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Abstract

Explicit Congestion Notification (ECN) is a mechanism where network

nodes can mark IP packets instead of dropping them to indicate

incipient congestion to the end-points. Receivers with an ECN-

capable transport protocol feed back this information to the sender.

ECN was originally specified for TCP in such a way that only one

feedback signal can be transmitted per Round-Trip Time (RTT). Recent

new TCP mechanisms like Congestion Exposure (ConEx), Data Center TCP

(DCTCP) or Low Latency Low Loss Scalable Throughput (L4S) need more

accurate ECN feedback information whenever more than one marking is

received in one RTT. This document updates the original ECN

specification to specify a scheme to provide more than one feedback

signal per RTT in the TCP header. Given TCP header space is scarce,

it allocates a reserved header bit previously assigned to the ECN-

Nonce. It also overloads the two existing ECN flags in the TCP

header. The resulting extra space is exploited to feed back the IP-

ECN field received during the 3-way handshake as well. Supplementary

feedback information can optionally be provided in a new TCP option,

which is never used on the TCP SYN. The document also specifies the

treatment of this updated TCP wire protocol by middleboxes.
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1. Introduction

Explicit Congestion Notification (ECN) [RFC3168] is a mechanism

where network nodes can mark IP packets instead of dropping them to

indicate incipient congestion to the end-points. Receivers with an

ECN-capable transport protocol feed back this information to the

sender. In RFC 3168, ECN was specified for TCP in such a way that

only one feedback signal could be transmitted per Round-Trip Time

(RTT). Recently, proposed mechanisms like Congestion Exposure (ConEx

[RFC7713]), DCTCP [RFC8257] or L4S [I-D.ietf-tsvwg-l4s-arch] need to

know when more than one marking is received in one RTT which is

information that cannot be provided by the feedback scheme as

specified in [RFC3168]. This document specifies an update to the ECN



feedback scheme of RFC 3168 that provides more accurate information

and could be used by these and potentially other future TCP

extensions. A fuller treatment of the motivation for this

specification is given in the associated requirements document 

[RFC7560].

This documents specifies a standards track scheme for ECN feedback

in the TCP header to provide more than one feedback signal per RTT.

It will be called the more accurate ECN feedback scheme, or AccECN

for short. This document updates RFC 3168 with respect to

negotiation and use of the feedback scheme for TCP. All aspects of

RFC 3168 other than the TCP feedback scheme, in particular the

definition of ECN at the IP layer, remain unchanged by this

specification. Section 4 gives a more detailed specification of

exactly which aspects of RFC 3168 this document updates.

AccECN is intended to be a complete replacement for classic TCP/ECN

feedback, not a fork in the design of TCP. AccECN feedback

complements TCP's loss feedback and it can coexist alongside

'classic' [RFC3168] TCP/ECN feedback. So its applicability is

intended to include all public and private IP networks (and even any

non-IP networks over which TCP is used today), whether or not any

nodes on the path support ECN, of whatever flavour. This document

uses the term Classic ECN when it needs to distinguish the RFC 3168

ECN TCP feedback scheme from the AccECN TCP feedback scheme.

AccECN feedback overloads the two existing ECN flags in the TCP

header and allocates the currently reserved flag (previously called

NS) in the TCP header, to be used as one three-bit counter field

indicating the number of congestion experienced marked packets.

Given the new definitions of these three bits, both ends have to

support the new wire protocol before it can be used. Therefore

during the TCP handshake the two ends use these three bits in the

TCP header to negotiate the most advanced feedback protocol that

they can both support, in a way that is backward compatible with 

[RFC3168].

AccECN is solely a change to the TCP wire protocol; it covers the

negotiation and signaling of more accurate ECN feedback from a TCP

Data Receiver to a Data Sender. It is completely independent of how

TCP might respond to congestion feedback, which is out of scope, but

ultimately the motivation for accurate ECN feedback. Like Classic

ECN feedback, AccECN can be used by standard Reno congestion control

[RFC5681] to respond to the existence of at least one congestion

notification within a round trip. Or, unlike Reno, AccECN can be

used to respond to the extent of congestion notification over a

round trip, as for example DCTCP does in controlled environments 

[RFC8257]. For congestion response, this specification refers to RFC

3168, or ECN experiments such as those referred to in [RFC8311],
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namely: a TCP-based Low Latency Low Loss Scalable (L4S) congestion

control [I-D.ietf-tsvwg-l4s-arch]; or Alternative Backoff with ECN

(ABE) [RFC8511].

It is RECOMMENDED that the AccECN protocol is implemented alongside

SACK [RFC2018] and the experimental ECN++ protocol [I-D.ietf-tcpm-

generalized-ecn], which allows the ECN capability to be used on TCP

control packets. Therefore, this specification does not discuss

implementing AccECN alongside [RFC5562], which was an earlier

experimental protocol with narrower scope than ECN++.

1.1. Document Roadmap

The following introductory section outlines the goals of AccECN

(Section 1.2). Then terminology is defined (Section 1.3) and a recap

of existing prerequisite technology is given (Section 1.4).

Section 2 gives an informative overview of the AccECN protocol. Then 

Section 3 gives the normative protocol specification, and Section 4

clarifies which aspects of RFC 3168 are updated by this

specification. Section 5 assesses the interaction of AccECN with

commonly used variants of TCP, whether standardized or not. Section

6 summarizes the features and properties of AccECN.

Section 7 summarizes the protocol fields and numbers that IANA will

need to assign and Section 8 points to the aspects of the protocol

that will be of interest to the security community.

Appendix A gives pseudocode examples for the various algorithms that

AccECN uses and Appendix B explains why AccECN uses flags in the

main TCP header and quantifies the space left for future use.

1.2. Goals

[RFC7560] enumerates requirements that a candidate feedback scheme

will need to satisfy, under the headings: resilience, timeliness,

integrity, accuracy (including ordering and lack of bias),

complexity, overhead and compatibility (both backward and forward).

It recognizes that a perfect scheme that fully satisfies all the

requirements is unlikely and trade-offs between requirements are

likely. Section 6 presents the properties of AccECN against these

requirements and discusses the trade-offs made.

The requirements document recognizes that a protocol as ubiquitous

as TCP needs to be able to serve as-yet-unspecified requirements.

Therefore an AccECN receiver aims to act as a generic (dumb)

reflector of congestion information so that in future new sender

behaviours can be deployed unilaterally.

1.3. Terminology
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AccECN:

Classic ECN:

Classic ECN feedback:

ACK:

Pure ACK:

Acceptable packet / segment:

TCP client:

TCP server:

Data Receiver:

Data Sender:

The more accurate ECN feedback scheme will be called AccECN

for short.

the ECN protocol specified in [RFC3168].

the feedback aspect of the ECN protocol

specified in [RFC3168], including generation, encoding,

transmission and decoding of feedback, but not the Data Sender's

subsequent response to that feedback.

A TCP acknowledgement, with or without a data payload (ACK=1).

A TCP acknowledgement without a data payload.

A packet or segment that passes the

acceptability tests in [RFC0793] and [RFC5961].

The TCP stack that originates a connection.

The TCP stack that responds to a connection request.

The endpoint of a TCP half-connection that receives

data and sends AccECN feedback.

The endpoint of a TCP half-connection that sends data

and receives AccECN feedback.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in BCP 14 [RFC2119]

[RFC8174] when, and only when, they appear in all capitals, as shown

here.

1.4. Recap of Existing ECN feedback in IP/TCP

ECN [RFC3168] uses two bits in the IP header. Once ECN has been

negotiated with the receiver at the transport layer, an ECN sender

can set two possible codepoints (ECT(0) or ECT(1)) in the IP header

to indicate an ECN-capable transport (ECT). If both ECN bits are

zero, the packet is considered to have been sent by a Not-ECN-

capable Transport (Not-ECT). When a network node experiences

congestion, it will occasionally either drop or mark a packet, with

the choice depending on the packet's ECN codepoint. If the codepoint

is Not-ECT, only drop is appropriate. If the codepoint is ECT(0) or

ECT(1), the node can mark the packet by setting both ECN bits, which

is termed 'Congestion Experienced' (CE), or loosely a 'congestion

mark'. Table 1 summarises these codepoints.
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IP-ECN codepoint Codepoint name Description

0b00 Not-ECT Not ECN-Capable Transport

0b01 ECT(1) ECN-Capable Transport (1)

0b10 ECT(0) ECN-Capable Transport (0)

0b11 CE Congestion Experienced

Table 1: The ECN Field in the IP Header

In the TCP header the first two bits in byte 14 are defined as flags

for the use of ECN (CWR and ECE in Figure 1 [RFC3168]). A TCP client

indicates it supports ECN by setting ECE=CWR=1 in the SYN, and an

ECN-enabled server confirms ECN support by setting ECE=1 and CWR=0

in the SYN/ACK. On reception of a CE-marked packet at the IP layer,

the Data Receiver starts to set the Echo Congestion Experienced

(ECE) flag continuously in the TCP header of ACKs, which ensures the

signal is received reliably even if ACKs are lost. The TCP sender

confirms that it has received at least one ECE signal by responding

with the congestion window reduced (CWR) flag, which allows the TCP

receiver to stop repeating the ECN-Echo flag. This always leads to a

full RTT of ACKs with ECE set. Thus any additional CE markings

arriving within this RTT cannot be fed back.

The last bit in byte 13 of the TCP header was defined as the Nonce

Sum (NS) for the ECN Nonce [RFC3540]. In the absence of widespread

deployment RFC 3540 has been reclassified as historic [RFC8311] and

the respective flag has been marked as "reserved", making this TCP

flag available for use by the AccECN experiment instead.

Figure 1: The (post-ECN Nonce) definition of the TCP header flags

2. AccECN Protocol Overview and Rationale

This section provides an informative overview of the AccECN protocol

that will be normatively specified in Section 3

Like the original TCP approach, the Data Receiver of each TCP half-

connection sends AccECN feedback to the Data Sender on TCP

acknowledgements, reusing data packets of the other half-connection

whenever possible.
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  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

|               |           | N | C | E | U | A | P | R | S | F |

| Header Length | Reserved  | S | W | C | R | C | S | S | Y | I |

|               |           |   | R | E | G | K | H | T | N | N |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
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The AccECN protocol has had to be designed in two parts:

an essential part that re-uses ECN TCP header bits for the Data

Receiver to feed back the number of packets arriving with CE in

the IP-ECN field. This provides more accuracy than classic ECN

feedback, but limited resilience against ACK loss;

a supplementary part using a new AccECN TCP Option that provides

additional feedback on the number of bytes that arrive marked

with each of the three ECN codepoints in the IP-ECN field (not

just CE marks). This provides greater resilience against ACK loss

than the essential feedback, but it is more likely to suffer from

middlebox interference.

The two part design was necessary, given limitations on the space

available for TCP options and given the possibility that certain

incorrectly designed middleboxes prevent TCP using any new options.

The essential part overloads the previous definition of the three

flags in the TCP header that had been assigned for use by ECN. This

design choice deliberately replaces the classic ECN feedback

protocol, rather than leaving classic ECN feedback intact and adding

more accurate feedback separately because:

this efficiently reuses scarce TCP header space, given TCP option

space is approaching saturation;

a single upgrade path for the TCP protocol is preferable to a

fork in the design;

otherwise classic and accurate ECN feedback could give

conflicting feedback on the same segment, which could open up new

security concerns and make implementations unnecessarily complex;

middleboxes are more likely to faithfully forward the TCP ECN

flags than newly defined areas of the TCP header.

AccECN is designed to work even if the supplementary part is removed

or zeroed out, as long as the essential part gets through.

2.1. Capability Negotiation

AccECN is a change to the wire protocol of the main TCP header,

therefore it can only be used if both endpoints have been upgraded

to understand it. The TCP client signals support for AccECN on the

initial SYN of a connection and the TCP server signals whether it

supports AccECN on the SYN/ACK. The TCP flags on the SYN that the

client uses to signal AccECN support have been carefully chosen so

that a TCP server will interpret them as a request to support the
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most recent variant of ECN feedback that it supports. Then the

client falls back to the same variant of ECN feedback.

An AccECN TCP client does not send the new AccECN Option on the SYN

as SYN option space is limited. The TCP server sends the AccECN

Option on the SYN/ACK and the client sends it on the first ACK to

test whether the network path forwards the option correctly.

2.2. Feedback Mechanism

A Data Receiver maintains four counters initialized at the start of

the half-connection. Three count the number of arriving payload

bytes respectively marked CE, ECT(1) and ECT(0) in the IP-ECN field.

The fourth counts the number of packets arriving marked with a CE

codepoint (including control packets without payload if they are CE-

marked).

The Data Sender maintains four equivalent counters for the half

connection, and the AccECN protocol is designed to ensure they will

match the values in the Data Receiver's counters, albeit after a

little delay.

Each ACK carries the three least significant bits (LSBs) of the

packet-based CE counter using the ECN bits in the TCP header, now

renamed the Accurate ECN (ACE) field (see Figure 3 later). The 24

LSBs of each byte counter are carried in the AccECN Option.

2.3. Delayed ACKs and Resilience Against ACK Loss

With both the ACE and the AccECN Option mechanisms, the Data

Receiver continually repeats the current LSBs of each of its

respective counters. There is no need to acknowledge these

continually repeated counters, so the congestion window reduced

(CWR) mechanism is no longer used. Even if some ACKs are lost, the

Data Sender ought to be able to infer how much to increment its own

counters, even if the protocol field has wrapped.

The 3-bit ACE field can wrap fairly frequently. Therefore, even if

it appears to have incremented by one (say), the field might have

actually cycled completely then incremented by one. The Data

Receiver is not allowed to delay sending an ACK to such an extent

that the ACE field would cycle. However cycling is still a

possibility at the Data Sender because a whole sequence of ACKs

carrying intervening values of the field might all be lost or

delayed in transit.

The fields in the AccECN Option are larger, but they will increment

in larger steps because they count bytes not packets. Nonetheless,

their size has been chosen such that a whole cycle of the field

would never occur between ACKs unless there had been an infeasibly
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long sequence of ACK losses. Therefore, as long as the AccECN Option

is available, it can be treated as a dependable feedback channel.

If the AccECN Option is not available, e.g. it is being stripped by

a middlebox, the AccECN protocol will only feed back information on

CE markings (using the ACE field). Although not ideal, this will be

sufficient, because it is envisaged that neither ECT(0) nor ECT(1)

will ever indicate more severe congestion than CE, even though

future uses for ECT(0) or ECT(1) are still unclear [RFC8311].

Because the 3-bit ACE field is so small, when it is the only field

available, the Data Sender has to interpret it assuming the most

likely wrap, but with a degree of conservatism.

Certain specified events trigger the Data Receiver to include an

AccECN Option on an ACK. The rules are designed to ensure that the

order in which different markings arrive at the receiver is

communicated to the sender (as long as options are reaching the

sender and as long as there is no ACK loss). Implementations are

encouraged to send an AccECN Option more frequently, but this is

left up to the implementer.

2.4. Feedback Metrics

The CE packet counter in the ACE field and the CE byte counter in

the AccECN Option both provide feedback on received CE-marks. The CE

packet counter includes control packets that do not have payload

data, while the CE byte counter solely includes marked payload

bytes. If both are present, the byte counter in the option will

provide the more accurate information needed for modern congestion

control and policing schemes, such as L4S, DCTCP or ConEx. If the

option is stripped, a simple algorithm to estimate the number of

marked bytes from the ACE field is given in Appendix A.3.

Feedback in bytes is provided in order to protect against the

receiver using attacks similar to 'ACK-Division' to artificially

inflate the congestion window, which is why [RFC5681] now recommends

that TCP counts acknowledged bytes not packets.

2.5. Generic (Dumb) Reflector

The ACE field provides feedback about CE markings in the IP-ECN

field of both data and control packets. According to [RFC3168] the

Data Sender is meant to set the IP-ECN field of control packets to

Not-ECT. However, mechanisms in certain private networks (e.g. data

centres) set control packets to be ECN capable because they are

precisely the packets that performance depends on most.

For this reason, AccECN is designed to be a generic reflector of

whatever ECN markings it sees, whether or not they are compliant

with a current standard. Then as standards evolve, Data Senders can
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upgrade unilaterally without any need for receivers to upgrade too.

It is also useful to be able to rely on generic reflection behaviour

when senders need to test for unexpected interference with markings

(for instance Section 3.2.2.3, Section 3.2.2.4 and Section 3.2.3.2

of the present document and para 2 of Section 20.2 of [RFC3168]).

The initial SYN is the most critical control packet, so AccECN

provides feedback on its IP-ECN field. Although RFC 3168 prohibits

an ECN-capable SYN, providing feedback of ECN marking on the SYN

supports future scenarios in which SYNs might be ECN-enabled

(without prejudging whether they ought to be). For instance, 

[RFC8311] updates this aspect of RFC 3168 to allow experimentation

with ECN-capable TCP control packets.

Even if the TCP client (or server) has set the SYN (or SYN/ACK) to

not-ECT in compliance with RFC 3168, feedback on the state of the

IP-ECN field when it arrives at the receiver could still be useful,

because middleboxes have been known to overwrite the IP-ECN field as

if it is still part of the old Type of Service (ToS) field 

[Mandalari18]. For example, if a TCP client has set the SYN to Not-

ECT, but receives feedback that the IP-ECN field on the SYN arrived

with a different codepoint, it can detect such middlebox

interference. Previously, neither end knew what IP-ECN field the

other had sent. So, if a TCP server received ECT or CE on a SYN, it

could not know whether it was invalid (or valid) because only the

TCP client knew whether it originally marked the SYN as Not-ECT (or

ECT). Therefore, prior to AccECN, the server's only safe course of

action in this example was to disable ECN for the connection.

Instead, the AccECN protocol allows the server to feed back the

received ECN field to the client, which then has all the information

to decide whether the connection has to fall-back from supporting

ECN (or not).

3. AccECN Protocol Specification

3.1. Negotiating to use AccECN

3.1.1. Negotiation during the TCP handshake

Given the ECN Nonce [RFC3540] has been reclassified as historic 

[RFC8311], the present specification re-allocates the TCP flag at

bit 7 of the TCP header, which was previously called NS (Nonce Sum),

as the AE (Accurate ECN) flag (see IANA Considerations in Section 7)

as shown below.
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AccECN:

Figure 2: The (post-AccECN) definition of the TCP header flags during

the TCP handshake

During the TCP handshake at the start of a connection, to request

more accurate ECN feedback the TCP client (host A) MUST set the TCP

flags AE=1, CWR=1 and ECE=1 in the initial SYN segment.

If a TCP server (B) that is AccECN-enabled receives a SYN with the

above three flags set, it MUST set both its half connections into

AccECN mode. Then it MUST set the AE, CWR and ECE TCP flags on the

SYN/ACK to the combination in the top block of Table 2 that feeds

back the IP-ECN field that arrived on the SYN. This applies whether

or not the server itself supports setting the IP-ECN field on a SYN

or SYN/ACK (see Section 2.5 for rationale).

When the TCP server returns any of the 4 combinations in the top

block of Table 2, it confirms that it supports AccECN. The TCP

server MUST NOT set one of these 4 combination of flags on the SYN/

ACK unless the preceding SYN requested support for AccECN as above.

Once a TCP client (A) has sent the above SYN to declare that it

supports AccECN, and once it has received the above SYN/ACK segment

that confirms that the TCP server supports AccECN, the TCP client

MUST set both its half connections into AccECN mode.

Once in AccECN mode, a TCP client or server has the rights and

obligations to participate in the ECN protocol defined in Section

3.1.5.

The procedure for the client to follow if a SYN/ACK does not arrive

before its retransmission timer expires is given in Section 3.1.4.

3.1.2. Backward Compatibility

The three flags set to 1 to indicate AccECN support on the SYN have

been carefully chosen to enable natural fall-back to prior stages in

the evolution of ECN, as above. Table 2 tabulates all the

negotiation possibilities for ECN-related capabilities that involve

at least one AccECN-capable host. The entries in the first two

columns have been abbreviated, as follows:

More Accurate ECN Feedback (the present specification)

  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

|               |           | A | C | E | U | A | P | R | S | F |

| Header Length | Reserved  | E | W | C | R | C | S | S | Y | I |

|               |           |   | R | E | G | K | H | T | N | N |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
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Nonce:

ECN:

No ECN:

ECN Nonce feedback [RFC3540]

'Classic' ECN feedback [RFC3168]

Not-ECN-capable. Implicit congestion notification using

packet drop.

A B SYN A->B SYN/ACK B->A Feedback Mode

AE CWR ECE AE CWR ECE

AccECN AccECN 1   1   1 0   1   0 AccECN(no ECT on SYN)

AccECN AccECN 1   1   1 0   1   1 AccECN (ECT1 on SYN)

AccECN AccECN 1   1   1 1   0   0 AccECN (ECT0 on SYN)

AccECN AccECN 1   1   1 1   1   0 AccECN (CE on SYN)

AccECN Nonce 1   1   1 1   0   1 (Reserved)

AccECN ECN 1   1   1 0   0   1 classic ECN

AccECN No ECN 1   1   1 0   0   0 Not ECN

Nonce AccECN 0   1   1 0   0   1 classic ECN

ECN AccECN 0   1   1 0   0   1 classic ECN

No ECN AccECN 0   0   0 0   0   0 Not ECN

AccECN Broken 1   1   1 1   1   1 Not ECN

Table 2: ECN capability negotiation between Client (A) and Server

(B)

Table 2 is divided into blocks each separated by an empty row.

The top block shows the case already described in Section 3.1

where both endpoints support AccECN and how the TCP server (B)

indicates congestion feedback.

The second block shows the cases where the TCP client (A)

supports AccECN but the TCP server (B) supports some earlier

variant of TCP feedback, indicated in its SYN/ACK. Therefore,

as soon as an AccECN-capable TCP client (A) receives the SYN/

ACK shown it MUST set both its half connections into the

feedback mode shown in the rightmost column. If it has set

itself into classic ECN feedback mode it MUST then comply with 

[RFC3168].

The server response called 'Nonce' in the table is now

historic. For an AccECN implementation, there is no need to

recognize or support ECN Nonce feedback [RFC3540], which has

been reclassified as historic [RFC8311]. AccECN is compatible

with alternative ECN feedback integrity approaches (see Section

5.3).
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Simultaneous Open:

In-window SYN during TIME-WAIT:

The third block shows the cases where the TCP server (B)

supports AccECN but the TCP client (A) supports some earlier

variant of TCP feedback, indicated in its SYN.

When an AccECN-enabled TCP server (B) receives a SYN with

AE,CWR,ECE = 0,1,1 it MUST do one of the following:

set both its half connections into the classic ECN feedback

mode and return a SYN/ACK with AE, CWR, ECE = 0,0,1 as

shown. Then it MUST comply with [RFC3168].

set both its half-connections into No ECN mode and return a

SYN/ACK with AE,CWR,ECE = 0,0,0, then continue with ECN

disabled. This latter case is unlikely to be desirable, but

it is allowed as a possibility, e.g. for minimal TCP

implementations.

When an AccECN-enabled TCP server (B) receives a SYN with

AE,CWR,ECE = 0,0,0 it MUST set both its half connections into

the Not ECN feedback mode, return a SYN/ACK with AE,CWR,ECE =

0,0,0 as shown and continue with ECN disabled.

The fourth block displays a combination labelled `Broken'. Some

older TCP server implementations incorrectly set the reserved

flags in the SYN/ACK by reflecting those in the SYN. Such

broken TCP servers (B) cannot support ECN, so as soon as an

AccECN-capable TCP client (A) receives such a broken SYN/ACK it

MUST fall back to Not ECN mode for both its half connections

and continue with ECN disabled.

The following additional rules do not fit the structure of the

table, but they complement it:

An originating AccECN Host (A), having sent a

SYN with AE=1, CWR=1 and ECE=1, might receive another SYN from

host B. Host A MUST then enter the same feedback mode as it would

have entered had it been a responding host and received the same

SYN. Then host A MUST send the same SYN/ACK as it would have sent

had it been a responding host.

Many TCP implementations create a

new TCP connection if they receive an in-window SYN packet during

TIME-WAIT state. When a TCP host enters TIME-WAIT or CLOSED

state, it ought to ignore any previous state about the

negotiation of AccECN for that connection and renegotiate the

feedback mode according to Table 2.
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3.1.3. Forward Compatibility

If a TCP server that implements AccECN receives a SYN with the three

TCP header flags (AE, CWR and ECE) set to any combination other than

000, 011 or 111, it MUST negotiate the use of AccECN as if they had

been set to 111. This ensures that future uses of the other

combinations on a SYN can rely on consistent behaviour from the

installed base of AccECN servers.

For the avoidance of doubt, the behaviour described in the present

specification applies whether or not the three remaining reserved

TCP header flags are zero.

3.1.4. Retransmission of the SYN

If the sender of an AccECN SYN times out before receiving the SYN/

ACK, the sender SHOULD attempt to negotiate the use of AccECN at

least one more time by continuing to set all three TCP ECN flags on

the first retransmitted SYN (using the usual retransmission time-

outs). If this first retransmission also fails to be acknowledged,

the sender SHOULD send subsequent retransmissions of the SYN with

the three TCP-ECN flags cleared (AE=CWR=ECE=0). A retransmitted SYN

MUST use the same ISN as the original SYN.

Retrying once before fall-back adds delay in the case where a

middlebox drops an AccECN (or ECN) SYN deliberately. However,

current measurements imply that a drop is less likely to be due to

middlebox interference than other intermittent causes of loss,

e.g. congestion, wireless interference, etc.

Implementers MAY use other fall-back strategies if they are found to

be more effective (e.g. attempting to negotiate AccECN on the SYN

only once or more than twice (most appropriate during high levels of

congestion). However, other fall-back strategies will need to follow

all the rules in Section 3.1.5, which concern behaviour when SYNs or

SYN/ACKs negotiating different types of feedback have been sent

within the same connection.

Further it might make sense to also remove any other new or

experimental fields or options on the SYN in case a middlebox might

be blocking them, although the required behaviour will depend on the

specification of the other option(s) and any attempt to co-ordinate

fall-back between different modules of the stack.

Whichever fall-back strategy is used, the TCP initiator SHOULD cache

failed connection attempts. If it does, it SHOULD NOT give up

attempting to negotiate AccECN on the SYN of subsequent connection

attempts until it is clear that the blockage is persistently and

specifically due to AccECN. The cache needs to be arranged to expire
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so that the initiator will infrequently attempt to check whether the

problem has been resolved.

The fall-back procedure if the TCP server receives no ACK to

acknowledge a SYN/ACK that tried to negotiate AccECN is specified in

Section 3.2.3.2.

3.1.5. Implications of AccECN Mode

Section 3.1.1 describes the only ways that a host can enter AccECN

mode, whether as a client or as a server.

As a Data Sender, a host in AccECN mode has the rights and

obligations concerning the use of ECN defined below, which build on

those in [RFC3168] as updated by [RFC8311]:

Using ECT:

It can set an ECT codepoint in the IP header of packets to

indicate to the network that the transport is capable and

willing to participate in ECN for this packet.

It does not have to set ECT on any packet (for instance if it

has reason to believe such a packet would be blocked).

Switching feedback negotiation (e.g. fall-back):

It SHOULD NOT set ECT on any packet if it has received at

least one valid SYN or Acceptable SYN/ACK with AE=CWR=ECE=0. A

"valid SYN" has the same port numbers and the same ISN as the

SYN that caused the server to enter AccECN mode.

It MUST NOT send an ECN-setup SYN [RFC3168] within the same

connection as it has sent a SYN requesting AccECN feedback.

It MUST NOT send an ECN-setup SYN/ACK [RFC3168] within the

same connection as it has sent a SYN/ACK agreeing to use

AccECN feedback.

The above rules are necessary because, if one peer were to

negotiate the feedback mode in two different types of handshake,

it would not be possible for the other peer to know for certain

which handshake packet(s) the other end had eventually received

or in which order it received them. So, in the absence of these

rules, the two peers could end up using different feedback modes

without knowing it.
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Congestion response:

It is still obliged to respond appropriately to AccECN

feedback that indicates there were ECN marks on packets it had

previously sent, as defined in Section 6.1 of [RFC3168] and

updated by Sections 2.1 and 4.1 of [RFC8311].

In general, it is obliged to respond to congestion feedback

even when it is solely sending non-ECN-capable packets (for

rationale, some examples and some exceptions see Section

3.2.2.3, Section 3.2.2.4).

The commitment to respond appropriately to incoming

indications of congestion remains even if it sends a SYN

packet with AE=CWR=ECE=0, in a later transmission within the

same TCP connection.

Unlike an RFC 3168 data sender, it MUST NOT set CWR to

indicate it has received and responded to indications of

congestion (for the avoidance of doubt, this does not preclude

it from setting the bits of the ACE counter field, which

includes an overloaded use of the same bit).

As a Data Receiver:

a host in AccECN mode MUST feed back the information in the IP-

ECN field of incoming packets using Accurate ECN feedback, as

specified in Section 3.2 below.

if it receives an ECN-setup SYN or ECN-setup SYN/ACK [RFC3168]

during the same connection as it receives a SYN requesting AccECN

feedback or a SYN/ACK agreeing to use AccECN feedback, it MUST

reset the connection with a RST packet.

If for any reason it is not willing to provide ECN feedback on a

particular TCP connection, to indicate this unwillingness it

SHOULD clear the AE, CWR and ECE flags in all SYN and/or SYN/ACK

packets that it sends.

it MUST NOT use reception of packets with ECT set in the IP-ECN

field as an implicit signal that the peer is ECN-capable. Reason:

ECT at the IP layer does not explicitly confirm the peer has the

correct ECN feedback logic, as the packets could have been

mangled at the IP layer.
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3.2. AccECN Feedback

Each Data Receiver of each half connection maintains four counters,

r.cep, r.ceb, r.e0b and r.e1b:

The Data Receiver MUST increment the CE packet counter (r.cep),

for every Acceptable packet that it receives with the CE code

point in the IP ECN field, including CE marked control packets

but excluding CE on SYN packets (SYN=1; ACK=0).

A Data Receiver that supports sending of the AccECN TCP Option

MUST increment the r.ceb, r.e0b or r.e1b byte counters by the

number of TCP payload octets in Acceptable packets marked

respectively with the CE, ECT(0) and ECT(1) codepoint in their

IP-ECN field, including any payload octets on control packets,

but not including any payload octets on SYN packets (SYN=1;

ACK=0).

Each Data Sender of each half connection maintains four counters,

s.cep, s.ceb, s.e0b and s.e1b intended to track the equivalent

counters at the Data Receiver.

A Data Receiver feeds back the CE packet counter using the Accurate

ECN (ACE) field, as explained in Section 3.2.2. And it optionally

feeds back all the byte counters using the AccECN TCP Option, as

specified in Section 3.2.3.

Whenever a host feeds back the value of any counter, it MUST report

the most recent value, no matter whether it is in a pure ACK, an ACK

with new payload data or a retransmission. Therefore the feedback

carried on a retransmitted packet is unlikely to be the same as the

feedback on the original packet.

3.2.1. Initialization of Feedback Counters

When a host first enters AccECN mode, in its role as a Data Receiver

it initializes its counters to r.cep = 5, r.e0b = r.e1b = 1 and

r.ceb = 0,

Non-zero initial values are used to support a stateless handshake

(see Section 5.1) and to be distinct from cases where the fields are

incorrectly zeroed (e.g. by middleboxes - see Section 3.2.3.2.4).

When a host enters AccECN mode, in its role as a Data Sender it

initializes its counters to s.cep = 5, s.e0b = s.e1b = 1 and s.ceb =

0.
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3.2.2. The ACE Field

After AccECN has been negotiated on the SYN and SYN/ACK, both hosts

overload the three TCP flags (AE, CWR and ECE) in the main TCP

header as one 3-bit field. Then the field is given a new name, ACE,

as shown in Figure 3.

Figure 3: Definition of the ACE field within bytes 13 and 14 of the TCP

Header (when AccECN has been negotiated and SYN=0).

The original definition of these three flags in the TCP header,

including the addition of support for the ECN Nonce, is shown for

comparison in Figure 1. This specification does not rename these

three TCP flags to ACE unconditionally; it merely overloads them

with another name and definition once an AccECN connection has been

established.

With one exception (Section 3.2.2.1), a host with both of its half-

connections in AccECN mode MUST interpret the AE, CWR and ECE flags

as the 3-bit ACE counter on a segment with the SYN flag cleared

(SYN=0). On such a packet, a Data Receiver MUST encode the three

least significant bits of its r.cep counter into the ACE field that

it feeds back to the Data Sender. A host MUST NOT interpret the 3

flags as a 3-bit ACE field on any segment with SYN=1 (whether ACK is

0 or 1), or if AccECN negotiation is incomplete or has not

succeeded.

Both parts of each of these conditions are equally important. For

instance, even if AccECN negotiation has been successful, the ACE

field is not defined on any segments with SYN=1 (e.g. a

retransmission of an unacknowledged SYN/ACK, or when both ends send

SYN/ACKs after AccECN support has been successfully negotiated

during a simultaneous open).

3.2.2.1. ACE Field on the ACK of the SYN/ACK

A TCP client (A) in AccECN mode MUST feed back which of the 4

possible values of the IP-ECN field was on the SYN/ACK by writing it

into the ACE field of a pure ACK with no SACK blocks using the

binary encoding in Table 3 (which is the same as that used on the

SYN/ACK in Table 2). This shall be called the handshake encoding of

the ACE field, and it is the only exception to the rule that the ACE

¶

  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

|               |           |           | U | A | P | R | S | F |

| Header Length | Reserved  |    ACE    | R | C | S | S | Y | I |

|               |           |           | G | K | H | T | N | N |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
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field carries the 3 least significant bits of the r.cep counter on

packets with SYN=0.

Normally, a TCP client acknowledges a SYN/ACK with an ACK that

satisfies the above conditions anyway (SYN=0, no data, no SACK

blocks). If an AccECN TCP client intends to acknowledge the SYN/ACK

with a packet that does not satisfy these conditions (e.g. it has

data to include on the ACK), it SHOULD first send a pure ACK that

does satisfy these conditions (see Section 5.2), so that it can feed

back which of the four values of the IP-ECN field arrived on the

SYN/ACK. A valid exception to this "SHOULD" would be where the

implementation will only be used in an environment where mangling of

the ECN field is unlikely.

IP-ECN codepoint on

SYN/ACK

ACE on pure ACK of

SYN/ACK

r.cep of client in

AccECN mode

Not-ECT 0b010 5

ECT(1) 0b011 5

ECT(0) 0b100 5

CE 0b110 6

Table 3: The encoding of the ACE field in the ACK of the SYN-ACK to

reflect the SYN-ACK's IP-ECN field

When an AccECN server in SYN-RCVD state receives a pure ACK with

SYN=0 and no SACK blocks, instead of treating the ACE field as a

counter, it MUST infer the meaning of each possible value of the ACE

field from Table 4, which also shows the value that an AccECN server

MUST set s.cep to as a result.

Given this encoding of the ACE field on the ACK of a SYN/ACK is

exceptional, an AccECN server using large receive offload (LRO)

might prefer to disable LRO until such an ACK has transitioned it

out of SYN-RCVD state.

ACE on ACK of

SYN/ACK

IP-ECN codepoint on SYN/ACK

inferred by server

s.cep of server in

AccECN mode

0b000 {Notes 1, 3} Disable ECN

0b001 {Notes 2, 3} 5

0b010 Not-ECT 5

0b011 ECT(1) 5

0b100 ECT(0) 5

0b101 Currently Unused {Note 2} 5

0b110 CE 6

0b111 Currently Unused {Note 2} 5

Table 4: Meaning of the ACE field on the ACK of the SYN/ACK
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{Note 1}: If the server is in AccECN mode, the value of zero raises

suspicion of zeroing of the ACE field on the path (see Section

3.2.2.4).

{Note 2}: If the server is in AccECN mode, these values are

Currently Unused but the AccECN server's behaviour is still defined

for forward compatibility. Then the designer of a future protocol

can know for certain what AccECN servers will do with these

codepoints.

{Note 3}: In the case where a server that implements AccECN is also

using a stateless handshake (termed a SYN cookie) it will not

remember whether it entered AccECN mode. The values 0b000 or 0b001

will remind it that it did not enter AccECN mode, because AccECN

does not use them (see Section 5.1 for details). If a stateless

server that implements AccECN receives either of these two values in

the ACK, its action is implementation-dependent and outside the

scope of this spec, It will certainly not take the action in the

third column because, after it receives either of these values, it

is not in AccECN mode. I.e., it will not disable ECN (at least not

just because ACE is 0b000) and it will not set s.cep.

3.2.2.2. Encoding and Decoding Feedback in the ACE Field

Whenever the Data Receiver sends an ACK with SYN=0 (with or without

data), unless the handshake encoding in Section 3.2.2.1 applies, the

Data Receiver MUST encode the least significant 3 bits of its r.cep

counter into the ACE field (see Appendix A.2).

Whenever the Data Sender receives an ACK with SYN=0 (with or without

data), it first checks whether it has already been superseded by

another ACK in which case it ignores the ECN feedback. If the ACK

has not been superseded, and if the special handshake encoding in 

Section 3.2.2.1 does not apply, the Data Sender decodes the ACE

field as follows (see Appendix A.2 for examples).

It takes the least significant 3 bits of its local s.cep counter

and subtracts them from the incoming ACE counter to work out the

minimum positive increment it could apply to s.cep (assuming the

ACE field only wrapped at most once).

It then follows the safety procedures in Section 3.2.2.5.2 to

calculate or estimate how many packets the ACK could have

acknowledged under the prevailing conditions to determine whether

the ACE field might have wrapped more than once.
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The encode/decode procedures during the three-way handshake are

exceptions to the general rules given so far, so they are spelled

out step by step below for clarity:

If a TCP server in AccECN mode receives a CE mark in the IP-ECN

field of a SYN (SYN=1, ACK=0), it MUST NOT increment r.cep (it

remains at its initial value of 5).

Reason: It would be redundant for the server to include CE-marked

SYNs in its r.cep counter, because it already reliably delivers

feedback of any CE marking using the encoding in Table 2 in the

SYN/ACK. This also ensures that, when the server starts using the

ACE field, it has not unnecessarily consumed more than one

initial value, given they can be used to negotiate variants of

the AccECN protocol (see Appendix B.3).

If a TCP client in AccECN mode receives CE feedback in the TCP

flags of a SYN/ACK, it MUST NOT increment s.cep (it remains at

its initial value of 5), so that it stays in step with r.cep on

the server. Nonetheless, the TCP client still triggers the

congestion control actions necessary to respond to the CE

feedback.

If a TCP client in AccECN mode receives a CE mark in the IP-ECN

field of a SYN/ACK, it MUST increment r.cep, but no more than

once no matter how many CE-marked SYN/ACKs it receives

(i.e. incremented from 5 to 6, but no further).

Reason: Incrementing r.cep ensures the client will eventually

deliver any CE marking to the server reliably when it starts

using the ACE field. Even though the client also feeds back any

CE marking on the ACK of the SYN/ACK using the encoding in Table

3, this ACK is not delivered reliably, so it can be considered as

a timely notification that is redundant but unreliable. The

client does not increment r.cep more than once, because the

server can only increment s.cep once (see next bullet). Also,

this limits the unnecessarily consumed initial values of the ACE

field to two.

If a TCP server in AccECN mode and in SYN-RCVD state receives CE

feedback in the TCP flags of a pure ACK with no SACK blocks, it

MUST increment s.cep (from 5 to 6). The TCP server then triggers

the congestion control actions necessary to respond to the CE

feedback.

Reasoning: The TCP server can only increment s.cep once, because

the first ACK it receives will cause it to transition out of SYN-

RCVD state. The server's congestion response would be no
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different even if it could receive feedback of more than one CE-

marked SYN/ACK.

Once the TCP server transitions to ESTABLISHED state, it might

later receive other pure ACK(s) with the handshake encoding in

the ACE field. A server MAY implement a test for such a case, but

it is not required. Therefore, once in the ESTABLISHED state, it

will be sufficient for the server to consider the ACE field to be

encoded as the normal ACE counter on all packets with SYN=0.

Reasoning: Such ACKs will be quite unusual, e.g. a SYN/ACK (or

ACK of the SYN/ACK) that is delayed for longer than the server's

retransmission timeout; or packet duplication by the network. And

the impact of any error in the feedback on such ACKs will only be

temporary.

3.2.2.3. Testing for Mangling of the IP/ECN Field

The value of the ACE field on the SYN/ACK indicates the value of the

IP/ECN field when the SYN arrived at the server. The client can

compare this with how it originally set the IP/ECN field on the SYN.

If this comparison implies an invalid transition (defined below) of

the IP/ECN field, for the remainder of the half-connection the

client is advised to send non-ECN-capable packets, but it still

ought to respond to any feedback of CE markings (explained below).

However, the client MUST remain in the AccECN feedback mode and it

MUST continue to feed back any ECN markings on arriving packets (in

its role as Data Receiver).

The value of the ACE field on the last ACK of the 3WHS indicates the

value of the IP/ECN field when the SYN/ACK arrived at the client.

The server can compare this with how it originally set the IP/ECN

field on the SYN/ACK. If this comparison implies an invalid

transition of the IP/ECN field, for the remainder of the half-

connection the server is advised to send non-ECN-capable packets,

but it still ought to respond to any feedback of CE markings

(explained below). However, the server MUST remain in the AccECN

feedback mode and it MUST continue to feed back any ECN markings on

arriving packets (in its role as Data Receiver).

If a Data Sender in AccECN mode starts sending non-ECN-capable

packets because it has detected mangling, it is still advised to

respond to CE feedback. Reason: any CE-marking arriving at the Data

Receiver could be due to something early in the path mangling the

non-ECN-capable IP/ECN field into an ECN-capable codepoint and then,

later in the path, a network bottleneck might be applying CE-

markings to indicate genuine congestion. This argument applies

whether the handshake packet originally sent by the client or server

was non-ECN-capable or ECN-capable because, in either case, an
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unsafe transition could imply that future non-ECN-capable packets

might get mangled.

Once a Data Sender has entered AccECN mode it is advised to check

whether it is receiving continuous CE marking. Specifying exactly

how to do this is beyond the scope of the present specification, but

the sender might check whether the feedback for every packet it

sends for the first three or four rounds indicates CE-marking. If

continuous CE-marking is detected, for the remainder of the half-

connection, the Data Sender ought to send non-ECN-capable packets

and it is advised not to respond to any feedback of CE markings. The

Data Sender might occasionally test whether it can resume sending

ECN-capable packets. As always, once a host has entered AccECN mode,

it MUST remain in the same feedback mode and it MUST continue to

feed back any ECN markings on arriving packets.

The above advice on switching to sending non-ECN-capable packets but

still responding to CE-markings unless they become continuous is not

stated normatively (in capitals), because the best strategy might

depend on experience of the most likely types of mangling, which can

only be known at the time of deployment.

The ACK of the SYN/ACK is not reliably delivered (nonetheless, the

count of CE marks is still eventually delivered reliably). If this

ACK does not arrive, the server is advised to continue to send ECN-

capable packets without having tested for mangling of the IP/ECN

field on the SYN/ACK.

All the fall-back behaviours in this section are necessary in case

mangling of the IP/ECN field is asymmetric, which is currently

common over some mobile networks [Mandalari18]. Then one end might

see no unsafe transition and continue sending ECN-capable packets,

while the other end sees an unsafe transition and stops sending ECN-

capable packets.

Invalid transitions of the IP/ECN field are defined in section 18 of

[RFC3168] and repeated here for convenience:

the not-ECT codepoint changes;

either ECT codepoint transitions to not-ECT;

the CE codepoint changes.

RFC 3168 says that a router that changes ECT to not-ECT is invalid

but safe. However, from a host's viewpoint, this transition is

unsafe because it could be the result of two transitions at

different routers on the path: ECT to CE (safe) then CE to not-ECT

(unsafe). This scenario could well happen where an ECN-enabled home

router congests its upstream mobile broadband bottleneck link, then
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the ingress to the mobile network clears the ECN field 

[Mandalari18].

3.2.2.4. Testing for Zeroing of the ACE Field

Section 3.2.2 required the Data Receiver to initialize the r.cep

counter to a non-zero value. Therefore, in either direction the

initial value of the ACE counter ought to be non-zero.

If AccECN has been successfully negotiated, the Data Sender SHOULD

check the value of the ACE counter in the first packet (with or

without data) that arrives with SYN=0. If the value of this ACE

field is zero (0b000), for the remainder of the half-connection the

Data Sender ought to send non-ECN-capable packets and it is advised

not to respond to any feedback of CE markings. Reason: the symptoms

imply either potential mangling of the ECN fields in both the IP and

TCP headers, or a broken remote TCP implementation. This advice is

not stated normatively (in capitals), because the best strategy

might depend on experience of the most likely types of mangling,

which can only be known at the time of deployment.

If reordering occurs, "the first packet ... that arrives" will not

necessarily be the same as the first packet in sequence order. The

test has been specified loosely like this to simplify

implementation, and because it would not have been any more precise

to have specified the first packet in sequence order, which would

not necessarily be the first ACE counter that the Data Receiver fed

back anyway, given it might have been a retransmission. Usually, the

server checks the ACK of the SYN/ACK from the client, while the

client checks the first data segment from the server.

The possibility of re-ordering means that there is a small chance

that the ACE field on the first packet to arrive is genuinely zero

(without middlebox interference). This would cause a host to

unnecessarily disable ECN for a half connection. Therefore, in

environments where there is no evidence of the ACE field being

zeroed, implementations can skip this test.

Note that the Data Sender MUST NOT test whether the arriving counter

in the initial ACE field has been initialized to a specific valid

value - the above check solely tests whether the ACE fields have

been incorrectly zeroed. This allows hosts to use different initial

values as an additional signalling channel in future.

3.2.2.5. Safety against Ambiguity of the ACE Field

If too many CE-marked segments are acknowledged at once, or if a

long run of ACKs is lost or thinned out, the 3-bit counter in the

ACE field might have cycled between two ACKs arriving at the Data

Sender. The following safety procedures minimize this ambiguity.
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Change-Triggered ACKs:

Increment-Triggered ACKs:

3.2.2.5.1. Data Receiver Safety Procedures

The following rules define when a Data Receiver in AccECN mode emits

an ACK:

An AccECN Data Receiver SHOULD emit an ACK

whenever a data packet marked CE arrives after the previous

packet was not CE.

Even though this rule is stated as a "SHOULD", it is important

for a transition to trigger an ACK if at all possible, The only

valid exception to this rule is given below these bullets.

For the avoidance of doubt, this rule is deliberately worded to

apply solely when data packets arrive, but the comparison with

the previous packet includes any packet, not just data packets.

An AccECN Data Receiver MUST emit an ACK

if 'n' CE marks have arrived since the previous ACK. If there is

newly delivered data to acknowledge, 'n' SHOULD be 2. If there is

no newly delivered data to acknowledge, 'n' SHOULD be 3 and MUST

be no less than 3. In either case, 'n' MUST be no greater than 7.

The above rules for when to send an ACK are designed to be

complemented by those in Section 3.2.3.3, which concern whether the

AccECN TCP Option ought to be included on ACKs.

If the arrivals of a number of data packets are all processed as one

event, e.g. using large receive offload (LRO) or generic receive

offload (GRO), both the above rules SHOULD be interpreted as

requiring multiple ACKs to be emitted back-to-back (for each

transition and for each repetition by 'n' CE marks). If this is

problematic for high performance, either rule can be interpreted as

requiring just a single ACK at the end of the whole receive event.

Even if a number of data packets do not arrive as one event, the

'Change-Triggered ACKs' rule could sometimes cause the ACK rate to

be problematic for high performance (although high performance

protocols such as DCTCP already successfully use change-triggered

ACKs). The rationale for change-triggered ACKs is so that the Data

Sender can rely on them to detect queue growth as soon as possible,

particularly at the start of a flow. The approach can lead to some

additional ACKs but it feeds back the timing and the order in which

ECN marks are received with minimal additional complexity. If CE

marks are infrequent, as is the case for most AQMs at the time of

writing, or there are multiple marks in a row, the additional load

will be low. However, marking patterns with numerous non-contiguous

CE marks could increase the load significantly. One possible

compromise would be for the receiver to heuristically detect whether
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the sender is in slow-start, then to implement change-triggered ACKs

while the sender is in slow-start, and offload otherwise.

With ECN-capable pure ACKs [I-D.ietf-tcpm-generalized-ecn], the

'Increment-Triggered ACKs' rule could cause ECN-marked pure ACKs to

trigger further ACKs. Although TCP normally only ACKs newly

delivered data, in this case the ACKs of ACKs would feed back new

congestion state. The minimum of 3 for 'n' in this case ensures

that, even if there is pathological congestion in both directions,

any resulting ping-pong of ACKs will be rapidly damped.

These ACKs of ACKs could be misidentified as duplicate ACKs in

certain circumstances described below. Therefore, a host in AccECN

mode that is sending ECN-capable pure ACKs SHOULD add one of the

following additional checks when it tests whether an incoming pure

ACK is a duplicate:

If SACK has been negotatiated for the connection, but there is no

SACK option on the incoming pure ACK, it is not a duplicate;

If timestamps are in use, and the incoming pure ACK echoes a

timestamp older than the oldest unacknowledged data, it is not a

duplicate.

In the unlikely event that neither SACK nor timestamps are in use,

or if the implementation has opted not to include either of the

above two checks, it SHOULD NOT send ECN-capable pure ACKs. If it

does, it could lead to false detection of duplicate ACKs, causing

spurious retransmission(s) with a resulting unnecessary reduction in

congestion window; but only in certain circumstances. Specifically,

if TCP peer A has been sending data, then receiving, then within one

round trip it starts sending again, and the ECN-capable pure ACKs it

sent in the previous round encounter heavy enough congestion to

trigger peer B to invoke the above 'n'-CE-mark rule. Also note that

falsely considering these ACKs as duplicates would incorrectly imply

that data left the network.

3.2.2.5.2. Data Sender Safety Procedures

If the Data Sender has not received AccECN TCP Options to give it

more dependable information, and it detects that the ACE field could

have cycled, it SHOULD deem whether it cycled by taking the safest

likely case under the prevailing conditions. It can detect if the

counter could have cycled by using the jump in the acknowledgement

number since the last ACK to calculate or estimate how many segments

could have been acknowledged. An example algorithm to implement this

policy is given in Appendix A.2. An implementer MAY develop an

alternative algorithm as long as it satisfies these requirements.
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If missing acknowledgement numbers arrive later (reordering) and

prove that the counter did not cycle, the Data Sender MAY attempt to

neutralize the effect of any action it took based on a conservative

assumption that it later found to be incorrect.

The Data Sender can estimate how many packets (of any marking) an

ACK acknowledges. If the ACE counter on an ACK seems to imply that

the minimum number of newly CE-marked packets is greater that the

number of newly acknowledged packets, the Data Sender SHOULD believe

the ACE counter, unless it can be sure that it is counting all

control packets correctly.

3.2.3. The AccECN Option

The AccECN Option is defined as shown in Figure 4. The initial 'E'

of each field name stands for 'Echo'.

Figure 4: The AccECN TCP Option

Figure 4 shows two option field orders; order 0 and order 1. They

both consists of three 24-bit fields. Order 0 provides the 24 least

significant bits of the r.e0b, r.ceb and r.e1b counters,

respectively. Order 1 provides the same fields, but in the opposite

order. On each packet, the Data Receiver can use whichever order is

more efficient.

When a Data Receiver sends an AccECN Option, it MUST set the Kind

field to TBD0 if using Order 0, or to TBD1 if using Order 1. These
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 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Kind = TBD0  |  Length = 11  |          EE0B field           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| EE0B (cont'd) |           ECEB field                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                  EE1B field                   |             Order 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Kind = TBD1  |  Length = 11  |          EE1B field           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| EE1B (cont'd) |           ECEB field                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                  EE0B field                   |             Order 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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two new TCP Option Kinds are registered in Section 7 and called

respectively AccECN0 and AccECN1.

Note that there is no field to feed back Not-ECT bytes. Nonetheless

an algorithm for the Data Sender to calculate the number of payload

bytes received as Not-ECT is given in Appendix A.4.

Whenever a Data Receiver sends an AccECN Option, the rules in 

Section 3.2.3.3 allow it to omit unchanged fields from the tail of

the option, to help cope with option space limitations, as long as

it preserves the order of the remaining fields and includes any

field that has changed. The length field MUST indicate which fields

are present as follows:

Length Type 0 Type 1

11 EE0B, ECEB, EE1B EE1B, ECEB, EE0B

8 EE0B, ECEB EE1B, ECEB

5 EE0B EE1B

2 (empty) (empty)

Table 5: Fields included in AccECN TCP

Options of each length and type

The empty option of Length=2 is provided to allow for a case where

an AccECN Option has to be sent (e.g. on the SYN/ACK to test the

path), but there is very limited space for the option.

All implementations of a Data Sender that read any AccECN Option

MUST be able to read in AccECN Options of any of the above lengths.

For forward compatibility, if the AccECN Option is of any other

length, implementations MUST use those whole 3-octet fields that fit

within the length and ignore the remainder of the option, treating

it as padding.

The AccECN Option has to be optional to implement, because both

sender and receiver have to be able to cope without the option

anyway - in cases where it does not traverse a network path. It is

RECOMMENDED to implement both sending and receiving of the AccECN

Option. Support for the AccECN Option is particularly valuable over

paths that introduce a high degree of ACK filtering, where the 3-bit

ACE counter alone might sometimes be insufficient, when it is

ambiguous whether it has wrapped. If sending of the AccECN Option is

implemented, the fall-backs described in this document will need to

be implemented as well (unless solely for a controlled environment

where path traversal is not considered a problem). Even if a

developer does not implement logic to understand received AccECN

Options, it is RECOMMENDED that they still implement logic to send

AccECN Options to provide richer feedback to those remote peers that
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do understand it. The logic to send AccECN Options is the simpler to

implement of the two sides.

If a Data Receiver intends to send the AccECN Option at any time

during the rest of the connection it is RECOMMENDED to also test

path traversal of the AccECN Option as specified in Section 3.2.3.2.

3.2.3.1. Encoding and Decoding Feedback in the AccECN Option Fields

Whenever the Data Receiver includes any of the counter fields (ECEB,

EE0B, EE1B) in an AccECN Option, it MUST encode the 24 least

significant bits of the current value of the associated counter into

the field (respectively r.ceb, r.e0b, r.e1b).

Whenever the Data Sender receives ACK carrying an AccECN Option, it

first checks whether the ACK has already been superseded by another

ACK in which case it ignores the ECN feedback. If the ACK has not

been superseded, the Data Sender normally decodes the fields in the

AccECN Option as follows. For each field, it takes the least

significant 24 bits of its associated local counter (s.ceb, s.e0b or

s.e1b) and subtracts them from the counter in the associated field

of the incoming AccECN Option (respectively ECEB, EE0B, EE1B), to

work out the minimum positive increment it could apply to s.ceb,

s.e0b or s.e1b (assuming the field in the option only wrapped at

most once).

Appendix A.1 gives an example algorithm for the Data Receiver to

encode its byte counters into the AccECN Option, and for the Data

Sender to decode the AccECN Option fields into its byte counters.

Note that, as specified in Section 3.2, any data on the SYN (SYN=1,

ACK=0) is not included in any of the byte counters held locally for

each ECN marking nor in the AccECN Option on the wire.

3.2.3.2. Path Traversal of the AccECN Option

3.2.3.2.1. Testing the AccECN Option during the Handshake

The TCP client MUST NOT include the AccECN TCP Option on the SYN. If

there is somehow an AccECN Option on a SYN, it MUST be ignored when

forwarded or received. (A fall-back strategy for the loss of the

SYN, possibly due to middlebox interference, is specified in Section

3.1.4.)

A TCP server that confirms its support for AccECN (in response to an

AccECN SYN from the client as described in Section 3.1) SHOULD

include an AccECN TCP Option on the SYN/ACK.

A TCP client that has successfully negotiated AccECN SHOULD include

an AccECN Option in the first ACK at the end of the 3WHS. However,
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this first ACK is not delivered reliably, so the TCP client SHOULD

also include an AccECN Option on the first data segment it sends (if

it ever sends one).

A host MAY omit the AccECN Option in any of the above three cases

due to insufficient option space or if it has cached knowledge that

the packet would be likely to be blocked on the path to the other

host if it included an AccECN Option.

3.2.3.2.2. Testing for Loss of Packets Carrying the AccECN Option

If after the normal TCP timeout the TCP server has not received an

ACK to acknowledge its SYN/ACK, the SYN/ACK might just have been

lost, e.g. due to congestion, or a middlebox might be blocking the

AccECN Option. To expedite connection setup, the TCP server SHOULD

retransmit the SYN/ACK repeating the same AE, CWR and ECE TCP flags

as on the original SYN/ACK but with no AccECN Option. If this

retransmission times out, to expedite connection setup, the TCP

server SHOULD disable AccECN and ECN for this connection by

retransmitting the SYN/ACK with AE=CWR=ECE=0 and no AccECN Option.

Implementers MAY use other fall-back strategies if they are found to

be more effective (e.g. retrying the AccECN Option for a second time

before fall-back - most appropriate during high levels of

congestion). However, other fall-back strategies will need to follow

all the rules in Section 3.1.5, which concern behaviour when SYNs or

SYN/ACKs negotiating different types of feedback have been sent

within the same connection.

If the TCP client detects that the first data segment it sent with

the AccECN Option was lost, it SHOULD fall back to no AccECN Option

on the retransmission. Again, implementers MAY use other fall-back

strategies such as attempting to retransmit a second segment with

the AccECN Option before fall-back, and/or caching whether the

AccECN Option is blocked for subsequent connections. [RFC9040]

further discusses caching of TCP parameters and status information.

If a host falls back to not sending the AccECN Option, it will

continue to process any incoming AccECN Options as normal.

Either host MAY include the AccECN Option in a subsequent segment to

retest whether the AccECN Option can traverse the path.

If the TCP server receives a second SYN with a request for AccECN

support, it is advised to resend the SYN/ACK, again confirming its

support for AccECN, but this time without the AccECN Option. This

approach rules out any interference by middleboxes that might drop

packets with unknown options, even though it is more likely that the

SYN/ACK would have been lost due to congestion. The TCP server MAY

try to send another packet with the AccECN Option at a later point
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during the connection but it ought to monitor if that packet got

lost as well, in which case it SHOULD disable the sending of the

AccECN Option for this half-connection.

Similarly, an AccECN end-point MAY separately memorize which data

packets carried an AccECN Option and disable the sending of AccECN

Options if the loss probability of those packets is significantly

higher than that of all other data packets in the same connection.

3.2.3.2.3. Testing for Absence of the AccECN Option

If the TCP client has successfully negotiated AccECN but does not

receive an AccECN Option on the SYN/ACK (e.g. because is has been

stripped by a middlebox or not sent by the server), the client

switches into a mode that assumes that the AccECN Option is not

available for this half connection.

Similarly, if the TCP server has successfully negotiated AccECN but

does not receive an AccECN Option on the first segment that

acknowledges sequence space at least covering the ISN, it switches

into a mode that assumes that the AccECN Option is not available for

this half connection.

While a host is in this mode that assumes incoming AccECN Options

are not available, it MUST adopt the conservative interpretation of

the ACE field discussed in Section 3.2.2.5. However, it cannot make

any assumption about support of outgoing AccECN Options on the other

half connection, so it SHOULD continue to send the AccECN Option

itself (unless it has established that sending the AccECN Option is

causing packets to be blocked as in Section 3.2.3.2.2).

If a host is in the mode that assumes incoming AccECN Options are

not available, but it receives an AccECN Option at any later point

during the connection, this clearly indicates that the AccECN Option

is not blocked on the respective path, and the AccECN endpoint MAY

switch out of the mode that assumes the AccECN Option is not

available for this half connection.

3.2.3.2.4. Test for Zeroing of the AccECN Option

For a related test for invalid initialization of the ACE field, see 

Section 3.2.2.4

Section 3.2.1 required the Data Receiver to initialize the r.e0b and

r.e1b counters to a non-zero value. Therefore, in either direction

the initial value of the EE0B field or EE1B field in the AccECN
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Option (if one exists) ought to be non-zero. If AccECN has been

negotiated:

the TCP server MAY check that the initial value of the EE0B field

or the EE1B field is non-zero in the first segment that

acknowledges sequence space that at least covers the ISN plus 1.

If it runs a test and either initial value is zero, the server

will switch into a mode that ignores the AccECN Option for this

half connection.

the TCP client MAY check the initial value of the EE0B field or

the EE1B field is non-zero on the SYN/ACK. If it runs a test and

either initial value is zero, the client will switch into a mode

that ignores the AccECN Option for this half connection.

While a host is in the mode that ignores the AccECN Option it MUST

adopt the conservative interpretation of the ACE field discussed in 

Section 3.2.2.5.

Note that the Data Sender MUST NOT test whether the arriving byte

counters in the initial AccECN Option have been initialized to

specific valid values - the above checks solely test whether these

fields have been incorrectly zeroed. This allows hosts to use

different initial values as an additional signalling channel in

future. Also note that the initial value of either field might be

greater than its expected initial value, because the counters might

already have been incremented. Nonetheless, the initial values of

the counters have been chosen so that they cannot wrap to zero on

these initial segments.

3.2.3.2.5. Consistency between AccECN Feedback Fields

When the AccECN Option is available it ought to provide more

unambiguous feedback. However, it supplements but does not replace

the ACE field. An endpoint using AccECN feedback MUST always

reconcile the information provided in the ACE field with that in any

AccECN Option, so that the state of the ACE-related packet counter

can be relied on if future feedback does not carry the AccECN

Option.

If the AccECN option is present, the s.cep counter might increase

more than expected from the increase of the s.ceb counter (e.g. due

to a CE-marked control packet). The sender's response to such a

situation is out of scope, and needs to be dealt with in a

specification that uses ECN-capable control packets. Theoretically,

this situation could also occur if a middlebox mangled the AccECN

Option but not the ACE field. However, the Data Sender has to assume

that the integrity of the AccECN Option is sound, based on the above

test of the well-known initial values and optionally other integrity

tests (Section 5.3).
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Importance of Congestion Control:

Recommended Simple Scheme:

Necessary Option Length:

If either end-point detects that the s.ceb counter has increased but

the s.cep has not (and by testing ACK coverage it is certain how

much the ACE field has wrapped), and if there is no explanation

other than an invalid protocol transition due to some form of

feedback mangling, the Data Sender MUST disable sending ECN-capable

packets for the remainder of the half-connection by setting the IP/

ECN field in all subsequent packets to Not-ECT.

3.2.3.3. Usage of the AccECN TCP Option

If a Data Receiver in AccECN mode intends to use the AccECN TCP

Option to provide feedback, the rules below determine when it

includes an AccECN TCP Option, and which fields to include, given

other options might be competing for limited option space:

AccECN is for congestion control,

which SHOULD generally be considered important relative to other

TCP options.

If SACK has been negotiated, and the smallest recommended AccECN

Option would leave insufficient space for two SACK blocks on a

particular ACK, the Data Receiver MUST give precedence to the

SACK option (total 18 octets), because loss feedback is more

critical.

The Data Receiver SHOULD include an

AccECN TCP Option on every scheduled ACK if any byte counter has

incremented since the last ACK. Whenever possible, it SHOULD

include a field for every byte counter that has changed at some

time during the connection (see examples later).

A scheduled ACK means an ACK that the Data Receiver would send by

its regular delayed ACK rules. Recall that Section 1.3 defines an

'ACK' as either with data payload or without. But the above rule

is worded so that, in the common case when most of the data is

from a server to a client, the server only includes an AccECN TCP

Option while it is acknowledging data from the client.

When available TCP option space is limited on particular packets,

the recommended scheme will need to include compromises. To guide

the implementer the rules below are ranked in order of importance,

but the final decision has to be implementation-dependent, because

tradeoffs will alter as new TCP options are defined and new use-

cases arise.

The Data Receiver MUST only include an

AccECN TCP Option on a packet if it includes all the counter(s)

that have incremented since the previous AccECN Option. It MUST

only truncate unchanged fields from the right-hand tail of the
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Change-Triggered AccECN TCP Options:

Continual Repetition:

option to preserve the order of the remaining fields (see Section

3.2.3);

If an arriving packet

increments a different byte counter to that incremented by the

previous packet, the Data Receiver SHOULD feed it back in an

AccECN Option on the next scheduled ACK.

For the avoidance of doubt, this rule does not concern the

arrival of control packets with no payload, because they cannot

alter any byte counters.

Otherwise, if arriving packets continue to

increment the same byte counter:

the Data Receiver SHOULD include a counter that has

continued to increment on the next scheduled ACK following

a change-triggered AccECN TCP Option;

while the same counter continues to increment, it SHOULD

include the counter every n ACKs as consistently as

possible, where n can be chosen by the implementer;

It SHOULD always include an AccECN Option if the r.ceb

counter is incrementing and it MAY include an AccECN Option

if r.ec0b or r.ec1b is incrementing

It SHOULD, include each counter at least once for every

2^22 bytes incremented to prevent overflow during continual

repetition.

The above rules complement those in Section 3.2.2.5, which determine

when to generate an ACK irrespective of whether an AccECN TCP Option

is to be included.

The recommended scheme is intended as a simple way to ensure that

all the relevant byte counters will be carried on any ACK that

reaches the Data Sender, no matter how many pure ACKs are filtered

or coalesced along the network path, and without consuming the space

available for payload data with counter field(s) that have never

changed.

As an example of the recommended scheme, if ECT(0) is the only

codepoint that has ever arrived in the IP-ECN field, the Data

Receiver will feed back an AccECN0 TCP Option with only the EE0B

field on every packet. However, as soon as even one CE-marked packet

arrives, on every packet that acknowledges new data it will start to

include an option with two fields, EE0B and ECEB. As a second

example, if the first packet to arrive happens to be CE-marked, the

Data Receiver will have to arbitrarily choose whether to precede the
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ECEB field with an EE0B field or an EE1B field. If it chooses, say,

EEB0 but it turns out never to receive ECT(0), it can start sending

EE1B and ECEB instead - it does not have to include the EE0B field

if the r.e0b counter has never changed during the connection.

With the recommended scheme, if the data sending direction switches

during a connection, there can be cases where the AccECN TCP Option

that is meant to feed back the counter values at the end of a volley

in one direction never reaches the other peer, due to packet loss.

ACE feedback ought to be sufficient to fill this gap, given accurate

feedback becomes moot after data transmission has paused.

Appendix A.3 gives an example algorithm to estimate the number of

marked bytes from the ACE field alone, if the AccECN Option is not

available.

If a host has determined that segments with the AccECN Option always

seem to be discarded somewhere along the path, it is no longer

obliged to follow any of the rules in this section.

3.3. AccECN Compliance Requirements for TCP Proxies, Offload Engines

and other Middleboxes

3.3.1. Requirements for TCP Proxies

A large class of middleboxes split TCP connections. Such a middlebox

would be compliant with the AccECN protocol if the TCP

implementation on each side complied with the present AccECN

specification and each side negotiated AccECN independently of the

other side.

3.3.2. Requirements for Transparent Middleboxes and TCP Normalizers

Another large class of middleboxes intervenes to some degree at the

transport layer, but attempts to be transparent (invisible) to the

end-to-end connection. A subset of this class of middleboxes

attempts to `normalize' the TCP wire protocol by checking that all

values in header fields comply with a rather narrow interpretation

of the TCP specifications that is also not always up to date.

A middlebox that is not normalizing the TCP protocol and does not

itself act as a back-to-back pair of TCP endpoints (i.e. a middlebox

that intends to be transparent or invisible at the transport layer)

ought to forward the AccECN TCP Option unaltered, whether or not the

length value matches one of those specified in Section 3.2.3, and

whether or not the initial values of the byte-counter fields match

those in Section 3.2.1. This is because blocking apparently invalid

values prevents the standardized set of values being extended in

future (given outdated normalizers would block updated hosts from

using the extended AccECN standard).
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A TCP normalizer is likely to block or alter an AccECN TCP Option if

the length value or the initial values of its byte-counter fields do

not match one of those specified in Section 3.2.3 or Section 3.2.1.

However, to comply with the present AccECN specification, a

middlebox MUST NOT change the ACE field; or those fields of the

AccECN Option that are currently specified in Section 3.2.3; or any

AccECN field covered by integrity protection (e.g. [RFC5925]).

3.3.3. Requirements for TCP ACK Filtering

Section 5.2.1 of BCP 69 [RFC3449] gives best current practice on

filtering (aka. thinning or coalescing) of pure TCP ACKs. It advises

that filtering ACKs carrying ECN feedback ought to preserve the

correct operation of ECN feedback. As the present specification

updates the operation of ECN feedback, this section discusses how an

ACK filter might preserve correct operation of AccECN feedback as

well.

The problem divides into two parts: determining if an ACK is part of

a connection that is using AccECN and then preserving the correct

operation of AccECN feedback:

To determine whether a pure TCP ACK is part of an AccECN

connection without resorting to connection tracking and per-flow

state, a useful heuristic would be to check for a non-zero ECN

field at the IP layer (because the ECN++ experiment only allows

TCP pure ACKs to be ECN-capable if AccECN has been negotiated [I-

D.ietf-tcpm-generalized-ecn]). This heuristic is simple and

stateless. However, it might omit some AccECN ACKs, because it is

only recommended but not obligatory to use ECN++ with AccECN -

only deployment experience will tell. Also, TCP ACKs might be

ECN-capable owing to some scheme other than AccECN,

e.g. [RFC5690] or some future standards action. Again, only

deployment experience will tell.

The main concern with preserving correct AccECN operation

involves leaving enough ACKs for the Data Sender to work out

whether the 3-bit ACE field has wrapped. In the worst case, in

feedback about a run of received packets that were all ECN-

marked, the ACE field will wrap every 8 acknowledged packets. ACE

field wrap might be of less concern if packets also carry the

AccECN TCP Option. However, note that logic to read an AccECN TCP

Option is optional to implement (albeit recommended -- see 

Section 3.2.3). So one end writing an AccECN TCP Option into a

packet does not necessarily imply that the other end will read

it.

Note that the present specification of AccECN in TCP does not

presume to rely on any of the above ACK filtering behaviour in the
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network, because it has to be robust against pre-existing network

nodes that do not distinguish AccECN ACKs, and robust against ACK

loss during overload more generally.

3.3.4. Requirements for TCP Segmentation Offload

Hardware to offload certain TCP processing represents another large

class of middleboxes (even though it is often a function of a host's

network interface and rarely in its own 'box').

The ACE field changes with every received CE marking, so today's

receive offloading could lead to many interrupts in high congestion

situations. Although that would be useful (because congestion

information is received sooner), it could also significantly

increase processor load, particularly in scenarios such as DCTCP or

L4S where the marking rate is generally higher.

Current offload hardware ejects a segment from the coalescing

process whenever the TCP ECN flags change. Thus Classic ECN causes

offload to be inefficient. In data centres it has been fortunate for

this offload hardware that DCTCP-style feedback changes less often

when there are long sequences of CE marks, which is more common with

a step marking threshold (but less likely the more short flows are

in the mix). The ACE counter approach has been designed so that

coalescing can continue over arbitrary patterns of marking and only

needs to stop when the counter wraps. Nonetheless, until the

particular offload hardware in use implements this more efficient

approach, it is likely to be more efficient for AccECN connections

to implement this counter-style logic using software segmentation

offload.

ECN encodes a varying signal in the ACK stream, so it is inevitable

that offload hardware will ultimately need to handle any form of ECN

feedback exceptionally. The ACE field has been designed as a counter

so that it is straightforward for offload hardware to pass on the

highest counter, and to push a segment from its cache before the

counter wraps. The purpose of working towards standardized TCP ECN

feedback is to reduce the risk for hardware developers, who would

otherwise have to guess which scheme is likely to become dominant.

The above process has been designed to enable a continuing

incremental deployment path - to more highly dynamic congestion

control. Once offload hardware supports AccECN, it will be able to

coalesce efficiently for any sequence of marks, instead of relying

for efficiency on the long marking sequences from step marking. In

the next stage, marking can evolve from a step to a ramp function.

That in turn will allow host congestion control algorithms to

respond faster to dynamics, while being backwards compatible with

existing host algorithms.
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4. Updates to RFC 3168

Normative statements in the following sections of RFC3168 are

updated by the present AccECN specification:

The whole of "6.1.1 TCP Initialization" of [RFC3168] is updated

by Section 3.1 of the present specification.

In "6.1.2. The TCP Sender" of [RFC3168], all mentions of a

congestion response to an ECN-Echo (ECE) ACK packet are updated

by Section 3.2 of the present specification to mean an increment

to the sender's count of CE-marked packets, s.cep. And the

requirements to set the CWR flag no longer apply, as specified in

Section 3.1.5 of the present specification. Otherwise, the

remaining requirements in "6.1.2. The TCP Sender" still stand.

It will be noted that RFC 8311 already updates, or potentially

updates, a number of the requirements in "6.1.2. The TCP Sender".

Section 6.1.2 of RFC 3168 extended standard TCP congestion

control [RFC5681] to cover ECN marking as well as packet drop.

Whereas, RFC 8311 enables experimentation with alternative

responses to ECN marking, if specified for instance by an

experimental RFC on the IETF document stream. RFC 8311 also

strengthened the statement that "ECT(0) SHOULD be used" to a

"MUST" (see [RFC8311] for the details).

The whole of "6.1.3. The TCP Receiver" of [RFC3168] is updated by 

Section 3.2 of the present specification, with the exception of

the last paragraph (about congestion response to drop and ECN in

the same round trip), which still stands. Incidentally, this last

paragraph is in the wrong section, because it relates to TCP

sender behaviour.

The following text within "6.1.5. Retransmitted TCP packets":

"the TCP data receiver SHOULD ignore the ECN field on arriving

data packets that are outside of the receiver's current

window."

is updated by more stringent acceptability tests for any packet

(not just data packets) in the present specification.

Specifically, in the normative specification of AccECN (Section

3) only 'Acceptable' packets contribute to the ECN counters at

the AccECN receiver and Section 1.3 defines an Acceptable packet

as one that passes the acceptability tests in both [RFC0793] and 

[RFC5961].

Sections 5.2, 6.1.1, 6.1.4, 6.1.5 and 6.1.6 of [RFC3168] prohibit

use of ECN on TCP control packets and retransmissions. The

present specification does not update that aspect of RFC 3168,
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but it does say what feedback an AccECN Data Receiver ought to

provide if it receives an ECN-capable control packet or

retransmission. This ensures AccECN is forward compatible with

any future scheme that allows ECN on these packets, as provided

for in section 4.3 of [RFC8311] and as proposed in [I-D.ietf-

tcpm-generalized-ecn].

5. Interaction with TCP Variants

This section is informative, not normative.

5.1. Compatibility with SYN Cookies

A TCP server can use SYN Cookies (see Appendix A of [RFC4987]) to

protect itself from SYN flooding attacks. It places minimal commonly

used connection state in the SYN/ACK, and deliberately does not hold

any state while waiting for the subsequent ACK (e.g. it closes the

thread). Therefore it cannot record the fact that it entered AccECN

mode for both half-connections. Indeed, it cannot even remember

whether it negotiated the use of classic ECN [RFC3168].

Nonetheless, such a server can determine that it negotiated AccECN

as follows. If a TCP server using SYN Cookies supports AccECN and if

it receives a pure ACK that acknowledges an ISN that is a valid SYN

cookie, and if the ACK contains an ACE field with the value 0b010 to

0b111 (decimal 2 to 7), it can assume that:

the TCP client has to have requested AccECN support on the SYN

it (the server) has to have confirmed that it supported AccECN

Therefore the server can switch itself into AccECN mode, and

continue as if it had never forgotten that it switched itself into

AccECN mode earlier.

If the pure ACK that acknowledges a SYN cookie contains an ACE field

with the value 0b000 or 0b001, these values indicate that the client

did not request support for AccECN and therefore the server does not

enter AccECN mode for this connection. Further, 0b001 on the ACK

implies that the server sent an ECN-capable SYN/ACK, which was

marked CE in the network, and the non-AccECN client fed this back by

setting ECE on the ACK of the SYN/ACK.

5.2. Compatibility with TCP Experiments and Common TCP Options

AccECN is compatible (at least on paper) with the most commonly used

TCP options: MSS, time-stamp, window scaling, SACK and TCP-AO. It is

also compatible with the recent promising experimental TCP options

TCP Fast Open (TFO [RFC7413]) and Multipath TCP (MPTCP [RFC6824]).

AccECN is friendly to all these protocols, because space for TCP
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options is particularly scarce on the SYN, where AccECN consumes

zero additional header space.

When option space is under pressure from other options, Section

3.2.3.3 provides guidance on how important it is to send an AccECN

Option relative to other options, and which fields are more

important to include.

Implementers of TFO need to take careful note of the recommendation

in Section 3.2.2.1. That section recommends that, if the client has

successfully negotiated AccECN, when acknowledging the SYN/ACK, even

if it has data to send, it sends a pure ACK immediately before the

data. Then it can reflect the IP-ECN field of the SYN/ACK on this

pure ACK, which allows the server to detect ECN mangling. Note that,

as specified in Section 3.2, any data on the SYN (SYN=1, ACK=0) is

not included in any of the byte counters held locally for each ECN

marking, nor in the AccECN Option on the wire.

5.3. Compatibility with Feedback Integrity Mechanisms

Three alternative mechanisms are available to assure the integrity

of ECN and/or loss signals. AccECN is compatible with any of these

approaches:

The Data Sender can test the integrity of the receiver's ECN (or

loss) feedback by occasionally setting the IP-ECN field to a

value normally only set by the network (and/or deliberately

leaving a sequence number gap). Then it can test whether the Data

Receiver's feedback faithfully reports what it expects (similar

to para 2 of Section 20.2 of [RFC3168]). Unlike the ECN Nonce 

[RFC3540], this approach does not waste the ECT(1) codepoint in

the IP header, it does not require standardization and it does

not rely on misbehaving receivers volunteering to reveal feedback

information that allows them to be detected. However, setting the

CE mark by the sender might conceal actual congestion feedback

from the network and therefore ought to only be done sparingly.

Networks generate congestion signals when they are becoming

congested, so networks are more likely than Data Senders to be

concerned about the integrity of the receiver's feedback of these

signals. A network can enforce a congestion response to its ECN

markings (or packet losses) using congestion exposure (ConEx)

audit [RFC7713]. Whether the receiver or a downstream network is

suppressing congestion feedback or the sender is unresponsive to

the feedback, or both, ConEx audit can neutralize any advantage

that any of these three parties would otherwise gain.

ConEx is an experimental change to the Data Sender that would be

most useful when combined with AccECN. Without AccECN, the ConEx
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Accuracy:

Overhead:

Ordering:

Timeliness:

behaviour of a Data Sender would have to be more conservative

than would be necessary if it had the accurate feedback of

AccECN.

The standards track TCP authentication option (TCP-AO [RFC5925])

can be used to detect any tampering with AccECN feedback between

the Data Receiver and the Data Sender (whether malicious or

accidental). The AccECN fields are immutable end-to-end, so they

are amenable to TCP-AO protection, which covers TCP options by

default. However, TCP-AO is often too brittle to use on many end-

to-end paths, where middleboxes can make verification fail in

their attempts to improve performance or security, e.g. by

resegmentation or shifting the sequence space.

Originally the ECN Nonce [RFC3540] was proposed to ensure integrity

of congestion feedback. With minor changes AccECN could be optimized

for the possibility that the ECT(1) codepoint might be used as an

ECN Nonce. However, given RFC 3540 has been reclassified as

historic, the AccECN design has been generalized so that it ought to

be able to support other possible uses of the ECT(1) codepoint, such

as a lower severity or a more instant congestion signal than CE.

6. Protocol Properties

This section is informative not normative. It describes how well the

protocol satisfies the agreed requirements for a more accurate ECN

feedback protocol [RFC7560].

From each ACK, the Data Sender can infer the number of

new CE marked segments since the previous ACK. This provides

better accuracy on CE feedback than classic ECN. In addition if

the AccECN Option is present (not blocked by the network path)

the number of bytes marked with CE, ECT(1) and ECT(0) are

provided.

The AccECN scheme is divided into two parts. The

essential part reuses the 3 flags already assigned to ECN in the

IP header. The supplementary part adds an additional TCP option

consuming up to 11 bytes. However, no TCP option is consumed in

the SYN.

The order in which marks arrive at the Data Receiver is

preserved in AccECN feedback, because the Data Receiver is

expected to send an ACK immediately whenever a different mark

arrives.

While the same ECN markings are arriving continually at

the Data Receiver, it can defer ACKs as TCP does normally, but it

will immediately send an ACK as soon as a different ECN marking

arrives.
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Timeliness vs Overhead:

Resilience:

Resilience against Bias:

Resilience vs Overhead:

Resilience vs Timeliness and Ordering:

Complexity:

Change-Triggered ACKs are intended to

enable latency-sensitive uses of ECN feedback by capturing the

timing of transitions but not wasting resources while the state

of the signalling system is stable. Within the constraints of the

change-triggered ACK rules, the receiver can control how

frequently it sends the AccECN TCP Option and therefore to some

extent it can control the overhead induced by AccECN.

All information is provided based on counters.

Therefore if ACKs are lost, the counters on the first ACK

following the losses allows the Data Sender to immediately

recover the number of the ECN markings that it missed. And if

data or ACKs are reordered, stale congestion information can be

identified and ignored.

Because feedback is based on repetition of

counters, random losses do not remove any information, they only

delay it. Therefore, even though some ACKs are change-triggered,

random losses will not alter the proportions of the different ECN

markings in the feedback.

If space is limited in some segments

(e.g. because more options are needed on some segments, such as

the SACK option after loss), the Data Receiver can send AccECN

Options less frequently or truncate fields that have not changed,

usually down to as little as 5 bytes. However, it has to send a

full-sized AccECN Option at least three times per RTT, which the

Data Sender can rely on as a regular beacon or checkpoint.

Ordering information and the

timing of transitions cannot be communicated in three cases: i)

during ACK loss; ii) if something on the path strips the AccECN

Option; or iii) if the Data Receiver is unable to support Change-

Triggered ACKs. Following ACK reordering, the Data Sender can

reconstruct the order in which feedback was sent, but not until

all the missing feedback has arrived.

An AccECN implementation solely involves simple counter

increments, some modulo arithmetic to communicate the least

significant bits and allow for wrap, and some heuristics for

safety against fields cycling due to prolonged periods of ACK

loss. Each host needs to maintain eight additional counters. The

hosts have to apply some additional tests to detect tampering by

middleboxes, but in general the protocol is simple to understand,
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Integrity:

Backward Compatibility:

Backward Compatibility:

Forward Compatibility:

simple to implement and requires few cycles per packet to

execute.

AccECN is compatible with at least three approaches that

can assure the integrity of ECN feedback. If the AccECN Option is

stripped the resolution of the feedback is degraded, but the

integrity of this degraded feedback can still be assured.

If only one endpoint supports the AccECN

scheme, it will fall-back to the most advanced ECN feedback

scheme supported by the other end.

If the AccECN Option is stripped by a

middlebox, AccECN still provides basic congestion feedback in the

ACE field. Further, AccECN can be used to detect mangling of the

IP ECN field; mangling of the TCP ECN flags; blocking of ECT-

marked segments; and blocking of segments carrying the AccECN

Option. It can detect these conditions during TCP's 3WHS so that

it can fall back to operation without ECN and/or operation

without the AccECN Option.

The behaviour of endpoints and middleboxes

is carefully defined for all reserved or currently unused

codepoints in the scheme. Then, the designers of security devices

can understand which currently unused values might appear in

future. So, even if they choose to treat such values as anomalous

while they are not widely used, any blocking will at least be

under policy control not hard-coded. Then, if previously unused

values start to appear on the Internet (or in standards), such

policies could be quickly reversed.

7. IANA Considerations

This document reassigns bit 7 of the TCP header flags to the AccECN

protocol. This bit was previously called the Nonce Sum (NS) flag 

[RFC3540], but RFC 3540 has been reclassified as historic [RFC8311].

The flag will now be defined as:

Bit Name Reference

7 AE (Accurate ECN) RFC XXXX

Table 6: TCP header flag

reassignment

[TO BE REMOVED: IANA is requested to update the existing entry in

the Transmission Control Protocol (TCP) Header Flags registration

(https://www.iana.org/assignments/tcp-header-flags/tcp-header-

flags.xhtml#tcp-header-flags-1) for Bit 7 to "AE (Accurate ECN),

previously used as NS (Nonce Sum) by [RFC3540], which is now
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Historic [RFC8311]" and change the reference to this RFC-to-be

instead of RFC8311.]

This document also defines two new TCP options for AccECN, assigned

values of TBD0 and TBD1 (decimal) from the TCP option space. These

values are defined as:

Kind Length Meaning Reference

TBD0 N Accurate ECN Order 0 (AccECN0) RFC XXXX

TBD1 N Accurate ECN Order 1 (AccECN1) RFC XXXX

Table 7: New TCP Option assignments

[TO BE REMOVED: This registration should take place at the following

location: http://www.iana.org/assignments/tcp-parameters/tcp-

parameters.xhtml#tcp-parameters-1 ]

Early implementations using experimental option 254 per [RFC6994]

with the single magic number 0xACCE (16 bits), as allocated in the

IANA "TCP Experimental Option Experiment Identifiers (TCP ExIDs)"

registry, SHOULD migrate to use these new option kinds (TBD0 &

TBD1).

[TO BE REMOVED: The description of the 0xACCE value in the TCP ExIDs

registry should be changed to "AccECN (current and new

implementations SHOULD use option kinds TBD0 and TBD1)" at the

following location: https://www.iana.org/assignments/tcp-parameters/

tcp-parameters.xhtml#tcp-exids ]

8. Security Considerations

If ever the supplementary part of AccECN based on the new AccECN TCP

Option is unusable (due for example to middlebox interference) the

essential part of AccECN's congestion feedback offers only limited

resilience to long runs of ACK loss (see Section 3.2.2.5). These

problems are unlikely to be due to malicious intervention (because

if an attacker could strip a TCP option or discard a long run of

ACKs it could wreak other arbitrary havoc). However, it would be of

concern if AccECN's resilience could be indirectly compromised

during a flooding attack. AccECN is still considered safe though,

because if the option is not present, the AccECN Data Sender is then

required to switch to more conservative assumptions about wrap of

congestion indication counters (see Section 3.2.2.5 and Appendix A.

2).

Section 5.1 describes how a TCP server can negotiate AccECN and use

the SYN cookie method for mitigating SYN flooding attacks.
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There is concern that ECN feedback could be altered or suppressed,

particularly because a misbehaving Data Receiver could increase its

own throughput at the expense of others. AccECN is compatible with

the three schemes known to assure the integrity of ECN feedback (see

Section 5.3 for details). If the AccECN Option is stripped by an

incorrectly implemented middlebox, the resolution of the feedback

will be degraded, but the integrity of this degraded information can

still be assured. Assuring that Data Senders respond appropriately

to ECN feedback is possible, but the scope of the present document

is confined to the feedback protocol, and excludes the response to

this feedback.

In Section 3.2.3 a Data Sender is allowed to ignore an unrecognized

TCP AccECN Option length and read as many whole 3-octet fields from

it as possible up to a maximum of 3, treating the remainder as

padding. This opens up a potential covert channel of up to 29B (40 -

(2+3*3))B. However, it is really an overt channel (not hidden) and

it is no different to the use of unknown TCP options with unknown

option lengths in general. Therefore, where this is of concern, it

can already be adequately mitigated by regular TCP normalizer

technology (see Section 3.3.2).

The AccECN protocol is not believed to introduce any new privacy

concerns, because it merely counts and feeds back signals at the

transport layer that had already been visible at the IP layer. A

covert channel can be used to compromise privacy. However, as

explained above, undefined TCP options in general open up such

channels and common techniques are available to close them off.

There is a potential concern that a Data Receiver could deliberately

omit the AccECN Option pretending that it had been stripped by a

middlebox. No known way can yet be contrived for a receiver to take

advantage of this behaviour, which seems to always degrade its own

performance. However, the concern is mentioned here for

completeness.
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10. Comments Solicited

Comments and questions are encouraged and very welcome. They can be

addressed to the IETF TCP maintenance and minor modifications

working group mailing list <tcpm@ietf.org>, and/or to the authors.
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Appendix A. Example Algorithms

This appendix is informative, not normative. It gives example

algorithms that would satisfy the normative requirements of the

AccECN protocol. However, implementers are free to choose other ways

to implement the requirements.

A.1. Example Algorithm to Encode/Decode the AccECN Option

The example algorithms below show how a Data Receiver in AccECN mode

could encode its CE byte counter r.ceb into the ECEB field within

the AccECN TCP Option, and how a Data Sender in AccECN mode could

decode the ECEB field into its byte counter s.ceb. The other

counters for bytes marked ECT(0) and ECT(1) in the AccECN Option

would be similarly encoded and decoded.

It is assumed that each local byte counter is an unsigned integer

greater than 24b (probably 32b), and that the following constant has

been assigned:

DIVOPT = 2^24

Every time a CE marked data segment arrives, the Data Receiver

increments its local value of r.ceb by the size of the TCP Data.

Whenever it sends an ACK with the AccECN Option, the value it writes

into the ECEB field is

ECEB = r.ceb % DIVOPT

where '%' is the remainder operator.

On the arrival of an AccECN Option, the Data Sender first makes sure

the ACK has not been superseded in order to avoid winding the s.ceb

counter backwards. It uses the TCP acknowledgement number and any

SACK options to calculate newlyAckedB, the amount of new data that

the ACK acknowledges in bytes (newlyAckedB can be zero but not

negative). If newlyAckedB is zero, either the ACK has been

superseded or CE-marked packet(s) without data could have arrived.

To break the tie for the latter case, the Data Sender could use

timestamps (if present) to work out newlyAckedT, the amount of new

time that the ACK acknowledges. If the Data Sender determines that

the ACK has been superseded it ignores the AccECN Option. Otherwise,

the Data Sender calculates the minimum non-negative difference d.ceb

between the ECEB field and its local s.ceb counter, using modulo

arithmetic as follows:

¶

¶

¶

¶

¶

¶

¶

¶

   if ((newlyAckedB > 0) || (newlyAckedT > 0)) {

       d.ceb = (ECEB + DIVOPT - (s.ceb % DIVOPT)) % DIVOPT

       s.ceb += d.ceb

   }

¶



For example, if s.ceb is 33,554,433 and ECEB is 1461 (both decimal),

then

In practice an implementation might use heuristics to guess the

feedback in missing ACKs, then when it subsequently receives

feedback it might find that it needs to correct its earlier

heuristics as part of the decoding process. The above decoding

process does not include any such heuristics.

A.2. Example Algorithm for Safety Against Long Sequences of ACK Loss

The example algorithms below show how a Data Receiver in AccECN mode

could encode its CE packet counter r.cep into the ACE field, and how

the Data Sender in AccECN mode could decode the ACE field into its

s.cep counter. The Data Sender's algorithm includes code to

heuristically detect a long enough unbroken string of ACK losses

that could have concealed a cycle of the congestion counter in the

ACE field of the next ACK to arrive.

Two variants of the algorithm are given: i) a more conservative

variant for a Data Sender to use if it detects that the AccECN

Option is not available (see Section 3.2.2.5 and Section 3.2.3.2);

and ii) a less conservative variant that is feasible when

complementary information is available from the AccECN Option.

A.2.1. Safety Algorithm without the AccECN Option

It is assumed that each local packet counter is a sufficiently sized

unsigned integer (probably 32b) and that the following constant has

been assigned:

DIVACE = 2^3

Every time an Acceptable CE marked packet arrives (Section 3.2.2.2),

the Data Receiver increments its local value of r.cep by 1. It

repeats the same value of ACE in every subsequent ACK until the next

CE marking arrives, where

ACE = r.cep % DIVACE.

If the Data Sender received an earlier value of the counter that had

been delayed due to ACK reordering, it might incorrectly calculate

that the ACE field had wrapped. Therefore, on the arrival of every

ACK, the Data Sender ensures the ACK has not been superseded using

¶

   s.ceb % DIVOPT = 1

         d.ceb = (1461 + 2^24 - 1) % 2^24

               = 1460

         s.ceb = 33,554,433 + 1460

               = 33,555,893

¶

¶

¶

¶

¶

¶

¶

¶



the TCP acknowledgement number, any SACK options and timestamps (if

available) to calculate newlyAckedB, as in Appendix A.1. If the ACK

has not been superseded, the Data Sender calculates the minimum

difference d.cep between the ACE field and its local s.cep counter,

using modulo arithmetic as follows:

Section 3.2.2.5 expects the Data Sender to assume that the ACE field

cycled if it is the safest likely case under prevailing conditions.

The 3-bit ACE field in an arriving ACK could have cycled and become

ambiguous to the Data Sender if a sequence of ACKs goes missing that

covers a stream of data long enough to contain 8 or more CE marks.

We use the word `missing' rather than `lost', because some or all

the missing ACKs might arrive eventually, but out of order. Even if

some of the missing ACKs were piggy-backed on data (i.e. not pure

ACKs) retransmissions will not repair the lost AccECN information,

because AccECN requires retransmissions to carry the latest AccECN

counters, not the original ones.

The phrase `under prevailing conditions' allows for implementation-

dependent interpretation. A Data Sender might take account of the

prevailing size of data segments and the prevailing CE marking rate

just before the sequence of missing ACKs. However, we shall start

with the simplest algorithm, which assumes segments are all full-

sized and ultra-conservatively it assumes that ECN marking was 100%

on the forward path when ACKs on the reverse path started to all be

dropped. Specifically, if newlyAckedB is the amount of data that an

ACK acknowledges since the previous ACK, then the Data Sender could

assume that this acknowledges newlyAckedPkt full-sized segments,

where newlyAckedPkt = newlyAckedB/MSS. Then it could assume that the

ACE field incremented by

For example, imagine an ACK acknowledges newlyAckedPkt=9 more full-

size segments than any previous ACK, and that ACE increments by a

minimum of 2 CE marks (d.cep=2). The above formula works out that it

would still be safe to assume 2 CE marks (because 9 - ((9-2) % 8) =

2). However, if ACE increases by a minimum of 2 but acknowledges 10

full-sized segments, then it would be necessary to assume that there

could have been 10 CE marks (because 10 - ((10-2) % 8) = 10).

Note that checks would need to be added to the above pseudocode for

(d.cep > newlyAckedPkt), which could occur if newlyAckedPkt had been

wrongly estimated using an inappropriate packet size.

¶

   if ((newlyAckedB > 0) || (newlyAckedT > 0))

       d.cep = (ACE + DIVACE - (s.cep % DIVACE)) % DIVACE

¶

¶

¶

    dSafer.cep = newlyAckedPkt - ((newlyAckedPkt - d.cep) % DIVACE),¶

¶

¶



ACKs that acknowledge a large stretch of packets might be common in

data centres to achieve a high packet rate or might be due to ACK

thinning by a middlebox. In these cases, cycling of the ACE field

would often appear to have been possible, so the above algorithm

would be over-conservative, leading to a false high marking rate and

poor performance. Therefore it would be reasonable to only use

dSafer.cep rather than d.cep if the moving average of newlyAckedPkt

was well below 8.

Implementers could build in more heuristics to estimate prevailing

average segment size and prevailing ECN marking. For instance,

newlyAckedPkt in the above formula could be replaced with

newlyAckedPktHeur = newlyAckedPkt*p*MSS/s, where s is the prevailing

segment size and p is the prevailing ECN marking probability.

However, ultimately, if TCP's ECN feedback becomes inaccurate it

still has loss detection to fall back on. Therefore, it would seem

safe to implement a simple algorithm, rather than a perfect one.

The simple algorithm for dSafer.cep above requires no monitoring of

prevailing conditions and it would still be safe if, for example,

segments were on average at least 5% of full-sized as long as ECN

marking was 5% or less. Assuming it was used, the Data Sender would

increment its packet counter as follows:

s.cep += dSafer.cep

If missing acknowledgement numbers arrive later (due to reordering),

Section 3.2.2.5 says "the Data Sender MAY attempt to neutralize the

effect of any action it took based on a conservative assumption that

it later found to be incorrect". To do this, the Data Sender would

have to store the values of all the relevant variables whenever it

made assumptions, so that it could re-evaluate them later. Given

this could become complex and it is not required, we do not attempt

to provide an example of how to do this.

A.2.2. Safety Algorithm with the AccECN Option

When the AccECN Option is available on the ACKs before and after the

possible sequence of ACK losses, if the Data Sender only needs CE-

marked bytes, it will have sufficient information in the AccECN

Option without needing to process the ACE field. If for some reason

it needs CE-marked packets, if dSafer.cep is different from d.cep,

it can determine whether d.cep is likely to be a safe enough

estimate by checking whether the average marked segment size (s =

d.ceb/d.cep) is less than the MSS (where d.ceb is the amount of

newly CE-marked bytes - see Appendix A.1). Specifically, it could

use the following algorithm:

¶

¶

¶

¶

¶

¶



The chart below shows when the above algorithm will consider d.cep

can replace dSafer.cep as a safe enough estimate of the number of

CE-marked packets:

The following examples give the reasoning behind the algorithm,

assuming MSS=1460 [B]:

if d.cep=0, dSafer.cep=8 and d.ceb=1460, then s=infinity and

sSafer=182.5.

Therefore even though the average size of 8 data segments is

unlikely to have been as small as MSS/8, d.cep cannot have been

correct, because it would imply an average segment size greater

than the MSS.

if d.cep=2, dSafer.cep=10 and d.ceb=1460, then s=730 and

sSafer=146.

Therefore d.cep is safe enough, because the average size of 10

data segments is unlikely to have been as small as MSS/10.

if d.cep=7, dSafer.cep=15 and d.ceb=10200, then s=1457 and

sSafer=680.

   SAFETY_FACTOR = 2

   if (dSafer.cep > d.cep) {

       if (d.ceb <= MSS * d.cep) {  % Same as (s <= MSS), but no DBZ

          sSafer = d.ceb/dSafer.cep

          if (sSafer < MSS/SAFETY_FACTOR)

              dSafer.cep = d.cep    % d.cep is a safe enough estimate

       } % else

           % No need for else; dSafer.cep is already correct,

           % because d.cep must have been too small

   }

¶

¶

                 ^

           sSafer|

                 |

              MSS+

                 |

                 |         dSafer.cep

                 |                  is

MSS/SAFETY_FACTOR+--------------+    safest

                 |              |

                 | d.cep is safe|

                 |    enough    |

                 +-------------------->

                               MSS     s

¶

¶

*

¶

¶

*

¶

¶

*

¶



Therefore d.cep is safe enough, because the average data segment

size is more likely to have been just less than one MSS, rather

than below MSS/2.

If pure ACKs were allowed to be ECN-capable, missing ACKs would be

far less likely. However, because [RFC3168] currently precludes

this, the above algorithm assumes that pure ACKs are not ECN-

capable.

A.3. Example Algorithm to Estimate Marked Bytes from Marked Packets

If the AccECN Option is not available, the Data Sender can only

decode CE-marking from the ACE field in packets. Every time an ACK

arrives, to convert this into an estimate of CE-marked bytes, it

needs an average of the segment size, s_ave. Then it can add or

subtract s_ave from the value of d.ceb as the value of d.cep

increments or decrements. Some possible ways to calculate s_ave are

outlined below. The precise details will depend on why an estimate

of marked bytes is needed.

The implementation could keep a record of the byte numbers of all

the boundaries between packets in flight (including control

packets), and recalculate s_ave on every ACK. However it would be

simpler to merely maintain a counter packets_in_flight for the

number of packets in flight (including control packets), which is

reset once per RTT. Either way, it would estimate s_ave as:

s_ave ~= flightsize / packets_in_flight,

where flightsize is the variable that TCP already maintains for the

number of bytes in flight. To avoid floating point arithmetic, it

could right-bit-shift by lg(packets_in_flight), where lg() means log

base 2.

An alternative would be to maintain an exponentially weighted moving

average (EWMA) of the segment size:

s_ave = a * s + (1-a) * s_ave,

where a is the decay constant for the EWMA. However, then it is

necessary to choose a good value for this constant, which ought to

depend on the number of packets in flight. Also the decay constant

needs to be power of two to avoid floating point arithmetic.

A.4. Example Algorithm to Count Not-ECT Bytes

A Data Sender in AccECN mode can infer the amount of TCP payload

data arriving at the receiver marked Not-ECT from the difference

between the amount of newly ACKed data and the sum of the bytes with

the other three markings, d.ceb, d.e0b and d.e1b.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



For this approach to be precise, it has to be assumed that spurious

(unnecessary) retransmissions do not lead to double counting. This

assumption is currently correct, given that RFC 3168 requires that

the Data Sender marks retransmitted segments as Not-ECT. However,

the converse is not true; necessary retransmissions will result in

under-counting.

However, such precision is unlikely to be necessary. The only known

use of a count of Not-ECT marked bytes is to test whether equipment

on the path is clearing the ECN field (perhaps due to an out-dated

attempt to clear, or bleach, what used to be the ToS field). To

detect bleaching it will be sufficient to detect whether nearly all

bytes arrive marked as Not-ECT. Therefore there ought to be no need

to keep track of the details of retransmissions.

Appendix B. Rationale for Usage of TCP Header Flags

B.1. Three TCP Header Flags in the SYN-SYN/ACK Handshake

AccECN uses a rather unorthodox approach to negotiate the highest

version TCP ECN feedback scheme that both ends support, as justified

below. It follows from the original TCP ECN capability negotiation 

[RFC3168], in which the client set the 2 least significant of the

original reserved flags in the TCP header, and fell back to no ECN

support if the server responded with the 2 flags cleared, which had

previously been the default.

ECN originally used header flags rather than a TCP option because it

was considered more efficient to use a header flag for 1 bit of

feedback per ACK, and this bit could be overloaded to indicate

support for ECN during the handshake. During the development of ECN,

1 bit crept up to 2, in order to deliver the feedback reliably and

to work round some broken hosts that reflected the reserved flags

during the handshake.

In order to be backward compatible with RFC 3168, AccECN continues

this approach, using the 3rd least significant TCP header flag that

had previously been allocated for the ECN nonce (now historic).

Then, whatever form of server an AccECN client encounters, the

connection can fall back to the highest version of feedback protocol

that both ends support, as explained in Section 3.1.

If AccECN had used the more orthodox approach of a TCP option, it

would still have had to set the two ECN flags in the main TCP

header, in order to be able to fall back to Classic RFC 3168 ECN, or

to disable ECN support, without another round of negotiation. Then

AccECN would also have had to handle all the different ways that

servers currently respond to settings of the ECN flags in the main

TCP header, including all the conflicting cases where a server might

¶

¶

¶

¶

¶



Future AccECN variants:

have said it supported one approach in the flags and another

approach in the new TCP option. And AccECN would have had to deal

with all the additional possibilities where a middlebox might have

mangled the ECN flags, or removed the TCP option. Thus, usage of the

3rd reserved TCP header flag simplified the protocol.

The third flag was used in a way that could be distinguished from

the ECN nonce, in case any nonce deployment was encountered.

Previous usage of this flag for the ECN nonce was integrated into

the original ECN negotiation. This further justified the 3rd flag's

use for AccECN, because a non-ECN usage of this flag would have had

to use it as a separate single bit, rather than in combination with

the other 2 ECN flags.

Indeed, having overloaded the original uses of these three flags for

its handshake, AccECN overloads all three bits again as a 3-bit

counter.

B.2. Four Codepoints in the SYN/ACK

Of the 8 possible codepoints that the 3 TCP header flags can

indicate on the SYN/ACK, 4 already indicated earlier (or broken)

versions of ECN support. In the early design of AccECN, an AccECN

server could use only 2 of the 4 remaining codepoints. They both

indicated AccECN support, but one fed back that the SYN had arrived

marked as CE. Even though ECN support on a SYN is not yet on the

standards track, the idea is for either end to act as a dumb

reflector, so that future capabilities can be unilaterally deployed

without requiring 2-ended deployment (justified in Section 2.5).

During traversal testing it was discovered that the ECN field in the

SYN was mangled on a non-negligible proportion of paths. Therefore

it was necessary to allow the SYN/ACK to feed all four IP/ECN

codepoints that the SYN could arrive with back to the client.

Without this, the client could not know whether to disable ECN for

the connection due to mangling of the IP/ECN field (also explained

in Section 2.5). This development consumed the remaining 2

codepoints on the SYN/ACK that had been reserved for future use by

AccECN in earlier versions.

B.3. Space for Future Evolution

Despite availability of usable TCP header space being extremely

scarce, the AccECN protocol has taken all possible steps to ensure

that there is space to negotiate possible future variants of the

protocol, either if a variant of AccECN is required, or if a

completely different ECN feedback approach is needed:

When the AccECN capability is negotiated

during TCP's 3WHS, the rows in Table 2 tagged as 'Nonce' and

¶

¶

¶

¶

¶

¶



Future non-AccECN variants:

'Broken' in the column for the capability of node B are unused by

any current protocol in the RFC series. These could be used by

TCP servers in future to indicate a variant of the AccECN

protocol. In recent measurement studies in which the response of

large numbers of servers to an AccECN SYN has been tested,

e.g. [Mandalari18], a very small number of SYN/ACKs arrive with

the pattern tagged as 'Nonce', and a small but more significant

number arrive with the pattern tagged as 'Broken'. The 'Nonce'

pattern could be a sign that a few servers have implemented the

ECN Nonce [RFC3540], which has now been reclassified as historic 

[RFC8311], or it could be the random result of some unknown

middlebox behaviour. The greater prevalence of the 'Broken'

pattern suggests that some instances still exist of the broken

code that reflects the reserved flags on the SYN.

The requirement not to reject unexpected initial values of the

ACE counter (in the main TCP header) in the last para of Section

3.2.2.4 ensures that 3 unused codepoints on the ACK of the SYN/

ACK, 6 unused values on the first SYN=0 data packet from the

client and 7 unused values on the first SYN=0 data packet from

the server could be used to declare future variants of the AccECN

protocol. The word 'declare' is used rather than 'negotiate'

because, at this late stage in the 3WHS, it would be too late for

a negotiation between the endpoints to be completed. A similar

requirement not to reject unexpected initial values in the TCP

option (Section 3.2.3.2.4) is for the same purpose. If traversal

of the TCP option were reliable, this would have enabled a far

wider range of future variation of the whole AccECN protocol.

Nonetheless, it could be used to reliably negotiate a wide range

of variation in the semantics of the AccECN Option.

Five codepoints out of the 8 possible

in the 3 TCP header flags used by AccECN are unused on the

initial SYN (in the order AE,CWR,ECE): 001, 010, 100, 101, 110. 

Section 3.1.3 ensures that the installed base of AccECN servers

will all assume these are equivalent to AccECN negotiation with

111 on the SYN. These codepoints would not allow fall-back to

Classic ECN support for a server that did not understand them,

but this approach ensures they are available in future, perhaps

for uses other than ECN alongside the AccECN scheme. All possible

combinations of SYN/ACK could be used in response except either

000 or reflection of the same values sent on the SYN.

Of course, other ways could be resorted to in order to extend

AccECN or ECN in future, although their traversal properties are

likely to be inferior. They include a new TCP option; using the

remaining reserved flags in the main TCP header (preferably

extending the 3-bit combinations used by AccECN to 4-bit

combinations, rather than burning one bit for just one state); a

¶

¶

¶



non-zero urgent pointer in combination with the URG flag cleared;

or some other unexpected combination of fields yet to be

invented.
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