
TCP Maintenance & Minor Extensions (tcpm) B. Briscoe
Internet-Draft Independent
Intended status: Experimental M. Kuehlewind
Expires: September 6, 2020 Ericsson
 R. Scheffenegger
 NetApp
 March 5, 2020

More Accurate ECN Feedback in TCP
draft-ietf-tcpm-accurate-ecn-10

Abstract

 Explicit Congestion Notification (ECN) is a mechanism where network
 nodes can mark IP packets instead of dropping them to indicate
 incipient congestion to the end-points. Receivers with an ECN-
 capable transport protocol feed back this information to the sender.
 ECN is specified for TCP in such a way that only one feedback signal
 can be transmitted per Round-Trip Time (RTT). Recent new TCP
 mechanisms like Congestion Exposure (ConEx), Data Center TCP (DCTCP)
 or Low Latency Low Loss Scalable Throughput (L4S) need more accurate
 ECN feedback information whenever more than one marking is received
 in one RTT. This document specifies an experimental scheme to
 provide more than one feedback signal per RTT in the TCP header.
 Given TCP header space is scarce, it allocates a reserved header bit,
 that was previously used for the ECN-Nonce which has now been
 declared historic. It also overloads the two existing ECN flags in
 the TCP header. The resulting extra space is exploited to feed back
 the IP-ECN field received during the 3-way handshake as well.
 Supplementary feedback information can optionally be provided in a
 new TCP option, which is never used on the TCP SYN.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Briscoe, et al. Expires September 6, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Accurate TCP-ECN Feedback March 2020

 This Internet-Draft will expire on September 6, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Document Roadmap . 4
1.2. Goals . 5
1.3. Experiment Goals . 5
1.4. Terminology . 6
1.5. Recap of Existing ECN feedback in IP/TCP 7

2. AccECN Protocol Overview and Rationale 8
2.1. Capability Negotiation 9
2.2. Feedback Mechanism 9
2.3. Delayed ACKs and Resilience Against ACK Loss 10
2.4. Feedback Metrics . 11
2.5. Generic (Dumb) Reflector 11

3. AccECN Protocol Specification 12
3.1. Negotiating to use AccECN 12
3.1.1. Negotiation during the TCP handshake 12
3.1.2. Backward Compatibility 13
3.1.3. Forward Compatibility 15
3.1.4. Retransmission of the SYN 16
3.1.5. Implications of AccECN Mode 17

3.2. AccECN Feedback . 18
3.2.1. Initialization of Feedback Counters 19
3.2.2. The ACE Field . 19
3.2.3. The AccECN Option 27

 3.3. Requirements for TCP Proxies, Offload Engines and other
 Middleboxes on AccECN Compliance 36

4. Interaction with Other TCP Variants 37
4.1. Compatibility with SYN Cookies 37
4.2. Compatibility with Other TCP Options and Experiments . . 38
4.3. Compatibility with Feedback Integrity Mechanisms 38

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Briscoe, et al. Expires September 6, 2020 [Page 2]

Internet-Draft Accurate TCP-ECN Feedback March 2020

5. Protocol Properties . 40
6. IANA Considerations . 42
7. Security Considerations 43
8. Acknowledgements . 43
9. Comments Solicited . 44
10. References . 44
10.1. Normative References 44
10.2. Informative References 45

Appendix A. Example Algorithms 47
A.1. Example Algorithm to Encode/Decode the AccECN Option . . 47

 A.2. Example Algorithm for Safety Against Long Sequences of
 ACK Loss . 48

A.2.1. Safety Algorithm without the AccECN Option 48
A.2.2. Safety Algorithm with the AccECN Option 50

 A.3. Example Algorithm to Estimate Marked Bytes from Marked
 Packets . 52

A.4. Example Algorithm to Beacon AccECN Options 52
A.5. Example Algorithm to Count Not-ECT Bytes 53

Appendix B. Rationale for Usage of TCP Header Flags 54
B.1. Three TCP Header Flags in the SYN-SYN/ACK Handshake . . . 54
B.2. Four Codepoints in the SYN/ACK 55
B.3. Space for Future Evolution 55

 Authors' Addresses . 57

1. Introduction

 Explicit Congestion Notification (ECN) [RFC3168] is a mechanism where
 network nodes can mark IP packets instead of dropping them to
 indicate incipient congestion to the end-points. Receivers with an
 ECN-capable transport protocol feed back this information to the
 sender. ECN is specified for TCP in such a way that only one
 feedback signal can be transmitted per Round-Trip Time (RTT).
 Recently, proposed mechanisms like Congestion Exposure (ConEx
 [RFC7713]), DCTCP [RFC8257] or L4S [I-D.ietf-tsvwg-l4s-arch] need to
 know when more than one marking is received in one RTT which is
 information that cannot be provided by the feedback scheme as
 specified in [RFC3168]. This document specifies an alternative
 feedback scheme that provides more accurate information and could be
 used by these new TCP extensions. A fuller treatment of the
 motivation for this specification is given in the associated
 requirements document [RFC7560].

 This documents specifies an experimental scheme for ECN feedback in
 the TCP header to provide more than one feedback signal per RTT. It
 will be called the more accurate ECN feedback scheme, or AccECN for
 short. If AccECN progresses from experimental to the standards
 track, it is intended to be a complete replacement for classic TCP/
 ECN feedback, not a fork in the design of TCP. AccECN feedback

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7560

Briscoe, et al. Expires September 6, 2020 [Page 3]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 complements TCP's loss feedback and it supplements classic TCP/ECN
 feedback, so its applicability is intended to include all public and
 private IP networks (and even any non-IP networks over which TCP is
 used today), whether or not any nodes on the path support ECN of
 whatever flavour.

 Until the AccECN experiment succeeds, [RFC3168] will remain as the
 only standards track specification for adding ECN to TCP. To avoid
 confusion, in this document we use the term 'classic ECN' for the
 pre-existing ECN specification [RFC3168].

 AccECN feedback overloads the two existing ECN flags and allocates
 the currently reserved flag (previously called NS) in the TCP header,
 to be used as one field indicating the number of congestion
 experienced marked packets. Given the new definitions of these three
 bits, both ends have to support the new wire protocol before it can
 be used. Therefore during the TCP handshake the two ends use these
 three bits in the TCP header to negotiate the most advanced feedback
 protocol that they can both support, in a way that is backward
 compatible with [RFC3168].

 AccECN is solely an (experimental) change to the TCP wire protocol;
 it only specifies the negotiation and signaling of more accurate ECN
 feedback from a TCP Data Receiver to a Data Sender. It is completely
 independent of how TCP might respond to congestion feedback, which is
 out of scope. For that we refer to [RFC3168] or any RFC that
 specifies a different response to TCP ECN feedback, for example:
 [RFC8257]; or ECN experiments such as those referred to in [RFC8311],
 namely: a TCP-based Low Latency Low Loss Scalable (L4S) congestion
 control [I-D.ietf-tsvwg-l4s-arch]; ECN-capable TCP control packets
 [I-D.ietf-tcpm-generalized-ecn], or Alternative Backoff with ECN
 (ABE) [RFC8511].

 It is recommended that the AccECN protocol is implemented alongside
 SACK [RFC2018] and the experimental ECN++ protocol
 [I-D.ietf-tcpm-generalized-ecn], which allows the ECN capability to
 be used on TCP control packets. Therefore, this specification does
 not discuss implementing AccECN alongside [RFC5562], which was an
 earlier experimental protocol with narrower scope than ECN++.

1.1. Document Roadmap

 The following introductory sections outline the goals of AccECN
 (Section 1.2) and the goal of experiments with ECN (Section 1.3) so
 that it is clear what success would look like. Then terminology is
 defined (Section 1.4) and a recap of existing prerequisite technology
 is given (Section 1.5).

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8511
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5562

Briscoe, et al. Expires September 6, 2020 [Page 4]

Internet-Draft Accurate TCP-ECN Feedback March 2020

Section 2 gives an informative overview of the AccECN protocol. Then
Section 3 gives the normative protocol specification. Section 4

 assesses the interaction of AccECN with commonly used variants of
 TCP, whether standardized or not. Section 5 summarizes the features
 and properties of AccECN.

Section 6 summarizes the protocol fields and numbers that IANA will
 need to assign and Section 7 points to the aspects of the protocol
 that will be of interest to the security community.

Appendix A gives pseudocode examples for the various algorithms that
 AccECN uses.

1.2. Goals

 [RFC7560] enumerates requirements that a candidate feedback scheme
 will need to satisfy, under the headings: resilience, timeliness,
 integrity, accuracy (including ordering and lack of bias),
 complexity, overhead and compatibility (both backward and forward).
 It recognizes that a perfect scheme that fully satisfies all the
 requirements is unlikely and trade-offs between requirements are
 likely. Section 5 presents the properties of AccECN against these
 requirements and discusses the trade-offs made.

 The requirements document recognizes that a protocol as ubiquitous as
 TCP needs to be able to serve as-yet-unspecified requirements.
 Therefore an AccECN receiver aims to act as a generic (dumb)
 reflector of congestion information so that in future new sender
 behaviours can be deployed unilaterally.

1.3. Experiment Goals

 TCP is critical to the robust functioning of the Internet, therefore
 any proposed modifications to TCP need to be thoroughly tested. The
 present specification describes an experimental protocol that adds
 more accurate ECN feedback to the TCP protocol. The intention is to
 specify the protocol sufficiently so that more than one
 implementation can be built in order to test its function, robustness
 and interoperability (with itself and with previous version of ECN
 and TCP).

 The experimental protocol will be considered successful if testing
 confirms that the proposed mechanism can be deployed at large scale.
 Testing will mostly focus on fall-back strategies in case of
 middlebox interference. Current recommended strategies are specified
 in Sections 3.1.4, 3.2.2.3, 3.2.2.4 and 3.2.3.2. The effectiveness
 of these strategies depends on the actual deployment situation of
 middleboxes. Therefore experimental verification to confirm large-

Briscoe, et al. Expires September 6, 2020 [Page 5]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 scale path traversal in the Internet is needed before finalizing this
 specification on the Standards Track.

 Another experimentation focus is the implementation feasibiliy of
 change-triggered ACKs as described in section 3.2.3.3. While on
 average this should not lead to a higher ACK rate, it changes the ACK
 pattern which can particularly have an impact on hardware offload.
 It is currently specified as a hard requirement, because the sender
 can exploit the predictability of the receiver's behaviour. However,
 further experimentation is needed to advise if will have to become
 just preferred behavior.

1.4. Terminology

 AccECN: The more accurate ECN feedback scheme will be called AccECN
 for short.

 Classic ECN: the ECN protocol specified in [RFC3168].

 Classic ECN feedback: the feedback aspect of the ECN protocol
 specified in [RFC3168], including generation, encoding,
 transmission and decoding of feedback, but not the Data Sender's
 subsequent response to that feedback.

 ACK: A TCP acknowledgement, with or without a data payload (ACK=1).

 Pure ACK: A TCP acknowledgement without a data payload.

 Acceptable packet / segment: A packet or segment that passes the
 acceptability tests in [RFC0793] and [RFC5961].

 TCP client: The TCP stack that originates a connection.

 TCP server: The TCP stack that responds to a connection request.

 Data Receiver: The endpoint of a TCP half-connection that receives
 data and sends AccECN feedback.

 Data Sender: The endpoint of a TCP half-connection that sends data
 and receives AccECN feedback.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14 [RFC2119]
 [RFC8174] when, and only when, they appear in all capitals, as shown
 here.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Briscoe, et al. Expires September 6, 2020 [Page 6]

Internet-Draft Accurate TCP-ECN Feedback March 2020

1.5. Recap of Existing ECN feedback in IP/TCP

 ECN [RFC3168] uses two bits in the IP header. Once ECN has been
 negotiated with the receiver at the transport layer, an ECN sender
 can set two possible codepoints (ECT(0) or ECT(1)) in the IP header
 to indicate an ECN-capable transport (ECT). If both ECN bits are
 zero, the packet is considered to have been sent by a Not-ECN-capable
 Transport (Not-ECT). When a network node experiences congestion, it
 will occasionally either drop or mark a packet, with the choice
 depending on the packet's ECN codepoint. If the codepoint is Not-
 ECT, only drop is appropriate. If the codepoint is ECT(0) or ECT(1),
 the node can mark the packet by setting both ECN bits, which is
 termed 'Congestion Experienced' (CE), or loosely a 'congestion mark'.
 Table 1 summarises these codepoints.

 +-------------------------+---------------+-------------------------+
 | IP-ECN codepoint | Codepoint | Description |
 | (binary) | name | |
 +-------------------------+---------------+-------------------------+
00	Not-ECT	Not ECN-Capable
		Transport
01	ECT(1)	ECN-Capable Transport
		(1)
10	ECT(0)	ECN-Capable Transport
		(0)
11	CE	Congestion Experienced
 +-------------------------+---------------+-------------------------+

 Table 1: The ECN Field in the IP Header

 In the TCP header the first two bits in byte 14 are defined as flags
 for the use of ECN (CWR and ECE in Figure 1 [RFC3168]). A TCP client
 indicates it supports ECN by setting ECE=CWR=1 in the SYN, and an
 ECN-enabled server confirms ECN support by setting ECE=1 and CWR=0 in
 the SYN/ACK. On reception of a CE-marked packet at the IP layer, the
 Data Receiver starts to set the Echo Congestion Experienced (ECE)
 flag continuously in the TCP header of ACKs, which ensures the signal
 is received reliably even if ACKs are lost. The TCP sender confirms
 that it has received at least one ECE signal by responding with the
 congestion window reduced (CWR) flag, which allows the TCP receiver
 to stop repeating the ECN-Echo flag. This always leads to a full RTT
 of ACKs with ECE set. Thus any additional CE markings arriving
 within this RTT cannot be fed back.

 The last bit in byte 13 of the TCP header was defined as the Nonce
 Sum (NS) for the ECN Nonce [RFC3540]. In the absence of widespread
 deployment RFC 3540 has been reclassified as historic [RFC8311] and

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311

Briscoe, et al. Expires September 6, 2020 [Page 7]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 the respective flag has been marked as "reserved", making this TCP
 flag available for use by the AccECN experiment instead.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | N | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | S | W | C | R | C | S | S | Y | I |
 | | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 1: The (post-ECN Nonce) definition of the TCP header flags

2. AccECN Protocol Overview and Rationale

 This section provides an informative overview of the AccECN protocol
 that will be normatively specified in Section 3

 Like the original TCP approach, the Data Receiver of each TCP half-
 connection sends AccECN feedback to the Data Sender on TCP
 acknowledgements, reusing data packets of the other half-connection
 whenever possible.

 The AccECN protocol has had to be designed in two parts:

 o an essential part that re-uses ECN TCP header bits to feed back
 the number of arriving CE marked packets. This provides more
 accuracy than classic ECN feedback, but limited resilience against
 ACK loss;

 o a supplementary part using a new AccECN TCP Option that provides
 additional feedback on the number of bytes that arrive marked with
 each of the three ECN codepoints (not just CE marks). This
 provides greater resilience against ACK loss than the essential
 feedback, but it is more likely to suffer from middlebox
 interference.

 The two part design was necessary, given limitations on the space
 available for TCP options and given the possibility that certain
 incorrectly designed middleboxes prevent TCP using any new options.

 The essential part overloads the previous definition of the three
 flags in the TCP header that had been assigned for use by ECN. This
 design choice deliberately replaces the classic ECN feedback
 protocol, rather than leaving classic ECN feedback intact and adding
 more accurate feedback separately because:

 o this efficiently reuses scarce TCP header space, given TCP option
 space is approaching saturation;

Briscoe, et al. Expires September 6, 2020 [Page 8]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 o a single upgrade path for the TCP protocol is preferable to a fork
 in the design;

 o otherwise classic and accurate ECN feedback could give conflicting
 feedback on the same segment, which could open up new security
 concerns and make implementations unnecessarily complex;

 o middleboxes are more likely to faithfully forward the TCP ECN
 flags than newly defined areas of the TCP header.

 AccECN is designed to work even if the supplementary part is removed
 or zeroed out, as long as the essential part gets through.

2.1. Capability Negotiation

 AccECN is a change to the wire protocol of the main TCP header,
 therefore it can only be used if both endpoints have been upgraded to
 understand it. The TCP client signals support for AccECN on the
 initial SYN of a connection and the TCP server signals whether it
 supports AccECN on the SYN/ACK. The TCP flags on the SYN that the
 client uses to signal AccECN support have been carefully chosen so
 that a TCP server will interpret them as a request to support the
 most recent variant of ECN feedback that it supports. Then the
 client falls back to the same variant of ECN feedback.

 An AccECN TCP client does not send the new AccECN Option on the SYN
 as SYN option space is limited. The TCP server sends the AccECN
 Option on the SYN/ACK and the client sends it on the first ACK to
 test whether the network path forwards the option correctly.

2.2. Feedback Mechanism

 A Data Receiver maintains four counters initialized at the start of
 the half-connection. Three count the number of arriving payload
 bytes marked CE, ECT(1) and ECT(0) respectively. The fourth counts
 the number of packets arriving marked with a CE codepoint (including
 control packets without payload if they are CE-marked).

 The Data Sender maintains four equivalent counters for the half
 connection, and the AccECN protocol is designed to ensure they will
 match the values in the Data Receiver's counters, albeit after a
 little delay.

 Each ACK carries the three least significant bits (LSBs) of the
 packet-based CE counter using the ECN bits in the TCP header, now
 renamed the Accurate ECN (ACE) field (see Figure 3 later). The 24
 LSBs of each byte counter are carried in the AccECN Option.

Briscoe, et al. Expires September 6, 2020 [Page 9]

Internet-Draft Accurate TCP-ECN Feedback March 2020

2.3. Delayed ACKs and Resilience Against ACK Loss

 With both the ACE and the AccECN Option mechanisms, the Data Receiver
 continually repeats the current LSBs of each of its respective
 counters. There is no need to acknowledge these continually repeated
 counters, so the congestion window reduced (CWR) mechanism is no
 longer used. Even if some ACKs are lost, the Data Sender should be
 able to infer how much to increment its own counters, even if the
 protocol field has wrapped.

 The 3-bit ACE field can wrap fairly frequently. Therefore, even if
 it appears to have incremented by one (say), the field might have
 actually cycled completely then incremented by one. The Data
 Receiver is not allowed to delay sending an ACK to such an extent
 that the ACE field would cycle. However cycling is still a
 possibility at the Data Sender because a whole sequence of ACKs
 carrying intervening values of the field might all be lost or delayed
 in transit.

 The fields in the AccECN Option are larger, but they will increment
 in larger steps because they count bytes not packets. Nonetheless,
 their size has been chosen such that a whole cycle of the field would
 never occur between ACKs unless there had been an infeasibly long
 sequence of ACK losses. Therefore, as long as the AccECN Option is
 available, it can be treated as a dependable feedback channel.

 If the AccECN Option is not available, e.g. it is being stripped by a
 middlebox, the AccECN protocol will only feed back information on CE
 markings (using the ACE field). Although not ideal, this will be
 sufficient, because it is envisaged that neither ECT(0) nor ECT(1)
 will ever indicate more severe congestion than CE, even though future
 uses for ECT(0) or ECT(1) are still unclear [RFC8311]. Because the
 3-bit ACE field is so small, when it is the only field available the
 Data Sender has to interpret it assuming the most likely wrap, but
 with a degree of conservatism.

 Certain specified events trigger the Data Receiver to include an
 AccECN Option on an ACK. The rules are designed to ensure that the
 order in which different markings arrive at the receiver is
 communicated to the sender (as long as options are reaching the
 sender and as long as there is no ACK loss). Implementations are
 encouraged to send an AccECN Option more frequently, but this is left
 up to the implementer.

https://datatracker.ietf.org/doc/html/rfc8311

Briscoe, et al. Expires September 6, 2020 [Page 10]

Internet-Draft Accurate TCP-ECN Feedback March 2020

2.4. Feedback Metrics

 The CE packet counter in the ACE field and the CE byte counter in the
 AccECN Option both provide feedback on received CE-marks. The CE
 packet counter includes control packets that do not have payload
 data, while the CE byte counter solely includes marked payload bytes.
 If both are present, the byte counter in the option will provide the
 more accurate information needed for modern congestion control and
 policing schemes, such as L4S, DCTCP or ConEx. If the option is
 stripped, a simple algorithm to estimate the number of marked bytes
 from the ACE field is given in Appendix A.3.

 Feedback in bytes is recommended in order to protect against the
 receiver using attacks similar to 'ACK-Division' to artificially
 inflate the congestion window, which is why [RFC5681] now recommends
 that TCP counts acknowledged bytes not packets.

2.5. Generic (Dumb) Reflector

 The ACE field provides information about CE markings on both data and
 control packets. According to [RFC3168] the Data Sender is meant to
 set control packets to Not-ECT. However, mechanisms in certain
 private networks (e.g. data centres) set control packets to be ECN
 capable because they are precisely the packets that performance
 depends on most.

 For this reason, AccECN is designed to be a generic reflector of
 whatever ECN markings it sees, whether or not they are compliant with
 a current standard. Then as standards evolve, Data Senders can
 upgrade unilaterally without any need for receivers to upgrade too.
 It is also useful to be able to rely on generic reflection behaviour
 when senders need to test for unexpected interference with markings
 (for instance Section 3.2.2.3, Section 3.2.2.4 and Section 3.2.3.2 of
 the present document, para 2 of Section 20.2 of [RFC3168]) and
 [I-D.kuehlewind-tcpm-ecn-fallback].

 The initial SYN is the most critical control packet, so AccECN
 provides feedback on its ECN marking. Although RFC 3168 prohibits an
 ECN-capable SYN, providing feedback of ECN marking on the SYN
 supports future scenarios in which SYNs might be ECN-enabled (without
 prejudging whether they ought to be). For instance, [RFC8311]
 updates this aspect of RFC 3168 to allow experimentation with ECN-
 capable TCP control packets.

 Even if the TCP client (or server) has set the SYN (or SYN/ACK) to
 not-ECT in compliance with RFC 3168, feedback on the state of the ECN
 field when it arrives at the receiver could still be useful, because
 middleboxes have been known to overwrite the ECN IP field as if it is

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168#section-20.2
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 11]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 still part of the old Type of Service (ToS) field [Mandalari18]. If
 a TCP client has set the SYN to Not-ECT, but receives feedback that
 the ECN field on the SYN arrived with a different codepoint, it can
 detect such middlebox interference and send Not-ECT for the rest of
 the connection (see [I-D.kuehlewind-tcpm-ecn-fallback]). Today, if a
 TCP server receives ECT or CE on a SYN, it cannot know whether it is
 invalid (or valid) because only the TCP client knows whether it
 originally marked the SYN as Not-ECT (or ECT). Therefore, prior to
 AccECN, the server's only safe course of action was to disable ECN
 for the connection. Instead, the AccECN protocol allows the server
 to feed back the received ECN field to the client, which then has all
 the information to decide whether the connection has to fall-back
 from supporting ECN (or not).

3. AccECN Protocol Specification

3.1. Negotiating to use AccECN

3.1.1. Negotiation during the TCP handshake

 Given the ECN Nonce [RFC3540] has been reclassified as historic
 [RFC8311], the present specification re-allocates the TCP flag at bit
 7 of the TCP header, which was previously called NS (Nonce Sum), as
 the AE (Accurate ECN) flag (see IANA Considerations in Section 6) as
 shown below.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | A | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | E | W | C | R | C | S | S | Y | I |
 | | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 2: The (post-AccECN) definition of the TCP header flags during
 the TCP handshake

 During the TCP handshake at the start of a connection, to request
 more accurate ECN feedback the TCP client (host A) MUST set the TCP
 flags AE=1, CWR=1 and ECE=1 in the initial SYN segment.

 If a TCP server (B) that is AccECN-enabled receives a SYN with the
 above three flags set, it MUST set both its half connections into
 AccECN mode. Then it MUST set the TCP flags on the SYN/ACK to one of
 the 4 values shown in the top block of Table 2 to confirm that it
 supports AccECN. The TCP server MUST NOT set one of these 4
 combination of flags on the SYN/ACK unless the preceding SYN
 requested support for AccECN as above.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311

Briscoe, et al. Expires September 6, 2020 [Page 12]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 A TCP server in AccECN mode MUST set the AE, CWR and ECE TCP flags on
 the SYN/ACK to the value in Table 2 that feeds back the IP-ECN field
 that arrived on the SYN. This applies whether or not the server
 itself supports setting the IP-ECN field on a SYN or SYN/ACK (see

Section 2.5 for rationale).

 Once a TCP client (A) has sent the above SYN to declare that it
 supports AccECN, and once it has received the above SYN/ACK segment
 that confirms that the TCP server supports AccECN, the TCP client
 MUST set both its half connections into AccECN mode.

 Once in AccECN mode, a TCP client or server has the rights and
 obligations to participate in the ECN protocol defined in

Section 3.1.5.

 The procedure for the client to follow if a SYN/ACK does not arrive
 before its retransmission timer expires is given in Section 3.1.4.

3.1.2. Backward Compatibility

 The three flags set to 1 to indicate AccECN support on the SYN have
 been carefully chosen to enable natural fall-back to prior stages in
 the evolution of ECN, as above. Table 2 tabulates all the
 negotiation possibilities for ECN-related capabilities that involve
 at least one AccECN-capable host. The entries in the first two
 columns have been abbreviated, as follows:

 AccECN: More Accurate ECN Feedback (the present specification)

 Nonce: ECN Nonce feedback [RFC3540]

 ECN: 'Classic' ECN feedback [RFC3168]

 No ECN: Not-ECN-capable. Implicit congestion notification using
 packet drop.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 13]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 +--------+--------+------------+-----------+------------------------+
 | A | B | SYN A->B | SYN/ACK | Feedback Mode |
 | | | | B->A | |
 +--------+--------+------------+-----------+------------------------+
		AE CWR ECE	AE CWR	
			ECE	
AccECN	AccECN	1 1 1	0 1 0	AccECN (no ECT on SYN)
AccECN	AccECN	1 1 1	0 1 1	AccECN (ECT1 on SYN)
AccECN	AccECN	1 1 1	1 0 0	AccECN (ECT0 on SYN)
AccECN	AccECN	1 1 1	1 1 0	AccECN (CE on SYN)
AccECN	Nonce	1 1 1	1 0 1	(Reserved)
AccECN	ECN	1 1 1	0 0 1	classic ECN
AccECN	No ECN	1 1 1	0 0 0	Not ECN
Nonce	AccECN	0 1 1	0 0 1	classic ECN
ECN	AccECN	0 1 1	0 0 1	classic ECN
No ECN	AccECN	0 0 0	0 0 0	Not ECN
AccECN	Broken	1 1 1	1 1 1	Not ECN
 +--------+--------+------------+-----------+------------------------+

 Table 2: ECN capability negotiation between Client (A) and Server (B)

 Table 2 is divided into blocks each separated by an empty row.

 1. The top block shows the case already described in Section 3.1
 where both endpoints support AccECN and how the TCP server (B)
 indicates congestion feedback.

 2. The second block shows the cases where the TCP client (A)
 supports AccECN but the TCP server (B) supports some earlier
 variant of TCP feedback, indicated in its SYN/ACK. Therefore, as
 soon as an AccECN-capable TCP client (A) receives the SYN/ACK
 shown it MUST set both its half connections into the feedback
 mode shown in the rightmost column. If it has set itself into
 classic ECN feedback mode it MUST then comply with [RFC3168].

 The server response called 'Nonce' in the table is now historic.
 For an AccECN implementation, there is no need to recognize or
 support ECN Nonce feedback [RFC3540], which has been reclassified
 as historic [RFC8311]. AccECN is compatible with alternative ECN
 feedback integrity approaches (see Section 4.3).

 3. The third block shows the cases where the TCP server (B) supports
 AccECN but the TCP client (A) supports some earlier variant of
 TCP feedback, indicated in its SYN.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311

Briscoe, et al. Expires September 6, 2020 [Page 14]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 When an AccECN-enabled TCP server (B) receives a SYN with
 AE,CWR,ECE = 0,1,1 it MUST do one of the following:

 * set both its half connections into the classic ECN feedback
 mode and return a SYN/ACK with AE, CWR, ECE = 0,0,1 as shown.
 Then it MUST comply with [RFC3168].

 * set both its half-connections into No ECN mode and return a
 SYN/ACK with AE,CWR,ECE = 0,0,0, then continue with ECN
 disabled. This latter case is unlikely to be desirable, but
 it is allowed as a possibility, e.g. for minimal TCP
 implementations.

 When an AccECN-enabled TCP server (B) receives a SYN with
 AE,CWR,ECE = 0,0,0 it MUST set both its half connections into the
 Not ECN feedback mode, return a SYN/ACK with AE,CWR,ECE = 0,0,0
 as shown and continue with ECN disabled.

 4. The fourth block displays a combination labelled `Broken'. Some
 older TCP server implementations incorrectly set the reserved
 flags in the SYN/ACK by reflecting those in the SYN. Such broken
 TCP servers (B) cannot support ECN, so as soon as an AccECN-
 capable TCP client (A) receives such a broken SYN/ACK it MUST
 fall back to Not ECN mode for both its half connections and
 continue with ECN disabled.

 The following additional rules do not fit the structure of the table,
 but they complement it:

 Simultaneous Open: An originating AccECN Host (A), having sent a SYN
 with AE=1, CWR=1 and ECE=1, might receive another SYN from host B.
 Host A MUST then enter the same feedback mode as it would have
 entered had it been a responding host and received the same SYN.
 Then host A MUST send the same SYN/ACK as it would have sent had
 it been a responding host.

 In-window SYN during TIME-WAIT: Many TCP implementations create a
 new TCP connection if they receive an in-window SYN packet during
 TIME-WAIT state. When a TCP host enters TIME-WAIT or CLOSED
 state, it should ignore any previous state about the negotiation
 of AccECN for that connection and renegotiate the feedback mode
 according to Table 2.

3.1.3. Forward Compatibility

 If a TCP server that implements AccECN receives a SYN with the three
 TCP header flags (AE, CWR and ECE) set to any combination other than
 000, 011 or 111, it MUST negotiate the use of AccECN as if they had

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 15]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 been set to 111. This ensures that future uses of the other
 combinations on a SYN can rely on consistent behaviour from the
 installed base of AccECN servers.

 For the avoidance of doubt, the behaviour described in the present
 specification applies whether or not the three remaining reserved TCP
 header flags are zero.

3.1.4. Retransmission of the SYN

 If the sender of an AccECN SYN times out before receiving the SYN/
 ACK, the sender SHOULD attempt to negotiate the use of AccECN at
 least one more time by continuing to set all three TCP ECN flags on
 the first retransmitted SYN (using the usual retransmission time-
 outs). If this first retransmission also fails to be acknowledged,
 the sender SHOULD send subsequent retransmissions of the SYN with the
 three TCP-ECN flags cleared (AE=CWR=ECE=0). A retransmitted SYN MUST
 use the same ISN as the original SYN.

 Retrying once before fall-back adds delay in the case where a
 middlebox drops an AccECN (or ECN) SYN deliberately. However,
 current measurements imply that a drop is less likely to be due to
 middlebox interference than other intermittent causes of loss, e.g.
 congestion, wireless interference, etc.

 Implementers MAY use other fall-back strategies if they are found to
 be more effective (e.g. attempting to negotiate AccECN on the SYN
 only once or more than twice (most appropriate during high levels of
 congestion). However, other fall-back strategies will need to follow
 all the rules in Section 3.1.5, which concern behaviour when SYNs or
 SYN/ACKs negotiating different types of feedback have been sent
 within the same connection.

 Further it may make sense to also remove any other new or
 experimental fields or options on the SYN in case a middlebox might
 be blocking them, although the required behaviour will depend on the
 specification of the other option(s) and any attempt to co-ordinate
 fall-back between different modules of the stack.

 Whichever fall-back strategy is used, the TCP initiator SHOULD cache
 failed connection attempts. If it does, it SHOULD NOT give up
 attempting to negotiate AccECN on the SYN of subsequent connection
 attempts until it is clear that the blockage is persistently and
 specifically due to AccECN. The cache should be arranged to expire
 so that the initiator will infrequently attempt to check whether the
 problem has been resolved.

Briscoe, et al. Expires September 6, 2020 [Page 16]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 The fall-back procedure if the TCP server receives no ACK to
 acknowledge a SYN/ACK that tried to negotiate AccECN is specified in

Section 3.2.3.2.

3.1.5. Implications of AccECN Mode

Section 3.1.1 describes the only ways that a host can enter AccECN
 mode, whether as a client or as a server.

 As a Data Sender, a host in AccECN mode has the rights and
 obligations concerning the use of ECN defined below, which build on
 those in [RFC3168] as updated by [RFC8311]:

 o Using ECT:

 * It can set an ECT codepoint in the IP header of packets to
 indicate to the network that the transport is capable and
 willing to participate in ECN for this packet.

 * It does not have to set ECT on any packet (for instance if it
 has reason to believe such a packet would be blocked).

 * If for any reason it is not willing to provide ECN feedback on
 a particular TCP connection, to indicate this unwillingness it
 SHOULD clear the AE, CWR and ECE flags in all SYN and/or SYN/
 ACK packets that it sends.

 o Switching feedback negotiation (e.g. fall-back):

 * It SHOULD NOT set ECT on any packet if it has received at least
 one valid SYN or Acceptable SYN/ACK with AE=CWR=ECE=0. A
 "valid SYN" has the same port numbers and the same ISN as the
 SYN that caused the server to enter AccECN mode.

 * It MUST NOT send an ECN-setup SYN [RFC3168] within the same
 connection as it has sent a SYN requesting AccECN feedback.

 * It MUST NOT send an ECN-setup SYN/ACK [RFC3168] within the same
 connection as it has sent a SYN/ACK agreeing to use AccECN
 feedback.

 The above rules are necessary because, when one peer negotiates
 the feedback mode in two different types of handshake, it is not
 possible for the other peer to know for certain which handshake
 packet(s) the other end eventually receives or in which order it
 receives them. So the two peers can end up using difference
 feedback modes without knowing it.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 17]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 o Congestion response:

 * It is still obliged to respond appropriately to AccECN feedback
 with congestion indications on packets it had previously sent,
 as defined in Section 6.1 of [RFC3168] and updated by Sections
 2.1 and 4.1 of [RFC8311].

 * The commitment to respond appropriately to incoming indications
 of congestion remains even if it sends a SYN packet with
 AE=CWR=ECE=0, in a later transmission within the same TCP
 connection.

 * Unlike an RFC 3168 data sender, it MUST NOT set CWR to indicate
 it has received and responded to indications of congestion (for
 the avoidance of doubt, this does not preclude it from setting
 the bits of the ACE counter field, which includes an overloaded
 use of the same bit).

 As a Data Receiver:

 o a host in AccECN mode MUST feed back the information in the IP-ECN
 field on incoming packets using Accurate ECN feedback, as
 specified in Section 3.2 below.

 o if it receives an ECN-setup SYN or ECN-setup SYN/ACK [RFC3168]
 during the same connection as it receives a SYN requesting AccECN
 feedback or a SYN/ACK agreeing to use AccECN feedback, it MUST
 reset the connection with a RST packet.

 o it MUST NOT use reception of packets with ECT set in the IP-ECN
 field as an implicit signal that the peer is ECN-capable. Reason:
 ECT at the IP layer does not explicitly confirm the peer has the
 correct ECN feedback logic, and the packets could have been
 mangled at the IP layer.

3.2. AccECN Feedback

 Each Data Receiver of each half connection maintains four counters,
 r.cep, r.ceb, r.e0b and r.e1b:

 o The Data Receiver MUST increment the CE packet counter (r.cep),
 for every Acceptable packet that it receives with the CE code
 point in the IP ECN field, including CE marked control packets but
 excluding CE on SYN packets (SYN=1; ACK=0).

 o The Data Receiver MUST increment the r.ceb, r.e0b or r.e1b byte
 counters by the number of TCP payload octets in Acceptable packets
 marked respectively with the CE, ECT(0) and ECT(1) codepoint in

https://datatracker.ietf.org/doc/html/rfc3168#section-6.1
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 18]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 their IP-ECN field, including any payload octets on control
 packets, but not including any payload octets on SYN packets
 (SYN=1; ACK=0).

 Each Data Sender of each half connection maintains four counters,
 s.cep, s.ceb, s.e0b and s.e1b intended to track the equivalent
 counters at the Data Receiver.

 A Data Receiver feeds back the CE packet counter using the Accurate
 ECN (ACE) field, as explained in Section 3.2.2. And it feeds back
 all the byte counters using the AccECN TCP Option, as specified in

Section 3.2.3.

 Whenever a host feeds back the value of any counter, it MUST report
 the most recent value, no matter whether it is in a pure ACK, an ACK
 with new payload data or a retransmission. Therefore the feedback
 carried on a retransmitted packet is unlikely to be the same as the
 feedback on the original packet.

3.2.1. Initialization of Feedback Counters

 When a host first enters AccECN mode, in its role as a Data Receiver
 it initializes its counters to r.cep = 5 and r.ceb = 0, The initial
 values of the other two byte counters depend on the Data Receiver's
 choice of the order of fields it will use in the AccECN TCP Option
 (see Section 3.2.3). If field order 0, it will initialize the
 remaining counters to r.e0b = 1; r.e1b.= 0. If field order 1, it
 will initialize them to r.e0b = 0 and r.e1b.= 0x800001.

 Non-zero initial values are used to support a stateless handshake
 (see Section 4.1) and to be distinct from cases where the fields are
 incorrectly zeroed (e.g. by middleboxes - see Section 3.2.3.2.4).

 When a host enters AccECN mode, in its role as a Data Sender it
 initializes its counters to s.cep = 5 and s.ceb = 0. The initial
 values of the other two byte counters depend on the peer's choice of
 the order of fields it will use in the AccECN TCP Option (see

Section 3.2.3). If field order 0, it will initialize the remaining
 counters to s.e0b = 1; s.e1b.= 0. If field order 1, it will
 initialize them to s.e0b = 0 and s.e1b.= 0x800001.

3.2.2. The ACE Field

 After AccECN has been negotiated on the SYN and SYN/ACK, both hosts
 overload the three TCP flags (AE, CWR and ECE) in the main TCP header
 as one 3-bit field. Then the field is given a new name, ACE, as
 shown in Figure 3.

Briscoe, et al. Expires September 6, 2020 [Page 19]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | | U | A | P | R | S | F |
 | Header Length | Reserved | ACE | R | C | S | S | Y | I |
 | | | | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 3: Definition of the ACE field within bytes 13 and 14 of the
 TCP Header (when AccECN has been negotiated and SYN=0).

 The original definition of these three flags in the TCP header,
 including the addition of support for the ECN Nonce, is shown for
 comparison in Figure 1. This specification does not rename these
 three TCP flags to ACE unconditionally; it merely overloads them with
 another name and definition once an AccECN connection has been
 established.

 With one exception (Section 3.2.2.1), a host with both of its half-
 connections in AccECN mode MUST interpret the AE, CWR and ECE flags
 as the 3-bit ACE counter on a segment with the SYN flag cleared
 (SYN=0). On such a packet, a Data Receiver MUST encode the three
 least significant bits of its r.cep counter into the ACE field that
 it feeds back to the Data Sender. A host MUST NOT interpret the 3
 flags as a 3-bit ACE field on any segment with SYN=1 (whether ACK is
 0 or 1), or if AccECN negotiation is incomplete or has not succeeded.

 Both parts of each of these conditions are equally important. For
 instance, even if AccECN negotiation has been successful, the ACE
 field is not defined on any segments with SYN=1 (e.g. a
 retransmission of an unacknowledged SYN/ACK, or when both ends send
 SYN/ACKs after AccECN support has been successfully negotiated during
 a simultaneous open).

3.2.2.1. ACE Field on the ACK of the SYN/ACK

 A TCP client (A) in AccECN mode MUST feed back which of the 4
 possible values of the IP-ECN field was on the SYN/ACK by writing it
 into the ACE field of a pure ACK with no SACK blocks using the binary
 encoding in Table 3 (which is the same as that used on the SYN/ACK in
 Table 2). This shall be called the handshake encoding of the ACE
 field, and it is the only exception to the rule that the ACE field
 carries the 3 least significant bits of the r.cep counter on packets
 with SYN=0.

 Normally, a TCP client acknowledges a SYN/ACK with an ACK that
 satisfies the above conditions anyway (SYN=0, no data, no SACK
 blocks). If an AccECN TCP client intends to acknowledge the SYN/ACK
 with a packet that does not satisfy these conditions (e.g. it has

Briscoe, et al. Expires September 6, 2020 [Page 20]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 data to include on the ACK), it SHOULD first send a pure ACK that
 does satisfy these conditions (see Section 4.2), so that it can feed
 back which of the four values of the IP-ECN field arrived on the SYN/
 ACK. A valid exception to this "SHOULD" would be where the
 implementation will only be used in an environment where mangling of
 the ECN field is unlikely.

 +---------------------+---------------------+-----------------------+
 | IP-ECN codepoint on | ACE on pure ACK of | r.cep of client in |
 | SYN/ACK | SYN/ACK | AccECN mode |
 +---------------------+---------------------+-----------------------+
Not-ECT	0b010	5
ECT(1)	0b011	5
ECT(0)	0b100	5
CE	0b110	6
 +---------------------+---------------------+-----------------------+

 Table 3: The encoding of the ACE field in the ACK of the SYN-ACK to
 reflect the SYN-ACK's IP-ECN field

 When an AccECN server in SYN-RCVD state receives a pure ACK with
 SYN=0 and no SACK blocks, instead of treating the ACE field as a
 counter, it MUST infer the meaning of each possible value of the ACE
 field from Table 4, which also shows the value that an AccECN server
 MUST set s.cep to as a result.

 Given this encoding of the ACE field on the ACK of a SYN/ACK is
 exceptional, an AccECN server using large receive offload (LRO) might
 prefer to disable LRO until such an ACK has transitioned it out of
 SYN-RCVD state.

 +---------------+-----------------------------+---------------------+
 | ACE on ACK of | IP-ECN codepoint on SYN/ACK | s.cep of server in |
 | SYN/ACK | inferred by server | AccECN mode |
 +---------------+-----------------------------+---------------------+
0b000	{Notes 1, 3}	Disable ECN
0b001	{Notes 2, 3}	5
0b010	Not-ECT	5
0b011	ECT(1)	5
0b100	ECT(0)	5
0b101	Currently Unused {Note 2}	5
0b110	CE	6
0b111	Currently Unused {Note 2}	5
 +---------------+-----------------------------+---------------------+

 Table 4: Meaning of the ACE field on the ACK of the SYN/ACK

Briscoe, et al. Expires September 6, 2020 [Page 21]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 {Note 1}: If the server is in AccECN mode, the value of zero raises
 suspicion of zeroing of the ACE field on the path (see

Section 3.2.2.3).

 {Note 2}: If the server is in AccECN mode, these values are Currently
 Unused but the AccECN server's behaviour is still defined for forward
 compatibility. Then the designer of a future protocol can know for
 certain what AccECN servers will do with these codepoints.

 {Note 3}: In the case where a server that implements AccECN is also
 using a stateless handshake (termed a SYN cookie) it will not
 remember whether it entered AccECN mode. The values 0b000 or 0b001
 will remind it that it did not enter AccECN mode, because AccECN does
 not use them (see Section 4.1 for details). If a stateless server
 that implements AccECN receives either of these two values in the
 ACK, its action is implementation-dependent and outside the scope of
 this spec, It will certainly not take the action in the third column
 because, after it receives either of these values, it is not in
 AccECN mode. I.e., it will not disable ECN (at least not just
 because ACE is 0b000) and it will not set s.cep.

3.2.2.2. Encoding and Decoding Feedback in the ACE Field

 Whenever the Data Receiver sends an ACK with SYN=0 (with or without
 data), unless the handshake encoding in Section 3.2.2.1 applies, the
 Data Receiver MUST encode the least significant 3 bits of its r.cep
 counter into the ACE field (see Appendix A.2).

 Whenever the Data Sender receives an ACK with SYN=0 (with or without
 data), it first checks whether it has already been superseded by
 another ACK in which case it ignores the ECN feedback. If the ACK
 has not been superseded, and if the special handshake encoding in

Section 3.2.2.1 does not apply, the Data Sender decodes the ACE field
 as follows (see Appendix A.2 for examples).

 o It takes the least significant 3 bits of its local s.cep counter
 and subtracts them from the incoming ACE counter to work out the
 minimum positive increment it could apply to s.cep (assuming the
 ACE field only wrapped at most once).

 o It then follows the safety procedures in Section 3.2.2.5.2 to
 calculate or estimate how many packets the ACK could have
 acknowledged under the prevailing conditions to determine whether
 the ACE field might have wrapped more than once.

 The encode/decode procedures during the three-way handshake are
 exceptions to the general rules given so far, so they are spelled out
 step by step below for clarity:

Briscoe, et al. Expires September 6, 2020 [Page 22]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 o If a TCP server in AccECN mode receives a CE mark in the IP-ECN
 field of a SYN (SYN=1, ACK=0), it MUST NOT increment r.cep (it
 remains at its initial value of 5).

 Reason: It would be redundant for the server to include CE-marked
 SYNs in its r.cep counter, because it already reliably delivers
 feedback of any CE marking on the SYN/ACK using the encoding in
 Table 2. This also ensures that, when the server starts using the
 ACE field, it has not unnecessarily consumed more than one initial
 value, given they can be used to negotiate variants of the AccECN
 protocol (see Appendix B.3).

 o If a TCP client in AccECN mode receives CE feedback in the TCP
 flags of a SYN/ACK, it MUST NOT increment s.cep (it remains at its
 initial value of 5), so that it stays in step with r.cep on the
 server. Nonetheless, the TCP client still triggers the congestion
 control actions necessary to respond to the CE feedback.

 o If a TCP client in AccECN mode receives a CE mark in the IP-ECN
 field of a SYN/ACK, it MUST increment r.cep, but no more than once
 no matter how many CE-marked SYN/ACKs it receives (i.e.
 incremented from 5 to 6, but no further).

 Reason: Incrementing r.cep ensures the client will eventually
 deliver any CE marking to the server reliably when it starts using
 the ACE field. Even though the client also feeds back any CE
 marking on the ACK of the SYN/ACK using the encoding in Table 3,
 this ACK is not delivered reliably, so it can be considered as a
 timely notification that is redundant but unreliable. The client
 does not increment r.cep more than once, because the server can
 only increment s.cep once (see next bullet). Also, this limits
 the unnecessarily consumed initial values of the ACE field to two.

 o If a TCP server in AccECN mode and in SYN-RCVD state receives CE
 feedback in the TCP flags of a pure ACK with no SACK blocks, it
 MUST increment s.cep (from 5 to 6). The TCP server then triggers
 the congestion control actions necessary to respond to the CE
 feedback.

 Reasoning: The TCP server can only increment s.cep once, because
 the first ACK it receives will cause it to transition out of SYN-
 RCVD state. The server's congestion response would be no
 different even if it could receive feedback of more than one CE-
 marked SYN/ACK.

 Once the TCP server transitions to ESTABLISHED state, it might
 later receive other pure ACK(s) with the handshake encoding in the
 ACE field. The conditions for this to occur are quite unusual,

Briscoe, et al. Expires September 6, 2020 [Page 23]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 but not impossible, e.g. a SYN/ACK (or ACK of the SYN/ACK) that is
 delayed for longer than the server's retransmission timeout; or
 packet duplication by the network. Nonetheless, once in the
 ESTABLISHED state, the server will consider the ACE field to be
 encoded as the normal ACE counter on all packets with SYN=0 (given
 it will be following the above rule in this bullet). The server
 MAY include a test to avoid this case.

3.2.2.3. Testing for Zeroing of the ACE Field

Section 3.2.2 required the Data Receiver to initialize the r.cep
 counter to a non-zero value. Therefore, in either direction the
 initial value of the ACE counter ought to be non-zero.

 If AccECN has been successfully negotiated, the Data Sender SHOULD
 check the value of the ACE counter in the first packet (with or
 without data) that arrives with SYN=0. If the value of this ACE
 field is zero (0b000), the Data Sender disables sending ECN-capable
 packets for the remainder of the half-connection by setting the IP/
 ECN field in all subsequent packets to Not-ECT.

 Usually, the server checks the ACK of the SYN/ACK from the client,
 while the client checks the first data segment from the server.
 However, if reordering occurs, "the first packet ... that arrives"
 will not necessarily be the same as the first packet in sequence
 order. The test has been specified loosely like this to simplify
 implementation, and because it would not have been any more precise
 to have specified the first packet in sequence order, which would not
 necessarily be the first ACE counter that the Data Receiver fed back
 anyway, given it might have been a retransmission.

 The possibility of re-ordering means that there is a small chance
 that the ACE field on the first packet to arrive is genuinely zero
 (without middlebox interference). This would cause a host to
 unnecessarily disable ECN for a half connection. Therefore, in
 environments where there is no evidence of the ACE field being
 zeroed, implementations can skip this test.

 Note that the Data Sender MUST NOT test whether the arriving counter
 in the initial ACE field has been initialized to a specific valid
 value - the above check solely tests whether the ACE fields have been
 incorrectly zeroed. This allows hosts to use different initial
 values as an additional signalling channel in future.

Briscoe, et al. Expires September 6, 2020 [Page 24]

Internet-Draft Accurate TCP-ECN Feedback March 2020

3.2.2.4. Testing for Mangling of the IP/ECN Field

 The value of the ACE field on the SYN/ACK indicates the value of the
 IP/ECN field when the SYN arrived at the server. The client can
 compare this with how it originally set the IP/ECN field on the SYN.
 If this comparison implies an unsafe transition (see below) of the
 IP/ECN field, for the remainder of the connection the client MUST NOT
 send ECN-capable packets, but it MUST continue to feed back any ECN
 markings on arriving packets.

 The value of the ACE field on the last ACK of the 3WHS indicates the
 value of the IP/ECN field when the SYN/ACK arrived at the client.
 The server can compare this with how it originally set the IP/ECN
 field on the SYN/ACK. If this comparison implies an unsafe
 transition of the IP/ECN field, for the remainder of the connection
 the server MUST NOT send ECN-capable packets, but it MUST continue to
 feedback any ECN markings on arriving packets.

 The ACK of the SYN/ACK is not reliably delivered (nonetheless, the
 count of CE marks is still eventually delivered reliably). If this
 ACK does not arrive, the server can continue to send ECN-capable
 packets without having tested for mangling of the IP/ECN field on the
 SYN/ACK. Experiments with AccECN deployment will assess whether this
 limitation has any effect in practice.

 Invalid transitions of the IP/ECN field are defined in [RFC3168] and
 repeated here for convenience:

 o the not-ECT codepoint changes;

 o either ECT codepoint transitions to not-ECT;

 o the CE codepoint changes.

RFC 3168 says that a router that changes ECT to not-ECT is invalid
 but safe. However, from a host's viewpoint, this transition is
 unsafe because it could be the result of two transitions at different
 routers on the path: ECT to CE (safe) then CE to not-ECT (unsafe).
 This scenario could well happen where an ECN-enabled home router
 congests its upstream mobile broadband bottleneck link, then the
 ingress to the mobile network clears the ECN field [Mandalari18].

 The above fall-back behaviours are necessary in case mangling of the
 IP/ECN field is asymmetric, which is currently common over some
 mobile networks [Mandalari18]. Then one end might see no unsafe
 transition and continue sending ECN-capable packets, while the other
 end sees an unsafe transition and stops sending ECN-capable packets.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 25]

Internet-Draft Accurate TCP-ECN Feedback March 2020

3.2.2.5. Safety against Ambiguity of the ACE Field

 If too many CE-marked segments are acknowledged at once, or if a long
 run of ACKs is lost or thinned out, the 3-bit counter in the ACE
 field might have cycled between two ACKs arriving at the Data Sender.
 The following safety procedures minimize this ambiguity.

3.2.2.5.1. Data Receiver Safety Procedures

 An AccECN Data Receiver:

 o SHOULD immediately send an ACK whenever a data packet marked CE
 arrives after the previous data packet was not CE.

 o MUST immediately send an ACK once 'n' CE marks have arrived since
 the previous ACK, where 'n' SHOULD be 2 and MUST be no greater
 than 6.

 These rules for when to send an ACK are designed to be complemented
 by those in Section 3.2.3.3, which concern whether the AccECN TCP
 Option ought to be included on ACKs.

 For the avoidance of doubt, the change-triggered ACK mechanism is
 deliberately worded to solely apply to data packets, and to ignore
 the arrival of a control packet with no payload, because it is
 important that TCP does not acknowledge pure ACKs. The change-
 triggered ACK approach can lead to some additional ACKs but it feeds
 back the timing and the order in which ECN marks are received with
 minimal additional complexity. If only CE marks are infrequent, or
 there are multiple marks in a row, the additional load will be low.
 Other marking patterns could increase the load significantly.
 Investigating the additional load is a goal of the proposed
 experiment.

 Even though the first bullet is stated as a "SHOULD", it is important
 for a transition to immediately trigger an ACK if at all possible, so
 that the Data Sender can rely on change-triggered ACKs to detect
 queue growth as soon as possible, e.g. at the start of a flow. This
 requirement can only be relaxed if certain offload hardware needed
 for high performance cannot support change-triggered ACKs (although
 high performance protocols such as DCTCP already successfully use
 change-triggered ACKs). One possible experimental compromise would
 be for the receiver to heuristically detect whether the sender is in
 slow-start, then to implement change-triggered ACKs while the sender
 is in slow-start, and offload otherwise.

Briscoe, et al. Expires September 6, 2020 [Page 26]

Internet-Draft Accurate TCP-ECN Feedback March 2020

3.2.2.5.2. Data Sender Safety Procedures

 If the Data Sender has not received AccECN TCP Options to give it
 more dependable information, and it detects that the ACE field could
 have cycled, it SHOULD deem whether it cycled by taking the safest
 likely case under the prevailing conditions. It can detect if the
 counter could have cycled by using the jump in the acknowledgement
 number since the last ACK to calculate or estimate how many segments
 could have been acknowledged. An example algorithm to implement this
 policy is given in Appendix A.2. An implementer MAY develop an
 alternative algorithm as long as it satisfies these requirements.

 If missing acknowledgement numbers arrive later (reordering) and
 prove that the counter did not cycle, the Data Sender MAY attempt to
 neutralize the effect of any action it took based on a conservative
 assumption that it later found to be incorrect.

 The Data Sender can estimate how many packets (of any marking) an ACK
 acknowledges. If the ACE counter on an ACK seems to imply that the
 minimum number of newly CE-marked packets is greater that the number
 of newly acknowledged packets, the Data Sender SHOULD believe the ACE
 counter, unless it can be sure that it is counting all control
 packets correctly.

3.2.3. The AccECN Option

 The AccECN Option is defined as shown in Figure 4. The initial 'E'
 of each field name stands for 'Echo'.

Briscoe, et al. Expires September 6, 2020 [Page 27]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Kind = TBD1 | Length = 11 | EE0B field |
 +-+
 | EE0B (cont'd) | ECEB field |
 +-+
 | EE1B field | Order 0
 +-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Kind = TBD1 | Length = 11 | EE1B field |
 +-+
 | EE1B (cont'd) | ECEB field |
 +-+
 | EE0B field | Order 1
 +-+

 Figure 4: The AccECN TCP Option

 When a Data Receiver sends an AccECN Option, it MUST set the Kind
 field to TBD1, which is registered in Section 6 as a new TCP option
 Kind called AccECN. An experimental TCP option with Kind=254 MAY be
 used for initial experiments, with magic number 0xACCE.

 Figure 4 shows two option field orders; order 0 and order 1. They
 both consists of three 24-bit fields. Order 0 provides the 24 least
 significant bits of the r.e0b, r.ceb and r.e1b counters,
 respectively. Order 1 provides the same fields, but in the opposite
 order. Each half-connection can use a different field order, but a
 Data Receiver MUST consistently send the same field order within the
 same half-connection.

 The field order to use for each half-connection is up to the Data
 Receiver implementation. It might use the same hard-coded order for
 all half-connections, or it might make a different choice for each
 half-connection. For instance, the implementation of a Data Receiver
 might default to using order 0, unless the ECN field in the IP header
 of the packet it received during the 3WHS is ECT(1). A Data Receiver
 just starts using its chosen field order and the field immediately
 after the length field in the first AccECN TCP Option of a half-
 connection will intrinsically indicate which order it is using,
 because the initial counter values that it is required to use depend
 on its chosen field order (see Section 3.2.1).

Briscoe, et al. Expires September 6, 2020 [Page 28]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 A Data Sender can know which field order the Data Receiver is using
 for a half-connection from the most significant bit (MSB) of the
 counter in the field immediately after the length field in the first
 non-empty AccECN TCP Option to arrive. If this MSB = 0, field order
 0 is being used, and if MSB = 1, field order 1 is being used. Note
 that the Data Sender only tests the most significant bit, not the
 value of the whole field, because the counters in the first packet to
 arrive might have started to increment (e.g. if the first packet to
 arrive is not the first packet sent due to loss or reordering).

 Note that there is no field to feed back Not-ECT bytes. Nonetheless
 an algorithm for the Data Sender to calculate the number of payload
 bytes received as Not-ECT is given in Appendix A.5.

 Whenever a Data Receiver sends an AccECN Option, the rules in
Section 3.2.3.3 expect it to usually send a full-length option. To

 cope with option space limitations, it can omit unchanged fields from
 the tail of the option, as long as it preserves the order of the
 remaining fields and includes any field that has changed. The length
 field MUST indicate which fields are present as follows:

 +--------+------------------+------------------+
 | Length | Type 0 | Type 1 |
 +--------+------------------+------------------+
 | 11 | EE0B, ECEB, EE1B | EE1B, ECEB, EE0B |
 | 8 | EE0B, ECEB | EE1B, ECEB |
 | 5 | EE0B | EE1B |
 | 2 | (empty) | (empty) |
 +--------+------------------+------------------+

 The empty option of Length=2 is provided to allow for a case where an
 AccECN Option has to be sent (e.g. on the SYN/ACK to test the path),
 but there is very limited space for the option. For initial
 experiments, the Length field MUST be 2 greater to accommodate the
 16-bit magic number.

 All implementations of a Data Sender that read any AccECN Option MUST
 be able to read in AccECN Options of any of the above lengths. For
 forward compatibility, if the AccECN Option is of any other length,
 implementations MUST use those whole 3 octet fields that fit within
 the length and ignore the remainder of the option.

 The AccECN Option has to be optional to implement, because both
 sender and receiver have to be able to cope without the option anyway
 - in cases where it does not traverse a network path. It is
 RECOMMENDED to implement both sending and receiving of the AccECN
 Option. If sending of the AccECN Option is implemented, the fall-
 backs described in this document will need to be implemented as well

Briscoe, et al. Expires September 6, 2020 [Page 29]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 (unless solely for a controlled environment where path traversal is
 not considered a problem). Even if a developer does not implement
 sending of the AccECN Option, it is RECOMMENDED that they still
 implement logic to receive and understand any AccECN Options sent by
 remote peers.

 If a Data Receiver intends to send the AccECN Option at any time
 during the rest of the connection it is strongly recommended to also
 test path traversal of the AccECN Option as specified in

Section 3.2.3.2.

3.2.3.1. Encoding and Decoding Feedback in the AccECN Option Fields

 Whenever the Data Receiver includes any of the counter fields (ECEB,
 EE0B, EE1B) in an AccECN Option, it MUST encode the 24 least
 significant bits of the current value of the associated counter into
 the field (respectively r.ceb, r.e0b, r.e1b).

 Whenever the Data Sender receives ACK carrying an AccECN Option, it
 first checks whether the ACK has already been superseded by another
 ACK in which case it ignores the ECN feedback. If the ACK has not
 been superseded, the Data Sender MUST decode the fields in the AccECN
 Option as follows. For each field, it takes the least significant 24
 bits of its associated local counter (s.ceb, s.e0b or s.e1b) and
 subtracts them from the counter in the associated field of the
 incoming AccECN Option (respectively ECEB, EE0B, EE1B), to work out
 the minimum positive increment it could apply to s.ceb, s.e0b or
 s.e1b (assuming the field in the option only wrapped at most once).

Appendix A.1 gives an example algorithm for the Data Receiver to
 encode its byte counters into the AccECN Option, and for the Data
 Sender to decode the AccECN Option fields into its byte counters.

 Note that, as specified in Section 3.2, any data on the SYN (SYN=1,
 ACK=0) is not included in any of the locally held octet counters nor
 in the AccECN Option on the wire.

3.2.3.2. Path Traversal of the AccECN Option

3.2.3.2.1. Testing the AccECN Option during the Handshake

 The TCP client MUST NOT include the AccECN TCP Option on the SYN. (A
 fall-back strategy for the loss of the SYN (possibly due to middlebox
 interference) is specified in Section 3.1.4.)

 A TCP server that confirms its support for AccECN (in response to an
 AccECN SYN from the client as described in Section 3.1) SHOULD
 include an AccECN TCP Option on the SYN/ACK.

Briscoe, et al. Expires September 6, 2020 [Page 30]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 A TCP client that has successfully negotiated AccECN SHOULD include
 an AccECN Option in the first ACK at the end of the 3WHS. However,
 this first ACK is not delivered reliably, so the TCP client SHOULD
 also include an AccECN Option on the first data segment it sends (if
 it ever sends one).

 A host MAY NOT include an AccECN Option in any of these three cases
 if it has cached knowledge that the packet would be likely to be
 blocked on the path to the other host if it included an AccECN
 Option.

3.2.3.2.2. Testing for Loss of Packets Carrying the AccECN Option

 If after the normal TCP timeout the TCP server has not received an
 ACK to acknowledge its SYN/ACK, the SYN/ACK might just have been
 lost, e.g. due to congestion, or a middlebox might be blocking the
 AccECN Option. To expedite connection setup, the TCP server SHOULD
 retransmit the SYN/ACK repeating the same AE, CWR and ECE TCP flags
 as on the original SYN/ACK but with no AccECN Option. If this
 retransmission times out, to expedite connection setup, the TCP
 server SHOULD disable AccECN and ECN for this connection by
 retransmitting the SYN/ACK with AE=CWR=ECE=0 and no AccECN Option.

 Implementers MAY use other fall-back strategies if they are found to
 be more effective (e.g. retrying the AccECN Option for a second time
 before fall-back - most appropriate during high levels of
 congestion). However, other fall-back strategies will need to follow
 all the rules in Section 3.1.5, which concern behaviour when SYNs or
 SYN/ACKs negotiating different types of feedback have been sent
 within the same connection.

 If the TCP client detects that the first data segment it sent with
 the AccECN Option was lost, it SHOULD fall back to no AccECN Option
 on the retransmission. Again, implementers MAY use other fall-back
 strategies such as attempting to retransmit a second segment with the
 AccECN Option before fall-back, and/or caching whether the AccECN
 Option is blocked for subsequent connections.
 [I-D.ietf-tcpm-2140bis] further discusses caching of TCP parameters
 and status information.

 If a host falls back to not sending the AccECN Option, it will
 continue to process any incoming AccECN Options as normal.

 Either host MAY include the AccECN Option in a subsequent segment to
 retest whether the AccECN Option can traverse the path.

 If the TCP server receives a second SYN with a request for AccECN
 support, it should resend the SYN/ACK, again confirming its support

Briscoe, et al. Expires September 6, 2020 [Page 31]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 for AccECN, but this time without the AccECN Option. This approach
 rules out any interference by middleboxes that may drop packets with
 unknown options, even though it is more likely that the SYN/ACK would
 have been lost due to congestion. The TCP server MAY try to send
 another packet with the AccECN Option at a later point during the
 connection but should monitor if that packet got lost as well, in
 which case it SHOULD disable the sending of the AccECN Option for
 this half-connection.

 Similarly, an AccECN end-point MAY separately memorize which data
 packets carried an AccECN Option and disable the sending of AccECN
 Options if the loss probability of those packets is significantly
 higher than that of all other data packets in the same connection.

3.2.3.2.3. Testing for Absence of the AccECN Option

 If the TCP client has successfully negotiated AccECN but does not
 receive an AccECN Option on the SYN/ACK (e.g. because is has been
 stripped by a middlebox or not sent by the server), the client
 switches into a mode that assumes that the AccECN Option is not
 available for this half connection.

 Similarly, if the TCP server has successfully negotiated AccECN but
 does not receive an AccECN Option on the first segment that
 acknowledges sequence space at least covering the ISN, it switches
 into a mode that assumes that the AccECN Option is not available for
 this half connection.

 While a host is in this mode that assumes incoming AccECN Options are
 not available, it MUST adopt the conservative interpretation of the
 ACE field discussed in Section 3.2.2.5. However, it cannot make any
 assumption about support of outgoing AccECN Options on the other half
 connection, so it SHOULD continue to send the AccECN Option itself
 (unless it has established that sending the AccECN Option is causing
 packets to be blocked as in Section 3.2.3.2.2).

 If a host is in the mode that assumes incoming AccECN Options are not
 available, but it receives an AccECN Option at any later point during
 the connection, this clearly indicates that the AccECN Option is not
 blocked on the respective path, and the AccECN endpoint MAY switch
 out of the mode that assumes the AccECN Option is not available for
 this half connection.

3.2.3.2.4. Test for Zeroing of the AccECN Option

 For a related test for invalid initialization of the ACE field, see
Section 3.2.2.3

Briscoe, et al. Expires September 6, 2020 [Page 32]

Internet-Draft Accurate TCP-ECN Feedback March 2020

Section 3.2 required the Data Receiver to initialize the r.e0b
 counter to a non-zero value. Therefore, in either direction the
 initial value of the EE0B field in the AccECN Option (if one exists)
 ought to be non-zero. If AccECN has been negotiated:

 o the TCP server MAY check the initial value of the EE0B field in
 the first segment that acknowledges sequence space that at least
 covers the ISN plus 1. If the initial value of the EE0B field is
 zero, the server will switch into a mode that ignores the AccECN
 Option for this half connection.

 o the TCP client MAY check the initial value of the EE0B field on
 the SYN/ACK. If the initial value of the EE0B field is zero, the
 client will switch into a mode that ignores the AccECN Option for
 this half connection.

 While a host is in the mode that ignores the AccECN Option it MUST
 adopt the conservative interpretation of the ACE field discussed in

Section 3.2.2.5.

 Note that the Data Sender MUST NOT test whether the arriving byte
 counters in the initial AccECN Option have been initialized to
 specific valid values - the above checks solely test whether these
 fields have been incorrectly zeroed. This allows hosts to use
 different initial values as an additional signalling channel in
 future. Also note that the initial value of either field might be
 greater than its expected initial value, because the counters might
 already have been incremented. Nonetheless, the initial values of
 the counters have been chosen so that they cannot wrap to zero on
 these initial segments.

3.2.3.2.5. Consistency between AccECN Feedback Fields

 When the AccECN Option is available it supplements but does not
 replace the ACE field. An endpoint using AccECN feedback MUST always
 consider the information provided in the ACE field whether or not the
 AccECN Option is also available.

 If the AccECN option is present, the s.cep counter might increase
 while the s.ceb counter does not (e.g. due to a CE-marked control
 packet). The sender's response to such a situation is out of scope,
 and needs to be dealt with in a specification that uses ECN-capable
 control packets. Theoretically, this situation could also occur if a
 middlebox mangled the AccECN Option but not the ACE field. However,
 the Data Sender has to assume that the integrity of the AccECN Option
 is sound, based on the above test of the well-known initial values
 and optionally other integrity tests (Section 4.3).

Briscoe, et al. Expires September 6, 2020 [Page 33]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 If either end-point detects that the s.ceb counter has increased but
 the s.cep has not (and by testing ACK coverage it is certain how much
 the ACE field has wrapped), this invalid protocol transition has to
 be due to some form of feedback mangling. So, the Data Sender MUST
 disable sending ECN-capable packets for the remainder of the half-
 connection by setting the IP/ECN field in all subsequent packets to
 Not-ECT.

3.2.3.3. Usage of the AccECN TCP Option

 If the Data Receiver intends to use the AccECN TCP Option to provide
 feedback, the following rules determine when a Data Receiver in
 AccECN mode sends an ACK with the AccECN TCP Option, and which fields
 to include:

 Change-Triggered ACKs: If an arriving packet increments a different
 byte counter to that incremented by the previous packet, the Data
 Receiver SHOULD immediately send an ACK with an AccECN Option,
 without waiting for the next delayed ACK (this is in addition to
 the safety recommendation in Section 3.2.2.5 against ambiguity of
 the ACE field).

 Even though this bullet is stated as a "SHOULD", it is important
 for a transition to immediately trigger an ACK if at all possible,
 as already argued when specifying change-triggered ACKs for the
 ACE.

 Continual Repetition: Otherwise, if arriving packets continue to
 increment the same byte counter, the Data Receiver can include an
 AccECN Option on most or all (delayed) ACKs, but it does not have
 to.

 * It SHOULD include a counter that has continued to increment on
 the next scheduled ACK following a change-triggered ACK;

 * while the same counter continues to increment, it SHOULD
 include the counter every n ACKs as consistently as possible,
 where n can be chosen by the implementer;

 * It SHOULD always include an AccECN Option if the r.ceb counter
 is incrementing and it MAY include an AccECN Option if r.ec0b
 or r.ec1b is incrementing

 * It SHOULD, include each counter at least once for every 2^22
 bytes incremented to prevent overflow during continual
 repetition.

Briscoe, et al. Expires September 6, 2020 [Page 34]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 If the smallest allowed AccECN Option would leave insufficient
 space for two SACK blocks on a particular ACK, the Data Receiver
 MUST give precedence to the SACK option (total 18 octets), because
 loss feedback is more critical.

 Necessary Option Length: It MAY exclude counter(s) that have not
 changed for the whole connection (but beacons still include all
 fields - see below). It SHOULD include counter(s) that have
 incremented at some time during the connection. It MUST include
 the counter(s) that have incremented since the previous AccECN
 Option and it MUST only truncate fields from the right-hand tail
 of the option to preserve the order of the remaining fields (see

Section 3.2.3);

 Beaconing Full-Length Options: Nonetheless, it MUST include a full-
 length AccECN TCP Option on at least three ACKs per RTT, or on all
 ACKs if there are less than three per RTT (see Appendix A.4 for an
 example algorithm that satisfies this requirement).

 The above rules complement those in Section 3.2.2.5, which determine
 when to generate an ACK irrespective of whether an AccECN TCP Option
 is to be included.

 The following example series of arriving IP/ECN fields illustrates
 when a Data Receiver will emit an ACK with an AccECN Option if it is
 using a delayed ACK factor of 2 segments and change-triggered ACKs:
 01 -> ACK, 01, 01 -> ACK, 10 -> ACK, 10, 01 -> ACK, 01, 11 -> ACK, 01
 -> ACK.

 Even though first bullet is stated as a "SHOULD", it is important for
 a transition to immediately trigger an ACK if at all possible, so
 that the Data Sender can rely on change-triggered ACKs to detect
 queue growth as soon as possible, e.g. at the start of a flow. This
 requirement can only be relaxed if certain offload hardware needed
 for high performance cannot support change-triggered ACKs (although
 high performance protocols such as DCTCP already successfully use
 change-triggered ACKs). One possible experimental compromise would
 be for the receiver to heuristically detect whether the sender is in
 slow-start, then to implement change-triggered ACKs while the sender
 is in slow-start, and offload otherwise.

 For the avoidance of doubt, this change-triggered ACK mechanism is
 deliberately worded to ignore the arrival of a control packet with no
 payload, which therefore does not alter any byte counters, because it
 is important that TCP does not acknowledge pure ACKs. The change-
 triggered ACK approach can lead to some additional ACKs but it feeds
 back the timing and the order in which ECN marks are received with
 minimal additional complexity. If only CE marks are infrequent, or

Briscoe, et al. Expires September 6, 2020 [Page 35]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 there are multiple marks in a row, the additional load will be low.
 Other marking patterns could increase the load significantly,
 Investigating the additional load is a goal of the proposed
 experiment.

 Implementation note: sending an AccECN Option each time a different
 counter changes and including a full-length AccECN Option on every
 delayed ACK will satisfy the requirements described above and might
 be the easiest implementation, as long as sufficient space is
 available in each ACK (in total and in the option space).

Appendix A.3 gives an example algorithm to estimate the number of
 marked bytes from the ACE field alone, if the AccECN Option is not
 available.

 If a host has determined that segments with the AccECN Option always
 seem to be discarded somewhere along the path, it is no longer
 obliged to follow the above rules.

3.3. Requirements for TCP Proxies, Offload Engines and other
 Middleboxes on AccECN Compliance

 A large class of middleboxes split TCP connections. Such a middlebox
 would be compliant with the AccECN protocol if the TCP implementation
 on each side complied with the present AccECN specification and each
 side negotiated AccECN independently of the other side.

 Another large class of middleboxes intervenes to some degree at the
 transport layer, but attempts to be transparent (invisible) to the
 end-to-end connection. A subset of this class of middleboxes
 attempts to `normalize' the TCP wire protocol by checking that all
 values in header fields comply with a rather narrow interpretation of
 the TCP specifications. To comply with the present AccECN
 specification, such a middlebox MUST NOT change the ACE field or the
 AccECN Option and it SHOULD preserve the timing of each ACK (for
 example, if it coalesced ACKs it would not be AccECN-compliant) as
 these can be used by the Data Sender to infer further information
 about the path congestion level. A middlebox claiming to be
 transparent at the transport layer MUST forward the AccECN TCP Option
 unaltered, whether or not the length value matches one of those
 specified in Section 3.2.3, and whether or not the initial values of
 the byte-counter fields are correct. This is because blocking
 apparently invalid values does not improve security (because AccECN
 hosts are required to ignore invalid values anyway), while it
 prevents the standardized set of values being extended in future
 (because outdated normalizers would block updated hosts from using
 the extended AccECN standard).

Briscoe, et al. Expires September 6, 2020 [Page 36]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 Hardware to offload certain TCP processing represents another large
 class of middleboxes, even though it is often a function of a host's
 network interface and rarely in its own 'box'. Leeway has been
 allowed in the present AccECN specification in the expectation that
 offload hardware could comply and still serve its function.
 Nonetheless, such hardware SHOULD also preserve the timing of each
 ACK (for example, if it coalesced ACKs it would not be AccECN-
 compliant).

 The ACE field changes with every received CE marking, so today's
 receive offloading could lead to many interrupts in high congestion
 situations. Although that would be useful (because congestion
 information is received sooner), it could also significantly increase
 processor load, particularly in scenarios such as DCTCP or L4S where
 the marking rate is generally higher.

 In data centres it has been fortunate for offload hardware that
 DCTCP-style feedback changes less often when there are long sequences
 of CE marks, which is more common with a step marking threshold. In
 order to enable DCTCP to improve its responsiveness, DCs will need to
 move beyond step marking. Before this can happen, offload hardware
 will have to explicitly address the variability of ECN feedback.

 ECN encodes a varying signal in the ACK stream, so it is inevitable
 that offload hardware will ultimately need to handle any form of ECN
 feedback exceptionally. The purpose of working towards standardized
 TCP ECN feedback is to reduce the risk for hardware developers, who
 would otherwise have to guess which scheme is likely to become
 dominant.

4. Interaction with Other TCP Variants

 This section is informative, not normative.

4.1. Compatibility with SYN Cookies

 A TCP server can use SYN Cookies (see Appendix A of [RFC4987]) to
 protect itself from SYN flooding attacks. It places minimal commonly
 used connection state in the SYN/ACK, and deliberately does not hold
 any state while waiting for the subsequent ACK (e.g. it closes the
 thread). Therefore it cannot record the fact that it entered AccECN
 mode for both half-connections. Indeed, it cannot even remember
 whether it negotiated the use of classic ECN [RFC3168].

 Nonetheless, such a server can determine that it negotiated AccECN as
 follows. If a TCP server using SYN Cookies supports AccECN and if it
 receives a pure ACK that acknowledges an ISN that is a valid SYN

https://datatracker.ietf.org/doc/html/rfc4987#appendix-A
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 37]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 cookie, and if the ACK contains an ACE field with the value 0b010 to
 0b111 (decimal 2 to 7), it can assume that:

 o the TCP client must have requested AccECN support on the SYN

 o it (the server) must have confirmed that it supported AccECN

 Therefore the server can switch itself into AccECN mode, and continue
 as if it had never forgotten that it switched itself into AccECN mode
 earlier.

 If the pure ACK that acknowledges a SYN cookie contains an ACE field
 with the value 0b000 or 0b001, these values indicate that the client
 did not request support for AccECN and therefore the server does not
 enter AccECN mode for this connection. Further, 0b001 on the ACK
 implies that the server sent an ECN-capable SYN/ACK, which was marked
 CE in the network, and the non-AccECN client fed this back by setting
 ECE on the ACK of the SYN/ACK.

4.2. Compatibility with Other TCP Options and Experiments

 AccECN is compatible (at least on paper) with the most commonly used
 TCP options: MSS, time-stamp, window scaling, SACK and TCP-AO. It is
 also compatible with the recent promising experimental TCP options
 TCP Fast Open (TFO [RFC7413]) and Multipath TCP (MPTCP [RFC6824]).
 AccECN is friendly to all these protocols, because space for TCP
 options is particularly scarce on the SYN, where AccECN consumes zero
 additional header space.

 When option space is under pressure from other options,
Section 3.2.3.3 provides guidance on how important it is to send an

 AccECN Option and whether it needs to be a full-length option.

 Implementers of TFO need to take careful note of the recommendation
 in Section 3.2.2.1. That section recommends that, if the client has
 successfully negotiated AccECN, when acknowledging the SYN/ACK, even
 if it has data to send, it sends a pure ACK immediately before the
 data. Then it can reflect the IP-ECN field of the SYN/ACK on this
 pure ACK, which allows the server to detect ECN mangling.

4.3. Compatibility with Feedback Integrity Mechanisms

 Three alternative mechanisms are available to assure the integrity of
 ECN and/or loss signals. AccECN is compatible with any of these
 approaches:

 o The Data Sender can test the integrity of the receiver's ECN (or
 loss) feedback by occasionally setting the IP-ECN field to a value

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6824

Briscoe, et al. Expires September 6, 2020 [Page 38]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 normally only set by the network (and/or deliberately leaving a
 sequence number gap). Then it can test whether the Data
 Receiver's feedback faithfully reports what it expects (similar to
 para 2 of Section 20.2 of [RFC3168]). Unlike the ECN Nonce
 [RFC3540], this approach does not waste the ECT(1) codepoint in
 the IP header, it does not require standardization and it does not
 rely on misbehaving receivers volunteering to reveal feedback
 information that allows them to be detected. However, setting the
 CE mark by the sender might conceal actual congestion feedback
 from the network and should therefore only be done sparingly.

 o Networks generate congestion signals when they are becoming
 congested, so networks are more likely than Data Senders to be
 concerned about the integrity of the receiver's feedback of these
 signals. A network can enforce a congestion response to its ECN
 markings (or packet losses) using congestion exposure (ConEx)
 audit [RFC7713]. Whether the receiver or a downstream network is
 suppressing congestion feedback or the sender is unresponsive to
 the feedback, or both, ConEx audit can neutralize any advantage
 that any of these three parties would otherwise gain.

 ConEx is a change to the Data Sender that is most useful when
 combined with AccECN. Without AccECN, the ConEx behaviour of a
 Data Sender would have to be more conservative than would be
 necessary if it had the accurate feedback of AccECN.

 o The TCP authentication option (TCP-AO [RFC5925]) can be used to
 detect any tampering with AccECN feedback between the Data
 Receiver and the Data Sender (whether malicious or accidental).
 The AccECN fields are immutable end-to-end, so they are amenable
 to TCP-AO protection, which covers TCP options by default.
 However, TCP-AO is often too brittle to use on many end-to-end
 paths, where middleboxes can make verification fail in their
 attempts to improve performance or security, e.g. by
 resegmentation or shifting the sequence space.

 Originally the ECN Nonce [RFC3540] was proposed to ensure integrity
 of congestion feedback. With minor changes AccECN could be optimized
 for the possibility that the ECT(1) codepoint might be used as an ECN
 Nonce. However, given RFC 3540 has been reclassified as historic,
 the AccECN design has been generalized so that it ought to be able to
 support other possible uses of the ECT(1) codepoint, such as a lower
 severity or a more instant congestion signal than CE.

https://datatracker.ietf.org/doc/html/rfc3168#section-20.2
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540

Briscoe, et al. Expires September 6, 2020 [Page 39]

Internet-Draft Accurate TCP-ECN Feedback March 2020

5. Protocol Properties

 This section is informative not normative. It describes how well the
 protocol satisfies the agreed requirements for a more accurate ECN
 feedback protocol [RFC7560].

 Accuracy: From each ACK, the Data Sender can infer the number of new
 CE marked segments since the previous ACK. This provides better
 accuracy on CE feedback than classic ECN. In addition if the
 AccECN Option is present (not blocked by the network path) the
 number of bytes marked with CE, ECT(1) and ECT(0) are provided.

 Overhead: The AccECN scheme is divided into two parts. The
 essential part reuses the 3 flags already assigned to ECN in the
 IP header. The supplementary part adds an additional TCP option
 consuming up to 11 bytes. However, no TCP option is consumed in
 the SYN.

 Ordering: The order in which marks arrive at the Data Receiver is
 preserved in AccECN feedback, because the Data Receiver is
 expected to send an ACK immediately whenever a different mark
 arrives.

 Timeliness: While the same ECN markings are arriving continually at
 the Data Receiver, it can defer ACKs as TCP does normally, but it
 will immediately send an ACK as soon as a different ECN marking
 arrives.

 Timeliness vs Overhead: Change-Triggered ACKs are intended to enable
 latency-sensitive uses of ECN feedback by capturing the timing of
 transitions but not wasting resources while the state of the
 signalling system is stable. Within the constraints of the
 change-triggered ACK rules, the receiver can control how
 frequently it sends the AccECN TCP Option and therefore to some
 extent it can control the overhead induced by AccECN.

 Resilience: All information is provided based on counters.
 Therefore if ACKs are lost, the counters on the first ACK
 following the losses allows the Data Sender to immediately recover
 the number of the ECN markings that it missed. And if data or
 ACKs are reordered, stale congestion information can be identified
 and ignored.

 Resilience against Bias: Because feedback is based on repetition of
 counters, random losses do not remove any information, they only
 delay it. Therefore, even though some ACKs are change-triggered,
 random losses will not alter the proportions of the different ECN
 markings in the feedback.

https://datatracker.ietf.org/doc/html/rfc7560

Briscoe, et al. Expires September 6, 2020 [Page 40]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 Resilience vs Overhead: If space is limited in some segments (e.g.
 because more options are needed on some segments, such as the SACK
 option after loss), the Data Receiver can send AccECN Options less
 frequently or truncate fields that have not changed, usually down
 to as little as 5 bytes. However, it has to send a full-sized
 AccECN Option at least three times per RTT, which the Data Sender
 can rely on as a regular beacon or checkpoint.

 Resilience vs Timeliness and Ordering: Ordering information and the
 timing of transitions cannot be communicated in three cases: i)
 during ACK loss; ii) if something on the path strips the AccECN
 Option; or iii) if the Data Receiver is unable to support Change-
 Triggered ACKs. Following ACK reordering, the Data Sender can
 reconstruct the order in which feedback was sent, but not until
 all the missing feedback has arrived.

 Complexity: An AccECN implementation solely involves simple counter
 increments, some modulo arithmetic to communicate the least
 significant bits and allow for wrap, and some heuristics for
 safety against fields cycling due to prolonged periods of ACK
 loss. Each host needs to maintain eight additional counters. The
 hosts have to apply some additional tests to detect tampering by
 middleboxes, but in general the protocol is simple to understand,
 simple to implement and requires few cycles per packet to execute.

 Integrity: AccECN is compatible with at least three approaches that
 can assure the integrity of ECN feedback. If the AccECN Option is
 stripped the resolution of the feedback is degraded, but the
 integrity of this degraded feedback can still be assured.

 Backward Compatibility: If only one endpoint supports the AccECN
 scheme, it will fall-back to the most advanced ECN feedback scheme
 supported by the other end.

 Backward Compatibility: If the AccECN Option is stripped by a
 middlebox, AccECN still provides basic congestion feedback in the
 ACE field. Further, AccECN can be used to detect mangling of the
 IP ECN field; mangling of the TCP ECN flags; blocking of ECT-
 marked segments; and blocking of segments carrying the AccECN
 Option. It can detect these conditions during TCP's 3WHS so that
 it can fall back to operation without ECN and/or operation without
 the AccECN Option.

 Forward Compatibility: The behaviour of endpoints and middleboxes is
 carefully defined for all reserved or currently unused codepoints
 in the scheme. Then, the designers of security devices can
 understand which currently unused values might appear in future.
 So, even if they choose to treat such values as anomalous while

Briscoe, et al. Expires September 6, 2020 [Page 41]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 they are not widely used, any blocking will at least be under
 policy control not hard-coded. Then, if previously unused values
 start to appear on the Internet (or in standards), such policies
 could be quickly reversed.

6. IANA Considerations

 This document reassigns bit 7 of the TCP header flags to the AccECN
 experiment. This bit was previously called the Nonce Sum (NS) flag
 [RFC3540], but RFC 3540 has been reclassified as historic [RFC8311].
 The flag will now be defined as:

 +-----+-------------------+-----------+
 | Bit | Name | Reference |
 +-----+-------------------+-----------+
 | 7 | AE (Accurate ECN) | RFC XXXX |
 +-----+-------------------+-----------+

 [TO BE REMOVED: IANA is requested to update the existing entry in the
 Transmission Control Protocol (TCP) Header Flags registration
 (https://www.iana.org/assignments/tcp-header-flags/tcp-header-

flags.xhtml#tcp-header-flags-1) for Bit 7 to "AE (Accurate ECN),
 previously used as NS (Nonce Sum) by [RFC3540], which is now Historic
 [RFC8311]" and change the reference to this RFC-to-be instead of

RFC8311.]

 This document also defines a new TCP option for AccECN, assigned a
 value of TBD1 (decimal) from the TCP option space. This value is
 defined as:

 +------+--------+-----------------------+-----------+
 | Kind | Length | Meaning | Reference |
 +------+--------+-----------------------+-----------+
 | TBD1 | N | Accurate ECN (AccECN) | RFC XXXX |
 +------+--------+-----------------------+-----------+

 [TO BE REMOVED: This registration should take place at the following
 location: http://www.iana.org/assignments/tcp-parameters/tcp-

parameters.xhtml#tcp-parameters-1]

 Early implementation before the IANA allocation MUST follow [RFC6994]
 and use experimental option 254 and magic number 0xACCE (16 bits),
 then migrate to the new option after the allocation.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags.xhtml#tcp-header-flags-1
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags.xhtml#tcp-header-flags-1
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8311
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
https://datatracker.ietf.org/doc/html/rfc6994

Briscoe, et al. Expires September 6, 2020 [Page 42]

Internet-Draft Accurate TCP-ECN Feedback March 2020

7. Security Considerations

 If ever the supplementary part of AccECN based on the new AccECN TCP
 Option is unusable (due for example to middlebox interference) the
 essential part of AccECN's congestion feedback offers only limited
 resilience to long runs of ACK loss (see Section 3.2.2.5). These
 problems are unlikely to be due to malicious intervention (because if
 an attacker could strip a TCP option or discard a long run of ACKs it
 could wreak other arbitrary havoc). However, it would be of concern
 if AccECN's resilience could be indirectly compromised during a
 flooding attack. AccECN is still considered safe though, because if
 the option is not presented, the AccECN Data Sender is then required
 to switch to more conservative assumptions about wrap of congestion
 indication counters (see Section 3.2.2.5 and Appendix A.2).

Section 4.1 describes how a TCP server can negotiate AccECN and use
 the SYN cookie method for mitigating SYN flooding attacks.

 There is concern that ECN markings could be altered or suppressed,
 particularly because a misbehaving Data Receiver could increase its
 own throughput at the expense of others. AccECN is compatible with
 the three schemes known to assure the integrity of ECN feedback (see

Section 4.3 for details). If the AccECN Option is stripped by an
 incorrectly implemented middlebox, the resolution of the feedback
 will be degraded, but the integrity of this degraded information can
 still be assured.

 There is a potential concern that a receiver could deliberately omit
 the AccECN Option pretending that it had been stripped by a
 middlebox. No known way can yet be contrived to take advantage of
 this downgrade attack, but it is mentioned here in case someone else
 can contrive one.

 The AccECN protocol is not believed to introduce any new privacy
 concerns, because it merely counts and feeds back signals at the
 transport layer that had already been visible at the IP layer.

8. Acknowledgements

 We want to thank Koen De Schepper, Praveen Balasubramanian, Michael
 Welzl, Gorry Fairhurst, David Black, Spencer Dawkins, Michael Scharf,
 Michael Tuexen, Yuchung Cheng, Kenjiro Cho, Olivier Tilmans and Ilpo
 Jaervinen for their input and discussion. The idea of using the
 three ECN-related TCP flags as one field for more accurate TCP-ECN
 feedback was first introduced in the re-ECN protocol that was the
 ancestor of ConEx.

Briscoe, et al. Expires September 6, 2020 [Page 43]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 Bob Briscoe was part-funded by the Comcast Innovation Fund, the
 European Community under its Seventh Framework Programme through the
 Reducing Internet Transport Latency (RITE) project (ICT-317700) and
 through the Trilogy 2 project (ICT-317756), and the Research Council
 of Norway through the TimeIn project. The views expressed here are
 solely those of the authors.

 Mirja Kuehlewind was partly supported by the European Commission
 under Horizon 2020 grant agreement no. 688421 Measurement and
 Architecture for a Middleboxed Internet (MAMI), and by the Swiss
 State Secretariat for Education, Research, and Innovation under
 contract no. 15.0268. This support does not imply endorsement.

9. Comments Solicited

 Comments and questions are encouraged and very welcome. They can be
 addressed to the IETF TCP maintenance and minor modifications working
 group mailing list <tcpm@ietf.org>, and/or to the authors.

10. References

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Briscoe, et al. Expires September 6, 2020 [Page 44]

Internet-Draft Accurate TCP-ECN Feedback March 2020

10.2. Informative References

 [I-D.ietf-tcpm-2140bis]
 Touch, J., Welzl, M., and S. Islam, "TCP Control Block
 Interdependence", draft-ietf-tcpm-2140bis-02 (work in
 progress), February 2020.

 [I-D.ietf-tcpm-generalized-ecn]
 Bagnulo, M. and B. Briscoe, "ECN++: Adding Explicit
 Congestion Notification (ECN) to TCP Control Packets",

draft-ietf-tcpm-generalized-ecn-05 (work in progress),
 November 2019.

 [I-D.ietf-tsvwg-l4s-arch]
 Briscoe, B., Schepper, K., Bagnulo, M., and G. White, "Low
 Latency, Low Loss, Scalable Throughput (L4S) Internet
 Service: Architecture", draft-ietf-tsvwg-l4s-arch-05 (work
 in progress), February 2020.

 [I-D.kuehlewind-tcpm-ecn-fallback]
 Kuehlewind, M. and B. Trammell, "A Mechanism for ECN Path
 Probing and Fallback", draft-kuehlewind-tcpm-ecn-

fallback-01 (work in progress), September 2013.

 [Mandalari18]
 Mandalari, A., Lutu, A., Briscoe, B., Bagnulo, M., and Oe.
 Alay, "Measuring ECN++: Good News for ++, Bad News for ECN
 over Mobile", IEEE Communications Magazine , March 2018.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces",

RFC 3540, DOI 10.17487/RFC3540, June 2003,
 <https://www.rfc-editor.org/info/rfc3540>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5562] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
 Ramakrishnan, "Adding Explicit Congestion Notification
 (ECN) Capability to TCP's SYN/ACK Packets", RFC 5562,
 DOI 10.17487/RFC5562, June 2009,
 <https://www.rfc-editor.org/info/rfc5562>.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-2140bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-05
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch-05
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-ecn-fallback-01
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-ecn-fallback-01
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/rfc3540
https://www.rfc-editor.org/info/rfc3540
https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5562
https://www.rfc-editor.org/info/rfc5562

Briscoe, et al. Expires September 6, 2020 [Page 45]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
 Robustness to Blind In-Window Attacks", RFC 5961,
 DOI 10.17487/RFC5961, August 2010,
 <https://www.rfc-editor.org/info/rfc5961>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options",
RFC 6994, DOI 10.17487/RFC6994, August 2013,

 <https://www.rfc-editor.org/info/rfc6994>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7560] Kuehlewind, M., Ed., Scheffenegger, R., and B. Briscoe,
 "Problem Statement and Requirements for Increased Accuracy
 in Explicit Congestion Notification (ECN) Feedback",

RFC 7560, DOI 10.17487/RFC7560, August 2015,
 <https://www.rfc-editor.org/info/rfc7560>.

 [RFC7713] Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)
 Concepts, Abstract Mechanism, and Requirements", RFC 7713,
 DOI 10.17487/RFC7713, December 2015,
 <https://www.rfc-editor.org/info/rfc7713>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

 [RFC8511] Khademi, N., Welzl, M., Armitage, G., and G. Fairhurst,
 "TCP Alternative Backoff with ECN (ABE)", RFC 8511,
 DOI 10.17487/RFC8511, December 2018,
 <https://www.rfc-editor.org/info/rfc8511>.

https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc5961
https://www.rfc-editor.org/info/rfc5961
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc6994
https://www.rfc-editor.org/info/rfc6994
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7560
https://www.rfc-editor.org/info/rfc7560
https://datatracker.ietf.org/doc/html/rfc7713
https://www.rfc-editor.org/info/rfc7713
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://datatracker.ietf.org/doc/html/rfc8511
https://www.rfc-editor.org/info/rfc8511

Briscoe, et al. Expires September 6, 2020 [Page 46]

Internet-Draft Accurate TCP-ECN Feedback March 2020

Appendix A. Example Algorithms

 This appendix is informative, not normative. It gives example
 algorithms that would satisfy the normative requirements of the
 AccECN protocol. However, implementers are free to choose other ways
 to implement the requirements.

A.1. Example Algorithm to Encode/Decode the AccECN Option

 The example algorithms below show how a Data Receiver in AccECN mode
 could encode its CE byte counter r.ceb into the ECEB field within the
 AccECN TCP Option, and how a Data Sender in AccECN mode could decode
 the ECEB field into its byte counter s.ceb. The other counters for
 bytes marked ECT(0) and ECT(1) in the AccECN Option would be
 similarly encoded and decoded.

 It is assumed that each local byte counter is an unsigned integer
 greater than 24b (probably 32b), and that the following constant has
 been assigned:

 DIVOPT = 2^24

 Every time a CE marked data segment arrives, the Data Receiver
 increments its local value of r.ceb by the size of the TCP Data.
 Whenever it sends an ACK with the AccECN Option, the value it writes
 into the ECEB field is

 ECEB = r.ceb % DIVOPT

 where '%' is the remainder operator.

 On the arrival of an AccECN Option, the Data Sender first makes sure
 the ACK has not been superseded in order to avoid winding the s.ceb
 counter backwards. It uses the TCP acknowledgement number and any
 SACK options to calculate newlyAckedB, the amount of new data that
 the ACK acknowledges in bytes (newlyAckedB can be zero but not
 negative). If newlyAckedB is zero, either the ACK has been
 superseded or CE-marked packet(s) without data could have arrived.
 To break the tie for the latter case, the Data Sender could use
 timestamps (if present) to work out newlyAckedT, the amount of new
 time that the ACK acknowledges. If the Data Sender determines that
 the ACK has been superseded it ignores the AccECN Option. Otherwise,
 the Data Sender calculates the minimum non-negative difference d.ceb
 between the ECEB field and its local s.ceb counter, using modulo
 arithmetic as follows:

Briscoe, et al. Expires September 6, 2020 [Page 47]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 if ((newlyAckedB > 0) || (newlyAckedT > 0)) {
 d.ceb = (ECEB + DIVOPT - (s.ceb % DIVOPT)) % DIVOPT
 s.ceb += d.ceb
 }

 For example, if s.ceb is 33,554,433 and ECEB is 1461 (both decimal),
 then

 s.ceb % DIVOPT = 1
 d.ceb = (1461 + 2^24 - 1) % 2^24
 = 1460
 s.ceb = 33,554,433 + 1460
 = 33,555,893

A.2. Example Algorithm for Safety Against Long Sequences of ACK Loss

 The example algorithms below show how a Data Receiver in AccECN mode
 could encode its CE packet counter r.cep into the ACE field, and how
 the Data Sender in AccECN mode could decode the ACE field into its
 s.cep counter. The Data Sender's algorithm includes code to
 heuristically detect a long enough unbroken string of ACK losses that
 could have concealed a cycle of the congestion counter in the ACE
 field of the next ACK to arrive.

 Two variants of the algorithm are given: i) a more conservative
 variant for a Data Sender to use if it detects that the AccECN Option
 is not available (see Section 3.2.2.5 and Section 3.2.3.2); and ii) a
 less conservative variant that is feasible when complementary
 information is available from the AccECN Option.

A.2.1. Safety Algorithm without the AccECN Option

 It is assumed that each local packet counter is a sufficiently sized
 unsigned integer (probably 32b) and that the following constant has
 been assigned:

 DIVACE = 2^3

 Every time an Acceptable CE marked packet arrives (Section 3.2.2.2),
 the Data Receiver increments its local value of r.cep by 1. It
 repeats the same value of ACE in every subsequent ACK until the next
 CE marking arrives, where

 ACE = r.cep % DIVACE.

 If the Data Sender received an earlier value of the counter that had
 been delayed due to ACK reordering, it might incorrectly calculate
 that the ACE field had wrapped. Therefore, on the arrival of every

Briscoe, et al. Expires September 6, 2020 [Page 48]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 ACK, the Data Sender ensures the ACK has not been superseded using
 the TCP acknowledgement number, any SACK options and timestamps (if
 available) to calculate newlyAckedB, as in Appendix A.1. If the ACK
 has not been superseded, the Data Sender calculates the minimum
 difference d.cep between the ACE field and its local s.cep counter,
 using modulo arithmetic as follows:

 if ((newlyAckedB > 0) || (newlyAckedT > 0))
 d.cep = (ACE + DIVACE - (s.cep % DIVACE)) % DIVACE

Section 3.2.2.5 expects the Data Sender to assume that the ACE field
 cycled if it is the safest likely case under prevailing conditions.
 The 3-bit ACE field in an arriving ACK could have cycled and become
 ambiguous to the Data Sender if a row of ACKs goes missing that
 covers a stream of data long enough to contain 8 or more CE marks.
 We use the word `missing' rather than `lost', because some or all the
 missing ACKs might arrive eventually, but out of order. Even if some
 of the missing ACKs were piggy-backed on data (i.e. not pure ACKs)
 retransmissions will not repair the lost AccECN information, because
 AccECN requires retransmissions to carry the latest AccECN counters,
 not the original ones.

 The phrase `under prevailing conditions' allows for implementation-
 dependent interpretation. A Data Sender might take account of the
 prevailing size of data segments and the prevailing CE marking rate
 just before the sequence of missing ACKs. However, we shall start
 with the simplest algorithm, which assumes segments are all full-
 sized and ultra-conservatively it assumes that ECN marking was 100%
 on the forward path when ACKs on the reverse path started to all be
 dropped. Specifically, if newlyAckedB is the amount of data that an
 ACK acknowledges since the previous ACK, then the Data Sender could
 assume that this acknowledges newlyAckedPkt full-sized segments,
 where newlyAckedPkt = newlyAckedB/MSS. Then it could assume that the
 ACE field incremented by

 dSafer.cep = newlyAckedPkt - ((newlyAckedPkt - d.cep) % DIVACE),

 For example, imagine an ACK acknowledges newlyAckedPkt=9 more full-
 size segments than any previous ACK, and that ACE increments by a
 minimum of 2 CE marks (d.cep=2). The above formula works out that it
 would still be safe to assume 2 CE marks (because 9 - ((9-2) % 8) =
 2). However, if ACE increases by a minimum of 2 but acknowledges 10
 full-sized segments, then it would be necessary to assume that there
 could have been 10 CE marks (because 10 - ((10-2) % 8) = 10).

 ACKs that acknowledge a large stretch of packets might be common in
 data centres to achieve a high packet rate or might be due to ACK
 thinning by a middlebox. In these cases, cycling of the ACE field

Briscoe, et al. Expires September 6, 2020 [Page 49]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 would often appear to have been possible, so the above algorithm
 would be over-conservative, leading to a false high marking rate and
 poor performance. Therefore it would be reasonable to only use
 dSafer.cep rather than d.cep if the moving average of newlyAckedPkt
 was well below 8.

 Implementers could build in more heuristics to estimate prevailing
 average segment size and prevailing ECN marking. For instance,
 newlyAckedPkt in the above formula could be replaced with
 newlyAckedPktHeur = newlyAckedPkt*p*MSS/s, where s is the prevailing
 segment size and p is the prevailing ECN marking probability.
 However, ultimately, if TCP's ECN feedback becomes inaccurate it
 still has loss detection to fall back on. Therefore, it would seem
 safe to implement a simple algorithm, rather than a perfect one.

 The simple algorithm for dSafer.cep above requires no monitoring of
 prevailing conditions and it would still be safe if, for example,
 segments were on average at least 5% of full-sized as long as ECN
 marking was 5% or less. Assuming it was used, the Data Sender would
 increment its packet counter as follows:

 s.cep += dSafer.cep

 If missing acknowledgement numbers arrive later (due to reordering),
Section 3.2.2.5 says "the Data Sender MAY attempt to neutralize the

 effect of any action it took based on a conservative assumption that
 it later found to be incorrect". To do this, the Data Sender would
 have to store the values of all the relevant variables whenever it
 made assumptions, so that it could re-evaluate them later. Given
 this could become complex and it is not required, we do not attempt
 to provide an example of how to do this.

A.2.2. Safety Algorithm with the AccECN Option

 When the AccECN Option is available on the ACKs before and after the
 possible sequence of ACK losses, if the Data Sender only needs CE-
 marked bytes, it will have sufficient information in the AccECN
 Option without needing to process the ACE field. If for some reason
 it needs CE-marked packets, if dSafer.cep is different from d.cep, it
 can determine whether d.cep is likely to be a safe enough estimate by
 checking whether the average marked segment size (s = d.ceb/d.cep) is
 less than the MSS (where d.ceb is the amount of newly CE-marked bytes
 - see Appendix A.1). Specifically, it could use the following
 algorithm:

Briscoe, et al. Expires September 6, 2020 [Page 50]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 SAFETY_FACTOR = 2
 if (dSafer.cep > d.cep) {
 if (d.ceb <= MSS * d.cep) { % Same as (s <= MSS), but no DBZ
 sSafer = d.ceb/dSafer.cep
 if (sSafer < MSS/SAFETY_FACTOR)
 dSafer.cep = d.cep % d.cep is a safe enough estimate
 } % else
 % No need for else; dSafer.cep is already correct,
 % because d.cep must have been too small
 }

 The chart below shows when the above algorithm will consider d.cep
 can replace dSafer.cep as a safe enough estimate of the number of CE-
 marked packets:

 ^
 sSafer|
 |
 MSS+
 |
 | dSafer.cep
 | is
 MSS/SAFETY_FACTOR+--------------+ safest
 | |
 | d.cep is safe|
 | enough |
 +-------------------->
 MSS s

 The following examples give the reasoning behind the algorithm,
 assuming MSS=1460 [B]:

 o if d.cep=0, dSafer.cep=8 and d.ceb=1460, then s=infinity and
 sSafer=182.5.
 Therefore even though the average size of 8 data segments is
 unlikely to have been as small as MSS/8, d.cep cannot have been
 correct, because it would imply an average segment size greater
 than the MSS.

 o if d.cep=2, dSafer.cep=10 and d.ceb=1460, then s=730 and
 sSafer=146.
 Therefore d.cep is safe enough, because the average size of 10
 data segments is unlikely to have been as small as MSS/10.

 o if d.cep=7, dSafer.cep=15 and d.ceb=10200, then s=1457 and
 sSafer=680.

Briscoe, et al. Expires September 6, 2020 [Page 51]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 Therefore d.cep is safe enough, because the average data segment
 size is more likely to have been just less than one MSS, rather
 than below MSS/2.

 If pure ACKs were allowed to be ECN-capable, missing ACKs would be
 far less likely. However, because [RFC3168] currently precludes
 this, the above algorithm assumes that pure ACKs are not ECN-capable.

A.3. Example Algorithm to Estimate Marked Bytes from Marked Packets

 If the AccECN Option is not available, the Data Sender can only
 decode CE-marking from the ACE field in packets. Every time an ACK
 arrives, to convert this into an estimate of CE-marked bytes, it
 needs an average of the segment size, s_ave. Then it can add or
 subtract s_ave from the value of d.ceb as the value of d.cep
 increments or decrements. Some possible ways to calculate s_ave are
 outlined below. The precise details will depend on why an estimate
 of marked bytes is needed.

 The implementation could keep a record of the byte numbers of all the
 boundaries between packets in flight (including control packets), and
 recalculate s_ave on every ACK. However it would be simpler to
 merely maintain a counter packets_in_flight for the number of packets
 in flight (including control packets), which is reset once per RTT.
 Either way, it would estimate s_ave as:

 s_ave ~= flightsize / packets_in_flight,

 where flightsize is the variable that TCP already maintains for the
 number of bytes in flight. To avoid floating point arithmetic, it
 could right-bit-shift by lg(packets_in_flight), where lg() means log
 base 2.

 An alternative would be to maintain an exponentially weighted moving
 average (EWMA) of the segment size:

 s_ave = a * s + (1-a) * s_ave,

 where a is the decay constant for the EWMA. However, then it is
 necessary to choose a good value for this constant, which ought to
 depend on the number of packets in flight. Also the decay constant
 needs to be power of two to avoid floating point arithmetic.

A.4. Example Algorithm to Beacon AccECN Options

Section 3.2.3.3 requires a Data Receiver to beacon a full-length
 AccECN Option at least 3 times per RTT. This could be implemented by
 maintaining a variable to store the number of ACKs (pure and data

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 52]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 ACKs) since a full AccECN Option was last sent and another for the
 approximate number of ACKs sent in the last round trip time:

 if (acks_since_full_last_sent > acks_in_round / BEACON_FREQ)
 send_full_AccECN_Option()

 For optimized integer arithmetic, BEACON_FREQ = 4 could be used,
 rather than 3, so that the division could be implemented as an
 integer right bit-shift by lg(BEACON_FREQ).

 In certain operating systems, it might be too complex to maintain
 acks_in_round. In others it might be possible by tagging each data
 segment in the retransmit buffer with the number of ACKs sent at the
 point that segment was sent. This would not work well if the Data
 Receiver was not sending data itself, in which case it might be
 necessary to beacon based on time instead, as follows:

 if (time_now > time_last_option_sent + (RTT / BEACON_FREQ))
 send_full_AccECN_Option()

 This time-based approach does not work well when all the ACKs are
 sent early in each round trip, as is the case during slow-start. In
 this case few options will be sent (evtl. even less than 3 per RTT).
 However, when continuously sending data, data packets as well as ACKs
 will spread out equally over the RTT and sufficient ACKs with the
 AccECN option will be sent.

A.5. Example Algorithm to Count Not-ECT Bytes

 A Data Sender in AccECN mode can infer the amount of TCP payload data
 arriving at the receiver marked Not-ECT from the difference between
 the amount of newly ACKed data and the sum of the bytes with the
 other three markings, d.ceb, d.e0b and d.e1b. Note that, because
 r.e0b is initialized to 1 and the other two counters are initialized
 to 0, the initial sum will be 1, which matches the initial offset of
 the TCP sequence number on completion of the 3WHS.

 For this approach to be precise, it has to be assumed that spurious
 (unnecessary) retransmissions do not lead to double counting. This
 assumption is currently correct, given that RFC 3168 requires that
 the Data Sender marks retransmitted segments as Not-ECT. However,
 the converse is not true; necessary retransmissions will result in
 under-counting.

 However, such precision is unlikely to be necessary. The only known
 use of a count of Not-ECT marked bytes is to test whether equipment
 on the path is clearing the ECN field (perhaps due to an out-dated
 attempt to clear, or bleach, what used to be the ToS field). To

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 53]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 detect bleaching it will be sufficient to detect whether nearly all
 bytes arrive marked as Not-ECT. Therefore there should be no need to
 keep track of the details of retransmissions.

Appendix B. Rationale for Usage of TCP Header Flags

B.1. Three TCP Header Flags in the SYN-SYN/ACK Handshake

 AccECN uses a rather unorthodox approach to negotiate the highest
 version TCP ECN feedback scheme that both ends support, as justified
 below. It follows from the original TCP ECN capability negotiation
 [RFC3168], in which the client set the 2 least significant of the
 original reserved flags in the TCP header, and fell back to no ECN
 support if the server responded with the 2 flags cleared, which had
 previously been the default.

 ECN originally used header flags rather than a TCP option because it
 was considered more efficient to use a header flag for 1 bit of
 feedback per ACK, and this bit could be overloaded to indicate
 support for ECN during the handshake. During the development of ECN,
 1 bit crept up to 2, in order to deliver the feedback reliably and to
 work round some broken hosts that reflected the reserved flags during
 the handshake.

 In order to be backward compatible with RFC 3168, AccECN continues
 this approach, using the 3rd least significant TCP header flag that
 had previously been allocated for the ECN nonce (now historic).
 Then, whatever form of server an AccECN client encounters, the
 connection can fall back to the highest version of feedback protocol
 that both ends support, as explained in Section 3.1.

 If AccECN had used the more orthodox approach of a TCP option, it
 would still have had to set the two ECN flags in the main TCP header,
 in order to be able to fall back to Classic RFC 3168 ECN, or to
 disable ECN support, without another round of negotiation. Then
 AccECN would also have had to handle all the different ways that
 servers currently respond to settings of the ECN flags in the main
 TCP header, including all the conflicting cases where a server might
 have said it supported one approach in the flags and another approach
 in the new TCP option. And AccECN would have had to deal with all
 the additional possibilities where a middlebox might have mangled the
 ECN flags, or removed the TCP option. Thus, usage of the 3rd
 reserved TCP header flag simplified the protocol.

 The third flag was used in a way that could be distinguished from the
 ECN nonce, in case any nonce deployment was encountered. Previous
 usage of this flag for the ECN nonce was integrated into the original
 ECN negotiation. This further justified the 3rd flag's use for

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires September 6, 2020 [Page 54]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 AccECN, because a non-ECN usage of this flag would have had to use it
 as a separate single bit, rather than in combination with the other 2
 ECN flags.

 Indeed, having overloaded the original uses of these three flags for
 its handshake, AccECN overloads all three bits again as a 3-bit
 counter.

B.2. Four Codepoints in the SYN/ACK

 Of the 8 possible codepoints that the 3 TCP header flags can indicate
 on the SYN/ACK, 4 already indicated earlier (or broken) versions of
 ECN support. In the early design of AccECN, an AccECN server could
 use only 2 of the 4 remaining codepoints. They both indicated AccECN
 support, but one fed back that the SYN had arrived marked as CE.
 Even though ECN support on a SYN is not yet on the standards track,
 the idea is for either end to act as a dumb reflector, so that future
 capabilities can be unilaterally deployed without requiring 2-ended
 deployment (justified in Section 2.5).

 During traversal testing it was discovered that the ECN field in the
 SYN was mangled on a non-negligible proportion of paths. Therefore
 it was necessary to allow the SYN/ACK to feed all four IP/ECN
 codepoints that the SYN could arrive with back to the client.
 Without this, the client could not know whether to disable ECN for
 the connection due to mangling of the IP/ECN field (also explained in

Section 2.5). This development consumed the remaining 2 codepoints
 on the SYN/ACK that had been reserved for future use by AccECN in
 earlier versions.

B.3. Space for Future Evolution

 Despite availability of usable TCP header space being extremely
 scarce, the AccECN protocol has taken all possible steps to ensure
 that there is space to negotiate possible future variants of the
 protocol, either if the experiment proves that a variant of AccECN is
 required, or if a completely different ECN feedback approach is
 needed:

 Future AccECN variants: When the AccECN capability is negotiated
 during TCP's 3WHS, the rows in Table 2 tagged as 'Nonce' and
 'Broken' in the column for the capability of node B are unused by
 any current protocol in the RFC series. These could be used by
 TCP servers in future to indicate a variant of the AccECN
 protocol. In recent measurement studies in which the response of
 large numbers of servers to an AccECN SYN has been tested, e.g.
 [Mandalari18], a very small number of SYN/ACKs arrive with the
 pattern tagged as 'Nonce', and a small but more significant number

Briscoe, et al. Expires September 6, 2020 [Page 55]

Internet-Draft Accurate TCP-ECN Feedback March 2020

 arrive with the pattern tagged as 'Broken'. The 'Nonce' pattern
 could be a sign that a few servers have implemented the ECN Nonce
 [RFC3540], which has now been reclassified as historic [RFC8311],
 or it could be the random result of some unknown middlebox
 behaviour. The greater prevalence of the 'Broken' pattern
 suggests that some instances still exist of the broken code that
 reflects the reserved flags on the SYN.

 The requirement not to reject unexpected initial values of the ACE
 counter (in the main TCP header) in the last para of

Section 3.2.2.3 ensures that 3 unused codepoints on the ACK of the
 SYN/ACK, 6 unused values on the first SYN=0 data packet from the
 client and 7 unused values on the first SYN=0 data packet from the
 server could be used to declare future variants of the AccECN
 protocol. The word 'declare' is used rather than 'negotiate'
 because, at this late stage in the 3WHS, it would be too late for
 a negotiation between the endpoints to be completed. A similar
 requirement not to reject unexpected initial values in the TCP
 option (Section 3.2.3.2.4) is for the same purpose. If traversal
 of the TCP option were reliable, this would have enabled a far
 wider range of future variation of the whole AccECN protocol.
 Nonetheless, it could be used to reliably negotiate a wide range
 of variation in the semantics of the AccECN Option.

 Future non-AccECN variants: Five codepoints out of the 8 possible in
 the 3 TCP header flags used by AccECN are unused on the initial
 SYN (in the order AE,CWR,ECE): 001, 010, 100, 101, 110.

Section 3.1.3 ensures that the installed base of AccECN servers
 will all assume these are equivalent to AccECN negotiation with
 111 on the SYN. These codepoints would not allow fall-back to
 Classic ECN support for a server that did not understand them, but
 this approach ensures they are available in future, perhaps for
 uses other than ECN alongside the AccECN scheme. All possible
 combinations of SYN/ACK could be used in response except either
 000 or reflection of the same values sent on the SYN.

 Of course, other ways could be resorted to in order to extend
 AccECN or ECN in future, although their traversal properties are
 likely to be inferior. They include a new TCP option; using the
 remaining reserved flags in the main TCP header (preferably
 extending the 3-bit combinations used by AccECN to 4-bit
 combinations, rather than burning one bit for just one state); a
 non-zero urgent pointer in combination with the URG flag cleared;
 or some other unexpected combination of fields yet to be invented.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311

Briscoe, et al. Expires September 6, 2020 [Page 56]

Internet-Draft Accurate TCP-ECN Feedback March 2020

Authors' Addresses

 Bob Briscoe
 Independent
 UK

 EMail: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

 Mirja Kuehlewind
 Ericsson
 Germany

 EMail: ietf@kuehlewind.net

 Richard Scheffenegger
 NetApp
 Vienna
 Austria

 EMail: Richard.Scheffenegger@netapp.com

http://bobbriscoe.net/

Briscoe, et al. Expires September 6, 2020 [Page 57]

