 TCB information is maintained on a per-connection basis. Some
 implementations share certain TCB information across connections to
 the same host [RFC2140]. Such sharing is intended to lead to better
 overall transient performance, especially for numerous short-lived
 and simultaneous connections, as can be used in the World-Wide Web
 and other applications [Be94][Br02]. This sharing of state is
 intended to help TCP connections converge to long term behavior
 (assuming stable application load, i.e., so-called "steady-state")
 more quickly without affecting TCP interoperability.

 This document updates RFC 2140's discussion of TCB state sharing and
 provides a complete replacement for that document. This state
 sharing affects only TCB initialization [RFC2140] and thus has no
 effect on the long-term behavior of TCP after a connection has been
 established nor on interoperability. Path information shared across
 SYN destination port numbers assumes that TCP segments having the
 same host-pair experience the same path properties, i.e., that
 traffic is not routed differently based on port numbers or other
 connection parameters (also addressed further in Section 8.1). The
 observations about TCB sharing in this document apply similarly to

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 12, 2021 [Page 3]

Internet-Draft TCP Control Block Interdependence April 2021

 any protocol with congestion state, including SCTP [RFC4960] and
 DCCP [RFC4340], as well as for individual subflows in Multipath TCP
 [RFC8684].

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The core of this document describes behavior that is already
 permitted by TCP standards. As a result, it provides informative
 guidance but does not use normative language, except when quoting
 other documents. Normative language is used in Appendix C as
 examples of requirements for future consideration.

3. Terminology

 The following terminology is used frequently in this document. Items
 preceded with a "+" may be part of the state maintained as TCP
 connection state in the associated connections TCB and are the focus
 of sharing as described in this document. Note that terms are used
 as originally introduced where possible; in some cases, direction is
 indicated with a suffix (_S for send, _R for receive) and in other
 cases spelled out (sendcwnd).

 +cwnd - TCP congestion window size [RFC5681]

 host - a source or sink of TCP segments associated with a single IP
 address

 host-pair - a pair of hosts and their corresponding IP addresses

 +MMS_R - maximum message size that can be received, the largest
 received transport payload of an IP datagram [RFC1122]

 +MMS_S - maximum message size that can be sent, the largest
 transmitted transport payload of an IP datagram [RFC1122]

 path - an Internet path between the IP addresses of two hosts

 PCB - protocol control block, the data associated with a protocol as
 maintained by an endpoint; a TCP PCB is called a TCB

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc8684
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires October 12, 2021 [Page 4]

Internet-Draft TCP Control Block Interdependence April 2021

 PLPMTUD - packetization-layer path MTU discovery, a mechanism that
 uses transport packets to discover the PMTU [RFC4821]

 +PMTU - largest IP datagram that can traverse a path
 [RFC1191][RFC8201]

 PMTUD - path-layer MTU discovery, a mechanism that relies on ICMP
 error messages to discover the PMTU [RFC1191][RFC8201]

 +RTT - round-trip time of a TCP packet exchange [RFC793]

 +RTTVAR - variation of round-trip times of a TCP packet exchange
 [RFC6298]

 +rwnd - TCP receive window size [RFC5681]

 +sendcwnd - TCP send-side congestion window (cwnd) size [RFC5681]

 +sendMSS - TCP maximum segment size, a value transmitted in a TCP
 option that represents the largest TCP user data payload that can be
 received [RFC6691]

 +ssthresh - TCP slow-start threshold [RFC5681]

 TCB - TCP Control Block, the data associated with a TCP connection
 as maintained by an endpoint

 TCP-AO - TCP Authentication Option [RFC5925]

 TFO - TCP Fast Open option [RFC7413]

 +TFO_cookie - TCP Fast Open cookie, state that is used as part of
 the TFO mechanism, when TFO is supported [RFC7413]

 +TFO_failure - an indication of when TFO option negotiation failed,
 when TFO is supported

 +TFOinfo - information cached when a TFO connection is established,
 which includes the TFO_cookie [RFC7413]

4. The TCP Control Block (TCB)

 A TCB describes the data associated with each connection, i.e., with
 each association of a pair of applications across the network. The
 TCB contains at least the following information [RFC793]:

Touch Expires October 12, 2021 [Page 5]

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc793

Internet-Draft TCP Control Block Interdependence April 2021

 Local process state
 pointers to send and receive buffers
 pointers to retransmission queue and current segment
 pointers to Internet Protocol (IP) PCB
 Per-connection shared state
 macro-state
 connection state
 timers
 flags
 local and remote host numbers and ports
 TCP option state
 micro-state
 send and receive window state (size*, current number)
 congestion window size (sendcwnd)*
 congestion window size threshold (ssthresh)*
 max window size seen*
 sendMSS#
 MMS_S#
 MMS_R#
 PMTU#
 round-trip time and its variation#

 The per-connection information is shown as split into macro-state
 and micro-state, terminology borrowed from [Co91]. Macro-state
 describes the protocol for establishing the initial shared state
 about the connection; we include the endpoint numbers and components
 (timers, flags) required upon commencement that are later used to
 help maintain that state. Micro-state describes the protocol after a
 connection has been established, to maintain the reliability and
 congestion control of the data transferred in the connection.

 We distinguish two other classes of shared micro-state that are
 associated more with host-pairs than with application pairs. One
 class is clearly host-pair dependent (shown above as "#", e.g.,
 sendMSS, MMS_R, MMS_S, PMTU, RTT), because these parameters are
 defined by the endpoint or endpoint pair (sendMSS, MMS_R, MMS_S,
 RTT) or are already cached and shared on that basis (PMTU
 [RFC1191][RFC4821]). The other is host-pair dependent in its
 aggregate (shown above as "*", e.g., congestion window information,
 current window sizes, etc.) because they depend on the total
 capacity between the two endpoints.

 Not all of the TCB state is necessarily sharable. In particular,
 some TCP options are negotiated only upon request by the application
 layer, so their use may not be correlated across connections. Other
 options negotiate connection-specific parameters, which are
 similarly not shareable. These are discussed further in Appendix B.

https://datatracker.ietf.org/doc/html/rfc1191

Touch Expires October 12, 2021 [Page 6]

Internet-Draft TCP Control Block Interdependence April 2021

 Finally, we exclude rwnd from further discussion because its value
 should depend on the send window size, so it is already addressed by
 send window sharing and is not independently affected by sharing.

5. TCB Interdependence

 There are two cases of TCB interdependence. Temporal sharing occurs
 when the TCB of an earlier (now CLOSED) connection to a host is used
 to initialize some parameters of a new connection to that same host,
 i.e., in sequence. Ensemble sharing occurs when a currently active
 connection to a host is used to initialize another (concurrent)
 connection to that host.

6. Temporal Sharing

 The TCB data cache is accessed in two ways: it is read to initialize
 new TCBs and written when more current per-host state is available.

6.1. Initialization of a new TCB

 TCBs for new connections can be initialized using cached context
 from past connections as follows:

Touch Expires October 12, 2021 [Page 7]

Internet-Draft TCP Control Block Interdependence April 2021

 TEMPORAL SHARING - TCB Initialization

 Cached TCB New TCB

 old_MMS_S old_MMS_S or not cached*

 old_MMS_R old_MMS_R or not cached*

 old_sendMSS old_sendMSS

 old_PMTU old_PMTU+

 old_RTT old_RTT

 old_RTTVAR old_RTTVAR

 old_option (option specific)

 old_ssthresh old_ssthresh

 old_sendcwnd old_sendcwnd

 +Note that PMTU is cached at the IP layer [RFC1191][RFC4821].
 *Note that some values are not cached when they are computed locally
 (MMS_R) or indicated in the connection itself (MMS_S in the SYN).

 The table below gives an overview of option-specific information
 that can be shared. Additional information on some specific TCP
 options and sharing is provided in Appendix B.

 TEMPORAL SHARING - Option Info Initialization

 Cached New

 old_TFO_cookie old_TFO_cookie

 old_TFO_failure old_TFO_failure

6.2. Updates to the TCB cache

 During a connection, the TCB cache can be updated based on events of
 current connections and their TCBs as they progress over time, as
 shown below:

Touch Expires October 12, 2021 [Page 8]

https://datatracker.ietf.org/doc/html/rfc1191

Internet-Draft TCP Control Block Interdependence April 2021

 TEMPORAL SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB
 --
 old_MMS_S curr_MMS_S OPEN curr_MMS_S

 old_MMS_R curr_MMS_R OPEN curr_MMS_R

 old_sendMSS curr_sendMSS MSSopt curr_sendMSS

 old_PMTU curr_PMTU PMTUD+ / curr_PMTU
 PLPMTUD+

 old_RTT curr_RTT CLOSE merge(curr,old)

 old_RTTVAR curr_RTTVAR CLOSE merge(curr,old)

 old_option curr_option ESTAB (depends on option)

 old_ssthresh curr_ssthresh CLOSE merge(curr,old)

 old_sendcwnd curr_sendcwnd CLOSE merge(curr,old)

 +Note that PMTU is cached at the IP layer [RFC1191][RFC4821].

 Merge() is the function that combines the current and previous (old)
 values and may vary for each parameter of the TCB cache. The
 particular function is not specified in this document; examples
 include windowed averages (mean of the past N values, for some N)
 and exponential decay (new = (1-alpha)*old + alpha *new, where alpha
 is in the range [0..1]).

 The table below gives an overview of option-specific information
 that can be similarly shared. The TFO cookie is maintained until the
 client explicitly requests it be updated as a separate event.

 TEMPORAL SHARING - Option Info Updates

 Cached Current when? New Cached

 old_TFO_cookie old_TFO_cookie ESTAB old_TFO_cookie

 old_TFO_failure old_TFO_failure ESTAB old_TFO_failure

Touch Expires October 12, 2021 [Page 9]

https://datatracker.ietf.org/doc/html/rfc1191

Internet-Draft TCP Control Block Interdependence April 2021

6.3. Discussion

 As noted, there is no particular benefit to caching MMS_S and MMS_R
 as these are reported by the local IP stack. Caching sendMSS and
 PMTU is trivial; reported values are cached (PMTU at the IP layer),
 and the most recent values are used. The cache is updated when the
 MSS option is received in a SYN or after PMTUD (i.e., when an ICMPv4
 Fragmentation Needed [RFC1191] or ICMPv6 Packet Too Big message is
 received [RFC8201] or the equivalent is inferred, e.g., as from
 PLPMTUD [RFC4821]), respectively, so the cache always has the most
 recent values from any connection. For sendMSS, the cache is
 consulted only at connection establishment and not otherwise
 updated, which means that MSS options do not affect current
 connections. The default sendMSS is never saved; only reported MSS
 values update the cache, so an explicit override is required to
 reduce the sendMSS. Cached sendMSS affects only data sent in the SYN
 segment, i.e., during client connection initiation or during
 simultaneous open; all other segment MSS are based on the value
 updated as included in the SYN.

 RTT values are updated by formulae that merges the old and new
 values, as noted in Section 6.2. Dynamic RTT estimation requires a
 sequence of RTT measurements. As a result, the cached RTT (and its
 variation) is an average of its previous value with the contents of
 the currently active TCB for that host, when a TCB is closed. RTT
 values are updated only when a connection is closed. The method for
 merging old and current values needs to attempt to reduce the
 transient effects of the new connections.

 The updates for RTT, RTTVAR and ssthresh rely on existing
 information, i.e., old values. Should no such values exist, the
 current values are cached instead.

 TCP options are copied or merged depending on the details of each
 option. E.g., TFO state is updated when a connection is established
 and read before establishing a new connection.

 Sections 8 and 9 discuss compatibility issues and implications of
 sharing the specific information listed above. Section 10 gives an
 overview of known implementations.

 Most cached TCB values are updated when a connection closes. The
 exceptions are MMS_R and MMS_S, which are reported by IP [RFC1122],
 PMTU which is updated after Path MTU Discovery and also reported by
 IP [RFC1191][RFC4821][RFC8201], and sendMSS, which is updated if the
 MSS option is received in the TCP SYN header.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201

Touch Expires October 12, 2021 [Page 10]

Internet-Draft TCP Control Block Interdependence April 2021

 Sharing sendMSS information affects only data in the SYN of the next
 connection, because sendMSS information is typically included in
 most TCP SYN segments. Caching PMTU can accelerate the efficiency of
 PMTUD but can also result in black-holing until corrected if in
 error. Caching MMS_R and MMS_S may be of little direct value as they
 are reported by the local IP stack anyway.

 The way in which other TCP option state can be shared depends on the
 details of that option. E.g., TFO state includes the TCP Fast Open
 Cookie [RFC7413] or, in case TFO fails, a negative TCP Fast Open
 response. RFC 7413 states, "The client MUST cache negative responses
 from the server in order to avoid potential connection failures.
 Negative responses include the server not acknowledging the data in
 the SYN, ICMP error messages, and (most importantly) no response
 (SYN-ACK) from the server at all, i.e., connection timeout." [RFC
 7413]. TFOinfo is cached when a connection is established.

 Other TCP option state might not be as readily cached. E.g., TCP-AO
 [RFC5925] success or failure between a host pair for a single SYN
 destination port might be usefully cached. TCP-AO success or failure
 to other SYN destination ports on that host pair is never useful to
 cache because TCP-AO security parameters can vary per service.

7. Ensemble Sharing

 Sharing cached TCB data across concurrent connections requires
 attention to the aggregate nature of some of the shared state. For
 example, although MSS and RTT values can be shared by copying, it
 may not be appropriate to simply copy congestion window or ssthresh
 information; instead, the new values can be a function (f) of the
 cumulative values and the number of connections (N).

7.1. Initialization of a new TCB

 TCBs for new connections can be initialized using cached context
 from concurrent connections as follows:

Touch Expires October 12, 2021 [Page 11]

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc5925

Internet-Draft TCP Control Block Interdependence April 2021

 ENSEMBLE SHARING - TCB Initialization

 Cached TCB New TCB
 --
 old_MMS_S old_MMS_S

 old_MMS_R old_MMS_R

 old_sendMSS old_sendMSS

 old_PMTU old_PMTU+

 old_RTT old_RTT

 old_RTTVAR old_RTTVAR

 sum(old_ssthresh) f(sum(old_ssthresh), N)

 sum(old_sendcwnd) f(sum(old_sendcwnd), N)
_
 old_option (option specific)

 +Note that PMTU is cached at the IP layer [RFC1191][RFC4821].

 In the table, the cached sum() is a total across all active
 connections because these parameters act in aggregate; similarly f()
 is a function that updates that sum based on the new connection's
 values, represented as "N".

 The table below gives an overview of option-specific information
 that can be similarly shared. Again, The TFO_cookie is updated upon
 explicit client request, which is a separate event.

 ENSEMBLE SHARING - Option Info Initialization

 Cached New

 old_TFO_cookie old_TFO_cookie

 old_TFO_failure old_TFO_failure

7.2. Updates to the TCB cache

 During a connection, the TCB cache can be updated based on changes
 to concurrent connections and their TCBs, as shown below:

Touch Expires October 12, 2021 [Page 12]

https://datatracker.ietf.org/doc/html/rfc1191

Internet-Draft TCP Control Block Interdependence April 2021

 ENSEMBLE SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB

 old_MMS_S curr_MMS_S OPEN curr_MMS_S

 old_MMS_R curr_MMS_R OPEN curr_MMS_R

 old_sendMSS curr_sendMSS MSSopt curr_sendMSS

 old_PMTU curr_PMTU PMTUD+ / curr_PMTU
 PLPMTUD+

 old_RTT curr_RTT update rtt_update(old, curr)

 old_RTTVAR curr_RTTVAR update rtt_update(old, curr)

 old_ssthresh curr_ssthresh update adjust sum as appropriate

 old_sendcwnd curr_sendcwnd update adjust sum as appropriate

 old_option curr_option (depends) (option specific)

 +Note that the PMTU is cached at the IP layer [RFC1191][RFC4821].

 In the table, rtt_update() is the function used to combine old and
 current values, e.g., as a windowed average or exponentially decayed
 average.

 The table below gives an overview of option-specific information
 that can be similarly shared.

 ENSEMBLE SHARING - Option Info Updates

 Cached Current when? New Cached
 --
 old_TFO_cookie old_TFO_cookie ESTAB old_TFO_cookie

 old_TFO_failure old_TFO_failure ESTAB old_TFO_failure

7.3. Discussion

 For ensemble sharing, TCB information should be cached as early as
 possible, sometimes before a connection is closed. Otherwise,
 opening multiple concurrent connections may not result in TCB data
 sharing if no connection closes before others open. The amount of
 work involved in updating the aggregate average should be minimized,

Touch Expires October 12, 2021 [Page 13]

https://datatracker.ietf.org/doc/html/rfc1191

Internet-Draft TCP Control Block Interdependence April 2021

 but the resulting value should be equivalent to having all values
 measured within a single connection. The function "rtt_update" in
 the ensemble sharing table indicates this operation, which occurs
 whenever the RTT would have been updated in the individual TCP
 connection. As a result, the cache contains the shared RTT
 variables, which no longer need to reside in the TCB.

 Congestion window size and ssthresh aggregation are more complicated
 in the concurrent case. When there is an ensemble of connections, we
 need to decide how that ensemble would have shared these variables,
 in order to derive initial values for new TCBs.

 Sections 8 and 9 discuss compatibility issues and implications of
 sharing the specific information listed above.

 There are several ways to initialize the congestion window in a new
 TCB among an ensemble of current connections to a host. Current TCP
 implementations initialize it to four segments as standard [RFC3390]
 and 10 segments experimentally [RFC6928]. These approaches assume
 that new connections should behave as conservatively as possible.
 The algorithm described in [Ba12] adjusts the initial cwnd depending
 on the cwnd values of ongoing connections. It is also possible to
 use sharing mechanisms over long timescales to adapt TCP's initial
 window automatically, as described further in Appendix C.

8. Issues with TCB information sharing

 Here, we discuss various types of problems that may arise with TCB
 information sharing.

 For the congestion and current window information, the initial
 values computed by TCB interdependence may not be consistent with
 the long-term aggregate behavior of a set of concurrent connections
 between the same endpoints. Under conventional TCP congestion
 control, if the congestion window of a single existing connection
 has converged to 40 segments, two newly joining concurrent
 connections assume initial windows of 10 segments [RFC6928], and the
 current connection's window doesn't decrease to accommodate this
 additional load and connections can mutually interfere. One example
 of this is seen on low-bandwidth, high-delay links, where concurrent
 connections supporting Web traffic can collide because their initial
 windows were too large, even when set at one segment.

 The authors of [Hu12] recommend caching ssthresh for temporal
 sharing only when flows are long. Some studies suggest that sharing
 ssthresh between short flows can deteriorate the performance of

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928

Touch Expires October 12, 2021 [Page 14]

Internet-Draft TCP Control Block Interdependence April 2021

 individual connections [Hu12, Du16], although this may benefit
 aggregate network performance.

8.1. Traversing the same network path

 TCP is sometimes used in situations where packets of the same host-
 pair do not always take the same path, such as when connection-
 specific parameters are used for routing (e.g., for load balancing).
 Multipath routing that relies on examining transport headers, such
 as ECMP and LAG [RFC7424], may not result in repeatable path
 selection when TCP segments are encapsulated, encrypted, or altered
 - for example, in some Virtual Private Network (VPN) tunnels that
 rely on proprietary encapsulation. Similarly, such approaches cannot
 operate deterministically when the TCP header is encrypted, e.g.,
 when using IPsec ESP (although TCB interdependence among the entire
 set sharing the same endpoint IP addresses should work without
 problems when the TCP header is encrypted). Measures to increase the
 probability that connections use the same path could be applied:
 e.g., the connections could be given the same IPv6 flow label
 [RFC6437]. TCB interdependence can also be extended to sets of host
 IP address pairs that share the same network path conditions, such
 as when a group of addresses is on the same LAN (see Section 9).

 Traversing the same path is not important for host-specific
 information such as rwnd and TCP option state, such as TFOinfo, or
 for information that is already cached per-host, such as path MTU.
 When TCB information is shared across different SYN destination
 ports, path-related information can be incorrect; however, the
 impact of this error is potentially diminished if (as discussed
 here) TCB sharing affects only the transient event of a connection
 start or if TCB information is shared only within connections to the
 same SYN destination port.

 In case of Temporal Sharing, TCB information could also become
 invalid over time, i.e., indicating that although the path remains
 the same, path properties have changed. Because this is similar to
 the case when a connection becomes idle, mechanisms that address
 idle TCP connections (e.g., [RFC7661]) could also be applied to TCB
 cache management, especially when TCP Fast Open is used [RFC7413].

8.2. State dependence

 There may be additional considerations to the way in which TCB
 interdependence rebalances congestion feedback among the current
 connections, e.g., it may be appropriate to consider the impact of a
 connection being in Fast Recovery [RFC5681] or some other similar

https://datatracker.ietf.org/doc/html/rfc7424
https://datatracker.ietf.org/doc/html/rfc6437
https://datatracker.ietf.org/doc/html/rfc7661
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc5681

Touch Expires October 12, 2021 [Page 15]

Internet-Draft TCP Control Block Interdependence April 2021

 unusual feedback state, e.g., as inhibiting or affecting the
 calculations described herein.

8.3. Problems with sharing based on IP address

 It can be wrong to share TCB information between TCP connections on
 the same host as identified by the IP address if an IP address is
 assigned to a new host (e.g., IP address spinning, as is used by
 ISPs to inhibit running servers). It can be wrong if Network Address
 (and Port) Translation (NA(P)T) [RFC2663] or any other IP sharing
 mechanism is used. Such mechanisms are less likely to be used with
 IPv6. Other methods to identify a host could also be considered to
 make correct TCB sharing more likely. Moreover, some TCB information
 is about dominant path properties rather than the specific host. IP
 addresses may differ, yet the relevant part of the path may be the
 same.

9. Implications

 There are several implications to incorporating TCB interdependence
 in TCP implementations. First, it may reduce the need for
 application-layer multiplexing for performance enhancement
 [RFC7231]. Protocols like HTTP/2 [RFC7540] avoid connection
 reestablishment costs by serializing or multiplexing a set of per-
 host connections across a single TCP connection. This avoids TCP's
 per-connection OPEN handshake and also avoids recomputing the MSS,
 RTT, and congestion window values. By avoiding the so-called "slow-
 start restart", performance can be optimized [Hu01]. TCB
 interdependence can provide the "slow-start restart avoidance" of
 multiplexing, without requiring a multiplexing mechanism at the
 application layer.

 Like the initial version of this document [RFC2140], this update's
 approach to TCB interdependence focuses on sharing a set of TCBs by
 updating the TCB state to reduce the impact of transients when
 connections begin, end, or otherwise significantly change state.
 Other mechanisms have since been proposed to continuously share
 information between all ongoing communication (including
 connectionless protocols), updating the congestion state during any
 congestion-related event (e.g., timeout, loss confirmation, etc.)
 [RFC3124]. By dealing exclusively with transients, the approach in
 this document is more likely to exhibit the "steady-state" behavior
 as unmodified, independent TCP connections.

https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc3124

Touch Expires October 12, 2021 [Page 16]

Internet-Draft TCP Control Block Interdependence April 2021

9.1. Layering

 TCB interdependence pushes some of the TCP implementation from the
 traditional transport layer (in the ISO model), to the network
 layer. This acknowledges that some state is in fact per-host-pair or
 can be per-path as indicated solely by that host-pair. Transport
 protocols typically manage per-application-pair associations (per
 stream), and network protocols manage per-host-pair and path
 associations (routing). Round-trip time, MSS, and congestion
 information could be more appropriately handled at the network
 layer, aggregated among concurrent connections, and shared across
 connection instances [RFC3124].

 An earlier version of RTT sharing suggested implementing RTT state
 at the IP layer, rather than at the TCP layer. Our observations
 describe sharing state among TCP connections, which avoids some of
 the difficulties in an IP-layer solution. One such problem of an IP
 layer solution is determining the correspondence between packet
 exchanges using IP header information alone, where such
 correspondence is needed to compute RTT. Because TCB sharing
 computes RTTs inside the TCP layer using TCP header information, it
 can be implemented more directly and simply than at the IP layer.
 This is a case where information should be computed at the transport
 layer but could be shared at the network layer.

9.2. Other possibilities

 Per-host-pair associations are not the limit of these techniques. It
 is possible that TCBs could be similarly shared between hosts on a
 subnet or within a cluster, because the predominant path can be
 subnet-subnet, rather than host-host. Additionally, TCB
 interdependence can be applied to any protocol with congestion
 state, including SCTP [RFC4960] and DCCP [RFC4340], as well as for
 individual subflows in Multipath TCP [RFC8684].

 There may be other information that can be shared between concurrent
 connections. For example, knowing that another connection has just
 tried to expand its window size and failed, a connection may not
 attempt to do the same for some period. The idea is that existing
 TCP implementations infer the behavior of all competing connections,
 including those within the same host or subnet. One possible
 optimization is to make that implicit feedback explicit, via
 extended information associated with the endpoint IP address and its
 TCP implementation, rather than per-connection state in the TCB.

 This document focuses on sharing TCB information at connection
 initialization. Subsequent to RFC 2140, there have been numerous

https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc8684
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 12, 2021 [Page 17]

Internet-Draft TCP Control Block Interdependence April 2021

 approaches that attempt to coordinate ongoing state across
 concurrent connections, both within TCP and other congestion-
 reactive protocols, which are summarized in [Is18]. These approaches
 are more complex to implement and their comparison to steady-state
 TCP equivalence can be more difficult to establish, sometimes
 intentionally (i.e., they sometimes intend to provide a different
 kind of "fairness" than emerges from TCP operation).

10. Implementation Observations

 The observation that some TCB state is host-pair specific rather
 than application-pair dependent is not new and is a common
 engineering decision in layered protocol implementations. Although
 now deprecated, T/TCP [RFC1644] was the first to propose using
 caches in order to maintain TCB states (see Appendix A).

 The table below describes the current implementation status for TCB
 temporal sharing in Windows as of December 2020, Apple variants
 (macOS, iOS, iPadOS, tvOS, watchOS) as of January 2021, Linux kernel
 version 5.10.3, and FreeBSD 12. Ensemble sharing is not yet
 implemented.

 KNOWN IMPLEMENTATION STATUS

 TCB data Status
 --
 old_MMS_S Not shared

 old_MMS_R Not shared

 old_sendMSS Cached and shared in Apple, Linux (MSS)

 old_PMTU Cached and shared in Apple, FreeBSD, Windows (PMTU)

 old_RTT Cached and shared in Apple, FreeBSD, Linux, Windows

 old_RTTVAR Cached and shared in Apple, FreeBSD, Windows

 old_TFOinfo Cached and shared in Apple, Linux, Windows

 old_sendcwnd Not shared

 old_ssthresh Cached and shared in Apple, FreeBSD*, Linux*

 TFO failure Cached and shared in Apple

https://datatracker.ietf.org/doc/html/rfc1644

Touch Expires October 12, 2021 [Page 18]

Internet-Draft TCP Control Block Interdependence April 2021

 In the table above, "Apple" refers to all Apple OSes, i.e.,
 desktop/laptop macOS, phone iOS, pad iPadOS, video player tvOS, and
 watch watchOS, which all share the same Internet protocol stack.

 *Note: In FreeBSD, new ssthresh is the mean of curr_ssthresh and
 previous value if a previous value exists; in Linux, the calculation
 depends on state and is max(curr_cwnd/2, old_ssthresh) in most
 cases.

11. Changes Compared to RFC 2140

 This document updates the description of TCB sharing in RFC 2140 and
 its associated impact on existing and new connection state,
 providing a complete replacement for that document [RFC2140]. It
 clarifies the previous description and terminology and extends the
 mechanism to its impact on new protocols and mechanisms, including
 multipath TCP, fast open, PLPMTUD, NAT, and the TCP Authentication
 Option.

 The detailed impact on TCB state addresses TCB parameters in greater
 detail, addressing MSS in both the send and receive direction, MSS
 and sendMSS separately, adds path MTU and ssthresh, and addresses
 the impact on TCP option state.

 New sections have been added to address compatibility issues and
 implementation observations. The relation of this work to T/TCP has
 been moved to 0 on history, partly to reflect the deprecation of
 that protocol.

Appendix C has been added to discuss the potential to use temporal
 sharing over long timescales to adapt TCP's initial window
 automatically, avoiding the need to periodically revise a single
 global constant value.

 Finally, this document updates and significantly expands the
 referenced literature.

12. Security Considerations

 These presented implementation methods do not have additional
 ramifications for direct (connection-aborting or information
 injecting) attacks on individual connections. Individual
 connections, whether using sharing or not, also may be susceptible
 to denial-of-service attacks that reduce performance or completely
 deny connections and transfers if not otherwise secured.

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 12, 2021 [Page 19]

Internet-Draft TCP Control Block Interdependence April 2021

 TCB sharing may create additional denial-of-service attacks that
 affect the performance of other connections by polluting the cached
 information. This can occur across whatever set of connections where
 the TCB is shared, between connections in a single host, or between
 hosts if TCB sharing is implemented within a subnet (see
 Implications section). Some shared TCB parameters are used only to
 create new TCBs, others are shared among the TCBs of ongoing
 connections. New connections can join the ongoing set, e.g., to
 optimize send window size among a set of connections to the same
 host. PMTU is defined as shared at the IP layer, and is already
 susceptible in this way.

 Options in client SYNs can be easier to forge than complete, two-way
 connections. As a result, their values may not be safely
 incorporated in shared values until after the three-way handshake
 completes.

 Attacks on parameters used only for initialization affect only the
 transient performance of a TCP connection. For short connections,
 the performance ramification can approach that of a denial-of-
 service attack. E.g., if an application changes its TCB to have a
 false and small window size, subsequent connections will experience
 performance degradation until their window grew appropriately.

 TCB sharing reuses and mixes information from past and current
 connections. Although reusing information could create a potential
 for fingerprinting to identify hosts, the mixing reduces that
 potential. There has been no evidence of fingerprinting based on
 this technique and it is currently considered safe in that regard.
 Further, information about the performance of a TCP connection has
 not been considered as private.

13. IANA Considerations

 There are no IANA implications or requests in this document.

 This section should be removed upon final publication as an RFC.

14. References

14.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol," Network
 Working Group RFC-793/STD-7, ISI, Sept. 1981.

 [RFC1122] Braden, R. (ed), "Requirements for Internet Hosts --
 Communication Layers", RFC-1122, Oct. 1989.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires October 12, 2021 [Page 20]

Internet-Draft TCP Control Block Interdependence April 2021

 [RFC1191] Mogul, J., Deering, S., "Path MTU Discovery," RFC 1191,
 Nov. 1990.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4821] Mathis, M., Heffner, J., "Packetization Layer Path MTU
 Discovery," RFC 4821, Mar. 2007.

 [RFC5681] Allman, M., Paxson, V., Blanton, E., "TCP Congestion
 Control," RFC 5681 (Standards Track), Sep. 2009.

 [RFC6298] Paxson, V., Allman, M., Chu, J., Sargent, M., "Computing
 TCP's Retransmission Timer," RFC 6298, June 2011.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A., "TCP Fast
 Open", RFC 7413, Dec. 2014.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", RFC 8174, May 2017.

 [RFC8201] McCann, J., Deering. S., Mogul, J., Hinden, R. (Ed.),
 "Path MTU Discovery for IP version 6," RFC 8201, Jul.
 2017.

14.2. Informative References

 [Al10] Allman, M., "Initial Congestion Window Specification",
 (work in progress), draft-allman-tcpm-bump-initcwnd-00,
 Nov. 2010.

 [Ba12] Barik, R., Welzl, M., Ferlin, S., Alay, O., " LISA: A
 Linked Slow-Start Algorithm for MPTCP", IEEE ICC, Kuala
 Lumpur, Malaysia, May 23-27 2016.

 [Ba20] Bagnulo, M., Briscoe, B., "ECN++: Adding Explicit
 Congestion Notification (ECN) to TCP Control Packets",

draft-ietf-tcpm-generalized-ecn-07, Feb. 2021.

 [Be94] Berners-Lee, T., et al., "The World-Wide Web,"
 Communications of the ACM, V37, Aug. 1994, pp. 76-82.

 [Br94] Braden, B., "T/TCP -- Transaction TCP: Source Changes for
 Sun OS 4.1.3,", Release 1.0, USC/ISI, September 14, 1994.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/draft-allman-tcpm-bump-initcwnd-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-07

Touch Expires October 12, 2021 [Page 21]

Internet-Draft TCP Control Block Interdependence April 2021

 [Br02] Brownlee, N., Claffy, K., "Understanding Internet Traffic
 Streams: Dragonflies and Tortoises", IEEE Communications
 Magazine p110-117, 2002.

 [Co91] Comer, D., Stevens, D., Internetworking with TCP/IP, V2,
 Prentice-Hall, NJ, 1991.

 [Du16] Dukkipati, N., Yuchung C., Amin V., "Research Impacting
 the Practice of Congestion Control." ACM SIGCOMM CCR
 (editorial), on-line post, July 2016.

 [FreeBSD] FreeBSD source code, Release 2.10, http://www.freebsd.org/

 [Hu01] Hughes, A., Touch, J., Heidemann, J., "Issues in Slow-
 Start Restart After Idle", draft-hughes-restart-00
 (expired), Dec. 2001.

 [Hu12] Hurtig, P., Brunstrom, A., "Enhanced metric caching for
 short TCP flows," 2012 IEEE International Conference on
 Communications (ICC), Ottawa, ON, 2012, pp. 1209-1213.

 [IANA] IANA TCP Parameters (options) registry,
https://www.iana.org/assignments/tcp-parameters

 [Is18] Islam, S., Welzl, M., Hiorth, K., Hayes, D., Armitage, G.,
 Gjessing, S., "ctrlTCP: Reducing Latency through Coupled,
 Heterogeneous Multi-Flow TCP Congestion Control," Proc.
 IEEE INFOCOM Global Internet Symposium (GI) workshop (GI
 2018), Honolulu, HI, April 2018.

 [Ja88] Jacobson, V., Karels, M., "Congestion Avoidance and
 Control", Proc. Sigcomm 1988.

 [RFC1644] Braden, R., "T/TCP -- TCP Extensions for Transactions
 Functional Specification," RFC-1644, July 1994.

 [RFC1379] Braden, R., "Transaction TCP -- Concepts," RFC-1379,
 September 1992.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", RFC2001
 (Standards Track), Jan. 1997.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 April 1997.

http://www.freebsd.org/
https://datatracker.ietf.org/doc/html/draft-hughes-restart-00
https://www.iana.org/assignments/tcp-parameters
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2140

Touch Expires October 12, 2021 [Page 22]

Internet-Draft TCP Control Block Interdependence April 2021

 [RFC2414] Allman, M., Floyd, S., Partridge, C., "Increasing TCP's
 Initial Window", RFC 2414 (Experimental), Sept. 1998.

 [RFC2663] Srisuresh, P., Holdrege, M., "IP Network Address
 Translator (NAT) Terminology and Considerations", RFC-

2663, August 1999.

 [RFC3390] Allman, M., Floyd, S., Partridge, C., "Increasing TCP's
 Initial Window," RFC 3390, Oct. 2002.

 [RFC3124] Balakrishnan, H., Seshan, S., "The Congestion Manager,"
RFC 3124, June 2001.

 [RFC4340] Kohler, E., Handley, M., Floyd, S., "Datagram Congestion
 Control Protocol (DCCP)," RFC 4340, Mar. 2006.

 [RFC4960] Stewart, R., (Ed.), "Stream Control Transmission
 Protocol," RFC4960, Sept. 2007.

 [RFC5925] Touch, J., Mankin, A., Bonica, R., "The TCP Authentication
 Option," RFC 5925, June 2010.

 [RFC6437] Amante, S., Carpenter, B., Jiang, S., Rajajalme, J., "IPv6
 Flow Label Specification," RFC 6437, Nov. 2011.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS),"
RFC 6691, July 2012.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., Mathis, M., "Increasing
 TCP's Initial Window," RFC 6928, Apr. 2013.

 [RFC7231] Fielding, R., Reshke, J., Eds., "HTTP/1.1 Semantics and
 Content," RFC-7231, June 2014.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., Scheffenegger, R.,
 (Ed.), "TCP Extensions for High Performance," RFC 7323,
 Sept. 2014.

 [RFC7424] Krishnan, R., Yong, L., Ghanwani, A., So, N., Khasnabish,
 B., "Mechanisms for Optimizing Link Aggregation Group
 (LAG) and Equal-Cost Multipath (ECMP) Component Link
 Utilization in Networks", RFC 7424, Jan. 2015

 [RFC7540] Belshe, M., Peon, R., Thomson, M., "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", RFC 7540, May 2015.

https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6437
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7424
https://datatracker.ietf.org/doc/html/rfc7540

Touch Expires October 12, 2021 [Page 23]

Internet-Draft TCP Control Block Interdependence April 2021

 [RFC7661] Fairhurst, G., Sathiaseelan, A., Secchi, R., "Updating TCP
 to Support Rate-Limited Traffic", RFC 7661, Oct. 2015.

 [RFC8684] Ford, A., Raiciu, C., Handley, M., Bonaventure, O.,
 Paasch, C., "TCP Extensions for Multipath Operation with
 Multiple Addresses," RFC 8684, Mar. 2020.

15. Acknowledgments

 The authors would like to thank for Praveen Balasubramanian for
 information regarding TCB sharing in Windows, Christoph Paasch for
 information regarding TCB sharing in Apple OSes, and Yuchung Cheng,
 Lars Eggert, Ilpo Jarvinen and Michael Scharf for comments on
 earlier versions of the draft, as well as members of the TCPM WG.
 Earlier revisions of this work received funding from a collaborative
 research project between the University of Oslo and Huawei
 Technologies Co., Ltd. and were partly supported by USC/ISI's Postel
 Center.

 This document was prepared using 2-Word-v2.0.template.dot.

16. Change log

 This section should be removed upon final publication as an RFC.

 ietf-11:

 - Addressed gen-art review and IESG feedback

 ietf-10:

 - Addressed IETF last call feedback

 ietf-09:

 - Correction of typographic errors

 ietf-08:

 - Address TSV AD comments, add Apple OS implementation status

 ietf-07:

 - Update per id-nits and normative language for consistency

 ietf-06:

Touch Expires October 12, 2021 [Page 24]

https://datatracker.ietf.org/doc/html/rfc7661
https://datatracker.ietf.org/doc/html/rfc8684

Internet-Draft TCP Control Block Interdependence April 2021

 - Address WGLC comments

 ietf-05:

 - Correction of typographic errors, expansion of terminology

 ietf-04:

 - Fix internal cross-reference errors that appeared in ietf-02
 - Updated tables to re-center; clarified text

 ietf-03:

 - Correction of typographic errors, minor rewording in appendices

 ietf-02:

 - Minor reorganization and correction of typographic errors
 - Added text to address fingerprinting in Security section
 - Now retains Appendix B and body option tables upon publication

 ietf-01:

 - Added Appendix C to address long-timescale temporal adaptation

 ietf-00:

 - Re-issued as draft-ietf-tcpm-2140bis due to WG adoption.
 - Cleaned orphan references to T/TCP, removed incomplete refs
 - Moved references to informative section and updated Sec 2
 - Updated to clarify no impact to interoperability
 - Updated appendix B to avoid 2119 language

 06:

 - Changed to update 2140, cite it normatively, and summarize the
 updates in a separate section

05:

 - Fixed some TBDs

 04:

 - Removed BCP-style recommendations and fixed some TBDs

 03:

Touch Expires October 12, 2021 [Page 25]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-2140bis

Internet-Draft TCP Control Block Interdependence April 2021

 - Updated Touch's affiliation and address information

 02:

 - Stated that our OS implementation overview table only covers
 temporal sharing.

 - Correctly reflected sharing of old_RTT in Linux in the
 implementation overview table.

 - Marked entries that are considered safe to share with an
 asterisk (suggestion was to split the table)

 - Discussed correct host identification: NATs may make IP
 addresses the wrong input, could e.g., use HTTP cookie.

 - Included MMS_S and MMS_R from RFC1122; fixed the use of MSS and
 MTU

 - Added information about option sharing, listed options in
Appendix B

Authors' Addresses

 Joe Touch
 Manhattan Beach, CA 90266
 USA

 Phone: +1 (310) 560-0334
 Email: touch@strayalpha.com

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

Touch Expires October 12, 2021 [Page 26]

https://datatracker.ietf.org/doc/html/rfc1122

Internet-Draft TCP Control Block Interdependence April 2021

 Safiqul Islam
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 84 08 37
 Email: safiquli@ifi.uio.no

Touch Expires October 12, 2021 [Page 27]

Internet-Draft TCP Control Block Interdependence April 2021

Appendix A: TCB Sharing History

 T/TCP proposed using caches to maintain TCB information across
 instances (temporal sharing), e.g., smoothed RTT, RTT variation,
 congestion avoidance threshold, and MSS [RFC1644]. These values were
 in addition to connection counts used by T/TCP to accelerate data
 delivery prior to the full three-way handshake during an OPEN. The
 goal was to aggregate TCB components where they reflect one
 association - that of the host-pair, rather than artificially
 separating those components by connection.

 At least one T/TCP implementation saved the MSS and aggregated the
 RTT parameters across multiple connections but omitted caching the
 congestion window information [Br94], as originally specified in
 [RFC1379]. Some T/TCP implementations immediately updated MSS when
 the TCP MSS header option was received [Br94], although this was not
 addressed specifically in the concepts or functional specification
 [RFC1379][RFC1644]. In later T/TCP implementations, RTT values were
 updated only after a CLOSE, which does not benefit concurrent
 sessions.

 Temporal sharing of cached TCB data was originally implemented in
 the SunOS 4.1.3 T/TCP extensions [Br94] and the FreeBSD port of same
 [FreeBSD]. As mentioned before, only the MSS and RTT parameters were
 cached, as originally specified in [RFC1379]. Later discussion of
 T/TCP suggested including congestion control parameters in this
 cache; for example, [RFC1644] (Section 3.1) hints at initializing
 the congestion window to the old window size.

Touch Expires October 12, 2021 [Page 28]

https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1644

Internet-Draft TCP Control Block Interdependence April 2021

Appendix B: TCP Option Sharing and Caching

 In addition to the options that can be cached and shared, this memo
 also lists known TCP options [IANA] for which state is unsafe to be
 kept. This list is not intended to be authoritative or exhaustive.

 Obsolete (unsafe to keep state):

 ECHO

 ECHO REPLY

 PO Conn permitted

 PO service profile

 CC

 CC.NEW

 CC.ECHO

 Alt CS req

 Alt CS data

 No state to keep:

 EOL

 NOP

 WS

 SACK

 TS

 MD5

 TCP-AO

 EXP1

 EXP2

Touch Expires October 12, 2021 [Page 29]

Internet-Draft TCP Control Block Interdependence April 2021

 Unsafe to keep state:

 Skeeter (DH exchange, known to be vulnerable)

 Bubba (DH exchange, known to be vulnerable)

 Trailer CS

 SCPS capabilities

 S-NACK

 Records boundaries

 Corruption experienced

 SNAP

 TCP Compression

 Quickstart response

 UTO

 MPTCP negotiation success (see below for negotiation failure)

 TFO negotiation success (see below for negotiation failure)

 Safe but optional to keep state:

 MPTCP negotiation failure (to avoid negotiation retries)

 MSS

 TFO negotiation failure (to avoid negotiation retries)

 Safe and necessary to keep state:

 TFO cookie (if TFO succeeded in the past)

Touch Expires October 12, 2021 [Page 30]

Internet-Draft TCP Control Block Interdependence April 2021

Appendix C: Automating the Initial Window in TCP over Long Timescales

C.1. Introduction

 Temporal sharing, as described earlier in this document, builds on
 the assumption that multiple consecutive connections between the
 same host pair are somewhat likely to be exposed to similar
 environment characteristics. The stored information can become less
 accurate over time and suitable precautions should take this ageing
 into consideration (this is discussed further in section 8.1).
 However, there are also cases where it can make sense to track these
 values over longer periods, observing properties of TCP connections
 to gradually influence evolving trends in TCP parameters. This
 appendix describes an example of such a case.

 TCP's congestion control algorithm uses an initial window value
 (IW), both as a starting point for new connections and as an upper
 limit for restarting after an idle period [RFC5681][RFC7661]. This
 value has evolved over time, originally one maximum segment size
 (MSS), and increased to the lesser of four MSS or 4,380 bytes
 [RFC3390][RFC5681]. For a typical Internet connection with a maximum
 transmission unit (MTU) of 1500 bytes, this permits three segments
 of 1,460 bytes each.

 The IW value was originally implied in the original TCP congestion
 control description and documented as a standard in 1997
 [RFC2001][Ja88]. The value was updated in 1998 experimentally and
 moved to the standards track in 2002 [RFC2414][RFC3390]. In 2013, it
 was experimentally increased to 10 [RFC6928].

 This appendix discusses how TCP can objectively measure when an IW
 is too large, and that such feedback should be used over long
 timescales to adjust the IW automatically. The result should be
 safer to deploy and might avoid the need to repeatedly revisit IW
 over time.

 Note that this mechanism attempts to make the IW more adaptive over
 time. It can increase the IW beyond that which is currently
 recommended for widescale deployment, and so its use should be
 carefully monitored.

C.2. Design Considerations

 TCP's IW value has existed statically for over two decades, so any
 solution to adjusting the IW dynamically should have similarly
 stable, non-invasive effects on the performance and complexity of
 TCP. In order to be fair, the IW should be similar for most machines

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc6928

Touch Expires October 12, 2021 [Page 31]

Internet-Draft TCP Control Block Interdependence April 2021

 on the public Internet. Finally, a desirable goal is to develop a
 self-correcting algorithm, so that IW values that cause network
 problems can be avoided. To that end, we propose the following
 design goals:

 o Impart little to no impact to TCP in the absence of loss, i.e.,
 it should not increase the complexity of default packet
 processing in the normal case.

 o Adapt to network feedback over long timescales, avoiding values
 that persistently cause network problems.

 o Decrease the IW in the presence of sustained loss of IW segments,
 as determined over a number of different connections.

 o Increase the IW in the absence of sustained loss of IW segments,
 as determined over a number of different connections.

 o Operate conservatively, i.e., tend towards leaving the IW the
 same in the absence of sufficient information, and give greater
 consideration to IW segment loss than IW segment success.

 We expect that, without other context, a good IW algorithm will
 converge to a single value, but this is not required. An endpoint
 with additional context or information, or deployed in a constrained
 environment, can always use a different value. In particular,
 information from previous connections, or sets of connections with a
 similar path, can already be used as context for such decisions (as
 noted in the core of this document).

 However, if a given IW value persistently causes packet loss during
 the initial burst of packets, it is clearly inappropriate and could
 be inducing unnecessary loss in other competing connections. This
 might happen for sites behind very slow boxes with small buffers,
 which may or may not be the first hop.

C.3. Proposed IW Algorithm

 Below is a simple description of the proposed IW algorithm. It
 relies on the following parameters:

 o MinIW = 3 MSS or 4,380 bytes (as per [RFC3390])

 o MaxIW = 10 MSS (as per [RFC6928])

 o MulDecr = 0.5

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928

Touch Expires October 12, 2021 [Page 32]

Internet-Draft TCP Control Block Interdependence April 2021

 o AddIncr = 2 MSS

 o Threshold = 0.05

 We assume that the minimum IW (MinIW) should be as currently
 specified as standard [RFC3390]. The maximum IW can be set to a
 fixed value (we suggest using the experimental and now somewhat de-
 facto standard in [RFC6928]) or set based on a schedule if trusted
 time references are available [Al10]; here we prefer a fixed value.
 We also propose to use an AIMD algorithm, with increase and
 decreases as noted.

 Although these parameters are somewhat arbitrary, their initial
 values are not important except that the algorithm is AIMD and the
 MaxIW should not exceed that recommended for other systems on the
 Internet (here we selected the current de-facto standard rather than
 the actual standard). Current proposals, including default current
 operation, are degenerate cases of the algorithm below for given
 parameters - notably MulDec = 1.0 and AddIncr = 0 MSS, thus
 disabling the automatic part of the algorithm.

 The proposed algorithm is as follows:

 1. On boot:

 IW = MaxIW; # assume this is in bytes, and indicates an integer
 multiple of 2 MSS (an even number to support ACK compression)

 2. Upon starting a new connection:

 CWND = IW;
 conncount++;
 IWnotchecked = 1; # true

 3. During a connection's SYN-ACK processing, if SYN-ACK includes ECN
 (as similarly addressed in Sec 5 of ECN++ for TCP [Ba20]), treat
 as if the IW is too large:

 if (IWnotchecked && (synackecn == 1)) {
 losscount++;
 IWnotchecked = 0; # never check again
 }

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928

Touch Expires October 12, 2021 [Page 33]

Internet-Draft TCP Control Block Interdependence April 2021

 4. During a connection, if retransmission occurs, check the seqno of
 the outgoing packet (in bytes) to see if the resent segment fixes
 an IW loss:

 if (Retransmitting && IWnotchecked && ((seqno - ISN) < IW))) {
 losscount++;
 IWnotchecked = 0; # never do this entire "if" again
 } else {
 IWnotchecked = 0; # you're beyond the IW so stop checking
 }

 5. Once every 1000 connections, as a separate process (i.e., not as
 part of processing a given connection):

 if (conncount > 1000) {
 if (losscount/conncount > threshold) {
 # the number of connections with errors is too high
 IW = IW * MulDecr;
 } else {
 IW = IW + AddIncr;
 }
 }

 As presented, this algorithm can yield a false positive when the
 sequence number wraps around, e.g., the code might increment
 losscount in step 4 when no loss occurred or fail to increment
 losscount when a loss did occur. This can be avoided using either
 PAWS [RFC7323] context or internal extended sequence number
 representations (as in TCP-AO [RFC5925]). Alternately, false
 positives can be tolerated because they are expected to be
 infrequent and thus will not significantly impact the algorithm.

 A number of additional constraints need to be imposed if this
 mechanism is implemented to ensure that it defaults to values that
 comply with current Internet standards, is conservative in how it
 extends those values, and returns to those values in the absence of
 positive feedback (i.e., success). To that end, we recommend the
 following list of example constraints:

 >> The automatic IW algorithm MUST initialize MaxIW a value no
 larger than the currently recommended Internet default, in the
 absence of other context information.

 Thus, if there are too few connections to make a decision or if
 there is otherwise insufficient information to increase the IW, then
 the MaxIW defaults to the current recommended value.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc5925

Touch Expires October 12, 2021 [Page 34]

Internet-Draft TCP Control Block Interdependence April 2021

 >> An implementation MAY allow the MaxIW to grow beyond the
 currently recommended Internet default, but not more than 2 segments
 per calendar year.

 Thus, if an endpoint has a persistent history of successfully
 transmitting IW segments without loss, then it is allowed to probe
 the Internet to determine if larger IW values have similar success.
 This probing is limited and requires a trusted time source,
 otherwise the MaxIW remains constant.

 >> An implementation MUST adjust the IW based on loss statistics at
 least once every 1000 connections.

 An endpoint needs to be sufficiently reactive to IW loss.

 >> An implementation MUST decrease the IW by at least one MSS when
 indicated during an evaluation interval.

 An endpoint that detects loss needs to decrease its IW by at least
 one MSS, otherwise it is not participating in an automatic reactive
 algorithm.

 >> An implementation MUST increase by no more than 2 MSS per
 evaluation interval.

 An endpoint that does not experience IW loss needs to probe the
 network incrementally.

 >> An implementation SHOULD use an IW that is an integer multiple of
 2 MSS.

 The IW should remain a multiple of 2 MSS segments, to enable
 efficient ACK compression without incurring unnecessary timeouts.

 >> An implementation MUST decrease the IW if more than 95% of
 connections have IW losses.

 Again, this is to ensure an implementation is sufficiently reactive.

 >> An implementation MAY group IW values and statistics within
 subsets of connections. Such grouping MAY use any information about
 connections to form groups except loss statistics.

 There are some TCP connections which might not be counted at all,
 such as those to/from loopback addresses, or those within the same
 subnet as that of a local interface (for which congestion control is
 sometimes disabled anyway). This may also include connections that

Touch Expires October 12, 2021 [Page 35]

Internet-Draft TCP Control Block Interdependence April 2021

 terminate before the IW is full, i.e., as a separate check at the
 time of the connection closing.

 The period over which the IW is updated is intended to be a long
 timescale, e.g., a month or so, or 1,000 connections, whichever is
 longer. An implementation might check the IW once a month, and
 simply not update the IW or clear the connection counts in months
 where the number of connections is too small.

C.4. Discussion

 There are numerous parameters to the above algorithm that are
 compliant with the given requirements; this is intended to allow
 variation in configuration and implementation while ensuring that
 all such algorithms are reactive and safe.

 This algorithm continues to assume segments because that is the
 basis of most TCP implementations. It might be useful to consider
 revising the specifications to allow byte-based congestion given
 sufficient experience.

 The algorithm checks for IW losses only during the first IW after a
 connection start; it does not check for IW losses elsewhere the IW
 is used, e.g., during slow-start restarts.

 >> An implementation MAY detect IW losses during slow-start restarts
 in addition to losses during the first IW of a connection. In this
 case, the implementation MUST count each restart as a "connection"
 for the purposes of connection counts and periodic rechecking of the
 IW value.

 False positives can occur during some kinds of segment reordering,
 e.g., that might trigger spurious retransmissions even without a
 true segment loss. These are not expected to be sufficiently common
 to dominate the algorithm and its conclusions.

 This mechanism does require additional per-connection state, which
 is currently common in some implementations, and is useful for other
 reasons (e.g., the ISN is used in TCP-AO [RFC5925]). The mechanism
 also benefits from persistent state kept across reboots, as would be
 other state sharing mechanisms (e.g., TCP Control Block Sharing per
 the main body of this document).

 The receive window (rwnd) is not involved in this calculation. The
 size of rwnd is determined by receiver resources and provides space
 to accommodate segment reordering. It is not involved with

https://datatracker.ietf.org/doc/html/rfc5925

Touch Expires October 12, 2021 [Page 36]

Internet-Draft TCP Control Block Interdependence April 2021

 congestion control, which is the focus of this document and its
 management of the IW.

C.5. Observations

 The IW may not converge to a single, global value. It also may not
 converge at all, but rather may oscillate by a few MSS as it
 repeatedly probes the Internet for larger IWs and fails. Both
 properties are consistent with TCP behavior during each individual
 connection.

 This mechanism assumes that losses during the IW are due to IW size.
 Persistent errors that drop packets for other reasons - e.g., OS
 bugs, can cause false positives. Again, this is consistent with
 TCP's basic assumption that loss is caused by congestion and
 requires backoff. This algorithm treats the IW of new connections as
 a long-timescale backoff system.

Touch Expires October 12, 2021 [Page 37]

