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Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008. The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as
   reference material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

   This Internet-Draft will expire on October 12, 2021.
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Abstract

   This memo provides guidance to TCP implementers that is intended to
   help improve connection convergence to steady-state operation
   without affecting interoperability. It updates and replaces RFC

2140's description of sharing TCP state, as typically represented in
   TCP Control Blocks, among similar concurrent or consecutive
   connections.
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1. Introduction

   TCP is a connection-oriented reliable transport protocol layered
   over IP [RFC793]. Each TCP connection maintains state, usually in a
   data structure called the TCP Control Block (TCB). The TCB contains
   information about the connection state, its associated local
   process, and feedback parameters about the connection's transmission
   properties. As originally specified and usually implemented, most
   TCB information is maintained on a per-connection basis. Some
   implementations share certain TCB information across connections to
   the same host [RFC2140]. Such sharing is intended to lead to better
   overall transient performance, especially for numerous short-lived
   and simultaneous connections, as can be used in the World-Wide Web
   and other applications [Be94][Br02]. This sharing of state is
   intended to help TCP connections converge to long term behavior
   (assuming stable application load, i.e., so-called "steady-state")
   more quickly without affecting TCP interoperability.

   This document updates RFC 2140's discussion of TCB state sharing and
   provides a complete replacement for that document. This state
   sharing affects only TCB initialization [RFC2140] and thus has no
   effect on the long-term behavior of TCP after a connection has been
   established nor on interoperability. Path information shared across
   SYN destination port numbers assumes that TCP segments having the
   same host-pair experience the same path properties, i.e., that
   traffic is not routed differently based on port numbers or other
   connection parameters (also addressed further in Section 8.1). The
   observations about TCB sharing in this document apply similarly to
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   any protocol with congestion state, including SCTP [RFC4960] and
   DCCP [RFC4340], as well as for individual subflows in Multipath TCP
   [RFC8684].

2. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The core of this document describes behavior that is already
   permitted by TCP standards. As a result, it provides informative
   guidance but does not use normative language, except when quoting
   other documents. Normative language is used in Appendix C as
   examples of requirements for future consideration.

3. Terminology

   The following terminology is used frequently in this document. Items
   preceded with a "+" may be part of the state maintained as TCP
   connection state in the associated connections TCB and are the focus
   of sharing as described in this document. Note that terms are used
   as originally introduced where possible; in some cases, direction is
   indicated with a suffix (_S for send, _R for receive) and in other
   cases spelled out (sendcwnd).

   +cwnd - TCP congestion window size [RFC5681]

   host - a source or sink of TCP segments associated with a single IP
   address

   host-pair - a pair of hosts and their corresponding IP addresses

   +MMS_R - maximum message size that can be received, the largest
   received transport payload of an IP datagram [RFC1122]

   +MMS_S - maximum message size that can be sent, the largest
   transmitted transport payload of an IP datagram [RFC1122]

   path - an Internet path between the IP addresses of two hosts

   PCB - protocol control block, the data associated with a protocol as
   maintained by an endpoint; a TCP PCB is called a TCB
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   PLPMTUD - packetization-layer path MTU discovery, a mechanism that
   uses transport packets to discover the PMTU [RFC4821]

   +PMTU - largest IP datagram that can traverse a path
   [RFC1191][RFC8201]

   PMTUD - path-layer MTU discovery, a mechanism that relies on ICMP
   error messages to discover the PMTU [RFC1191][RFC8201]

   +RTT - round-trip time of a TCP packet exchange [RFC793]

   +RTTVAR - variation of round-trip times of a TCP packet exchange
   [RFC6298]

   +rwnd - TCP receive window size [RFC5681]

   +sendcwnd - TCP send-side congestion window (cwnd) size [RFC5681]

   +sendMSS - TCP maximum segment size, a value transmitted in a TCP
   option that represents the largest TCP user data payload that can be
   received [RFC6691]

   +ssthresh - TCP slow-start threshold [RFC5681]

   TCB - TCP Control Block, the data associated with a TCP connection
   as maintained by an endpoint

   TCP-AO - TCP Authentication Option [RFC5925]

   TFO - TCP Fast Open option [RFC7413]

   +TFO_cookie - TCP Fast Open cookie, state that is used as part of
   the TFO mechanism, when TFO is supported [RFC7413]

   +TFO_failure - an indication of when TFO option negotiation failed,
   when TFO is supported

   +TFOinfo - information cached when a TFO connection is established,
   which includes the TFO_cookie [RFC7413]

4. The TCP Control Block (TCB)

   A TCB describes the data associated with each connection, i.e., with
   each association of a pair of applications across the network. The
   TCB contains at least the following information [RFC793]:
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        Local process state
            pointers to send and receive buffers
            pointers to retransmission queue and current segment
            pointers to Internet Protocol (IP) PCB
        Per-connection shared state
            macro-state
                connection state
                timers
                flags
                local and remote host numbers and ports
                TCP option state
            micro-state
                send and receive window state (size*, current number)
                congestion window size (sendcwnd)*
                congestion window size threshold (ssthresh)*
                max window size seen*
                sendMSS#
                MMS_S#
                MMS_R#
                PMTU#
                round-trip time and its variation#

   The per-connection information is shown as split into macro-state
   and micro-state, terminology borrowed from [Co91]. Macro-state
   describes the protocol for establishing the initial shared state
   about the connection; we include the endpoint numbers and components
   (timers, flags) required upon commencement that are later used to
   help maintain that state. Micro-state describes the protocol after a
   connection has been established, to maintain the reliability and
   congestion control of the data transferred in the connection.

   We distinguish two other classes of shared micro-state that are
   associated more with host-pairs than with application pairs. One
   class is clearly host-pair dependent (shown above as "#", e.g.,
   sendMSS, MMS_R, MMS_S, PMTU, RTT), because these parameters are
   defined by the endpoint or endpoint pair (sendMSS, MMS_R, MMS_S,
   RTT) or are already cached and shared on that basis (PMTU
   [RFC1191][RFC4821]). The other is host-pair dependent in its
   aggregate (shown above as "*", e.g., congestion window information,
   current window sizes, etc.) because they depend on the total
   capacity between the two endpoints.

   Not all of the TCB state is necessarily sharable. In particular,
   some TCP options are negotiated only upon request by the application
   layer, so their use may not be correlated across connections. Other
   options negotiate connection-specific parameters, which are
   similarly not shareable. These are discussed further in Appendix B.
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   Finally, we exclude rwnd from further discussion because its value
   should depend on the send window size, so it is already addressed by
   send window sharing and is not independently affected by sharing.

5. TCB Interdependence

   There are two cases of TCB interdependence. Temporal sharing occurs
   when the TCB of an earlier (now CLOSED) connection to a host is used
   to initialize some parameters of a new connection to that same host,
   i.e., in sequence. Ensemble sharing occurs when a currently active
   connection to a host is used to initialize another (concurrent)
   connection to that host.

6. Temporal Sharing

   The TCB data cache is accessed in two ways: it is read to initialize
   new TCBs and written when more current per-host state is available.

6.1. Initialization of a new TCB

   TCBs for new connections can be initialized using cached context
   from past connections as follows:
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                   TEMPORAL SHARING - TCB Initialization

                  Cached TCB     New TCB
                  --------------------------------------
                  old_MMS_S      old_MMS_S or not cached*

                  old_MMS_R      old_MMS_R or not cached*

                  old_sendMSS    old_sendMSS

                  old_PMTU       old_PMTU+

                  old_RTT        old_RTT

                  old_RTTVAR     old_RTTVAR

                  old_option     (option specific)

                  old_ssthresh   old_ssthresh

                  old_sendcwnd   old_sendcwnd

   +Note that PMTU is cached at the IP layer [RFC1191][RFC4821].
   *Note that some values are not cached when they are computed locally
   (MMS_R) or indicated in the connection itself (MMS_S in the SYN).

   The table below gives an overview of option-specific information
   that can be shared. Additional information on some specific TCP
   options and sharing is provided in Appendix B.

               TEMPORAL SHARING - Option Info Initialization

                 Cached               New
                 ------------------------------------
                 old_TFO_cookie       old_TFO_cookie

                 old_TFO_failure      old_TFO_failure

6.2. Updates to the TCB cache

   During a connection, the TCB cache can be updated based on events of
   current connections and their TCBs as they progress over time, as
   shown below:
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                     TEMPORAL SHARING - Cache Updates

         Cached TCB     Current TCB    when?    New Cached TCB
         ----------------------------------------------------------
         old_MMS_S      curr_MMS_S     OPEN     curr_MMS_S

         old_MMS_R      curr_MMS_R     OPEN     curr_MMS_R

         old_sendMSS    curr_sendMSS   MSSopt   curr_sendMSS

         old_PMTU       curr_PMTU      PMTUD+ / curr_PMTU
                                       PLPMTUD+

         old_RTT        curr_RTT       CLOSE    merge(curr,old)

         old_RTTVAR     curr_RTTVAR    CLOSE    merge(curr,old)

         old_option     curr_option    ESTAB    (depends on option)

         old_ssthresh   curr_ssthresh  CLOSE    merge(curr,old)

         old_sendcwnd   curr_sendcwnd  CLOSE    merge(curr,old)

   +Note that PMTU is cached at the IP layer [RFC1191][RFC4821].

   Merge() is the function that combines the current and previous (old)
   values and may vary for each parameter of the TCB cache. The
   particular function is not specified in this document; examples
   include windowed averages (mean of the past N values, for some N)
   and exponential decay (new = (1-alpha)*old + alpha *new, where alpha
   is in the range [0..1]).

   The table below gives an overview of option-specific information
   that can be similarly shared. The TFO cookie is maintained until the
   client explicitly requests it be updated as a separate event.

                  TEMPORAL SHARING - Option Info Updates

         Cached           Current          when?   New Cached
         ---------------------------------------------------------
         old_TFO_cookie   old_TFO_cookie   ESTAB   old_TFO_cookie

         old_TFO_failure  old_TFO_failure  ESTAB   old_TFO_failure
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6.3. Discussion

   As noted, there is no particular benefit to caching MMS_S and MMS_R
   as these are reported by the local IP stack. Caching sendMSS and
   PMTU is trivial; reported values are cached (PMTU at the IP layer),
   and the most recent values are used. The cache is updated when the
   MSS option is received in a SYN or after PMTUD (i.e., when an ICMPv4
   Fragmentation Needed [RFC1191] or ICMPv6 Packet Too Big message is
   received [RFC8201] or the equivalent is inferred, e.g., as from
   PLPMTUD [RFC4821]), respectively, so the cache always has the most
   recent values from any connection. For sendMSS, the cache is
   consulted only at connection establishment and not otherwise
   updated, which means that MSS options do not affect current
   connections. The default sendMSS is never saved; only reported MSS
   values update the cache, so an explicit override is required to
   reduce the sendMSS. Cached sendMSS affects only data sent in the SYN
   segment, i.e., during client connection initiation or during
   simultaneous open; all other segment MSS are based on the value
   updated as included in the SYN.

   RTT values are updated by formulae that merges the old and new
   values, as noted in Section 6.2. Dynamic RTT estimation requires a
   sequence of RTT measurements. As a result, the cached RTT (and its
   variation) is an average of its previous value with the contents of
   the currently active TCB for that host, when a TCB is closed. RTT
   values are updated only when a connection is closed. The method for
   merging old and current values needs to attempt to reduce the
   transient effects of the new connections.

   The updates for RTT, RTTVAR and ssthresh rely on existing
   information, i.e., old values. Should no such values exist, the
   current values are cached instead.

   TCP options are copied or merged depending on the details of each
   option. E.g., TFO state is updated when a connection is established
   and read before establishing a new connection.

   Sections 8 and 9 discuss compatibility issues and implications of
   sharing the specific information listed above. Section 10 gives an
   overview of known implementations.

   Most cached TCB values are updated when a connection closes. The
   exceptions are MMS_R and MMS_S, which are reported by IP [RFC1122],
   PMTU which is updated after Path MTU Discovery and also reported by
   IP [RFC1191][RFC4821][RFC8201], and sendMSS, which is updated if the
   MSS option is received in the TCP SYN header.

https://datatracker.ietf.org/doc/html/rfc1191
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   Sharing sendMSS information affects only data in the SYN of the next
   connection, because sendMSS information is typically included in
   most TCP SYN segments. Caching PMTU can accelerate the efficiency of
   PMTUD but can also result in black-holing until corrected if in
   error. Caching MMS_R and MMS_S may be of little direct value as they
   are reported by the local IP stack anyway.

   The way in which other TCP option state can be shared depends on the
   details of that option. E.g., TFO state includes the TCP Fast Open
   Cookie [RFC7413] or, in case TFO fails, a negative TCP Fast Open
   response. RFC 7413 states, "The client MUST cache negative responses
   from the server in order to avoid potential connection failures.
   Negative responses include the server not acknowledging the data in
   the SYN, ICMP error messages, and (most importantly) no response
   (SYN-ACK) from the server at all, i.e., connection timeout." [RFC
   7413]. TFOinfo is cached when a connection is established.

   Other TCP option state might not be as readily cached. E.g., TCP-AO
   [RFC5925] success or failure between a host pair for a single SYN
   destination port might be usefully cached. TCP-AO success or failure
   to other SYN destination ports on that host pair is never useful to
   cache because TCP-AO security parameters can vary per service.

7. Ensemble Sharing

   Sharing cached TCB data across concurrent connections requires
   attention to the aggregate nature of some of the shared state. For
   example, although MSS and RTT values can be shared by copying, it
   may not be appropriate to simply copy congestion window or ssthresh
   information; instead, the new values can be a function (f) of the
   cumulative values and the number of connections (N).

7.1. Initialization of a new TCB

   TCBs for new connections can be initialized using cached context
   from concurrent connections as follows:
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                   ENSEMBLE SHARING - TCB Initialization

                Cached TCB          New TCB
                ------------------------------------------
                old_MMS_S           old_MMS_S

                old_MMS_R           old_MMS_R

                old_sendMSS         old_sendMSS

                old_PMTU            old_PMTU+

                old_RTT             old_RTT

                old_RTTVAR          old_RTTVAR

                sum(old_ssthresh)   f(sum(old_ssthresh), N)

                sum(old_sendcwnd)   f(sum(old_sendcwnd), N)
_
                old_option          (option specific)

   +Note that PMTU is cached at the IP layer [RFC1191][RFC4821].

   In the table, the cached sum() is a total across all active
   connections because these parameters act in aggregate; similarly f()
   is a function that updates that sum based on the new connection's
   values, represented as "N".

   The table below gives an overview of option-specific information
   that can be similarly shared. Again, The TFO_cookie is updated upon
   explicit client request, which is a separate event.

               ENSEMBLE SHARING - Option Info Initialization

                  Cached               New
                  ------------------------------------
                  old_TFO_cookie       old_TFO_cookie

                  old_TFO_failure      old_TFO_failure

7.2. Updates to the TCB cache

   During a connection, the TCB cache can be updated based on changes
   to concurrent connections and their TCBs, as shown below:
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                     ENSEMBLE SHARING - Cache Updates

      Cached TCB   Current TCB   when?      New Cached TCB
      ---------------------------------------------------------------
      old_MMS_S    curr_MMS_S    OPEN       curr_MMS_S

      old_MMS_R    curr_MMS_R    OPEN       curr_MMS_R

      old_sendMSS  curr_sendMSS  MSSopt     curr_sendMSS

      old_PMTU     curr_PMTU     PMTUD+ /   curr_PMTU
                                 PLPMTUD+

      old_RTT      curr_RTT      update     rtt_update(old, curr)

      old_RTTVAR   curr_RTTVAR   update     rtt_update(old, curr)

      old_ssthresh curr_ssthresh update     adjust sum as appropriate

      old_sendcwnd curr_sendcwnd update     adjust sum as appropriate

      old_option   curr_option   (depends)  (option specific)

   +Note that the PMTU is cached at the IP layer [RFC1191][RFC4821].

   In the table, rtt_update() is the function used to combine old and
   current values, e.g., as a windowed average or exponentially decayed
   average.

   The table below gives an overview of option-specific information
   that can be similarly shared.

                ENSEMBLE SHARING - Option Info Updates

       Cached          Current          when?   New Cached
       ----------------------------------------------------------
       old_TFO_cookie  old_TFO_cookie   ESTAB   old_TFO_cookie

       old_TFO_failure old_TFO_failure  ESTAB   old_TFO_failure

7.3. Discussion

   For ensemble sharing, TCB information should be cached as early as
   possible, sometimes before a connection is closed. Otherwise,
   opening multiple concurrent connections may not result in TCB data
   sharing if no connection closes before others open. The amount of
   work involved in updating the aggregate average should be minimized,
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   but the resulting value should be equivalent to having all values
   measured within a single connection. The function "rtt_update" in
   the ensemble sharing table indicates this operation, which occurs
   whenever the RTT would have been updated in the individual TCP
   connection. As a result, the cache contains the shared RTT
   variables, which no longer need to reside in the TCB.

   Congestion window size and ssthresh aggregation are more complicated
   in the concurrent case. When there is an ensemble of connections, we
   need to decide how that ensemble would have shared these variables,
   in order to derive initial values for new TCBs.

   Sections 8 and 9 discuss compatibility issues and implications of
   sharing the specific information listed above.

   There are several ways to initialize the congestion window in a new
   TCB among an ensemble of current connections to a host. Current TCP
   implementations initialize it to four segments as standard [RFC3390]
   and 10 segments experimentally [RFC6928]. These approaches assume
   that new connections should behave as conservatively as possible.
   The algorithm described in [Ba12] adjusts the initial cwnd depending
   on the cwnd values of ongoing connections. It is also possible to
   use sharing mechanisms over long timescales to adapt TCP's initial
   window automatically, as described further in Appendix C.

8. Issues with TCB information sharing

   Here, we discuss various types of problems that may arise with TCB
   information sharing.

   For the congestion and current window information, the initial
   values computed by TCB interdependence may not be consistent with
   the long-term aggregate behavior of a set of concurrent connections
   between the same endpoints. Under conventional TCP congestion
   control, if the congestion window of a single existing connection
   has converged to 40 segments, two newly joining concurrent
   connections assume initial windows of 10 segments [RFC6928], and the
   current connection's window doesn't decrease to accommodate this
   additional load and connections can mutually interfere. One example
   of this is seen on low-bandwidth, high-delay links, where concurrent
   connections supporting Web traffic can collide because their initial
   windows were too large, even when set at one segment.

   The authors of [Hu12] recommend caching ssthresh for temporal
   sharing only when flows are long. Some studies suggest that sharing
   ssthresh between short flows can deteriorate the performance of
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   individual connections [Hu12, Du16], although this may benefit
   aggregate network performance.

8.1. Traversing the same network path

   TCP is sometimes used in situations where packets of the same host-
   pair do not always take the same path, such as when connection-
   specific parameters are used for routing (e.g., for load balancing).
   Multipath routing that relies on examining transport headers, such
   as ECMP and LAG [RFC7424], may not result in repeatable path
   selection when TCP segments are encapsulated, encrypted, or altered
   - for example, in some Virtual Private Network (VPN) tunnels that
   rely on proprietary encapsulation. Similarly, such approaches cannot
   operate deterministically when the TCP header is encrypted, e.g.,
   when using IPsec ESP (although TCB interdependence among the entire
   set sharing the same endpoint IP addresses should work without
   problems when the TCP header is encrypted). Measures to increase the
   probability that connections use the same path could be applied:
   e.g., the connections could be given the same IPv6 flow label
   [RFC6437]. TCB interdependence can also be extended to sets of host
   IP address pairs that share the same network path conditions, such
   as when a group of addresses is on the same LAN (see Section 9).

   Traversing the same path is not important for host-specific
   information such as rwnd and TCP option state, such as TFOinfo, or
   for information that is already cached per-host, such as path MTU.
   When TCB information is shared across different SYN destination
   ports, path-related information can be incorrect; however, the
   impact of this error is potentially diminished if (as discussed
   here) TCB sharing affects only the transient event of a connection
   start or if TCB information is shared only within connections to the
   same SYN destination port.

   In case of Temporal Sharing, TCB information could also become
   invalid over time, i.e., indicating that although the path remains
   the same, path properties have changed. Because this is similar to
   the case when a connection becomes idle, mechanisms that address
   idle TCP connections (e.g., [RFC7661]) could also be applied to TCB
   cache management, especially when TCP Fast Open is used [RFC7413].

8.2. State dependence

   There may be additional considerations to the way in which TCB
   interdependence rebalances congestion feedback among the current
   connections, e.g., it may be appropriate to consider the impact of a
   connection being in Fast Recovery [RFC5681] or some other similar

https://datatracker.ietf.org/doc/html/rfc7424
https://datatracker.ietf.org/doc/html/rfc6437
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   unusual feedback state, e.g., as inhibiting or affecting the
   calculations described herein.

8.3. Problems with sharing based on IP address

   It can be wrong to share TCB information between TCP connections on
   the same host as identified by the IP address if an IP address is
   assigned to a new host (e.g., IP address spinning, as is used by
   ISPs to inhibit running servers). It can be wrong if Network Address
   (and Port) Translation (NA(P)T) [RFC2663] or any other IP sharing
   mechanism is used. Such mechanisms are less likely to be used with
   IPv6. Other methods to identify a host could also be considered to
   make correct TCB sharing more likely. Moreover, some TCB information
   is about dominant path properties rather than the specific host. IP
   addresses may differ, yet the relevant part of the path may be the
   same.

9. Implications

   There are several implications to incorporating TCB interdependence
   in TCP implementations. First, it may reduce the need for
   application-layer multiplexing for performance enhancement
   [RFC7231]. Protocols like HTTP/2 [RFC7540] avoid connection
   reestablishment costs by serializing or multiplexing a set of per-
   host connections across a single TCP connection. This avoids TCP's
   per-connection OPEN handshake and also avoids recomputing the MSS,
   RTT, and congestion window values. By avoiding the so-called "slow-
   start restart", performance can be optimized [Hu01]. TCB
   interdependence can provide the "slow-start restart avoidance" of
   multiplexing, without requiring a multiplexing mechanism at the
   application layer.

   Like the initial version of this document [RFC2140], this update's
   approach to TCB interdependence focuses on sharing a set of TCBs by
   updating the TCB state to reduce the impact of transients when
   connections begin, end, or otherwise significantly change state.
   Other mechanisms have since been proposed to continuously share
   information between all ongoing communication (including
   connectionless protocols), updating the congestion state during any
   congestion-related event (e.g., timeout, loss confirmation, etc.)
   [RFC3124]. By dealing exclusively with transients, the approach in
   this document is more likely to exhibit the "steady-state" behavior
   as unmodified, independent TCP connections.

https://datatracker.ietf.org/doc/html/rfc2663
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9.1. Layering

   TCB interdependence pushes some of the TCP implementation from the
   traditional transport layer (in the ISO model), to the network
   layer. This acknowledges that some state is in fact per-host-pair or
   can be per-path as indicated solely by that host-pair. Transport
   protocols typically manage per-application-pair associations (per
   stream), and network protocols manage per-host-pair and path
   associations (routing). Round-trip time, MSS, and congestion
   information could be more appropriately handled at the network
   layer, aggregated among concurrent connections, and shared across
   connection instances [RFC3124].

   An earlier version of RTT sharing suggested implementing RTT state
   at the IP layer, rather than at the TCP layer. Our observations
   describe sharing state among TCP connections, which avoids some of
   the difficulties in an IP-layer solution. One such problem of an IP
   layer solution is determining the correspondence between packet
   exchanges using IP header information alone, where such
   correspondence is needed to compute RTT. Because TCB sharing
   computes RTTs inside the TCP layer using TCP header information, it
   can be implemented more directly and simply than at the IP layer.
   This is a case where information should be computed at the transport
   layer but could be shared at the network layer.

9.2. Other possibilities

   Per-host-pair associations are not the limit of these techniques. It
   is possible that TCBs could be similarly shared between hosts on a
   subnet or within a cluster, because the predominant path can be
   subnet-subnet, rather than host-host. Additionally, TCB
   interdependence can be applied to any protocol with congestion
   state, including SCTP [RFC4960] and DCCP [RFC4340], as well as for
   individual subflows in Multipath TCP [RFC8684].

   There may be other information that can be shared between concurrent
   connections. For example, knowing that another connection has just
   tried to expand its window size and failed, a connection may not
   attempt to do the same for some period. The idea is that existing
   TCP implementations infer the behavior of all competing connections,
   including those within the same host or subnet. One possible
   optimization is to make that implicit feedback explicit, via
   extended information associated with the endpoint IP address and its
   TCP implementation, rather than per-connection state in the TCB.

   This document focuses on sharing TCB information at connection
   initialization. Subsequent to RFC 2140, there have been numerous
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https://datatracker.ietf.org/doc/html/rfc2140


Touch                  Expires October 12, 2021               [Page 17]



Internet-Draft    TCP Control Block Interdependence          April 2021

   approaches that attempt to coordinate ongoing state across
   concurrent connections, both within TCP and other congestion-
   reactive protocols, which are summarized in [Is18]. These approaches
   are more complex to implement and their comparison to steady-state
   TCP equivalence can be more difficult to establish, sometimes
   intentionally (i.e., they sometimes intend to provide a different
   kind of "fairness" than emerges from TCP operation).

10. Implementation Observations

   The observation that some TCB state is host-pair specific rather
   than application-pair dependent is not new and is a common
   engineering decision in layered protocol implementations. Although
   now deprecated, T/TCP [RFC1644] was the first to propose using
   caches in order to maintain TCB states (see Appendix A).

   The table below describes the current implementation status for TCB
   temporal sharing in Windows as of December 2020, Apple variants
   (macOS, iOS, iPadOS, tvOS, watchOS) as of January 2021, Linux kernel
   version 5.10.3, and FreeBSD 12. Ensemble sharing is not yet
   implemented.

                        KNOWN IMPLEMENTATION STATUS

      TCB data      Status
      ------------------------------------------------------------
      old_MMS_S     Not shared

      old_MMS_R     Not shared

      old_sendMSS   Cached and shared in Apple, Linux (MSS)

      old_PMTU      Cached and shared in Apple, FreeBSD, Windows (PMTU)

      old_RTT       Cached and shared in Apple, FreeBSD, Linux, Windows

      old_RTTVAR    Cached and shared in Apple, FreeBSD, Windows

      old_TFOinfo   Cached and shared in Apple, Linux, Windows

      old_sendcwnd  Not shared

      old_ssthresh  Cached and shared in Apple, FreeBSD*, Linux*

      TFO failure   Cached and shared in Apple

https://datatracker.ietf.org/doc/html/rfc1644
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   In the table above, "Apple" refers to all Apple OSes, i.e.,
   desktop/laptop macOS, phone iOS, pad iPadOS, video player tvOS, and
   watch watchOS, which all share the same Internet protocol stack.

   *Note: In FreeBSD, new ssthresh is the mean of curr_ssthresh and
   previous value if a previous value exists; in Linux, the calculation
   depends on state and is max(curr_cwnd/2, old_ssthresh) in most
   cases.

11. Changes Compared to RFC 2140

   This document updates the description of TCB sharing in RFC 2140 and
   its associated impact on existing and new connection state,
   providing a complete replacement for that document [RFC2140]. It
   clarifies the previous description and terminology and extends the
   mechanism to its impact on new protocols and mechanisms, including
   multipath TCP, fast open, PLPMTUD, NAT, and the TCP Authentication
   Option.

   The detailed impact on TCB state addresses TCB parameters in greater
   detail, addressing MSS in both the send and receive direction, MSS
   and sendMSS separately, adds path MTU and ssthresh, and addresses
   the impact on TCP option state.

   New sections have been added to address compatibility issues and
   implementation observations. The relation of this work to T/TCP has
   been moved to 0 on history, partly to reflect the deprecation of
   that protocol.

Appendix C has been added to discuss the potential to use temporal
   sharing over long timescales to adapt TCP's initial window
   automatically, avoiding the need to periodically revise a single
   global constant value.

   Finally, this document updates and significantly expands the
   referenced literature.

12. Security Considerations

   These presented implementation methods do not have additional
   ramifications for direct (connection-aborting or information
   injecting) attacks on individual connections. Individual
   connections, whether using sharing or not, also may be susceptible
   to denial-of-service attacks that reduce performance or completely
   deny connections and transfers if not otherwise secured.
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   TCB sharing may create additional denial-of-service attacks that
   affect the performance of other connections by polluting the cached
   information. This can occur across whatever set of connections where
   the TCB is shared, between connections in a single host, or between
   hosts if TCB sharing is implemented within a subnet (see
   Implications section). Some shared TCB parameters are used only to
   create new TCBs, others are shared among the TCBs of ongoing
   connections. New connections can join the ongoing set, e.g., to
   optimize send window size among a set of connections to the same
   host. PMTU is defined as shared at the IP layer, and is already
   susceptible in this way.

   Options in client SYNs can be easier to forge than complete, two-way
   connections. As a result, their values may not be safely
   incorporated in shared values until after the three-way handshake
   completes.

   Attacks on parameters used only for initialization affect only the
   transient performance of a TCP connection. For short connections,
   the performance ramification can approach that of a denial-of-
   service attack. E.g., if an application changes its TCB to have a
   false and small window size, subsequent connections will experience
   performance degradation until their window grew appropriately.

   TCB sharing reuses and mixes information from past and current
   connections. Although reusing information could create a potential
   for fingerprinting to identify hosts, the mixing reduces that
   potential. There has been no evidence of fingerprinting based on
   this technique and it is currently considered safe in that regard.
   Further, information about the performance of a TCP connection has
   not been considered as private.

13. IANA Considerations

   There are no IANA implications or requests in this document.

   This section should be removed upon final publication as an RFC.
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Appendix A: TCB Sharing History

   T/TCP proposed using caches to maintain TCB information across
   instances (temporal sharing), e.g., smoothed RTT, RTT variation,
   congestion avoidance threshold, and MSS [RFC1644]. These values were
   in addition to connection counts used by T/TCP to accelerate data
   delivery prior to the full three-way handshake during an OPEN. The
   goal was to aggregate TCB components where they reflect one
   association - that of the host-pair, rather than artificially
   separating those components by connection.

   At least one T/TCP implementation saved the MSS and aggregated the
   RTT parameters across multiple connections but omitted caching the
   congestion window information [Br94], as originally specified in
   [RFC1379]. Some T/TCP implementations immediately updated MSS when
   the TCP MSS header option was received [Br94], although this was not
   addressed specifically in the concepts or functional specification
   [RFC1379][RFC1644]. In later T/TCP implementations, RTT values were
   updated only after a CLOSE, which does not benefit concurrent
   sessions.

   Temporal sharing of cached TCB data was originally implemented in
   the SunOS 4.1.3 T/TCP extensions [Br94] and the FreeBSD port of same
   [FreeBSD]. As mentioned before, only the MSS and RTT parameters were
   cached, as originally specified in [RFC1379]. Later discussion of
   T/TCP suggested including congestion control parameters in this
   cache; for example, [RFC1644] (Section 3.1) hints at initializing
   the congestion window to the old window size.
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Appendix B: TCP Option Sharing and Caching

   In addition to the options that can be cached and shared, this memo
   also lists known TCP options [IANA] for which state is unsafe to be
   kept. This list is not intended to be authoritative or exhaustive.

   Obsolete (unsafe to keep state):

      ECHO

      ECHO REPLY

      PO Conn permitted

      PO service profile

      CC

      CC.NEW

      CC.ECHO

      Alt CS req

      Alt CS data

   No state to keep:

      EOL

      NOP

      WS

      SACK

      TS

      MD5

      TCP-AO

      EXP1

      EXP2
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   Unsafe to keep state:

      Skeeter (DH exchange, known to be vulnerable)

      Bubba (DH exchange, known to be vulnerable)

      Trailer CS

      SCPS capabilities

      S-NACK

      Records boundaries

      Corruption experienced

      SNAP

      TCP Compression

      Quickstart response

      UTO

      MPTCP negotiation success (see below for negotiation failure)

      TFO negotiation success (see below for negotiation failure)

   Safe but optional to keep state:

      MPTCP negotiation failure (to avoid negotiation retries)

      MSS

      TFO negotiation failure (to avoid negotiation retries)

   Safe and necessary to keep state:

      TFO cookie (if TFO succeeded in the past)
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Appendix C: Automating the Initial Window in TCP over Long Timescales

C.1. Introduction

   Temporal sharing, as described earlier in this document, builds on
   the assumption that multiple consecutive connections between the
   same host pair are somewhat likely to be exposed to similar
   environment characteristics. The stored information can become less
   accurate over time and suitable precautions should take this ageing
   into consideration (this is discussed further in section 8.1).
   However, there are also cases where it can make sense to track these
   values over longer periods, observing properties of TCP connections
   to gradually influence evolving trends in TCP parameters. This
   appendix describes an example of such a case.

   TCP's congestion control algorithm uses an initial window value
   (IW), both as a starting point for new connections and as an upper
   limit for restarting after an idle period [RFC5681][RFC7661]. This
   value has evolved over time, originally one maximum segment size
   (MSS), and increased to the lesser of four MSS or 4,380 bytes
   [RFC3390][RFC5681]. For a typical Internet connection with a maximum
   transmission unit (MTU) of 1500 bytes, this permits three segments
   of 1,460 bytes each.

   The IW value was originally implied in the original TCP congestion
   control description and documented as a standard in 1997
   [RFC2001][Ja88]. The value was updated in 1998 experimentally and
   moved to the standards track in 2002 [RFC2414][RFC3390]. In 2013, it
   was experimentally increased to 10 [RFC6928].

   This appendix discusses how TCP can objectively measure when an IW
   is too large, and that such feedback should be used over long
   timescales to adjust the IW automatically. The result should be
   safer to deploy and might avoid the need to repeatedly revisit IW
   over time.

   Note that this mechanism attempts to make the IW more adaptive over
   time. It can increase the IW beyond that which is currently
   recommended for widescale deployment, and so its use should be
   carefully monitored.

C.2. Design Considerations

   TCP's IW value has existed statically for over two decades, so any
   solution to adjusting the IW dynamically should have similarly
   stable, non-invasive effects on the performance and complexity of
   TCP. In order to be fair, the IW should be similar for most machines

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc6928
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   on the public Internet. Finally, a desirable goal is to develop a
   self-correcting algorithm, so that IW values that cause network
   problems can be avoided. To that end, we propose the following
   design goals:

   o  Impart little to no impact to TCP in the absence of loss, i.e.,
      it should not increase the complexity of default packet
      processing in the normal case.

   o  Adapt to network feedback over long timescales, avoiding values
      that persistently cause network problems.

   o  Decrease the IW in the presence of sustained loss of IW segments,
      as determined over a number of different connections.

   o  Increase the IW in the absence of sustained loss of IW segments,
      as determined over a number of different connections.

   o  Operate conservatively, i.e., tend towards leaving the IW the
      same in the absence of sufficient information, and give greater
      consideration to IW segment loss than IW segment success.

   We expect that, without other context, a good IW algorithm will
   converge to a single value, but this is not required. An endpoint
   with additional context or information, or deployed in a constrained
   environment, can always use a different value. In particular,
   information from previous connections, or sets of connections with a
   similar path, can already be used as context for such decisions (as
   noted in the core of this document).

   However, if a given IW value persistently causes packet loss during
   the initial burst of packets, it is clearly inappropriate and could
   be inducing unnecessary loss in other competing connections. This
   might happen for sites behind very slow boxes with small buffers,
   which may or may not be the first hop.

C.3. Proposed IW Algorithm

   Below is a simple description of the proposed IW algorithm. It
   relies on the following parameters:

   o  MinIW = 3 MSS or 4,380 bytes (as per [RFC3390])

   o  MaxIW = 10 MSS (as per [RFC6928])

   o  MulDecr = 0.5

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928
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   o  AddIncr = 2 MSS

   o  Threshold = 0.05

   We assume that the minimum IW (MinIW) should be as currently
   specified as standard [RFC3390]. The maximum IW can be set to a
   fixed value (we suggest using the experimental and now somewhat de-
   facto standard in [RFC6928]) or set based on a schedule if trusted
   time references are available [Al10]; here we prefer a fixed value.
   We also propose to use an AIMD algorithm, with increase and
   decreases as noted.

   Although these parameters are somewhat arbitrary, their initial
   values are not important except that the algorithm is AIMD and the
   MaxIW should not exceed that recommended for other systems on the
   Internet (here we selected the current de-facto standard rather than
   the actual standard). Current proposals, including default current
   operation, are degenerate cases of the algorithm below for given
   parameters - notably MulDec = 1.0 and AddIncr = 0 MSS, thus
   disabling the automatic part of the algorithm.

   The proposed algorithm is as follows:

   1. On boot:

      IW = MaxIW; # assume this is in bytes, and indicates an integer
      multiple of 2 MSS (an even number to support ACK compression)

   2. Upon starting a new connection:

      CWND = IW;
      conncount++;
      IWnotchecked = 1; # true

   3. During a connection's SYN-ACK processing, if SYN-ACK includes ECN
      (as similarly addressed in Sec 5 of ECN++ for TCP [Ba20]), treat
      as if the IW is too large:

      if (IWnotchecked && (synackecn == 1)) {
         losscount++;
         IWnotchecked = 0; # never check again
      }

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc6928
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   4. During a connection, if retransmission occurs, check the seqno of
      the outgoing packet (in bytes) to see if the resent segment fixes
      an IW loss:

      if (Retransmitting && IWnotchecked && ((seqno - ISN) < IW))) {
         losscount++;
         IWnotchecked = 0; # never do this entire "if" again
      } else {
         IWnotchecked = 0; # you're beyond the IW so stop checking
      }

   5. Once every 1000 connections, as a separate process (i.e., not as
      part of processing a given connection):

      if (conncount > 1000) {
         if (losscount/conncount > threshold) {
            # the number of connections with errors is too high
            IW = IW * MulDecr;
         } else {
            IW = IW + AddIncr;
         }
      }

   As presented, this algorithm can yield a false positive when the
   sequence number wraps around, e.g., the code might increment
   losscount in step 4 when no loss occurred or fail to increment
   losscount when a loss did occur. This can be avoided using either
   PAWS [RFC7323] context or internal extended sequence number
   representations (as in TCP-AO [RFC5925]). Alternately, false
   positives can be tolerated because they are expected to be
   infrequent and thus will not significantly impact the algorithm.

   A number of additional constraints need to be imposed if this
   mechanism is implemented to ensure that it defaults to values that
   comply with current Internet standards, is conservative in how it
   extends those values, and returns to those values in the absence of
   positive feedback (i.e., success). To that end, we recommend the
   following list of example constraints:

   >> The automatic IW algorithm MUST initialize MaxIW a value no
   larger than the currently recommended Internet default, in the
   absence of other context information.

   Thus, if there are too few connections to make a decision or if
   there is otherwise insufficient information to increase the IW, then
   the MaxIW defaults to the current recommended value.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc5925
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   >> An implementation MAY allow the MaxIW to grow beyond the
   currently recommended Internet default, but not more than 2 segments
   per calendar year.

   Thus, if an endpoint has a persistent history of successfully
   transmitting IW segments without loss, then it is allowed to probe
   the Internet to determine if larger IW values have similar success.
   This probing is limited and requires a trusted time source,
   otherwise the MaxIW remains constant.

   >> An implementation MUST adjust the IW based on loss statistics at
   least once every 1000 connections.

   An endpoint needs to be sufficiently reactive to IW loss.

   >> An implementation MUST decrease the IW by at least one MSS when
   indicated during an evaluation interval.

   An endpoint that detects loss needs to decrease its IW by at least
   one MSS, otherwise it is not participating in an automatic reactive
   algorithm.

   >> An implementation MUST increase by no more than 2 MSS per
   evaluation interval.

   An endpoint that does not experience IW loss needs to probe the
   network incrementally.

   >> An implementation SHOULD use an IW that is an integer multiple of
   2 MSS.

   The IW should remain a multiple of 2 MSS segments, to enable
   efficient ACK compression without incurring unnecessary timeouts.

   >> An implementation MUST decrease the IW if more than 95% of
   connections have IW losses.

   Again, this is to ensure an implementation is sufficiently reactive.

   >> An implementation MAY group IW values and statistics within
   subsets of connections. Such grouping MAY use any information about
   connections to form groups except loss statistics.

   There are some TCP connections which might not be counted at all,
   such as those to/from loopback addresses, or those within the same
   subnet as that of a local interface (for which congestion control is
   sometimes disabled anyway). This may also include connections that
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   terminate before the IW is full, i.e., as a separate check at the
   time of the connection closing.

   The period over which the IW is updated is intended to be a long
   timescale, e.g., a month or so, or 1,000 connections, whichever is
   longer. An implementation might check the IW once a month, and
   simply not update the IW or clear the connection counts in months
   where the number of connections is too small.

C.4. Discussion

   There are numerous parameters to the above algorithm that are
   compliant with the given requirements; this is intended to allow
   variation in configuration and implementation while ensuring that
   all such algorithms are reactive and safe.

   This algorithm continues to assume segments because that is the
   basis of most TCP implementations. It might be useful to consider
   revising the specifications to allow byte-based congestion given
   sufficient experience.

   The algorithm checks for IW losses only during the first IW after a
   connection start; it does not check for IW losses elsewhere the IW
   is used, e.g., during slow-start restarts.

   >> An implementation MAY detect IW losses during slow-start restarts
   in addition to losses during the first IW of a connection. In this
   case, the implementation MUST count each restart as a "connection"
   for the purposes of connection counts and periodic rechecking of the
   IW value.

   False positives can occur during some kinds of segment reordering,
   e.g., that might trigger spurious retransmissions even without a
   true segment loss. These are not expected to be sufficiently common
   to dominate the algorithm and its conclusions.

   This mechanism does require additional per-connection state, which
   is currently common in some implementations, and is useful for other
   reasons (e.g., the ISN is used in TCP-AO [RFC5925]). The mechanism
   also benefits from persistent state kept across reboots, as would be
   other state sharing mechanisms (e.g., TCP Control Block Sharing per
   the main body of this document).

   The receive window (rwnd) is not involved in this calculation. The
   size of rwnd is determined by receiver resources and provides space
   to accommodate segment reordering. It is not involved with

https://datatracker.ietf.org/doc/html/rfc5925
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   congestion control, which is the focus of this document and its
   management of the IW.

C.5. Observations

   The IW may not converge to a single, global value. It also may not
   converge at all, but rather may oscillate by a few MSS as it
   repeatedly probes the Internet for larger IWs and fails. Both
   properties are consistent with TCP behavior during each individual
   connection.

   This mechanism assumes that losses during the IW are due to IW size.
   Persistent errors that drop packets for other reasons - e.g., OS
   bugs, can cause false positives. Again, this is consistent with
   TCP's basic assumption that loss is caused by congestion and
   requires backoff. This algorithm treats the IW of new connections as
   a long-timescale backoff system.
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