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Abstract

   Explicit Congestion Notification (ECN) is a mechanism where network
   nodes can mark IP packets instead of dropping them to indicate
   incipient congestion to the end-points.  Receivers with an ECN-
   capable transport protocol feed back this information to the sender.
   ECN is specified for TCP in such a way that only one feedback signal
   can be transmitted per Round-Trip Time (RTT).  Recent new TCP
   mechanisms like Congestion Exposure (ConEx), Data Center TCP (DCTCP)
   or Low Latency Low Loss Scalable Throughput (L4S) need more accurate
   ECN feedback information whenever more than one marking is received
   in one RTT.  This document specifies an experimental scheme to
   provide more than one feedback signal per RTT in the TCP header.
   Given TCP header space is scarce, it allocates a reserved header bit,
   that was previously used for the ECN-Nonce which has now been
   declared historic.  It also overloads the two existing ECN flags in
   the TCP header.  The resulting extra space is exploited to feed back
   the IP-ECN field received during the 3-way handshake as well.
   Supplementary feedback information can optionally be provided in a
   new TCP option, which is never used on the TCP SYN.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This document is subject to BCP 78 and the IETF Trust's Legal
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   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
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1.  Introduction

   Explicit Congestion Notification (ECN) [RFC3168] is a mechanism where
   network nodes can mark IP packets instead of dropping them to
   indicate incipient congestion to the end-points.  Receivers with an
   ECN-capable transport protocol feed back this information to the
   sender.  ECN is specified for TCP in such a way that only one
   feedback signal can be transmitted per Round-Trip Time (RTT).
   Recently, proposed mechanisms like Congestion Exposure (ConEx
   [RFC7713]), DCTCP [RFC8257] or L4S [I-D.ietf-tsvwg-l4s-arch] need to
   know when more than one marking is received in one RTT which is
   information that cannot be provided by the feedback scheme as
   specified in [RFC3168].  This document specifies an alternative
   feedback scheme that provides more accurate information and could be
   used by these new TCP extensions.  A fuller treatment of the
   motivation for this specification is given in the associated
   requirements document [RFC7560].

   This documents specifies an experimental scheme for ECN feedback in
   the TCP header to provide more than one feedback signal per RTT.  It
   will be called the more accurate ECN feedback scheme, or AccECN for
   short.  If AccECN progresses from experimental to the standards
   track, it is intended to be a complete replacement for classic TCP/
   ECN feedback, not a fork in the design of TCP.  AccECN feedback

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7560
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   complements TCP's loss feedback and it supplements classic TCP/ECN
   feedback, so its applicability is intended to include all public and
   private IP networks (and even any non-IP networks over which TCP is
   used today), whether or not any nodes on the path support ECN of
   whatever flavour.

   Until the AccECN experiment succeeds, [RFC3168] will remain as the
   only standards track specification for adding ECN to TCP.  To avoid
   confusion, in this document we use the term 'classic ECN' for the
   pre-existing ECN specification [RFC3168].

   AccECN feedback overloads the two existing ECN flags and allocates
   the currently reserved flag (previously called NS) in the TCP header,
   to be used as one field indicating the number of congestion
   experienced marked packets.  Given the new definitions of these three
   bits, both ends have to support the new wire protocol before it can
   be used.  Therefore during the TCP handshake the two ends use these
   three bits in the TCP header to negotiate the most advanced feedback
   protocol that they can both support, in a way that is backward
   compatible with [RFC3168].

   AccECN is solely an (experimental) change to the TCP wire protocol;
   it only specifies the negotiation and signaling of more accurate ECN
   feedback from a TCP Data Receiver to a Data Sender.  It is completely
   independent of how TCP might respond to congestion feedback, which is
   out of scope.  For that we refer to [RFC3168] or any RFC that
   specifies a different response to TCP ECN feedback, for example:
   [RFC8257]; or ECN experiments such as those referred to in [RFC8311],
   namely: a TCP-based Low Latency Low Loss Scalable (L4S) congestion
   control [I-D.ietf-tsvwg-l4s-arch]; ECN-capable TCP control packets
   [I-D.ietf-tcpm-generalized-ecn], or Alternative Backoff with ECN
   (ABE) [RFC8511].

   It is recommended that the AccECN protocol is implemented alongside
   SACK [RFC2018] and the experimental ECN++ protocol
   [I-D.ietf-tcpm-generalized-ecn], which allows the ECN capability to
   be used on TCP control packets.  Therefore, this specification does
   not discuss implementing AccECN alongside [RFC5562], which was an
   earlier experimental protocol with narrower scope than ECN++.

1.1.  Document Roadmap

   The following introductory sections outline the goals of AccECN
   (Section 1.2) and the goal of experiments with ECN (Section 1.3) so
   that it is clear what success would look like.  Then terminology is
   defined (Section 1.4) and a recap of existing prerequisite technology
   is given (Section 1.5).

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8511
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5562
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Section 2 gives an informative overview of the AccECN protocol.  Then
Section 3 gives the normative protocol specification.  Section 4

   assesses the interaction of AccECN with commonly used variants of
   TCP, whether standardized or not.  Section 5 summarizes the features
   and properties of AccECN.

Section 6 summarizes the protocol fields and numbers that IANA will
   need to assign and Section 7 points to the aspects of the protocol
   that will be of interest to the security community.

Appendix A gives pseudocode examples for the various algorithms that
   AccECN uses.

1.2.  Goals

   [RFC7560] enumerates requirements that a candidate feedback scheme
   will need to satisfy, under the headings: resilience, timeliness,
   integrity, accuracy (including ordering and lack of bias),
   complexity, overhead and compatibility (both backward and forward).
   It recognizes that a perfect scheme that fully satisfies all the
   requirements is unlikely and trade-offs between requirements are
   likely.  Section 5 presents the properties of AccECN against these
   requirements and discusses the trade-offs made.

   The requirements document recognizes that a protocol as ubiquitous as
   TCP needs to be able to serve as-yet-unspecified requirements.
   Therefore an AccECN receiver aims to act as a generic (dumb)
   reflector of congestion information so that in future new sender
   behaviours can be deployed unilaterally.

1.3.  Experiment Goals

   TCP is critical to the robust functioning of the Internet, therefore
   any proposed modifications to TCP need to be thoroughly tested.  The
   present specification describes an experimental protocol that adds
   more accurate ECN feedback to the TCP protocol.  The intention is to
   specify the protocol sufficiently so that more than one
   implementation can be built in order to test its function, robustness
   and interoperability (with itself and with previous version of ECN
   and TCP).

   The experimental protocol will be considered successful if testing
   confirms that the proposed mechanism can be deployed at large scale.
   Testing will mostly focus on fall-back strategies in case of
   middlebox interference.  Current recommended strategies are specified
   in Sections 3.1.4, 3.2.2.3, 3.2.2.4 and 3.2.3.2.  The effectiveness
   of these strategies depends on the actual deployment situation of
   middleboxes.  Therefore experimental verification to confirm large-
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   scale path traversal in the Internet is needed before finalizing this
   specification on the Standards Track.

   Another experimentation focus is the implementation feasibiliy of
   change-triggered ACKs as described in section 3.2.3.3.  While on
   average this should not lead to a higher ACK rate, it changes the ACK
   pattern which can particularly have an impact on hardware offload.
   It is currently specified as a hard requirement, because the sender
   can exploit the predictability of the receiver's behaviour.  However,
   further experimentation is needed to advise if will have to become
   just preferred behavior.

1.4.  Terminology

   AccECN:  The more accurate ECN feedback scheme will be called AccECN
      for short.

   Classic ECN:  the ECN protocol specified in [RFC3168].

   Classic ECN feedback:  the feedback aspect of the ECN protocol
      specified in [RFC3168], including generation, encoding,
      transmission and decoding of feedback, but not the Data Sender's
      subsequent response to that feedback.

   ACK:  A TCP acknowledgement, with or without a data payload (ACK=1).

   Pure ACK:  A TCP acknowledgement without a data payload.

   Acceptable packet / segment:  A packet or segment that passes the
      acceptability tests in [RFC0793] and [RFC5961].

   TCP client:  The TCP stack that originates a connection.

   TCP server:  The TCP stack that responds to a connection request.

   Data Receiver:  The endpoint of a TCP half-connection that receives
      data and sends AccECN feedback.

   Data Sender:  The endpoint of a TCP half-connection that sends data
      and receives AccECN feedback.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14 [RFC2119]
   [RFC8174] when, and only when, they appear in all capitals, as shown
   here.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
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1.5.  Recap of Existing ECN feedback in IP/TCP

   ECN [RFC3168] uses two bits in the IP header.  Once ECN has been
   negotiated with the receiver at the transport layer, an ECN sender
   can set two possible codepoints (ECT(0) or ECT(1)) in the IP header
   to indicate an ECN-capable transport (ECT).  If both ECN bits are
   zero, the packet is considered to have been sent by a Not-ECN-capable
   Transport (Not-ECT).  When a network node experiences congestion, it
   will occasionally either drop or mark a packet, with the choice
   depending on the packet's ECN codepoint.  If the codepoint is Not-
   ECT, only drop is appropriate.  If the codepoint is ECT(0) or ECT(1),
   the node can mark the packet by setting both ECN bits, which is
   termed 'Congestion Experienced' (CE), or loosely a 'congestion mark'.
   Table 1 summarises these codepoints.

   +-------------------------+---------------+-------------------------+
   | IP-ECN codepoint        | Codepoint     | Description             |
   | (binary)                | name          |                         |
   +-------------------------+---------------+-------------------------+
   | 00                      | Not-ECT       | Not ECN-Capable         |
   |                         |               | Transport               |
   | 01                      | ECT(1)        | ECN-Capable Transport   |
   |                         |               | (1)                     |
   | 10                      | ECT(0)        | ECN-Capable Transport   |
   |                         |               | (0)                     |
   | 11                      | CE            | Congestion Experienced  |
   +-------------------------+---------------+-------------------------+

                  Table 1: The ECN Field in the IP Header

   In the TCP header the first two bits in byte 14 are defined as flags
   for the use of ECN (CWR and ECE in Figure 1 [RFC3168]).  A TCP client
   indicates it supports ECN by setting ECE=CWR=1 in the SYN, and an
   ECN-enabled server confirms ECN support by setting ECE=1 and CWR=0 in
   the SYN/ACK.  On reception of a CE-marked packet at the IP layer, the
   Data Receiver starts to set the Echo Congestion Experienced (ECE)
   flag continuously in the TCP header of ACKs, which ensures the signal
   is received reliably even if ACKs are lost.  The TCP sender confirms
   that it has received at least one ECE signal by responding with the
   congestion window reduced (CWR) flag, which allows the TCP receiver
   to stop repeating the ECN-Echo flag.  This always leads to a full RTT
   of ACKs with ECE set.  Thus any additional CE markings arriving
   within this RTT cannot be fed back.

   The last bit in byte 13 of the TCP header was defined as the Nonce
   Sum (NS) for the ECN Nonce [RFC3540].  In the absence of widespread
   deployment RFC 3540 has been reclassified as historic [RFC8311] and

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
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   the respective flag has been marked as "reserved", making this TCP
   flag available for use by the AccECN experiment instead.

       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |               |           | N | C | E | U | A | P | R | S | F |
     | Header Length | Reserved  | S | W | C | R | C | S | S | Y | I |
     |               |           |   | R | E | G | K | H | T | N | N |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

     Figure 1: The (post-ECN Nonce) definition of the TCP header flags

2.  AccECN Protocol Overview and Rationale

   This section provides an informative overview of the AccECN protocol
   that will be normatively specified in Section 3

   Like the original TCP approach, the Data Receiver of each TCP half-
   connection sends AccECN feedback to the Data Sender on TCP
   acknowledgements, reusing data packets of the other half-connection
   whenever possible.

   The AccECN protocol has had to be designed in two parts:

   o  an essential part that re-uses ECN TCP header bits to feed back
      the number of arriving CE marked packets.  This provides more
      accuracy than classic ECN feedback, but limited resilience against
      ACK loss;

   o  a supplementary part using a new AccECN TCP Option that provides
      additional feedback on the number of bytes that arrive marked with
      each of the three ECN codepoints (not just CE marks).  This
      provides greater resilience against ACK loss than the essential
      feedback, but it is more likely to suffer from middlebox
      interference.

   The two part design was necessary, given limitations on the space
   available for TCP options and given the possibility that certain
   incorrectly designed middleboxes prevent TCP using any new options.

   The essential part overloads the previous definition of the three
   flags in the TCP header that had been assigned for use by ECN.  This
   design choice deliberately replaces the classic ECN feedback
   protocol, rather than leaving classic ECN feedback intact and adding
   more accurate feedback separately because:

   o  this efficiently reuses scarce TCP header space, given TCP option
      space is approaching saturation;
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   o  a single upgrade path for the TCP protocol is preferable to a fork
      in the design;

   o  otherwise classic and accurate ECN feedback could give conflicting
      feedback on the same segment, which could open up new security
      concerns and make implementations unnecessarily complex;

   o  middleboxes are more likely to faithfully forward the TCP ECN
      flags than newly defined areas of the TCP header.

   AccECN is designed to work even if the supplementary part is removed
   or zeroed out, as long as the essential part gets through.

2.1.  Capability Negotiation

   AccECN is a change to the wire protocol of the main TCP header,
   therefore it can only be used if both endpoints have been upgraded to
   understand it.  The TCP client signals support for AccECN on the
   initial SYN of a connection and the TCP server signals whether it
   supports AccECN on the SYN/ACK.  The TCP flags on the SYN that the
   client uses to signal AccECN support have been carefully chosen so
   that a TCP server will interpret them as a request to support the
   most recent variant of ECN feedback that it supports.  Then the
   client falls back to the same variant of ECN feedback.

   An AccECN TCP client does not send the new AccECN Option on the SYN
   as SYN option space is limited.  The TCP server sends the AccECN
   Option on the SYN/ACK and the client sends it on the first ACK to
   test whether the network path forwards the option correctly.

2.2.  Feedback Mechanism

   A Data Receiver maintains four counters initialized at the start of
   the half-connection.  Three count the number of arriving payload
   bytes marked CE, ECT(1) and ECT(0) respectively.  The fourth counts
   the number of packets arriving marked with a CE codepoint (including
   control packets without payload if they are CE-marked).

   The Data Sender maintains four equivalent counters for the half
   connection, and the AccECN protocol is designed to ensure they will
   match the values in the Data Receiver's counters, albeit after a
   little delay.

   Each ACK carries the three least significant bits (LSBs) of the
   packet-based CE counter using the ECN bits in the TCP header, now
   renamed the Accurate ECN (ACE) field (see Figure 3 later).  The 24
   LSBs of each byte counter are carried in the AccECN Option.



Briscoe, et al.         Expires September 6, 2020               [Page 9]



Internet-Draft          Accurate TCP-ECN Feedback             March 2020

2.3.  Delayed ACKs and Resilience Against ACK Loss

   With both the ACE and the AccECN Option mechanisms, the Data Receiver
   continually repeats the current LSBs of each of its respective
   counters.  There is no need to acknowledge these continually repeated
   counters, so the congestion window reduced (CWR) mechanism is no
   longer used.  Even if some ACKs are lost, the Data Sender should be
   able to infer how much to increment its own counters, even if the
   protocol field has wrapped.

   The 3-bit ACE field can wrap fairly frequently.  Therefore, even if
   it appears to have incremented by one (say), the field might have
   actually cycled completely then incremented by one.  The Data
   Receiver is not allowed to delay sending an ACK to such an extent
   that the ACE field would cycle.  However cycling is still a
   possibility at the Data Sender because a whole sequence of ACKs
   carrying intervening values of the field might all be lost or delayed
   in transit.

   The fields in the AccECN Option are larger, but they will increment
   in larger steps because they count bytes not packets.  Nonetheless,
   their size has been chosen such that a whole cycle of the field would
   never occur between ACKs unless there had been an infeasibly long
   sequence of ACK losses.  Therefore, as long as the AccECN Option is
   available, it can be treated as a dependable feedback channel.

   If the AccECN Option is not available, e.g. it is being stripped by a
   middlebox, the AccECN protocol will only feed back information on CE
   markings (using the ACE field).  Although not ideal, this will be
   sufficient, because it is envisaged that neither ECT(0) nor ECT(1)
   will ever indicate more severe congestion than CE, even though future
   uses for ECT(0) or ECT(1) are still unclear [RFC8311].  Because the
   3-bit ACE field is so small, when it is the only field available the
   Data Sender has to interpret it assuming the most likely wrap, but
   with a degree of conservatism.

   Certain specified events trigger the Data Receiver to include an
   AccECN Option on an ACK.  The rules are designed to ensure that the
   order in which different markings arrive at the receiver is
   communicated to the sender (as long as options are reaching the
   sender and as long as there is no ACK loss).  Implementations are
   encouraged to send an AccECN Option more frequently, but this is left
   up to the implementer.

https://datatracker.ietf.org/doc/html/rfc8311
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2.4.  Feedback Metrics

   The CE packet counter in the ACE field and the CE byte counter in the
   AccECN Option both provide feedback on received CE-marks.  The CE
   packet counter includes control packets that do not have payload
   data, while the CE byte counter solely includes marked payload bytes.
   If both are present, the byte counter in the option will provide the
   more accurate information needed for modern congestion control and
   policing schemes, such as L4S, DCTCP or ConEx.  If the option is
   stripped, a simple algorithm to estimate the number of marked bytes
   from the ACE field is given in Appendix A.3.

   Feedback in bytes is recommended in order to protect against the
   receiver using attacks similar to 'ACK-Division' to artificially
   inflate the congestion window, which is why [RFC5681] now recommends
   that TCP counts acknowledged bytes not packets.

2.5.  Generic (Dumb) Reflector

   The ACE field provides information about CE markings on both data and
   control packets.  According to [RFC3168] the Data Sender is meant to
   set control packets to Not-ECT.  However, mechanisms in certain
   private networks (e.g. data centres) set control packets to be ECN
   capable because they are precisely the packets that performance
   depends on most.

   For this reason, AccECN is designed to be a generic reflector of
   whatever ECN markings it sees, whether or not they are compliant with
   a current standard.  Then as standards evolve, Data Senders can
   upgrade unilaterally without any need for receivers to upgrade too.
   It is also useful to be able to rely on generic reflection behaviour
   when senders need to test for unexpected interference with markings
   (for instance Section 3.2.2.3, Section 3.2.2.4 and Section 3.2.3.2 of
   the present document, para 2 of Section 20.2 of [RFC3168]) and
   [I-D.kuehlewind-tcpm-ecn-fallback].

   The initial SYN is the most critical control packet, so AccECN
   provides feedback on its ECN marking.  Although RFC 3168 prohibits an
   ECN-capable SYN, providing feedback of ECN marking on the SYN
   supports future scenarios in which SYNs might be ECN-enabled (without
   prejudging whether they ought to be).  For instance, [RFC8311]
   updates this aspect of RFC 3168 to allow experimentation with ECN-
   capable TCP control packets.

   Even if the TCP client (or server) has set the SYN (or SYN/ACK) to
   not-ECT in compliance with RFC 3168, feedback on the state of the ECN
   field when it arrives at the receiver could still be useful, because
   middleboxes have been known to overwrite the ECN IP field as if it is

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168#section-20.2
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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   still part of the old Type of Service (ToS) field [Mandalari18].  If
   a TCP client has set the SYN to Not-ECT, but receives feedback that
   the ECN field on the SYN arrived with a different codepoint, it can
   detect such middlebox interference and send Not-ECT for the rest of
   the connection (see [I-D.kuehlewind-tcpm-ecn-fallback]).  Today, if a
   TCP server receives ECT or CE on a SYN, it cannot know whether it is
   invalid (or valid) because only the TCP client knows whether it
   originally marked the SYN as Not-ECT (or ECT).  Therefore, prior to
   AccECN, the server's only safe course of action was to disable ECN
   for the connection.  Instead, the AccECN protocol allows the server
   to feed back the received ECN field to the client, which then has all
   the information to decide whether the connection has to fall-back
   from supporting ECN (or not).

3.  AccECN Protocol Specification

3.1.  Negotiating to use AccECN

3.1.1.  Negotiation during the TCP handshake

   Given the ECN Nonce [RFC3540] has been reclassified as historic
   [RFC8311], the present specification re-allocates the TCP flag at bit
   7 of the TCP header, which was previously called NS (Nonce Sum), as
   the AE (Accurate ECN) flag (see IANA Considerations in Section 6) as
   shown below.

       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |               |           | A | C | E | U | A | P | R | S | F |
     | Header Length | Reserved  | E | W | C | R | C | S | S | Y | I |
     |               |           |   | R | E | G | K | H | T | N | N |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

   Figure 2: The (post-AccECN) definition of the TCP header flags during
                             the TCP handshake

   During the TCP handshake at the start of a connection, to request
   more accurate ECN feedback the TCP client (host A) MUST set the TCP
   flags AE=1, CWR=1 and ECE=1 in the initial SYN segment.

   If a TCP server (B) that is AccECN-enabled receives a SYN with the
   above three flags set, it MUST set both its half connections into
   AccECN mode.  Then it MUST set the TCP flags on the SYN/ACK to one of
   the 4 values shown in the top block of Table 2 to confirm that it
   supports AccECN.  The TCP server MUST NOT set one of these 4
   combination of flags on the SYN/ACK unless the preceding SYN
   requested support for AccECN as above.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
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   A TCP server in AccECN mode MUST set the AE, CWR and ECE TCP flags on
   the SYN/ACK to the value in Table 2 that feeds back the IP-ECN field
   that arrived on the SYN.  This applies whether or not the server
   itself supports setting the IP-ECN field on a SYN or SYN/ACK (see

Section 2.5 for rationale).

   Once a TCP client (A) has sent the above SYN to declare that it
   supports AccECN, and once it has received the above SYN/ACK segment
   that confirms that the TCP server supports AccECN, the TCP client
   MUST set both its half connections into AccECN mode.

   Once in AccECN mode, a TCP client or server has the rights and
   obligations to participate in the ECN protocol defined in

Section 3.1.5.

   The procedure for the client to follow if a SYN/ACK does not arrive
   before its retransmission timer expires is given in Section 3.1.4.

3.1.2.  Backward Compatibility

   The three flags set to 1 to indicate AccECN support on the SYN have
   been carefully chosen to enable natural fall-back to prior stages in
   the evolution of ECN, as above.  Table 2 tabulates all the
   negotiation possibilities for ECN-related capabilities that involve
   at least one AccECN-capable host.  The entries in the first two
   columns have been abbreviated, as follows:

   AccECN:  More Accurate ECN Feedback (the present specification)

   Nonce:  ECN Nonce feedback [RFC3540]

   ECN:  'Classic' ECN feedback [RFC3168]

   No ECN:  Not-ECN-capable.  Implicit congestion notification using
       packet drop.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
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   +--------+--------+------------+-----------+------------------------+
   | A      | B      |  SYN A->B  |  SYN/ACK  | Feedback Mode          |
   |        |        |            |    B->A   |                        |
   +--------+--------+------------+-----------+------------------------+
   |        |        | AE CWR ECE |   AE CWR  |                        |
   |        |        |            |    ECE    |                        |
   | AccECN | AccECN | 1   1   1  | 0   1   0 | AccECN (no ECT on SYN) |
   | AccECN | AccECN | 1   1   1  | 0   1   1 | AccECN (ECT1 on SYN)   |
   | AccECN | AccECN | 1   1   1  | 1   0   0 | AccECN (ECT0 on SYN)   |
   | AccECN | AccECN | 1   1   1  | 1   1   0 | AccECN (CE on SYN)     |
   |        |        |            |           |                        |
   | AccECN | Nonce  | 1   1   1  | 1   0   1 | (Reserved)             |
   | AccECN | ECN    | 1   1   1  | 0   0   1 | classic ECN            |
   | AccECN | No ECN | 1   1   1  | 0   0   0 | Not ECN                |
   |        |        |            |           |                        |
   | Nonce  | AccECN | 0   1   1  | 0   0   1 | classic ECN            |
   | ECN    | AccECN | 0   1   1  | 0   0   1 | classic ECN            |
   | No ECN | AccECN | 0   0   0  | 0   0   0 | Not ECN                |
   |        |        |            |           |                        |
   | AccECN | Broken | 1   1   1  | 1   1   1 | Not ECN                |
   +--------+--------+------------+-----------+------------------------+

   Table 2: ECN capability negotiation between Client (A) and Server (B)

   Table 2 is divided into blocks each separated by an empty row.

   1.  The top block shows the case already described in Section 3.1
       where both endpoints support AccECN and how the TCP server (B)
       indicates congestion feedback.

   2.  The second block shows the cases where the TCP client (A)
       supports AccECN but the TCP server (B) supports some earlier
       variant of TCP feedback, indicated in its SYN/ACK.  Therefore, as
       soon as an AccECN-capable TCP client (A) receives the SYN/ACK
       shown it MUST set both its half connections into the feedback
       mode shown in the rightmost column.  If it has set itself into
       classic ECN feedback mode it MUST then comply with [RFC3168].

       The server response called 'Nonce' in the table is now historic.
       For an AccECN implementation, there is no need to recognize or
       support ECN Nonce feedback [RFC3540], which has been reclassified
       as historic [RFC8311].  AccECN is compatible with alternative ECN
       feedback integrity approaches (see Section 4.3).

   3.  The third block shows the cases where the TCP server (B) supports
       AccECN but the TCP client (A) supports some earlier variant of
       TCP feedback, indicated in its SYN.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
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       When an AccECN-enabled TCP server (B) receives a SYN with
       AE,CWR,ECE = 0,1,1 it MUST do one of the following:

       *  set both its half connections into the classic ECN feedback
          mode and return a SYN/ACK with AE, CWR, ECE = 0,0,1 as shown.
          Then it MUST comply with [RFC3168].

       *  set both its half-connections into No ECN mode and return a
          SYN/ACK with AE,CWR,ECE = 0,0,0, then continue with ECN
          disabled.  This latter case is unlikely to be desirable, but
          it is allowed as a possibility, e.g. for minimal TCP
          implementations.

       When an AccECN-enabled TCP server (B) receives a SYN with
       AE,CWR,ECE = 0,0,0 it MUST set both its half connections into the
       Not ECN feedback mode, return a SYN/ACK with AE,CWR,ECE = 0,0,0
       as shown and continue with ECN disabled.

   4.  The fourth block displays a combination labelled `Broken'.  Some
       older TCP server implementations incorrectly set the reserved
       flags in the SYN/ACK by reflecting those in the SYN.  Such broken
       TCP servers (B) cannot support ECN, so as soon as an AccECN-
       capable TCP client (A) receives such a broken SYN/ACK it MUST
       fall back to Not ECN mode for both its half connections and
       continue with ECN disabled.

   The following additional rules do not fit the structure of the table,
   but they complement it:

   Simultaneous Open:  An originating AccECN Host (A), having sent a SYN
      with AE=1, CWR=1 and ECE=1, might receive another SYN from host B.
      Host A MUST then enter the same feedback mode as it would have
      entered had it been a responding host and received the same SYN.
      Then host A MUST send the same SYN/ACK as it would have sent had
      it been a responding host.

   In-window SYN during TIME-WAIT:  Many TCP implementations create a
      new TCP connection if they receive an in-window SYN packet during
      TIME-WAIT state.  When a TCP host enters TIME-WAIT or CLOSED
      state, it should ignore any previous state about the negotiation
      of AccECN for that connection and renegotiate the feedback mode
      according to Table 2.

3.1.3.  Forward Compatibility

   If a TCP server that implements AccECN receives a SYN with the three
   TCP header flags (AE, CWR and ECE) set to any combination other than
   000, 011 or 111, it MUST negotiate the use of AccECN as if they had

https://datatracker.ietf.org/doc/html/rfc3168
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   been set to 111.  This ensures that future uses of the other
   combinations on a SYN can rely on consistent behaviour from the
   installed base of AccECN servers.

   For the avoidance of doubt, the behaviour described in the present
   specification applies whether or not the three remaining reserved TCP
   header flags are zero.

3.1.4.  Retransmission of the SYN

   If the sender of an AccECN SYN times out before receiving the SYN/
   ACK, the sender SHOULD attempt to negotiate the use of AccECN at
   least one more time by continuing to set all three TCP ECN flags on
   the first retransmitted SYN (using the usual retransmission time-
   outs).  If this first retransmission also fails to be acknowledged,
   the sender SHOULD send subsequent retransmissions of the SYN with the
   three TCP-ECN flags cleared (AE=CWR=ECE=0).  A retransmitted SYN MUST
   use the same ISN as the original SYN.

   Retrying once before fall-back adds delay in the case where a
   middlebox drops an AccECN (or ECN) SYN deliberately.  However,
   current measurements imply that a drop is less likely to be due to
   middlebox interference than other intermittent causes of loss, e.g.
   congestion, wireless interference, etc.

   Implementers MAY use other fall-back strategies if they are found to
   be more effective (e.g. attempting to negotiate AccECN on the SYN
   only once or more than twice (most appropriate during high levels of
   congestion).  However, other fall-back strategies will need to follow
   all the rules in Section 3.1.5, which concern behaviour when SYNs or
   SYN/ACKs negotiating different types of feedback have been sent
   within the same connection.

   Further it may make sense to also remove any other new or
   experimental fields or options on the SYN in case a middlebox might
   be blocking them, although the required behaviour will depend on the
   specification of the other option(s) and any attempt to co-ordinate
   fall-back between different modules of the stack.

   Whichever fall-back strategy is used, the TCP initiator SHOULD cache
   failed connection attempts.  If it does, it SHOULD NOT give up
   attempting to negotiate AccECN on the SYN of subsequent connection
   attempts until it is clear that the blockage is persistently and
   specifically due to AccECN.  The cache should be arranged to expire
   so that the initiator will infrequently attempt to check whether the
   problem has been resolved.
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   The fall-back procedure if the TCP server receives no ACK to
   acknowledge a SYN/ACK that tried to negotiate AccECN is specified in

Section 3.2.3.2.

3.1.5.  Implications of AccECN Mode

Section 3.1.1 describes the only ways that a host can enter AccECN
   mode, whether as a client or as a server.

   As a Data Sender, a host in AccECN mode has the rights and
   obligations concerning the use of ECN defined below, which build on
   those in [RFC3168] as updated by [RFC8311]:

   o  Using ECT:

      *  It can set an ECT codepoint in the IP header of packets to
         indicate to the network that the transport is capable and
         willing to participate in ECN for this packet.

      *  It does not have to set ECT on any packet (for instance if it
         has reason to believe such a packet would be blocked).

      *  If for any reason it is not willing to provide ECN feedback on
         a particular TCP connection, to indicate this unwillingness it
         SHOULD clear the AE, CWR and ECE flags in all SYN and/or SYN/
         ACK packets that it sends.

   o  Switching feedback negotiation (e.g. fall-back):

      *  It SHOULD NOT set ECT on any packet if it has received at least
         one valid SYN or Acceptable SYN/ACK with AE=CWR=ECE=0.  A
         "valid SYN" has the same port numbers and the same ISN as the
         SYN that caused the server to enter AccECN mode.

      *  It MUST NOT send an ECN-setup SYN [RFC3168] within the same
         connection as it has sent a SYN requesting AccECN feedback.

      *  It MUST NOT send an ECN-setup SYN/ACK [RFC3168] within the same
         connection as it has sent a SYN/ACK agreeing to use AccECN
         feedback.

      The above rules are necessary because, when one peer negotiates
      the feedback mode in two different types of handshake, it is not
      possible for the other peer to know for certain which handshake
      packet(s) the other end eventually receives or in which order it
      receives them.  So the two peers can end up using difference
      feedback modes without knowing it.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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   o  Congestion response:

      *  It is still obliged to respond appropriately to AccECN feedback
         with congestion indications on packets it had previously sent,
         as defined in Section 6.1 of [RFC3168] and updated by Sections
         2.1 and 4.1 of [RFC8311].

      *  The commitment to respond appropriately to incoming indications
         of congestion remains even if it sends a SYN packet with
         AE=CWR=ECE=0, in a later transmission within the same TCP
         connection.

      *  Unlike an RFC 3168 data sender, it MUST NOT set CWR to indicate
         it has received and responded to indications of congestion (for
         the avoidance of doubt, this does not preclude it from setting
         the bits of the ACE counter field, which includes an overloaded
         use of the same bit).

   As a Data Receiver:

   o  a host in AccECN mode MUST feed back the information in the IP-ECN
      field on incoming packets using Accurate ECN feedback, as
      specified in Section 3.2 below.

   o  if it receives an ECN-setup SYN or ECN-setup SYN/ACK [RFC3168]
      during the same connection as it receives a SYN requesting AccECN
      feedback or a SYN/ACK agreeing to use AccECN feedback, it MUST
      reset the connection with a RST packet.

   o  it MUST NOT use reception of packets with ECT set in the IP-ECN
      field as an implicit signal that the peer is ECN-capable.  Reason:
      ECT at the IP layer does not explicitly confirm the peer has the
      correct ECN feedback logic, and the packets could have been
      mangled at the IP layer.

3.2.  AccECN Feedback

   Each Data Receiver of each half connection maintains four counters,
   r.cep, r.ceb, r.e0b and r.e1b:

   o  The Data Receiver MUST increment the CE packet counter (r.cep),
      for every Acceptable packet that it receives with the CE code
      point in the IP ECN field, including CE marked control packets but
      excluding CE on SYN packets (SYN=1; ACK=0).

   o  The Data Receiver MUST increment the r.ceb, r.e0b or r.e1b byte
      counters by the number of TCP payload octets in Acceptable packets
      marked respectively with the CE, ECT(0) and ECT(1) codepoint in

https://datatracker.ietf.org/doc/html/rfc3168#section-6.1
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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      their IP-ECN field, including any payload octets on control
      packets, but not including any payload octets on SYN packets
      (SYN=1; ACK=0).

   Each Data Sender of each half connection maintains four counters,
   s.cep, s.ceb, s.e0b and s.e1b intended to track the equivalent
   counters at the Data Receiver.

   A Data Receiver feeds back the CE packet counter using the Accurate
   ECN (ACE) field, as explained in Section 3.2.2.  And it feeds back
   all the byte counters using the AccECN TCP Option, as specified in

Section 3.2.3.

   Whenever a host feeds back the value of any counter, it MUST report
   the most recent value, no matter whether it is in a pure ACK, an ACK
   with new payload data or a retransmission.  Therefore the feedback
   carried on a retransmitted packet is unlikely to be the same as the
   feedback on the original packet.

3.2.1.  Initialization of Feedback Counters

   When a host first enters AccECN mode, in its role as a Data Receiver
   it initializes its counters to r.cep = 5 and r.ceb = 0, The initial
   values of the other two byte counters depend on the Data Receiver's
   choice of the order of fields it will use in the AccECN TCP Option
   (see Section 3.2.3).  If field order 0, it will initialize the
   remaining counters to r.e0b = 1; r.e1b.= 0.  If field order 1, it
   will initialize them to r.e0b = 0 and r.e1b.= 0x800001.

   Non-zero initial values are used to support a stateless handshake
   (see Section 4.1) and to be distinct from cases where the fields are
   incorrectly zeroed (e.g. by middleboxes - see Section 3.2.3.2.4).

   When a host enters AccECN mode, in its role as a Data Sender it
   initializes its counters to s.cep = 5 and s.ceb = 0.  The initial
   values of the other two byte counters depend on the peer's choice of
   the order of fields it will use in the AccECN TCP Option (see

Section 3.2.3).  If field order 0, it will initialize the remaining
   counters to s.e0b = 1; s.e1b.= 0.  If field order 1, it will
   initialize them to s.e0b = 0 and s.e1b.= 0x800001.

3.2.2.  The ACE Field

   After AccECN has been negotiated on the SYN and SYN/ACK, both hosts
   overload the three TCP flags (AE, CWR and ECE) in the main TCP header
   as one 3-bit field.  Then the field is given a new name, ACE, as
   shown in Figure 3.
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       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |               |           |           | U | A | P | R | S | F |
     | Header Length | Reserved  |    ACE    | R | C | S | S | Y | I |
     |               |           |           | G | K | H | T | N | N |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

    Figure 3: Definition of the ACE field within bytes 13 and 14 of the
          TCP Header (when AccECN has been negotiated and SYN=0).

   The original definition of these three flags in the TCP header,
   including the addition of support for the ECN Nonce, is shown for
   comparison in Figure 1.  This specification does not rename these
   three TCP flags to ACE unconditionally; it merely overloads them with
   another name and definition once an AccECN connection has been
   established.

   With one exception (Section 3.2.2.1), a host with both of its half-
   connections in AccECN mode MUST interpret the AE, CWR and ECE flags
   as the 3-bit ACE counter on a segment with the SYN flag cleared
   (SYN=0).  On such a packet, a Data Receiver MUST encode the three
   least significant bits of its r.cep counter into the ACE field that
   it feeds back to the Data Sender.  A host MUST NOT interpret the 3
   flags as a 3-bit ACE field on any segment with SYN=1 (whether ACK is
   0 or 1), or if AccECN negotiation is incomplete or has not succeeded.

   Both parts of each of these conditions are equally important.  For
   instance, even if AccECN negotiation has been successful, the ACE
   field is not defined on any segments with SYN=1 (e.g. a
   retransmission of an unacknowledged SYN/ACK, or when both ends send
   SYN/ACKs after AccECN support has been successfully negotiated during
   a simultaneous open).

3.2.2.1.  ACE Field on the ACK of the SYN/ACK

   A TCP client (A) in AccECN mode MUST feed back which of the 4
   possible values of the IP-ECN field was on the SYN/ACK by writing it
   into the ACE field of a pure ACK with no SACK blocks using the binary
   encoding in Table 3 (which is the same as that used on the SYN/ACK in
   Table 2).  This shall be called the handshake encoding of the ACE
   field, and it is the only exception to the rule that the ACE field
   carries the 3 least significant bits of the r.cep counter on packets
   with SYN=0.

   Normally, a TCP client acknowledges a SYN/ACK with an ACK that
   satisfies the above conditions anyway (SYN=0, no data, no SACK
   blocks).  If an AccECN TCP client intends to acknowledge the SYN/ACK
   with a packet that does not satisfy these conditions (e.g.  it has
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   data to include on the ACK), it SHOULD first send a pure ACK that
   does satisfy these conditions (see Section 4.2), so that it can feed
   back which of the four values of the IP-ECN field arrived on the SYN/
   ACK.  A valid exception to this "SHOULD" would be where the
   implementation will only be used in an environment where mangling of
   the ECN field is unlikely.

   +---------------------+---------------------+-----------------------+
   | IP-ECN codepoint on | ACE on pure ACK of  | r.cep of client in    |
   | SYN/ACK             | SYN/ACK             | AccECN mode           |
   +---------------------+---------------------+-----------------------+
   | Not-ECT             | 0b010               | 5                     |
   | ECT(1)              | 0b011               | 5                     |
   | ECT(0)              | 0b100               | 5                     |
   | CE                  | 0b110               | 6                     |
   +---------------------+---------------------+-----------------------+

    Table 3: The encoding of the ACE field in the ACK of the SYN-ACK to
                    reflect the SYN-ACK's IP-ECN field

   When an AccECN server in SYN-RCVD state receives a pure ACK with
   SYN=0 and no SACK blocks, instead of treating the ACE field as a
   counter, it MUST infer the meaning of each possible value of the ACE
   field from Table 4, which also shows the value that an AccECN server
   MUST set s.cep to as a result.

   Given this encoding of the ACE field on the ACK of a SYN/ACK is
   exceptional, an AccECN server using large receive offload (LRO) might
   prefer to disable LRO until such an ACK has transitioned it out of
   SYN-RCVD state.

   +---------------+-----------------------------+---------------------+
   | ACE on ACK of | IP-ECN codepoint on SYN/ACK | s.cep of server in  |
   | SYN/ACK       | inferred by server          | AccECN mode         |
   +---------------+-----------------------------+---------------------+
   | 0b000         | {Notes 1, 3}                | Disable ECN         |
   | 0b001         | {Notes 2, 3}                | 5                   |
   | 0b010         | Not-ECT                     | 5                   |
   | 0b011         | ECT(1)                      | 5                   |
   | 0b100         | ECT(0)                      | 5                   |
   | 0b101         | Currently Unused {Note 2}   | 5                   |
   | 0b110         | CE                          | 6                   |
   | 0b111         | Currently Unused {Note 2}   | 5                   |
   +---------------+-----------------------------+---------------------+

        Table 4: Meaning of the ACE field on the ACK of the SYN/ACK
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   {Note 1}: If the server is in AccECN mode, the value of zero raises
   suspicion of zeroing of the ACE field on the path (see

Section 3.2.2.3).

   {Note 2}: If the server is in AccECN mode, these values are Currently
   Unused but the AccECN server's behaviour is still defined for forward
   compatibility.  Then the designer of a future protocol can know for
   certain what AccECN servers will do with these codepoints.

   {Note 3}: In the case where a server that implements AccECN is also
   using a stateless handshake (termed a SYN cookie) it will not
   remember whether it entered AccECN mode.  The values 0b000 or 0b001
   will remind it that it did not enter AccECN mode, because AccECN does
   not use them (see Section 4.1 for details).  If a stateless server
   that implements AccECN receives either of these two values in the
   ACK, its action is implementation-dependent and outside the scope of
   this spec, It will certainly not take the action in the third column
   because, after it receives either of these values, it is not in
   AccECN mode.  I.e., it will not disable ECN (at least not just
   because ACE is 0b000) and it will not set s.cep.

3.2.2.2.  Encoding and Decoding Feedback in the ACE Field

   Whenever the Data Receiver sends an ACK with SYN=0 (with or without
   data), unless the handshake encoding in Section 3.2.2.1 applies, the
   Data Receiver MUST encode the least significant 3 bits of its r.cep
   counter into the ACE field (see Appendix A.2).

   Whenever the Data Sender receives an ACK with SYN=0 (with or without
   data), it first checks whether it has already been superseded by
   another ACK in which case it ignores the ECN feedback.  If the ACK
   has not been superseded, and if the special handshake encoding in

Section 3.2.2.1 does not apply, the Data Sender decodes the ACE field
   as follows (see Appendix A.2 for examples).

   o  It takes the least significant 3 bits of its local s.cep counter
      and subtracts them from the incoming ACE counter to work out the
      minimum positive increment it could apply to s.cep (assuming the
      ACE field only wrapped at most once).

   o  It then follows the safety procedures in Section 3.2.2.5.2 to
      calculate or estimate how many packets the ACK could have
      acknowledged under the prevailing conditions to determine whether
      the ACE field might have wrapped more than once.

   The encode/decode procedures during the three-way handshake are
   exceptions to the general rules given so far, so they are spelled out
   step by step below for clarity:
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   o  If a TCP server in AccECN mode receives a CE mark in the IP-ECN
      field of a SYN (SYN=1, ACK=0), it MUST NOT increment r.cep (it
      remains at its initial value of 5).

      Reason: It would be redundant for the server to include CE-marked
      SYNs in its r.cep counter, because it already reliably delivers
      feedback of any CE marking on the SYN/ACK using the encoding in
      Table 2.  This also ensures that, when the server starts using the
      ACE field, it has not unnecessarily consumed more than one initial
      value, given they can be used to negotiate variants of the AccECN
      protocol (see Appendix B.3).

   o  If a TCP client in AccECN mode receives CE feedback in the TCP
      flags of a SYN/ACK, it MUST NOT increment s.cep (it remains at its
      initial value of 5), so that it stays in step with r.cep on the
      server.  Nonetheless, the TCP client still triggers the congestion
      control actions necessary to respond to the CE feedback.

   o  If a TCP client in AccECN mode receives a CE mark in the IP-ECN
      field of a SYN/ACK, it MUST increment r.cep, but no more than once
      no matter how many CE-marked SYN/ACKs it receives (i.e.
      incremented from 5 to 6, but no further).

      Reason: Incrementing r.cep ensures the client will eventually
      deliver any CE marking to the server reliably when it starts using
      the ACE field.  Even though the client also feeds back any CE
      marking on the ACK of the SYN/ACK using the encoding in Table 3,
      this ACK is not delivered reliably, so it can be considered as a
      timely notification that is redundant but unreliable.  The client
      does not increment r.cep more than once, because the server can
      only increment s.cep once (see next bullet).  Also, this limits
      the unnecessarily consumed initial values of the ACE field to two.

   o  If a TCP server in AccECN mode and in SYN-RCVD state receives CE
      feedback in the TCP flags of a pure ACK with no SACK blocks, it
      MUST increment s.cep (from 5 to 6).  The TCP server then triggers
      the congestion control actions necessary to respond to the CE
      feedback.

      Reasoning: The TCP server can only increment s.cep once, because
      the first ACK it receives will cause it to transition out of SYN-
      RCVD state.  The server's congestion response would be no
      different even if it could receive feedback of more than one CE-
      marked SYN/ACK.

      Once the TCP server transitions to ESTABLISHED state, it might
      later receive other pure ACK(s) with the handshake encoding in the
      ACE field.  The conditions for this to occur are quite unusual,
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      but not impossible, e.g. a SYN/ACK (or ACK of the SYN/ACK) that is
      delayed for longer than the server's retransmission timeout; or
      packet duplication by the network.  Nonetheless, once in the
      ESTABLISHED state, the server will consider the ACE field to be
      encoded as the normal ACE counter on all packets with SYN=0 (given
      it will be following the above rule in this bullet).  The server
      MAY include a test to avoid this case.

3.2.2.3.  Testing for Zeroing of the ACE Field

Section 3.2.2 required the Data Receiver to initialize the r.cep
   counter to a non-zero value.  Therefore, in either direction the
   initial value of the ACE counter ought to be non-zero.

   If AccECN has been successfully negotiated, the Data Sender SHOULD
   check the value of the ACE counter in the first packet (with or
   without data) that arrives with SYN=0.  If the value of this ACE
   field is zero (0b000), the Data Sender disables sending ECN-capable
   packets for the remainder of the half-connection by setting the IP/
   ECN field in all subsequent packets to Not-ECT.

   Usually, the server checks the ACK of the SYN/ACK from the client,
   while the client checks the first data segment from the server.
   However, if reordering occurs, "the first packet ... that arrives"
   will not necessarily be the same as the first packet in sequence
   order.  The test has been specified loosely like this to simplify
   implementation, and because it would not have been any more precise
   to have specified the first packet in sequence order, which would not
   necessarily be the first ACE counter that the Data Receiver fed back
   anyway, given it might have been a retransmission.

   The possibility of re-ordering means that there is a small chance
   that the ACE field on the first packet to arrive is genuinely zero
   (without middlebox interference).  This would cause a host to
   unnecessarily disable ECN for a half connection.  Therefore, in
   environments where there is no evidence of the ACE field being
   zeroed, implementations can skip this test.

   Note that the Data Sender MUST NOT test whether the arriving counter
   in the initial ACE field has been initialized to a specific valid
   value - the above check solely tests whether the ACE fields have been
   incorrectly zeroed.  This allows hosts to use different initial
   values as an additional signalling channel in future.
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3.2.2.4.  Testing for Mangling of the IP/ECN Field

   The value of the ACE field on the SYN/ACK indicates the value of the
   IP/ECN field when the SYN arrived at the server.  The client can
   compare this with how it originally set the IP/ECN field on the SYN.
   If this comparison implies an unsafe transition (see below) of the
   IP/ECN field, for the remainder of the connection the client MUST NOT
   send ECN-capable packets, but it MUST continue to feed back any ECN
   markings on arriving packets.

   The value of the ACE field on the last ACK of the 3WHS indicates the
   value of the IP/ECN field when the SYN/ACK arrived at the client.
   The server can compare this with how it originally set the IP/ECN
   field on the SYN/ACK.  If this comparison implies an unsafe
   transition of the IP/ECN field, for the remainder of the connection
   the server MUST NOT send ECN-capable packets, but it MUST continue to
   feedback any ECN markings on arriving packets.

   The ACK of the SYN/ACK is not reliably delivered (nonetheless, the
   count of CE marks is still eventually delivered reliably).  If this
   ACK does not arrive, the server can continue to send ECN-capable
   packets without having tested for mangling of the IP/ECN field on the
   SYN/ACK.  Experiments with AccECN deployment will assess whether this
   limitation has any effect in practice.

   Invalid transitions of the IP/ECN field are defined in [RFC3168] and
   repeated here for convenience:

   o  the not-ECT codepoint changes;

   o  either ECT codepoint transitions to not-ECT;

   o  the CE codepoint changes.

RFC 3168 says that a router that changes ECT to not-ECT is invalid
   but safe.  However, from a host's viewpoint, this transition is
   unsafe because it could be the result of two transitions at different
   routers on the path: ECT to CE (safe) then CE to not-ECT (unsafe).
   This scenario could well happen where an ECN-enabled home router
   congests its upstream mobile broadband bottleneck link, then the
   ingress to the mobile network clears the ECN field [Mandalari18].

   The above fall-back behaviours are necessary in case mangling of the
   IP/ECN field is asymmetric, which is currently common over some
   mobile networks [Mandalari18].  Then one end might see no unsafe
   transition and continue sending ECN-capable packets, while the other
   end sees an unsafe transition and stops sending ECN-capable packets.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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3.2.2.5.  Safety against Ambiguity of the ACE Field

   If too many CE-marked segments are acknowledged at once, or if a long
   run of ACKs is lost or thinned out, the 3-bit counter in the ACE
   field might have cycled between two ACKs arriving at the Data Sender.
   The following safety procedures minimize this ambiguity.

3.2.2.5.1.  Data Receiver Safety Procedures

   An AccECN Data Receiver:

   o  SHOULD immediately send an ACK whenever a data packet marked CE
      arrives after the previous data packet was not CE.

   o  MUST immediately send an ACK once 'n' CE marks have arrived since
      the previous ACK, where 'n' SHOULD be 2 and MUST be no greater
      than 6.

   These rules for when to send an ACK are designed to be complemented
   by those in Section 3.2.3.3, which concern whether the AccECN TCP
   Option ought to be included on ACKs.

   For the avoidance of doubt, the change-triggered ACK mechanism is
   deliberately worded to solely apply to data packets, and to ignore
   the arrival of a control packet with no payload, because it is
   important that TCP does not acknowledge pure ACKs.  The change-
   triggered ACK approach can lead to some additional ACKs but it feeds
   back the timing and the order in which ECN marks are received with
   minimal additional complexity.  If only CE marks are infrequent, or
   there are multiple marks in a row, the additional load will be low.
   Other marking patterns could increase the load significantly.
   Investigating the additional load is a goal of the proposed
   experiment.

   Even though the first bullet is stated as a "SHOULD", it is important
   for a transition to immediately trigger an ACK if at all possible, so
   that the Data Sender can rely on change-triggered ACKs to detect
   queue growth as soon as possible, e.g. at the start of a flow.  This
   requirement can only be relaxed if certain offload hardware needed
   for high performance cannot support change-triggered ACKs (although
   high performance protocols such as DCTCP already successfully use
   change-triggered ACKs).  One possible experimental compromise would
   be for the receiver to heuristically detect whether the sender is in
   slow-start, then to implement change-triggered ACKs while the sender
   is in slow-start, and offload otherwise.
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3.2.2.5.2.  Data Sender Safety Procedures

   If the Data Sender has not received AccECN TCP Options to give it
   more dependable information, and it detects that the ACE field could
   have cycled, it SHOULD deem whether it cycled by taking the safest
   likely case under the prevailing conditions.  It can detect if the
   counter could have cycled by using the jump in the acknowledgement
   number since the last ACK to calculate or estimate how many segments
   could have been acknowledged.  An example algorithm to implement this
   policy is given in Appendix A.2.  An implementer MAY develop an
   alternative algorithm as long as it satisfies these requirements.

   If missing acknowledgement numbers arrive later (reordering) and
   prove that the counter did not cycle, the Data Sender MAY attempt to
   neutralize the effect of any action it took based on a conservative
   assumption that it later found to be incorrect.

   The Data Sender can estimate how many packets (of any marking) an ACK
   acknowledges.  If the ACE counter on an ACK seems to imply that the
   minimum number of newly CE-marked packets is greater that the number
   of newly acknowledged packets, the Data Sender SHOULD believe the ACE
   counter, unless it can be sure that it is counting all control
   packets correctly.

3.2.3.  The AccECN Option

   The AccECN Option is defined as shown in Figure 4.  The initial 'E'
   of each field name stands for 'Echo'.
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    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Kind = TBD1  |  Length = 11  |          EE0B field           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | EE0B (cont'd) |           ECEB field                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  EE1B field                   |             Order 0
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Kind = TBD1  |  Length = 11  |          EE1B field           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | EE1B (cont'd) |           ECEB field                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  EE0B field                   |             Order 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 4: The AccECN TCP Option

   When a Data Receiver sends an AccECN Option, it MUST set the Kind
   field to TBD1, which is registered in Section 6 as a new TCP option
   Kind called AccECN.  An experimental TCP option with Kind=254 MAY be
   used for initial experiments, with magic number 0xACCE.

   Figure 4 shows two option field orders; order 0 and order 1.  They
   both consists of three 24-bit fields.  Order 0 provides the 24 least
   significant bits of the r.e0b, r.ceb and r.e1b counters,
   respectively.  Order 1 provides the same fields, but in the opposite
   order.  Each half-connection can use a different field order, but a
   Data Receiver MUST consistently send the same field order within the
   same half-connection.

   The field order to use for each half-connection is up to the Data
   Receiver implementation.  It might use the same hard-coded order for
   all half-connections, or it might make a different choice for each
   half-connection.  For instance, the implementation of a Data Receiver
   might default to using order 0, unless the ECN field in the IP header
   of the packet it received during the 3WHS is ECT(1).  A Data Receiver
   just starts using its chosen field order and the field immediately
   after the length field in the first AccECN TCP Option of a half-
   connection will intrinsically indicate which order it is using,
   because the initial counter values that it is required to use depend
   on its chosen field order (see Section 3.2.1).
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   A Data Sender can know which field order the Data Receiver is using
   for a half-connection from the most significant bit (MSB) of the
   counter in the field immediately after the length field in the first
   non-empty AccECN TCP Option to arrive.  If this MSB = 0, field order
   0 is being used, and if MSB = 1, field order 1 is being used.  Note
   that the Data Sender only tests the most significant bit, not the
   value of the whole field, because the counters in the first packet to
   arrive might have started to increment (e.g. if the first packet to
   arrive is not the first packet sent due to loss or reordering).

   Note that there is no field to feed back Not-ECT bytes.  Nonetheless
   an algorithm for the Data Sender to calculate the number of payload
   bytes received as Not-ECT is given in Appendix A.5.

   Whenever a Data Receiver sends an AccECN Option, the rules in
Section 3.2.3.3 expect it to usually send a full-length option.  To

   cope with option space limitations, it can omit unchanged fields from
   the tail of the option, as long as it preserves the order of the
   remaining fields and includes any field that has changed.  The length
   field MUST indicate which fields are present as follows:

             +--------+------------------+------------------+
             | Length | Type 0           | Type 1           |
             +--------+------------------+------------------+
             | 11     | EE0B, ECEB, EE1B | EE1B, ECEB, EE0B |
             | 8      | EE0B, ECEB       | EE1B, ECEB       |
             | 5      | EE0B             | EE1B             |
             | 2      | (empty)          | (empty)          |
             +--------+------------------+------------------+

   The empty option of Length=2 is provided to allow for a case where an
   AccECN Option has to be sent (e.g. on the SYN/ACK to test the path),
   but there is very limited space for the option.  For initial
   experiments, the Length field MUST be 2 greater to accommodate the
   16-bit magic number.

   All implementations of a Data Sender that read any AccECN Option MUST
   be able to read in AccECN Options of any of the above lengths.  For
   forward compatibility, if the AccECN Option is of any other length,
   implementations MUST use those whole 3 octet fields that fit within
   the length and ignore the remainder of the option.

   The AccECN Option has to be optional to implement, because both
   sender and receiver have to be able to cope without the option anyway
   - in cases where it does not traverse a network path.  It is
   RECOMMENDED to implement both sending and receiving of the AccECN
   Option.  If sending of the AccECN Option is implemented, the fall-
   backs described in this document will need to be implemented as well
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   (unless solely for a controlled environment where path traversal is
   not considered a problem).  Even if a developer does not implement
   sending of the AccECN Option, it is RECOMMENDED that they still
   implement logic to receive and understand any AccECN Options sent by
   remote peers.

   If a Data Receiver intends to send the AccECN Option at any time
   during the rest of the connection it is strongly recommended to also
   test path traversal of the AccECN Option as specified in

Section 3.2.3.2.

3.2.3.1.  Encoding and Decoding Feedback in the AccECN Option Fields

   Whenever the Data Receiver includes any of the counter fields (ECEB,
   EE0B, EE1B) in an AccECN Option, it MUST encode the 24 least
   significant bits of the current value of the associated counter into
   the field (respectively r.ceb, r.e0b, r.e1b).

   Whenever the Data Sender receives ACK carrying an AccECN Option, it
   first checks whether the ACK has already been superseded by another
   ACK in which case it ignores the ECN feedback.  If the ACK has not
   been superseded, the Data Sender MUST decode the fields in the AccECN
   Option as follows.  For each field, it takes the least significant 24
   bits of its associated local counter (s.ceb, s.e0b or s.e1b) and
   subtracts them from the counter in the associated field of the
   incoming AccECN Option (respectively ECEB, EE0B, EE1B), to work out
   the minimum positive increment it could apply to s.ceb, s.e0b or
   s.e1b (assuming the field in the option only wrapped at most once).

Appendix A.1 gives an example algorithm for the Data Receiver to
   encode its byte counters into the AccECN Option, and for the Data
   Sender to decode the AccECN Option fields into its byte counters.

   Note that, as specified in Section 3.2, any data on the SYN (SYN=1,
   ACK=0) is not included in any of the locally held octet counters nor
   in the AccECN Option on the wire.

3.2.3.2.  Path Traversal of the AccECN Option

3.2.3.2.1.  Testing the AccECN Option during the Handshake

   The TCP client MUST NOT include the AccECN TCP Option on the SYN.  (A
   fall-back strategy for the loss of the SYN (possibly due to middlebox
   interference) is specified in Section 3.1.4.)

   A TCP server that confirms its support for AccECN (in response to an
   AccECN SYN from the client as described in Section 3.1) SHOULD
   include an AccECN TCP Option on the SYN/ACK.
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   A TCP client that has successfully negotiated AccECN SHOULD include
   an AccECN Option in the first ACK at the end of the 3WHS.  However,
   this first ACK is not delivered reliably, so the TCP client SHOULD
   also include an AccECN Option on the first data segment it sends (if
   it ever sends one).

   A host MAY NOT include an AccECN Option in any of these three cases
   if it has cached knowledge that the packet would be likely to be
   blocked on the path to the other host if it included an AccECN
   Option.

3.2.3.2.2.  Testing for Loss of Packets Carrying the AccECN Option

   If after the normal TCP timeout the TCP server has not received an
   ACK to acknowledge its SYN/ACK, the SYN/ACK might just have been
   lost, e.g. due to congestion, or a middlebox might be blocking the
   AccECN Option.  To expedite connection setup, the TCP server SHOULD
   retransmit the SYN/ACK repeating the same AE, CWR and ECE TCP flags
   as on the original SYN/ACK but with no AccECN Option.  If this
   retransmission times out, to expedite connection setup, the TCP
   server SHOULD disable AccECN and ECN for this connection by
   retransmitting the SYN/ACK with AE=CWR=ECE=0 and no AccECN Option.

   Implementers MAY use other fall-back strategies if they are found to
   be more effective (e.g. retrying the AccECN Option for a second time
   before fall-back - most appropriate during high levels of
   congestion).  However, other fall-back strategies will need to follow
   all the rules in Section 3.1.5, which concern behaviour when SYNs or
   SYN/ACKs negotiating different types of feedback have been sent
   within the same connection.

   If the TCP client detects that the first data segment it sent with
   the AccECN Option was lost, it SHOULD fall back to no AccECN Option
   on the retransmission.  Again, implementers MAY use other fall-back
   strategies such as attempting to retransmit a second segment with the
   AccECN Option before fall-back, and/or caching whether the AccECN
   Option is blocked for subsequent connections.
   [I-D.ietf-tcpm-2140bis] further discusses caching of TCP parameters
   and status information.

   If a host falls back to not sending the AccECN Option, it will
   continue to process any incoming AccECN Options as normal.

   Either host MAY include the AccECN Option in a subsequent segment to
   retest whether the AccECN Option can traverse the path.

   If the TCP server receives a second SYN with a request for AccECN
   support, it should resend the SYN/ACK, again confirming its support
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   for AccECN, but this time without the AccECN Option.  This approach
   rules out any interference by middleboxes that may drop packets with
   unknown options, even though it is more likely that the SYN/ACK would
   have been lost due to congestion.  The TCP server MAY try to send
   another packet with the AccECN Option at a later point during the
   connection but should monitor if that packet got lost as well, in
   which case it SHOULD disable the sending of the AccECN Option for
   this half-connection.

   Similarly, an AccECN end-point MAY separately memorize which data
   packets carried an AccECN Option and disable the sending of AccECN
   Options if the loss probability of those packets is significantly
   higher than that of all other data packets in the same connection.

3.2.3.2.3.  Testing for Absence of the AccECN Option

   If the TCP client has successfully negotiated AccECN but does not
   receive an AccECN Option on the SYN/ACK (e.g. because is has been
   stripped by a middlebox or not sent by the server), the client
   switches into a mode that assumes that the AccECN Option is not
   available for this half connection.

   Similarly, if the TCP server has successfully negotiated AccECN but
   does not receive an AccECN Option on the first segment that
   acknowledges sequence space at least covering the ISN, it switches
   into a mode that assumes that the AccECN Option is not available for
   this half connection.

   While a host is in this mode that assumes incoming AccECN Options are
   not available, it MUST adopt the conservative interpretation of the
   ACE field discussed in Section 3.2.2.5.  However, it cannot make any
   assumption about support of outgoing AccECN Options on the other half
   connection, so it SHOULD continue to send the AccECN Option itself
   (unless it has established that sending the AccECN Option is causing
   packets to be blocked as in Section 3.2.3.2.2).

   If a host is in the mode that assumes incoming AccECN Options are not
   available, but it receives an AccECN Option at any later point during
   the connection, this clearly indicates that the AccECN Option is not
   blocked on the respective path, and the AccECN endpoint MAY switch
   out of the mode that assumes the AccECN Option is not available for
   this half connection.

3.2.3.2.4.  Test for Zeroing of the AccECN Option

   For a related test for invalid initialization of the ACE field, see
Section 3.2.2.3
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Section 3.2 required the Data Receiver to initialize the r.e0b
   counter to a non-zero value.  Therefore, in either direction the
   initial value of the EE0B field in the AccECN Option (if one exists)
   ought to be non-zero.  If AccECN has been negotiated:

   o  the TCP server MAY check the initial value of the EE0B field in
      the first segment that acknowledges sequence space that at least
      covers the ISN plus 1.  If the initial value of the EE0B field is
      zero, the server will switch into a mode that ignores the AccECN
      Option for this half connection.

   o  the TCP client MAY check the initial value of the EE0B field on
      the SYN/ACK.  If the initial value of the EE0B field is zero, the
      client will switch into a mode that ignores the AccECN Option for
      this half connection.

   While a host is in the mode that ignores the AccECN Option it MUST
   adopt the conservative interpretation of the ACE field discussed in

Section 3.2.2.5.

   Note that the Data Sender MUST NOT test whether the arriving byte
   counters in the initial AccECN Option have been initialized to
   specific valid values - the above checks solely test whether these
   fields have been incorrectly zeroed.  This allows hosts to use
   different initial values as an additional signalling channel in
   future.  Also note that the initial value of either field might be
   greater than its expected initial value, because the counters might
   already have been incremented.  Nonetheless, the initial values of
   the counters have been chosen so that they cannot wrap to zero on
   these initial segments.

3.2.3.2.5.  Consistency between AccECN Feedback Fields

   When the AccECN Option is available it supplements but does not
   replace the ACE field.  An endpoint using AccECN feedback MUST always
   consider the information provided in the ACE field whether or not the
   AccECN Option is also available.

   If the AccECN option is present, the s.cep counter might increase
   while the s.ceb counter does not (e.g. due to a CE-marked control
   packet).  The sender's response to such a situation is out of scope,
   and needs to be dealt with in a specification that uses ECN-capable
   control packets.  Theoretically, this situation could also occur if a
   middlebox mangled the AccECN Option but not the ACE field.  However,
   the Data Sender has to assume that the integrity of the AccECN Option
   is sound, based on the above test of the well-known initial values
   and optionally other integrity tests (Section 4.3).
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   If either end-point detects that the s.ceb counter has increased but
   the s.cep has not (and by testing ACK coverage it is certain how much
   the ACE field has wrapped), this invalid protocol transition has to
   be due to some form of feedback mangling.  So, the Data Sender MUST
   disable sending ECN-capable packets for the remainder of the half-
   connection by setting the IP/ECN field in all subsequent packets to
   Not-ECT.

3.2.3.3.  Usage of the AccECN TCP Option

   If the Data Receiver intends to use the AccECN TCP Option to provide
   feedback, the following rules determine when a Data Receiver in
   AccECN mode sends an ACK with the AccECN TCP Option, and which fields
   to include:

   Change-Triggered ACKs:  If an arriving packet increments a different
      byte counter to that incremented by the previous packet, the Data
      Receiver SHOULD immediately send an ACK with an AccECN Option,
      without waiting for the next delayed ACK (this is in addition to
      the safety recommendation in Section 3.2.2.5 against ambiguity of
      the ACE field).

      Even though this bullet is stated as a "SHOULD", it is important
      for a transition to immediately trigger an ACK if at all possible,
      as already argued when specifying change-triggered ACKs for the
      ACE.

   Continual Repetition:  Otherwise, if arriving packets continue to
      increment the same byte counter, the Data Receiver can include an
      AccECN Option on most or all (delayed) ACKs, but it does not have
      to.

      *  It SHOULD include a counter that has continued to increment on
         the next scheduled ACK following a change-triggered ACK;

      *  while the same counter continues to increment, it SHOULD
         include the counter every n ACKs as consistently as possible,
         where n can be chosen by the implementer;

      *  It SHOULD always include an AccECN Option if the r.ceb counter
         is incrementing and it MAY include an AccECN Option if r.ec0b
         or r.ec1b is incrementing

      *  It SHOULD, include each counter at least once for every 2^22
         bytes incremented to prevent overflow during continual
         repetition.
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      If the smallest allowed AccECN Option would leave insufficient
      space for two SACK blocks on a particular ACK, the Data Receiver
      MUST give precedence to the SACK option (total 18 octets), because
      loss feedback is more critical.

   Necessary Option Length:  It MAY exclude counter(s) that have not
      changed for the whole connection (but beacons still include all
      fields - see below).  It SHOULD include counter(s) that have
      incremented at some time during the connection.  It MUST include
      the counter(s) that have incremented since the previous AccECN
      Option and it MUST only truncate fields from the right-hand tail
      of the option to preserve the order of the remaining fields (see

Section 3.2.3);

   Beaconing Full-Length Options:  Nonetheless, it MUST include a full-
      length AccECN TCP Option on at least three ACKs per RTT, or on all
      ACKs if there are less than three per RTT (see Appendix A.4 for an
      example algorithm that satisfies this requirement).

   The above rules complement those in Section 3.2.2.5, which determine
   when to generate an ACK irrespective of whether an AccECN TCP Option
   is to be included.

   The following example series of arriving IP/ECN fields illustrates
   when a Data Receiver will emit an ACK with an AccECN Option if it is
   using a delayed ACK factor of 2 segments and change-triggered ACKs:
   01 -> ACK, 01, 01 -> ACK, 10 -> ACK, 10, 01 -> ACK, 01, 11 -> ACK, 01
   -> ACK.

   Even though first bullet is stated as a "SHOULD", it is important for
   a transition to immediately trigger an ACK if at all possible, so
   that the Data Sender can rely on change-triggered ACKs to detect
   queue growth as soon as possible, e.g. at the start of a flow.  This
   requirement can only be relaxed if certain offload hardware needed
   for high performance cannot support change-triggered ACKs (although
   high performance protocols such as DCTCP already successfully use
   change-triggered ACKs).  One possible experimental compromise would
   be for the receiver to heuristically detect whether the sender is in
   slow-start, then to implement change-triggered ACKs while the sender
   is in slow-start, and offload otherwise.

   For the avoidance of doubt, this change-triggered ACK mechanism is
   deliberately worded to ignore the arrival of a control packet with no
   payload, which therefore does not alter any byte counters, because it
   is important that TCP does not acknowledge pure ACKs.  The change-
   triggered ACK approach can lead to some additional ACKs but it feeds
   back the timing and the order in which ECN marks are received with
   minimal additional complexity.  If only CE marks are infrequent, or
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   there are multiple marks in a row, the additional load will be low.
   Other marking patterns could increase the load significantly,
   Investigating the additional load is a goal of the proposed
   experiment.

   Implementation note: sending an AccECN Option each time a different
   counter changes and including a full-length AccECN Option on every
   delayed ACK will satisfy the requirements described above and might
   be the easiest implementation, as long as sufficient space is
   available in each ACK (in total and in the option space).

Appendix A.3 gives an example algorithm to estimate the number of
   marked bytes from the ACE field alone, if the AccECN Option is not
   available.

   If a host has determined that segments with the AccECN Option always
   seem to be discarded somewhere along the path, it is no longer
   obliged to follow the above rules.

3.3.  Requirements for TCP Proxies, Offload Engines and other
      Middleboxes on AccECN Compliance

   A large class of middleboxes split TCP connections.  Such a middlebox
   would be compliant with the AccECN protocol if the TCP implementation
   on each side complied with the present AccECN specification and each
   side negotiated AccECN independently of the other side.

   Another large class of middleboxes intervenes to some degree at the
   transport layer, but attempts to be transparent (invisible) to the
   end-to-end connection.  A subset of this class of middleboxes
   attempts to `normalize' the TCP wire protocol by checking that all
   values in header fields comply with a rather narrow interpretation of
   the TCP specifications.  To comply with the present AccECN
   specification, such a middlebox MUST NOT change the ACE field or the
   AccECN Option and it SHOULD preserve the timing of each ACK (for
   example, if it coalesced ACKs it would not be AccECN-compliant) as
   these can be used by the Data Sender to infer further information
   about the path congestion level.  A middlebox claiming to be
   transparent at the transport layer MUST forward the AccECN TCP Option
   unaltered, whether or not the length value matches one of those
   specified in Section 3.2.3, and whether or not the initial values of
   the byte-counter fields are correct.  This is because blocking
   apparently invalid values does not improve security (because AccECN
   hosts are required to ignore invalid values anyway), while it
   prevents the standardized set of values being extended in future
   (because outdated normalizers would block updated hosts from using
   the extended AccECN standard).
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   Hardware to offload certain TCP processing represents another large
   class of middleboxes, even though it is often a function of a host's
   network interface and rarely in its own 'box'.  Leeway has been
   allowed in the present AccECN specification in the expectation that
   offload hardware could comply and still serve its function.
   Nonetheless, such hardware SHOULD also preserve the timing of each
   ACK (for example, if it coalesced ACKs it would not be AccECN-
   compliant).

   The ACE field changes with every received CE marking, so today's
   receive offloading could lead to many interrupts in high congestion
   situations.  Although that would be useful (because congestion
   information is received sooner), it could also significantly increase
   processor load, particularly in scenarios such as DCTCP or L4S where
   the marking rate is generally higher.

   In data centres it has been fortunate for offload hardware that
   DCTCP-style feedback changes less often when there are long sequences
   of CE marks, which is more common with a step marking threshold.  In
   order to enable DCTCP to improve its responsiveness, DCs will need to
   move beyond step marking.  Before this can happen, offload hardware
   will have to explicitly address the variability of ECN feedback.

   ECN encodes a varying signal in the ACK stream, so it is inevitable
   that offload hardware will ultimately need to handle any form of ECN
   feedback exceptionally.  The purpose of working towards standardized
   TCP ECN feedback is to reduce the risk for hardware developers, who
   would otherwise have to guess which scheme is likely to become
   dominant.

4.  Interaction with Other TCP Variants

   This section is informative, not normative.

4.1.  Compatibility with SYN Cookies

   A TCP server can use SYN Cookies (see Appendix A of [RFC4987]) to
   protect itself from SYN flooding attacks.  It places minimal commonly
   used connection state in the SYN/ACK, and deliberately does not hold
   any state while waiting for the subsequent ACK (e.g. it closes the
   thread).  Therefore it cannot record the fact that it entered AccECN
   mode for both half-connections.  Indeed, it cannot even remember
   whether it negotiated the use of classic ECN [RFC3168].

   Nonetheless, such a server can determine that it negotiated AccECN as
   follows.  If a TCP server using SYN Cookies supports AccECN and if it
   receives a pure ACK that acknowledges an ISN that is a valid SYN

https://datatracker.ietf.org/doc/html/rfc4987#appendix-A
https://datatracker.ietf.org/doc/html/rfc3168
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   cookie, and if the ACK contains an ACE field with the value 0b010 to
   0b111 (decimal 2 to 7), it can assume that:

   o  the TCP client must have requested AccECN support on the SYN

   o  it (the server) must have confirmed that it supported AccECN

   Therefore the server can switch itself into AccECN mode, and continue
   as if it had never forgotten that it switched itself into AccECN mode
   earlier.

   If the pure ACK that acknowledges a SYN cookie contains an ACE field
   with the value 0b000 or 0b001, these values indicate that the client
   did not request support for AccECN and therefore the server does not
   enter AccECN mode for this connection.  Further, 0b001 on the ACK
   implies that the server sent an ECN-capable SYN/ACK, which was marked
   CE in the network, and the non-AccECN client fed this back by setting
   ECE on the ACK of the SYN/ACK.

4.2.  Compatibility with Other TCP Options and Experiments

   AccECN is compatible (at least on paper) with the most commonly used
   TCP options: MSS, time-stamp, window scaling, SACK and TCP-AO.  It is
   also compatible with the recent promising experimental TCP options
   TCP Fast Open (TFO [RFC7413]) and Multipath TCP (MPTCP [RFC6824]).
   AccECN is friendly to all these protocols, because space for TCP
   options is particularly scarce on the SYN, where AccECN consumes zero
   additional header space.

   When option space is under pressure from other options,
Section 3.2.3.3 provides guidance on how important it is to send an

   AccECN Option and whether it needs to be a full-length option.

   Implementers of TFO need to take careful note of the recommendation
   in Section 3.2.2.1.  That section recommends that, if the client has
   successfully negotiated AccECN, when acknowledging the SYN/ACK, even
   if it has data to send, it sends a pure ACK immediately before the
   data.  Then it can reflect the IP-ECN field of the SYN/ACK on this
   pure ACK, which allows the server to detect ECN mangling.

4.3.  Compatibility with Feedback Integrity Mechanisms

   Three alternative mechanisms are available to assure the integrity of
   ECN and/or loss signals.  AccECN is compatible with any of these
   approaches:

   o  The Data Sender can test the integrity of the receiver's ECN (or
      loss) feedback by occasionally setting the IP-ECN field to a value

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6824
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      normally only set by the network (and/or deliberately leaving a
      sequence number gap).  Then it can test whether the Data
      Receiver's feedback faithfully reports what it expects (similar to
      para 2 of Section 20.2 of [RFC3168]).  Unlike the ECN Nonce
      [RFC3540], this approach does not waste the ECT(1) codepoint in
      the IP header, it does not require standardization and it does not
      rely on misbehaving receivers volunteering to reveal feedback
      information that allows them to be detected.  However, setting the
      CE mark by the sender might conceal actual congestion feedback
      from the network and should therefore only be done sparingly.

   o  Networks generate congestion signals when they are becoming
      congested, so networks are more likely than Data Senders to be
      concerned about the integrity of the receiver's feedback of these
      signals.  A network can enforce a congestion response to its ECN
      markings (or packet losses) using congestion exposure (ConEx)
      audit [RFC7713].  Whether the receiver or a downstream network is
      suppressing congestion feedback or the sender is unresponsive to
      the feedback, or both, ConEx audit can neutralize any advantage
      that any of these three parties would otherwise gain.

      ConEx is a change to the Data Sender that is most useful when
      combined with AccECN.  Without AccECN, the ConEx behaviour of a
      Data Sender would have to be more conservative than would be
      necessary if it had the accurate feedback of AccECN.

   o  The TCP authentication option (TCP-AO [RFC5925]) can be used to
      detect any tampering with AccECN feedback between the Data
      Receiver and the Data Sender (whether malicious or accidental).
      The AccECN fields are immutable end-to-end, so they are amenable
      to TCP-AO protection, which covers TCP options by default.
      However, TCP-AO is often too brittle to use on many end-to-end
      paths, where middleboxes can make verification fail in their
      attempts to improve performance or security, e.g. by
      resegmentation or shifting the sequence space.

   Originally the ECN Nonce [RFC3540] was proposed to ensure integrity
   of congestion feedback.  With minor changes AccECN could be optimized
   for the possibility that the ECT(1) codepoint might be used as an ECN
   Nonce.  However, given RFC 3540 has been reclassified as historic,
   the AccECN design has been generalized so that it ought to be able to
   support other possible uses of the ECT(1) codepoint, such as a lower
   severity or a more instant congestion signal than CE.

https://datatracker.ietf.org/doc/html/rfc3168#section-20.2
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
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5.  Protocol Properties

   This section is informative not normative.  It describes how well the
   protocol satisfies the agreed requirements for a more accurate ECN
   feedback protocol [RFC7560].

   Accuracy:  From each ACK, the Data Sender can infer the number of new
      CE marked segments since the previous ACK.  This provides better
      accuracy on CE feedback than classic ECN.  In addition if the
      AccECN Option is present (not blocked by the network path) the
      number of bytes marked with CE, ECT(1) and ECT(0) are provided.

   Overhead:  The AccECN scheme is divided into two parts.  The
      essential part reuses the 3 flags already assigned to ECN in the
      IP header.  The supplementary part adds an additional TCP option
      consuming up to 11 bytes.  However, no TCP option is consumed in
      the SYN.

   Ordering:  The order in which marks arrive at the Data Receiver is
      preserved in AccECN feedback, because the Data Receiver is
      expected to send an ACK immediately whenever a different mark
      arrives.

   Timeliness:  While the same ECN markings are arriving continually at
      the Data Receiver, it can defer ACKs as TCP does normally, but it
      will immediately send an ACK as soon as a different ECN marking
      arrives.

   Timeliness vs Overhead:  Change-Triggered ACKs are intended to enable
      latency-sensitive uses of ECN feedback by capturing the timing of
      transitions but not wasting resources while the state of the
      signalling system is stable.  Within the constraints of the
      change-triggered ACK rules, the receiver can control how
      frequently it sends the AccECN TCP Option and therefore to some
      extent it can control the overhead induced by AccECN.

   Resilience:  All information is provided based on counters.
      Therefore if ACKs are lost, the counters on the first ACK
      following the losses allows the Data Sender to immediately recover
      the number of the ECN markings that it missed.  And if data or
      ACKs are reordered, stale congestion information can be identified
      and ignored.

   Resilience against Bias:  Because feedback is based on repetition of
      counters, random losses do not remove any information, they only
      delay it.  Therefore, even though some ACKs are change-triggered,
      random losses will not alter the proportions of the different ECN
      markings in the feedback.

https://datatracker.ietf.org/doc/html/rfc7560
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   Resilience vs Overhead:  If space is limited in some segments (e.g.
      because more options are needed on some segments, such as the SACK
      option after loss), the Data Receiver can send AccECN Options less
      frequently or truncate fields that have not changed, usually down
      to as little as 5 bytes.  However, it has to send a full-sized
      AccECN Option at least three times per RTT, which the Data Sender
      can rely on as a regular beacon or checkpoint.

   Resilience vs Timeliness and Ordering:  Ordering information and the
      timing of transitions cannot be communicated in three cases: i)
      during ACK loss; ii) if something on the path strips the AccECN
      Option; or iii) if the Data Receiver is unable to support Change-
      Triggered ACKs.  Following ACK reordering, the Data Sender can
      reconstruct the order in which feedback was sent, but not until
      all the missing feedback has arrived.

   Complexity:  An AccECN implementation solely involves simple counter
      increments, some modulo arithmetic to communicate the least
      significant bits and allow for wrap, and some heuristics for
      safety against fields cycling due to prolonged periods of ACK
      loss.  Each host needs to maintain eight additional counters.  The
      hosts have to apply some additional tests to detect tampering by
      middleboxes, but in general the protocol is simple to understand,
      simple to implement and requires few cycles per packet to execute.

   Integrity:  AccECN is compatible with at least three approaches that
      can assure the integrity of ECN feedback.  If the AccECN Option is
      stripped the resolution of the feedback is degraded, but the
      integrity of this degraded feedback can still be assured.

   Backward Compatibility:  If only one endpoint supports the AccECN
      scheme, it will fall-back to the most advanced ECN feedback scheme
      supported by the other end.

   Backward Compatibility:  If the AccECN Option is stripped by a
      middlebox, AccECN still provides basic congestion feedback in the
      ACE field.  Further, AccECN can be used to detect mangling of the
      IP ECN field; mangling of the TCP ECN flags; blocking of ECT-
      marked segments; and blocking of segments carrying the AccECN
      Option.  It can detect these conditions during TCP's 3WHS so that
      it can fall back to operation without ECN and/or operation without
      the AccECN Option.

   Forward Compatibility:  The behaviour of endpoints and middleboxes is
      carefully defined for all reserved or currently unused codepoints
      in the scheme.  Then, the designers of security devices can
      understand which currently unused values might appear in future.
      So, even if they choose to treat such values as anomalous while
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      they are not widely used, any blocking will at least be under
      policy control not hard-coded.  Then, if previously unused values
      start to appear on the Internet (or in standards), such policies
      could be quickly reversed.

6.  IANA Considerations

   This document reassigns bit 7 of the TCP header flags to the AccECN
   experiment.  This bit was previously called the Nonce Sum (NS) flag
   [RFC3540], but RFC 3540 has been reclassified as historic [RFC8311].
   The flag will now be defined as:

                  +-----+-------------------+-----------+
                  | Bit | Name              | Reference |
                  +-----+-------------------+-----------+
                  | 7   | AE (Accurate ECN) | RFC XXXX  |
                  +-----+-------------------+-----------+

   [TO BE REMOVED: IANA is requested to update the existing entry in the
   Transmission Control Protocol (TCP) Header Flags registration
   (https://www.iana.org/assignments/tcp-header-flags/tcp-header-

flags.xhtml#tcp-header-flags-1) for Bit 7 to "AE (Accurate ECN),
   previously used as NS (Nonce Sum) by [RFC3540], which is now Historic
   [RFC8311]" and change the reference to this RFC-to-be instead of

RFC8311.]

   This document also defines a new TCP option for AccECN, assigned a
   value of TBD1 (decimal) from the TCP option space.  This value is
   defined as:

           +------+--------+-----------------------+-----------+
           | Kind | Length | Meaning               | Reference |
           +------+--------+-----------------------+-----------+
           | TBD1 | N      | Accurate ECN (AccECN) | RFC XXXX  |
           +------+--------+-----------------------+-----------+

   [TO BE REMOVED: This registration should take place at the following
   location: http://www.iana.org/assignments/tcp-parameters/tcp-

parameters.xhtml#tcp-parameters-1 ]

   Early implementation before the IANA allocation MUST follow [RFC6994]
   and use experimental option 254 and magic number 0xACCE (16 bits),
   then migrate to the new option after the allocation.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags.xhtml#tcp-header-flags-1
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags.xhtml#tcp-header-flags-1
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc8311
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
https://datatracker.ietf.org/doc/html/rfc6994
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7.  Security Considerations

   If ever the supplementary part of AccECN based on the new AccECN TCP
   Option is unusable (due for example to middlebox interference) the
   essential part of AccECN's congestion feedback offers only limited
   resilience to long runs of ACK loss (see Section 3.2.2.5).  These
   problems are unlikely to be due to malicious intervention (because if
   an attacker could strip a TCP option or discard a long run of ACKs it
   could wreak other arbitrary havoc).  However, it would be of concern
   if AccECN's resilience could be indirectly compromised during a
   flooding attack.  AccECN is still considered safe though, because if
   the option is not presented, the AccECN Data Sender is then required
   to switch to more conservative assumptions about wrap of congestion
   indication counters (see Section 3.2.2.5 and Appendix A.2).

Section 4.1 describes how a TCP server can negotiate AccECN and use
   the SYN cookie method for mitigating SYN flooding attacks.

   There is concern that ECN markings could be altered or suppressed,
   particularly because a misbehaving Data Receiver could increase its
   own throughput at the expense of others.  AccECN is compatible with
   the three schemes known to assure the integrity of ECN feedback (see

Section 4.3 for details).  If the AccECN Option is stripped by an
   incorrectly implemented middlebox, the resolution of the feedback
   will be degraded, but the integrity of this degraded information can
   still be assured.

   There is a potential concern that a receiver could deliberately omit
   the AccECN Option pretending that it had been stripped by a
   middlebox.  No known way can yet be contrived to take advantage of
   this downgrade attack, but it is mentioned here in case someone else
   can contrive one.

   The AccECN protocol is not believed to introduce any new privacy
   concerns, because it merely counts and feeds back signals at the
   transport layer that had already been visible at the IP layer.
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9.  Comments Solicited

   Comments and questions are encouraged and very welcome.  They can be
   addressed to the IETF TCP maintenance and minor modifications working
   group mailing list <tcpm@ietf.org>, and/or to the authors.
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Appendix A.  Example Algorithms

   This appendix is informative, not normative.  It gives example
   algorithms that would satisfy the normative requirements of the
   AccECN protocol.  However, implementers are free to choose other ways
   to implement the requirements.

A.1.  Example Algorithm to Encode/Decode the AccECN Option

   The example algorithms below show how a Data Receiver in AccECN mode
   could encode its CE byte counter r.ceb into the ECEB field within the
   AccECN TCP Option, and how a Data Sender in AccECN mode could decode
   the ECEB field into its byte counter s.ceb.  The other counters for
   bytes marked ECT(0) and ECT(1) in the AccECN Option would be
   similarly encoded and decoded.

   It is assumed that each local byte counter is an unsigned integer
   greater than 24b (probably 32b), and that the following constant has
   been assigned:

      DIVOPT = 2^24

   Every time a CE marked data segment arrives, the Data Receiver
   increments its local value of r.ceb by the size of the TCP Data.
   Whenever it sends an ACK with the AccECN Option, the value it writes
   into the ECEB field is

      ECEB = r.ceb % DIVOPT

   where '%' is the remainder operator.

   On the arrival of an AccECN Option, the Data Sender first makes sure
   the ACK has not been superseded in order to avoid winding the s.ceb
   counter backwards.  It uses the TCP acknowledgement number and any
   SACK options to calculate newlyAckedB, the amount of new data that
   the ACK acknowledges in bytes (newlyAckedB can be zero but not
   negative).  If newlyAckedB is zero, either the ACK has been
   superseded or CE-marked packet(s) without data could have arrived.
   To break the tie for the latter case, the Data Sender could use
   timestamps (if present) to work out newlyAckedT, the amount of new
   time that the ACK acknowledges.  If the Data Sender determines that
   the ACK has been superseded it ignores the AccECN Option.  Otherwise,
   the Data Sender calculates the minimum non-negative difference d.ceb
   between the ECEB field and its local s.ceb counter, using modulo
   arithmetic as follows:
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      if ((newlyAckedB > 0) || (newlyAckedT > 0)) {
          d.ceb = (ECEB + DIVOPT - (s.ceb % DIVOPT)) % DIVOPT
          s.ceb += d.ceb
      }

   For example, if s.ceb is 33,554,433 and ECEB is 1461 (both decimal),
   then

      s.ceb % DIVOPT = 1
            d.ceb = (1461 + 2^24 - 1) % 2^24
                  = 1460
            s.ceb = 33,554,433 + 1460
                  = 33,555,893

A.2.  Example Algorithm for Safety Against Long Sequences of ACK Loss

   The example algorithms below show how a Data Receiver in AccECN mode
   could encode its CE packet counter r.cep into the ACE field, and how
   the Data Sender in AccECN mode could decode the ACE field into its
   s.cep counter.  The Data Sender's algorithm includes code to
   heuristically detect a long enough unbroken string of ACK losses that
   could have concealed a cycle of the congestion counter in the ACE
   field of the next ACK to arrive.

   Two variants of the algorithm are given: i) a more conservative
   variant for a Data Sender to use if it detects that the AccECN Option
   is not available (see Section 3.2.2.5 and Section 3.2.3.2); and ii) a
   less conservative variant that is feasible when complementary
   information is available from the AccECN Option.

A.2.1.  Safety Algorithm without the AccECN Option

   It is assumed that each local packet counter is a sufficiently sized
   unsigned integer (probably 32b) and that the following constant has
   been assigned:

      DIVACE = 2^3

   Every time an Acceptable CE marked packet arrives (Section 3.2.2.2),
   the Data Receiver increments its local value of r.cep by 1.  It
   repeats the same value of ACE in every subsequent ACK until the next
   CE marking arrives, where

      ACE = r.cep % DIVACE.

   If the Data Sender received an earlier value of the counter that had
   been delayed due to ACK reordering, it might incorrectly calculate
   that the ACE field had wrapped.  Therefore, on the arrival of every
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   ACK, the Data Sender ensures the ACK has not been superseded using
   the TCP acknowledgement number, any SACK options and timestamps (if
   available) to calculate newlyAckedB, as in Appendix A.1.  If the ACK
   has not been superseded, the Data Sender calculates the minimum
   difference d.cep between the ACE field and its local s.cep counter,
   using modulo arithmetic as follows:

      if ((newlyAckedB > 0) || (newlyAckedT > 0))
          d.cep = (ACE + DIVACE - (s.cep % DIVACE)) % DIVACE

Section 3.2.2.5 expects the Data Sender to assume that the ACE field
   cycled if it is the safest likely case under prevailing conditions.
   The 3-bit ACE field in an arriving ACK could have cycled and become
   ambiguous to the Data Sender if a row of ACKs goes missing that
   covers a stream of data long enough to contain 8 or more CE marks.
   We use the word `missing' rather than `lost', because some or all the
   missing ACKs might arrive eventually, but out of order.  Even if some
   of the missing ACKs were piggy-backed on data (i.e. not pure ACKs)
   retransmissions will not repair the lost AccECN information, because
   AccECN requires retransmissions to carry the latest AccECN counters,
   not the original ones.

   The phrase `under prevailing conditions' allows for implementation-
   dependent interpretation.  A Data Sender might take account of the
   prevailing size of data segments and the prevailing CE marking rate
   just before the sequence of missing ACKs.  However, we shall start
   with the simplest algorithm, which assumes segments are all full-
   sized and ultra-conservatively it assumes that ECN marking was 100%
   on the forward path when ACKs on the reverse path started to all be
   dropped.  Specifically, if newlyAckedB is the amount of data that an
   ACK acknowledges since the previous ACK, then the Data Sender could
   assume that this acknowledges newlyAckedPkt full-sized segments,
   where newlyAckedPkt = newlyAckedB/MSS.  Then it could assume that the
   ACE field incremented by

       dSafer.cep = newlyAckedPkt - ((newlyAckedPkt - d.cep) % DIVACE),

   For example, imagine an ACK acknowledges newlyAckedPkt=9 more full-
   size segments than any previous ACK, and that ACE increments by a
   minimum of 2 CE marks (d.cep=2).  The above formula works out that it
   would still be safe to assume 2 CE marks (because 9 - ((9-2) % 8) =
   2).  However, if ACE increases by a minimum of 2 but acknowledges 10
   full-sized segments, then it would be necessary to assume that there
   could have been 10 CE marks (because 10 - ((10-2) % 8) = 10).

   ACKs that acknowledge a large stretch of packets might be common in
   data centres to achieve a high packet rate or might be due to ACK
   thinning by a middlebox.  In these cases, cycling of the ACE field
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   would often appear to have been possible, so the above algorithm
   would be over-conservative, leading to a false high marking rate and
   poor performance.  Therefore it would be reasonable to only use
   dSafer.cep rather than d.cep if the moving average of newlyAckedPkt
   was well below 8.

   Implementers could build in more heuristics to estimate prevailing
   average segment size and prevailing ECN marking.  For instance,
   newlyAckedPkt in the above formula could be replaced with
   newlyAckedPktHeur = newlyAckedPkt*p*MSS/s, where s is the prevailing
   segment size and p is the prevailing ECN marking probability.
   However, ultimately, if TCP's ECN feedback becomes inaccurate it
   still has loss detection to fall back on.  Therefore, it would seem
   safe to implement a simple algorithm, rather than a perfect one.

   The simple algorithm for dSafer.cep above requires no monitoring of
   prevailing conditions and it would still be safe if, for example,
   segments were on average at least 5% of full-sized as long as ECN
   marking was 5% or less.  Assuming it was used, the Data Sender would
   increment its packet counter as follows:

      s.cep += dSafer.cep

   If missing acknowledgement numbers arrive later (due to reordering),
Section 3.2.2.5 says "the Data Sender MAY attempt to neutralize the

   effect of any action it took based on a conservative assumption that
   it later found to be incorrect".  To do this, the Data Sender would
   have to store the values of all the relevant variables whenever it
   made assumptions, so that it could re-evaluate them later.  Given
   this could become complex and it is not required, we do not attempt
   to provide an example of how to do this.

A.2.2.  Safety Algorithm with the AccECN Option

   When the AccECN Option is available on the ACKs before and after the
   possible sequence of ACK losses, if the Data Sender only needs CE-
   marked bytes, it will have sufficient information in the AccECN
   Option without needing to process the ACE field.  If for some reason
   it needs CE-marked packets, if dSafer.cep is different from d.cep, it
   can determine whether d.cep is likely to be a safe enough estimate by
   checking whether the average marked segment size (s = d.ceb/d.cep) is
   less than the MSS (where d.ceb is the amount of newly CE-marked bytes
   - see Appendix A.1).  Specifically, it could use the following
   algorithm:
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      SAFETY_FACTOR = 2
      if (dSafer.cep > d.cep) {
          if (d.ceb <= MSS * d.cep) {  % Same as (s <= MSS), but no DBZ
             sSafer = d.ceb/dSafer.cep
             if (sSafer < MSS/SAFETY_FACTOR)
                 dSafer.cep = d.cep    % d.cep is a safe enough estimate
          } % else
              % No need for else; dSafer.cep is already correct,
              % because d.cep must have been too small
      }

   The chart below shows when the above algorithm will consider d.cep
   can replace dSafer.cep as a safe enough estimate of the number of CE-
   marked packets:

                    ^
              sSafer|
                    |
                 MSS+
                    |
                    |         dSafer.cep
                    |                  is
   MSS/SAFETY_FACTOR+--------------+    safest
                    |              |
                    | d.cep is safe|
                    |    enough    |
                    +-------------------->
                                  MSS     s

   The following examples give the reasoning behind the algorithm,
   assuming MSS=1460 [B]:

   o  if d.cep=0, dSafer.cep=8 and d.ceb=1460, then s=infinity and
      sSafer=182.5.
      Therefore even though the average size of 8 data segments is
      unlikely to have been as small as MSS/8, d.cep cannot have been
      correct, because it would imply an average segment size greater
      than the MSS.

   o  if d.cep=2, dSafer.cep=10 and d.ceb=1460, then s=730 and
      sSafer=146.
      Therefore d.cep is safe enough, because the average size of 10
      data segments is unlikely to have been as small as MSS/10.

   o  if d.cep=7, dSafer.cep=15 and d.ceb=10200, then s=1457 and
      sSafer=680.
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      Therefore d.cep is safe enough, because the average data segment
      size is more likely to have been just less than one MSS, rather
      than below MSS/2.

   If pure ACKs were allowed to be ECN-capable, missing ACKs would be
   far less likely.  However, because [RFC3168] currently precludes
   this, the above algorithm assumes that pure ACKs are not ECN-capable.

A.3.  Example Algorithm to Estimate Marked Bytes from Marked Packets

   If the AccECN Option is not available, the Data Sender can only
   decode CE-marking from the ACE field in packets.  Every time an ACK
   arrives, to convert this into an estimate of CE-marked bytes, it
   needs an average of the segment size, s_ave.  Then it can add or
   subtract s_ave from the value of d.ceb as the value of d.cep
   increments or decrements.  Some possible ways to calculate s_ave are
   outlined below.  The precise details will depend on why an estimate
   of marked bytes is needed.

   The implementation could keep a record of the byte numbers of all the
   boundaries between packets in flight (including control packets), and
   recalculate s_ave on every ACK.  However it would be simpler to
   merely maintain a counter packets_in_flight for the number of packets
   in flight (including control packets), which is reset once per RTT.
   Either way, it would estimate s_ave as:

      s_ave ~= flightsize / packets_in_flight,

   where flightsize is the variable that TCP already maintains for the
   number of bytes in flight.  To avoid floating point arithmetic, it
   could right-bit-shift by lg(packets_in_flight), where lg() means log
   base 2.

   An alternative would be to maintain an exponentially weighted moving
   average (EWMA) of the segment size:

      s_ave = a * s + (1-a) * s_ave,

   where a is the decay constant for the EWMA.  However, then it is
   necessary to choose a good value for this constant, which ought to
   depend on the number of packets in flight.  Also the decay constant
   needs to be power of two to avoid floating point arithmetic.

A.4.  Example Algorithm to Beacon AccECN Options

Section 3.2.3.3 requires a Data Receiver to beacon a full-length
   AccECN Option at least 3 times per RTT.  This could be implemented by
   maintaining a variable to store the number of ACKs (pure and data

https://datatracker.ietf.org/doc/html/rfc3168
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   ACKs) since a full AccECN Option was last sent and another for the
   approximate number of ACKs sent in the last round trip time:

      if (acks_since_full_last_sent > acks_in_round / BEACON_FREQ)
          send_full_AccECN_Option()

   For optimized integer arithmetic, BEACON_FREQ = 4 could be used,
   rather than 3, so that the division could be implemented as an
   integer right bit-shift by lg(BEACON_FREQ).

   In certain operating systems, it might be too complex to maintain
   acks_in_round.  In others it might be possible by tagging each data
   segment in the retransmit buffer with the number of ACKs sent at the
   point that segment was sent.  This would not work well if the Data
   Receiver was not sending data itself, in which case it might be
   necessary to beacon based on time instead, as follows:

      if ( time_now > time_last_option_sent + (RTT / BEACON_FREQ) )
          send_full_AccECN_Option()

   This time-based approach does not work well when all the ACKs are
   sent early in each round trip, as is the case during slow-start.  In
   this case few options will be sent (evtl. even less than 3 per RTT).
   However, when continuously sending data, data packets as well as ACKs
   will spread out equally over the RTT and sufficient ACKs with the
   AccECN option will be sent.

A.5.  Example Algorithm to Count Not-ECT Bytes

   A Data Sender in AccECN mode can infer the amount of TCP payload data
   arriving at the receiver marked Not-ECT from the difference between
   the amount of newly ACKed data and the sum of the bytes with the
   other three markings, d.ceb, d.e0b and d.e1b.  Note that, because
   r.e0b is initialized to 1 and the other two counters are initialized
   to 0, the initial sum will be 1, which matches the initial offset of
   the TCP sequence number on completion of the 3WHS.

   For this approach to be precise, it has to be assumed that spurious
   (unnecessary) retransmissions do not lead to double counting.  This
   assumption is currently correct, given that RFC 3168 requires that
   the Data Sender marks retransmitted segments as Not-ECT.  However,
   the converse is not true; necessary retransmissions will result in
   under-counting.

   However, such precision is unlikely to be necessary.  The only known
   use of a count of Not-ECT marked bytes is to test whether equipment
   on the path is clearing the ECN field (perhaps due to an out-dated
   attempt to clear, or bleach, what used to be the ToS field).  To

https://datatracker.ietf.org/doc/html/rfc3168
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   detect bleaching it will be sufficient to detect whether nearly all
   bytes arrive marked as Not-ECT.  Therefore there should be no need to
   keep track of the details of retransmissions.

Appendix B.  Rationale for Usage of TCP Header Flags

B.1.  Three TCP Header Flags in the SYN-SYN/ACK Handshake

   AccECN uses a rather unorthodox approach to negotiate the highest
   version TCP ECN feedback scheme that both ends support, as justified
   below.  It follows from the original TCP ECN capability negotiation
   [RFC3168], in which the client set the 2 least significant of the
   original reserved flags in the TCP header, and fell back to no ECN
   support if the server responded with the 2 flags cleared, which had
   previously been the default.

   ECN originally used header flags rather than a TCP option because it
   was considered more efficient to use a header flag for 1 bit of
   feedback per ACK, and this bit could be overloaded to indicate
   support for ECN during the handshake.  During the development of ECN,
   1 bit crept up to 2, in order to deliver the feedback reliably and to
   work round some broken hosts that reflected the reserved flags during
   the handshake.

   In order to be backward compatible with RFC 3168, AccECN continues
   this approach, using the 3rd least significant TCP header flag that
   had previously been allocated for the ECN nonce (now historic).
   Then, whatever form of server an AccECN client encounters, the
   connection can fall back to the highest version of feedback protocol
   that both ends support, as explained in Section 3.1.

   If AccECN had used the more orthodox approach of a TCP option, it
   would still have had to set the two ECN flags in the main TCP header,
   in order to be able to fall back to Classic RFC 3168 ECN, or to
   disable ECN support, without another round of negotiation.  Then
   AccECN would also have had to handle all the different ways that
   servers currently respond to settings of the ECN flags in the main
   TCP header, including all the conflicting cases where a server might
   have said it supported one approach in the flags and another approach
   in the new TCP option.  And AccECN would have had to deal with all
   the additional possibilities where a middlebox might have mangled the
   ECN flags, or removed the TCP option.  Thus, usage of the 3rd
   reserved TCP header flag simplified the protocol.

   The third flag was used in a way that could be distinguished from the
   ECN nonce, in case any nonce deployment was encountered.  Previous
   usage of this flag for the ECN nonce was integrated into the original
   ECN negotiation.  This further justified the 3rd flag's use for

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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   AccECN, because a non-ECN usage of this flag would have had to use it
   as a separate single bit, rather than in combination with the other 2
   ECN flags.

   Indeed, having overloaded the original uses of these three flags for
   its handshake, AccECN overloads all three bits again as a 3-bit
   counter.

B.2.  Four Codepoints in the SYN/ACK

   Of the 8 possible codepoints that the 3 TCP header flags can indicate
   on the SYN/ACK, 4 already indicated earlier (or broken) versions of
   ECN support.  In the early design of AccECN, an AccECN server could
   use only 2 of the 4 remaining codepoints.  They both indicated AccECN
   support, but one fed back that the SYN had arrived marked as CE.
   Even though ECN support on a SYN is not yet on the standards track,
   the idea is for either end to act as a dumb reflector, so that future
   capabilities can be unilaterally deployed without requiring 2-ended
   deployment (justified in Section 2.5).

   During traversal testing it was discovered that the ECN field in the
   SYN was mangled on a non-negligible proportion of paths.  Therefore
   it was necessary to allow the SYN/ACK to feed all four IP/ECN
   codepoints that the SYN could arrive with back to the client.
   Without this, the client could not know whether to disable ECN for
   the connection due to mangling of the IP/ECN field (also explained in

Section 2.5).  This development consumed the remaining 2 codepoints
   on the SYN/ACK that had been reserved for future use by AccECN in
   earlier versions.

B.3.  Space for Future Evolution

   Despite availability of usable TCP header space being extremely
   scarce, the AccECN protocol has taken all possible steps to ensure
   that there is space to negotiate possible future variants of the
   protocol, either if the experiment proves that a variant of AccECN is
   required, or if a completely different ECN feedback approach is
   needed:

   Future AccECN variants:  When the AccECN capability is negotiated
      during TCP's 3WHS, the rows in Table 2 tagged as 'Nonce' and
      'Broken' in the column for the capability of node B are unused by
      any current protocol in the RFC series.  These could be used by
      TCP servers in future to indicate a variant of the AccECN
      protocol.  In recent measurement studies in which the response of
      large numbers of servers to an AccECN SYN has been tested, e.g.
      [Mandalari18], a very small number of SYN/ACKs arrive with the
      pattern tagged as 'Nonce', and a small but more significant number
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      arrive with the pattern tagged as 'Broken'.  The 'Nonce' pattern
      could be a sign that a few servers have implemented the ECN Nonce
      [RFC3540], which has now been reclassified as historic [RFC8311],
      or it could be the random result of some unknown middlebox
      behaviour.  The greater prevalence of the 'Broken' pattern
      suggests that some instances still exist of the broken code that
      reflects the reserved flags on the SYN.

      The requirement not to reject unexpected initial values of the ACE
      counter (in the main TCP header) in the last para of

Section 3.2.2.3 ensures that 3 unused codepoints on the ACK of the
      SYN/ACK, 6 unused values on the first SYN=0 data packet from the
      client and 7 unused values on the first SYN=0 data packet from the
      server could be used to declare future variants of the AccECN
      protocol.  The word 'declare' is used rather than 'negotiate'
      because, at this late stage in the 3WHS, it would be too late for
      a negotiation between the endpoints to be completed.  A similar
      requirement not to reject unexpected initial values in the TCP
      option (Section 3.2.3.2.4) is for the same purpose.  If traversal
      of the TCP option were reliable, this would have enabled a far
      wider range of future variation of the whole AccECN protocol.
      Nonetheless, it could be used to reliably negotiate a wide range
      of variation in the semantics of the AccECN Option.

   Future non-AccECN variants:  Five codepoints out of the 8 possible in
      the 3 TCP header flags used by AccECN are unused on the initial
      SYN (in the order AE,CWR,ECE): 001, 010, 100, 101, 110.

Section 3.1.3 ensures that the installed base of AccECN servers
      will all assume these are equivalent to AccECN negotiation with
      111 on the SYN.  These codepoints would not allow fall-back to
      Classic ECN support for a server that did not understand them, but
      this approach ensures they are available in future, perhaps for
      uses other than ECN alongside the AccECN scheme.  All possible
      combinations of SYN/ACK could be used in response except either
      000 or reflection of the same values sent on the SYN.

      Of course, other ways could be resorted to in order to extend
      AccECN or ECN in future, although their traversal properties are
      likely to be inferior.  They include a new TCP option; using the
      remaining reserved flags in the main TCP header (preferably
      extending the 3-bit combinations used by AccECN to 4-bit
      combinations, rather than burning one bit for just one state); a
      non-zero urgent pointer in combination with the URG flag cleared;
      or some other unexpected combination of fields yet to be invented.

https://datatracker.ietf.org/doc/html/rfc3540
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